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Abstract. The notion of the centroid of a tree is generalized to apply to arbitrary intersecting
families of sets. Centroids are used to obtain a compact representation for intersecting and crossing
families. The size of the representation for a family on n elements is O(n?), compared to O(n®)
for previous representations. Efficient algorithms to construct the representation are given. For
example on a network of n vertices and m edges, the representation of all minimum cuts uses
O(mlog(n?/m)) space; it is constructed in O(nmlog(n?/m)) time (this is the best-known time
for finding one minimum cut). The represent‘ation is used to improve several submodular flow
algorithms. For example a minimum-cost dijoin can be found in time O(n*m); as a result a
minimum-cost planar feedback arc set can be found in time O(n3). The previous best-known time

bounds for these two problems are a factor n larger.
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1. Introduction

Consider a tree on n nodes. A centroid is a node whose deletion leaves no subtree containing
> n/2 nodes [WW]. In 1869 Jordan showed that any tree has a centroid (see [H]).

We generalize jordan’s resuit to certain set families. Consider a finite universe 5. Sets X,
Y C § are intersectingif XNY, X —Y and Y — X are all nonempty. If in addition X UY # S then
X and Y are crossing. Let F be a family of subsets of S. F is a ring family if it is closed under
intersection and union. F is an intersecting (crossing) familyif X NY, X UY € F whenever X,
Y € F and X and Y are intersecting (crossing) [Fu90, GLS]. These three families commonly arise
as the minimizers of a submodular function (see Section 7). For example the minimum s, t-cuts of
a network form a ring family; the minimum (unrestricted) cuts of a network form a crossing family.
We generalize Jordan’s result by showing that any intersecting family has a centroid.

We apply the centroid theorem to construct compact representations of set families. Let
n = |S|. It is well-known that a ring family over $ can be represented by a digraph of size O(n?).
An intersecting or crossing family can be represented by n or 2n ring families respectively, giving size
O(n®). We present a representation of size O(n?) for intersecting or crossing families. For specific
families the improvement is similar. For example it is well-known that the minimum s, t-cuts of a
network of n vertices and m edges can be represented in O(m) space [PQ]. Thus the minimum cuts
of a network can be represented in O(nm) space. Our representation uses O(mlog(n%/m)) space.

We apply the representation to improve several submodular flow algorithms. A common bot-
tleneck in these algorithms is an operation on intersecting or crossing families that can be done
efficiently using our representation. For example consider the minimum-cost feedback arc set prob-
lem. Although NP-complete in general, the problem on planar graphs is equivalent to a submodular
flow problem. We solve the minimum-cost planar feedback arc set problem in time O(n?), improving
the bound of O(n*) due to Frank [F81].

We now describe the results and the organization of the paper in detail. The first part of the
paper treats intersecting and crossing families in general. Section 2 gives a broadened definition
of centroid and proves our centroid theorem. It also justifies the broadened definition as a direct
generalization of ordinary centroids. Section 3 defines the representation and analyzes it for general
families. Section 4 gives algorithms to construct the representation, for general families. Section 5
improves the analysis for families derived from graphs. Section 6 shows how the representation can
be used to efficiently answer certain queries on intersecting and crossing families. These queries
arise in submodular flow algorithms.

The second part of the paper gives examples for the centroid theorem and the representation.
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Section 7 describes how in general, submodular functions give rise to the examples discussed. Now
we describe the next three sections, comparing the results to previous ones.

Section 8 discusses the family of minimum cuts of a network. As already mentioned the
naive representation uses O(nm) space. I can be constructed in time G(nmlog(n®/m)) using the
mincut algorithm of Hao and Orlin [HO]. Our representation using O(mlog(n?/m)) space can be
constructed in the same time. On a digraph (i.e., a unit capacity network) with edge-connectivity
A the time to construct the representation of all connectivity cuts is O(Amlog(n?/m)).

We mention some related results. For undirected graphs or networks the cactus representation
of all minimum cuts, due to Dinits, Karzanov and Lomosonov [DKL], uses O(m) space. It can be
constructed in the same two time bounds given above that we achieve for digraphs [Ga91b]. For
digraphs [Ga91b] gives a representation of the “minimal mincuts.” It does not represent all the
mincuts.

Section 9 discusses the family of minimum vertex cuts of a digraph or network. For real-valued
vertex capacities our representation has size O(nmlog(n?/m)), versus O(n?m) for the naive repre-
sentation. For digraphs with vertex connectivity « the representation has size O(kmlog(n?/m)) and
can be constructed in time O(x min{x,/n}nm). A previous representation uses space O{(x*+n)m)
and can be constructed in time O((x? + n) min{k,/n}m) [Ev]. Our submodular flow application
(the k-vertex-reachability problem in [Ga93b]) needs only one of the x families represented, so
our time and space bounds decrease by a factor of k; however the only change in the previous
representation (in time and space) is that the factor (k% + n) decreases to n.

Kanevsky gives a representation for the minimum vertex separators of an undirected graph
[Kan]. It has size O(k?n), and can be used to enumerate all minimum separators. Kanevsky
shows the number of such separators is O(2"n?/k). Our representation represents the minimum
separators plus the disconnected pieces.

Section 10 discusses families related to count matroids. These families have applications in
the study of graph rigidity and scene analysis. For example when graphs model bar-and-joint
frameworks in the plane, rigidity properties are often revealed by the rigidity matroid [R]. The
rigidity matroid is a special case of a count matroid. The family of rigid subgraphs of a minimally
rigid graph is intersecting. Our representation has size O(nlogn) and is constructed in time
O(n?). A representation using O(n?) space is proposed in [N] but nonrigid sets can appear in
the representation [Ga91b].

The last part of the paper discusses applications to submodular flow algorithms. Section 11

briefly sketches Frank’s algorithm for 0-1 submodular network flow [F82]. It shows how the queries
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of Section 6 arise in the algorithm.

Section 12 discusses the minimum-cost dijoin problem. This problem is to make a digraph
strongly connected by contracting a set of edges of minimum cost. Frank solves the problem
in O{n*m) time using O(m) space, or O(n*M(n)) time using O(n°) space [F81]. Here M(n) is
the time to multiply two n X n matrices. Seemingly more complicated algorithms are given in
[Kar], [Lu]. Using our representation Frank’s algorithm runs in O(n*m) time using O(m) space,
or alternatively O(nM (n)) time using O(n?) space. The planar feedback arc set problem amounts
to the minimum-cost dijoin problem on the planar dual graph. Thus as mentioned above we solve
the planar feedback problem in time O(n®) and space O(n).

Section 13 presents similar improvements for versions of another submodular flow problem:
orient the edges of an undirected graph to make it k-edge connected. We improve the algorithm of
[F82] by a similar factor of n.

The representation applies to achieve similar improvements in other submodular flow prob-
lems. Two applications (k-edge-reachability orientation and minimum-cost k-vertex-reachability)
are discussed in [Ga93b]. We also use the representation to get efficient submodular flow algorithms
that work by cost-scaling [Ga93a]. ‘

This section concludes with some terminology. R is the set of real numbers, R the set of
nonnegative reals, Z the set of integers. Let S and T be sets. We use containmént S C T and
proper containment S C T. S and T meet if SNT # . If e is an element we often abbreviate the
singleton set {e} to e. Thus for functions f defined on sets, f(v) means f({v}). Similarly S — e
denotes § — {e} and S + e denotes S U {e}. In set expressions N has higher precedence than U,
e.g., AUBNC denotes AU (BNC). For a function f: S5 — R and any set X C 5, f(X) denotes
2Af(e) |z € X}

A digraph G = (V, E) has no parallel edges. The graphs we work with are mainly directed;
for the problems we consider (such as edge and vertex connectivity) an undirected graph can be
modelled by the corresponding digraph where each edge has both orientations. For § C V, p(S)
denotes the number of edges directed from V-5 to S. 6(.5) denotes p(V —S). A network is a digraph
with parallel edges or more generally, a digraph with an edge-capacity function ¢ : F — R4 + oc.
(In Section 9 networks have vertex capacities.) p.(S) denotes the total capacity of edges directed

from V — S to S. We abbreviate p, to p if the capacity function c is clear. The same applies to 6.

2. Centroids of intersecting families

This section introduces some basic notions including that of a centroid. It proves that any
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intersecting family has a centroid. It gives other basic properties of centroids.

A triangle consists of three sets that are pairwise intersecting but have no common element.
Let F be a family of subsets of §. An F-set is a set in F. An F-triangle is a triangle of three
F-sets. F is triangle-free if no F-triangle exists.

To illustrate consider the family of subtrees of a tree. We can identify a subtree by its vertices
or its edges. In both cases the family is intersecting. When subtrees are edge sets there may
be triangles. For instance in a star of three edges, the three subtrees of two edges each form a
triangle. When subtrees aLre vertex sets the family is triangle-free. (To prove this suppose 4, B,C
is a triangle. Root the tree at a vertex r € AN B. Let s be the root of C. Since A and C intersect,
A contains a path from r to s. Thus s € A. Similarly s € B. Thus s € AN BN C, a contradiction.)

Lemma 2.1. Let F be an intersecting family.

(¢) For an F-triangle Ay, Ay, A3, F contains any union of one or more of the sets A; N 4;,
1<i<j5<3.

(i?) F is triangle-free if any two nonempty disjoint F-sets A and B have AUB ¢ F.

(ii¢) F is triangle-free iff any two intersecting F-sets A and B have A® B ¢ F.

Proof. In this proof it is convenient to denote set intersection by juxtaposition, i.e, AB is an
abbreviation for AN B.

(¢) We verify the three most interesting cases and leave the others to the reader. A3 Ay U A; A3
is in F since it equals A;(Az UAs). This fact (applied twice) implies that A7 42U A1 A3U A, A3 € F.
Finally A1 U A2As3 is in F since it equals (A1 U A2)(A; U A3).

(i1) An F-triangle A, B, C gives F-sets AB and AC that violate the condition of (i), by (7).

(412) Suppose F is triangle-free. If A and B are intersecting F-sets with A & B € F then A,
B, A® B is an F-triangle, a contradiction.

For the converse suppose A, B,C is an F-triangle. Then sois ABU AC, BAUBC, CAUCB,
by (¢). Thus sets AB U AC and BA U BC violate the condition. 1

A family satisfying condition (¢7) is obviously not a ring family. In general a triangle-free
family is not a ring family if it has three pairwise-disjoint sets.
Now we present the centroid theorem. Let F be an intersecting family of sets over S. Let

n = |S§|. Let F* be the family of all F-sets with > n/2 elements. Note that any two F+-sets meet.
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(This is the only property of F+ used in the following definitions and theorem, a fact that we use
below.)

A centroid e, A, B consists of an element e and sets A, B such that any F*-set contains e or
forms an F-triangie with A and B. If the first aiternative aiways hoids, i.e., e is in every F*-set,
then e is an element centroid. In this case A and B are irrelevant. e, A, B is a triangle centroid if
e is not an element centroid. In a triangle centroid A and B are F-sets.

For any e € S let M*(e) be the maximal F*-set not containing e, if it exists. Since F is

intersecting, M *(e) is unique if it exists. M*(e) exists iff e is not an element centroid.
Theorem 2.1. Any intersecting family has a centroid.

Proof. Let A be a minimal F-set that meets every FT-set. (A exists since any two F*-sets meet.)
Take any e € A. If M*(e) does not exist then e is an element centroid. Otherwise M*(e) N A4 is
an F-set, properly contained in A. Thus some Ft-set B is disjoint from M*(e) N A. We prove e,
A, B is a triangle centroid by showing that any F*-set D not containing e forms a triangle with
A and B. The definition of A shows it meets both B and D. B meets D since both are F*-sets.
Finally no element is common to A, B and D since DN A C M*(e)N A. i

A special case of the theorem is that any triangle-free family has an element centroid. Neither
the theorem nor Lemma 2.1(¢) holds for arbitrary crossing families.

Note that a triangle centroid e, A, B has e € AN B. This follows since M*(e) U AN B is an
Ft-set (by Lemma 2.1(3)) properly containing M*(e).

Section 5 uses a slightly more general centroid theorem. Consider a weight function w: § —
Ry. Define F* as the family of all F-sets X with w(X) > w(5)/2. The definition of centroid
is unchanged. Since any two F*t-sets meet, Theorem 2.1 still holds: An intersecting family with
an arbitrary nonnegative weight function has a centroid. In Sections 3-4 the main development is
stated without weight functions. Remarks indicate any minor changes needed to extend the results
to weight functions. ,

To illustrate the centroid theorem consider again the family of subtrees of a tree T. When
subtrees are vertex sets 7" has an element centroid — this is an ordinary centroid ¢ of 7. Now we
show that when subtrees are edge sets, centroids still correspond to ordinary centroids of 7'. This
will justify our new notion of centroid as a proper generalization of the ordinary centroid of a tree.
First note that there are trees that do not have an element centroid, e.g., 3 paths with a common

endpoint. (Note also that the family of subtrees for this graph is not a ring family.)
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To do this consider a tree T with n vertices, and ordinary centroid vertex ¢. T has n — 1 edges,
so a subtree of 7+ has > [n/2] edges. In this argument for a set of vertices S let §(.5) denote the
set of edges with precisely dne vertex in S.

First we consiruci the ceniroid given by Theorem 2.i. The edges of d(c) correspond naturally
to trees of T — ¢, so we identify such trees by their corresponding edge. Let e be the edge joining
c to a largest tree of T — ¢. If T — ¢ has a tree of precisely [n/2] vertices, then e is an element
centroid (deleting e leaves subtrees of < [n/2] — 1 edges). The remaining case is when every tree
of T — ¢ has < |n/2| vertices. Take set A to be a maximal set of edges of §(c) such that e € A
and the trees of A have a total of > |n/2] vertices. Clearly A — e # . The choice of e ensures
that A — e has < [n/2] — 1 vertices. (If f € A — e then the trees of A — f have < |n/2] vertices,
whence the trees of A — e have < |n/2] vertices.) B consists of e plus §(¢c) — A. (B — e # § since
the number of vertices in trees of A is <2(|n/2] — 1) £ n—2.) The number of edges in trees of
B -eis < (n—1)— n/2] = [n/2] — 1; this bound also holds for A — e. Now it is easy to check
that any subtree of > [n/2] edges not containing e forms a triangle with A and B.

Now we show that any centroid arises essentially in this way. More precisely any centroid
e, A, B has e € §(c). Furthermore in a triangle centroid e, A, B, AN BN é(c) = {e} and edges nét
in 6(c) can be deleted from A or B.

To prove e € §(c), let e = 2y, where z is in the larger tree of T — e. We show that z is an
ordinary centroid, i.e., no tree of T — z has > [(n + 1)/2] vertices. Suppose S is a tree of T — =
with > [(n + 1)/2] vertices. Let f be the edge joining S to = (f # e by the choice of z). The tree
S+ fof T —ehas > [(n+1)/2] edges. Thus e is not an element centroid. If e, A, B is a triangle
centroid then e € AN B, as noted above. Since A and B are both subtrees intersecting S + f and
containing e, they both contain f. But now A, B, S+ f is not a triangle since f is in all three sets.

Next consider a triangle centroid e, A, B. A subtree S of F* contains ¢, since otherwise it has
< |n/2] vertices, whence < |n/2] — 1 edges. If S forms a triangle with A and B then it forms
a triangle with A N é(c) and B N é(c). Thus e, AN §(c), B N §(c) is a triangle centroid. If e is
not an element centroid then the larger subtree of T — e forms a triangle with A and B only if
AN BNé(c)= {e}. This completes the proof showing that in trées, our centroids are essentially
ordinary centroids.

Note that a plausible strengthening of our description of centroids is false: Simple examples
show that in a triangle centroid, e and A, B need not partition the edges of é(c).

Element centroids have these two obvious properties used in Section 3 to construct a represen-

tation: For any element e, the collection of all F-sets containing e is a ring family. Any F-set not
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containing e is contained in a maximal F-set of § — e. We now give analogs of these properties for

triangle centroids.

Lemma 2.2, For an F-triangle A = A, B, C define the family of sets
Fa={X|XCC, XUANBEeF}.
(1) Fa is a ring family contained in F U {§}.
(i1) Fa contains any F-set D C C that forms a triangle with A and B.
(7i7) Let B’ be the maximal F-set containing BN C and disjoint from A. The F-sets contained
in C but not forming a triangle with A and B U B’ are precisely the F-sets contained in B'NC or

in a maximal F-set of C — B’.

Proof. (i) Fa is a ring family since F is intersecting. Fa C F U {0} since a set X in Fa equals
(XUANnB)NC.

(47) follows from Lemma 2.1(7).

(#21) Let D be an F-set contained in C. If D meets both A and BU B’ it forms a triangle with
A and BU B'. If D meets B' but not A it is contained in B’. If D C C — B’ then it is contained

in a maximal F-set of C — B’. ]

Section 3 applies this result to the triangle A, B,C = M*(e) where e, A, B is a triangle centroid.
Observe that in this case B’ C M*(e). This follows from the maximality of M*(e).

3. The tree-of-posets representation

This section uses the Centroid Theorem to obtain a compact representation for intersecting
families. It also extends the representation to crossing families.

The constructions use the following notion: Fix an intersecting family F over S. For any set
X C S, define F(X) to be the family of all F-sets contained in X. Clearly F(X) is an intersecting
family.

We begin by defining a tree that forms the core of our representation. For any X C S the
centroid tree C(X) is a labelled ordered tree. Suppose F(X) has a centroid e, A, B. The root of
C(X) is labelled by e. The subtrees of the root are the trees C(Y) for Y ranging over the following
sets: If e is an element centroid then Y ranges over the maximal F-sets of X —e. If ¢,4,B is a
triangle centroid then define the set B’ of Lemma 2.2(iit) for triangle A, B,C = M *(e); Y ranges
over B and the maximal F-sets of X — B’ — e. Furthermore C(B') is the first subtree of the root.
Define the centroid tree C(F) as C(S).



The ordering of children in a centroid tree is used in just a simple way: As noted in Section 2,
B’ C M*(e). This allows M*(e) to be easily recomputed (see Section 5).

We use the following terminology for centroid trees. Each node z of C(F) corresponds to a
set X C 5; 5, denotes this set X. Thus the subtree rooted at z is C(5;). S, is an F-set except
possibly for §; = §. For each v € §, v(v) is the deepest node z of C(F) with v € S;. Thus v € S,

precisely when y is an ancestor of v(v).
It is clear that C(F) has < n nodes (since all node labels are distinct elements).

Suppose z and y are nodes of C(F), with y a child of z. Then

|Sy| < [8zl/2. (1)

To prove this let node  have label e. If e is an element centroid then (1) follows from the definitions.

If e corresponds to a triangle centroid then (1) follows from the definitions and Lemma 2.2(7iz).
An obvious corollary to (1) is that tree C(F) has height < logn.

Now we extend the centroid tree to a representation. We make use of the well-known fact that
any ring family F can be represented by a poset P. Recall that in this representation, the F-sets
correspond one-to-one with the ideals of P [e.g., GLS, p.314]. Equivalently F is represented by a
directed acyclic graph (dag) D; each node of D represents one or more elements of S; the F-sets
correspond to the closed sets of D. (A set is closed if it contains all successors of its nodes.) We
use the notation that an element e € .5 corresponds to node [e] in P or D ([e] does not exist if e is

not in any F-set). Thus the smallest F-set containing e consists of [e] and its successors.

For an intersecting family F, the collection of all F-sets containing e is a ring family. So this

family can be represented by a poset, which we denote P,.

Now consider an arbitrary intersecting family 7. We enlarge the labels of C(X) to get a
labelled tree 7(X) representing the family F(X). Each node of 7(X) is labelled with an element
of X and one or two posets. Let  be a node with label e in C(X). If e is an element centroid of
Sz then in 7(X), z is labelled by element e and poset P, for family F(X). If e, 4, B is a triangle
centroid of S, then let A be the triangle A, B, M*(e) and let P5 be the poset representing the ring
family Fa of Lemma 2.2 (on family F(X)). Then z is labelled by element e and posets P., Pa.

For an intersecting family F over S the tree-of-posets representation, denoted T(F), is 7(S5).
|7 (F)| denotes the total size of T(F), including all its posets. (The size of a posets counts the

number of nodes and edges.) In the following theorem assume for convenience that § ¢ F.



Theorem 3.1. For any intersecting family F there is a one-to-many correspondence between F and

the nonempty closed sets of posets of 7(F). The correspondence is one-to-one if F is triangle-free.

IT(F)| = O(n?).

Proof. For a triangle-free family the correspondence is clearly one-to-one. For a general family
Lemma 2.2(#4) ensures that every F-set is represented at least once. (An F-set can be represented
in more than one poset because of Ps posets. This redundancy is not a problem for the applications
we consider.)
To prove the size bound observe that for any i, all sets S, with
n/2%! < |8, < n/2!

are disjoint. (This follows from (1) and the fact that the children y of a node = have disjoint sets
Sy.) Thus the total size of all posets of 7(F) is < Y5 2:¥1(n/2)? = O(n?). .

When § has a weight function w we define C(F,w) and 7T(F,w) exactly as in the above
discussion but using weighted centroids. The part of Theorem 3.1 on correspondences holds for
representations 7 (F, w), but not the bound on |7(F)| (or the bound on the height of C(F)).

Note that Po can be constructed from P.: Pa is the subgraph of P, induced by the nodes
comprising C. In proof recall that Fa consists of the sets X C C such that X UANB € F.
These sets are precisely the sets Y C C such that Y U A’ € F for some set A’ disjoint from C and
containing e. (Recall from Section 2 that e € AN B; also CUAN B € F.) The sets Y are precisely
the sets represented in the subgraph induced by C.

We shall see that the posets labelling a node of 7(F) can be constructed efficiently from the
information in C(F). This allows centroid trees to be used as a representation in some contexts
(see Section 5).

We now distinguish two more versions of the representation. A poset P of 7(F) can be stored
in complete, transitively-closed form or as a dag whose transitive closure is P. The notation 7 (F)
refers to the representation using either dags or posets; 7°(F), the transitively-closed representation,
refers to the representation using complete posets. Section 3.4 illustrates how transitively-closed
representations can be used to trade space for time.

The transitively-closed representation can be constructed efﬁcienﬂy. Let M(n) be the optimal
time to multiply two n by n matrices. Assume M(n) = ©(n%t(n)) for some nondecreasing function
t(n). We claim 7¢(F) can be constructed from 7(F) in time O(M(n)). Similarly if M(n) =
O(n*t(n)) the time is O(n%t(n)). It is known that M(n) = O(n?3®) [CW], so T°(F) can be

constructed from 7(F) in time O(n?-38).



To prove the claim recall from the proof of Theorem 3.1 that all sets S, of C(F) with n/2'*+! <
|Sz| < n/2 are disjoint. M(n) bounds the time to form a transitive closure. Thus the total time to

find the transitive closure of all posets of 7(F) is at most a constant times Y 5 2:+1(n/2)%¢(n) =
2

O(n*t(n)).

We conclude this section by extending the representation to crossing families. Choose any
element s. Define F* to be the family of all F-sets not containing s. F° is an intersecting family.
Define F, to be the family of complements of all F-sets containing s. Symmetrically F, is an
intersecting family. (This follows since if F is a crossing family, the complements of all F-sets form
another crossing family.) F consists of the sets of ° and the complements of the sets of F,. We
represent F° by 7(F?®) and Fs; by T(F,). Thus the F-sets correspond to the ideals of the posets

in T7(F?) and the “dual ideals” (i.e., complements of ideals [Fu90]) in T (F,).

4. Constructing the representation

This section gives algorithms to construct the representation. We assume an oracle that
supplies the poset P, for every element e. More precisely every oracle call returns a new element e
and the corresponding poset P.. (This models specific oracles where the sequence of elements e and
posets P, is unpredictable, as in Section 5.) Other oracles may be more conveniently implemented
for certain set families, perhaps requiring different algorithms.

We state resource bounds using the following notation. Let each poset P, have at most m
nodes and edges (m < n?). Let 7 and o denote the time and space, respectively, used by the oracle
in the course of returning all n of the posets P., e € S. (A poset P. need not be retained after it
is returned by the oracle, unless the algorithm needs it for later computations.)

We begin by giving two algorithms to find a centroid. The first algorithm is for triangle-free
families and the second is for general families. At the end of this section we indicate the advantage
of the first algorithm.

For elements v, w let M (v, w) denote the maximal F-set containing v but not w, if such a set
exists; otherwise M (v, w) = (. Observe that w is an element centroid iff | M (v, w)| < n/2 for every
v.

First consider a triangle-free family 7. We use the following fact to limit the search for a

centroid.

Lemma 4.1. Let F be an arbitrary intersecting family (not necessarily triangle-free). For elements

v, w, if |[M(v,w)] < n/2 and v is an element centroid then so is w.
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Proof. If w is not a centroid then M*(w) exists. The hypothesis implies v ¢ M*(w). Thus v is
not a centroid. (This argument holds even if M (v, w) = 0.) .

Now we present the algorithm to find a centroid. It works by examining posets P in turn,
maintaining a set C' of candidate centroids. More precisely these invariants hold throughout the
algorithm: C' contains an element centroid. For any previously examined poset P, and any z € C,
|M(e,z)| < nf2.

The algorithm initializes C to S. It repeats the following until every poset P, e € 9, has been
examined. Call the oracle to return a new element e and poset P.. (The sequence of elements e
is determined by the oracle.) Search P, to find some ¢ € C' with M(e,¢) maximal subject to the
constraints that |M(e,c)| < n/2. In other words, < n/2 elements of S are in nodes of P, that
do not precede [c], and no element z € C with [z] strictly preceding [c] has this property. Assign
C « CnN|ec] and continue to the next poset. After all posets have been examined, any element of
C is a centroid.

In this algorithm note that in a poset P, an element 2 may have [z] undefined (i.e., if no F-set
contains both e and z). In this case the algorithm interprets [z] to be the set of all elements with
[z] undefined; it assumes that [z] precedes all nodes of P,.

To show the algorithm is correct we need only verify that it maintains the invariants. Consider
any iteration. The element ¢ chosen by the algorithm exists since C' contains a centroid. Let z be
an element deleted from C. Thus z ¢ [¢]. If 2 € M(e,c) then M(z,c) = M(e,c); now Lemma 4.1
implies that = can be discarded. The second possibility for z is that ¢ [¢]U M(e,c). (In this case
[c] is defined.) Since [c]U M(e,c) € F, and |[c]U M(e,c)| > n/2 (by the choice of ¢), z is not a
centroid.

Now we show the time for this algorithm is O(r + nm). The oracle constructs all posets P..
We need only show that the remaining work is O(nm).

To implement the search of an iteration, examine nodes z of P, in topological order (i.e.,
examine all predecessors of x before z). If = contains an element of C, compute |M(e,z)| by
marking all predecessors of z. If |[M(e,2)| < n/2 then take z as ¢ and end the search. Otherwise
continue by examining the next node z.

One iteration of this algorithm spends O(m) time to delete an element (contained in) z from
C, and O(m) additional time to find ¢. Since < n elements are deleted from C and there are n
iterations, this gives O(nm) time total.

It is easy to check that the space for the algorithm is O(o + m).
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We turn to finding a centroid for a general intersecting family. The basic algorithm follows the
proof of Theorem 2.1, maintaining an F-set A that meets every F+t-set. It works as follows.

Initialize A to an arbitrarily chosen F+-set (possibly §). Then repeat the following steps until
a ceniroid is found. Choose any e € A. If M *(e) does not exist then e is an element centroid.
Otherwise assign A’ «— M*(e) N A. Set B to the maximal F*-set that is disjoint from A’. If such
a B exists then e, A, B is a triangle centroid. Otherwise assign A «— A’ and continue with the next
iteration. ,

The proof of Theorem 2.1 justifies this algorithm. (Note that set A is maintained as an F-set
that meets every F*-set.)

We now implement the algorithm using an oracle for P.. The two main tasks are to find sets
M*(e) and B (or determine they do not exist). To achieve the desired time bound we will choose
a specific element e; however similar time bounds are easily achieved without this choice. Assume
that at the start of an iteration element e and poset P, are known.

To find M*(e), find an element f € A — e such that |[M(f,e)| > n/2, and assign M*(e) «
M(f,e). The set M(f,e) is found using the poset Py, which is supplied by the oracle. (We
repeatedly call the oracle until it returns Py for an element f € A. We discard any poset P, that is
returned for a g ¢ A.) If no such element f exists then e is an element centroid. (This is justified
below.)

Next we wish to find set B, the maximal F*t-set disjoint from A’. If B exists then it contains
e (since e ¢ B implies B C M*(e), whence BN A C A’, a contradiction). Thus B can be found by
examining the poset P,.

It remains only to discuss how e is chosen. In the first iteration, e can be taken as the first
element in A returned by the oracle. For any subsequent iteration, suppose the previous iteration
found element f € A — e with M*(e) = M(f,e). Choose f as the next value of e. (This is valid
since f € A at the start of the iteration.)

To prove this algorithm is correct we must check that when it returns an element centroid e,
the choice is valid. Since A meets every F*-set, if M+ (e) exists then it contains some f € A — e.
Thus it suffices to show this invariant: At the start of any iteration after the first, e is the only
element of A whose poset has been returned by the oracle. (The invariant implies the algorithm
finds set M *(e) if it exists, and hence correctly identifies element centroids.) To prove the invariant
suppose P; is constructed in computing M*(e). If |[M(f,e)| < n/2 then f ¢ M*(e). Thus f ¢ A’
and f is never again in A. If |M(f,e)| > n/2 and element e does not give a triangle centroid then

the next iteration chooses f as e.
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The time for this algorithm is the time used by the oracle, plus time to examine each poset.
It is easy to see that the time spent on each poset is linear in its size. This implies total time

O(1 + nm). We have proved the following result.

Lemma 4.2. For any intersecting family with an oracle for P,, a centroid can be found in time

O(t + nm) and space O(o + m). .

Now we show how to construct the representation 7(F). Consider first a triangle-free family.
Begin by finding an element centroid v. Construct the poset P, and associate it with the root r of
C. Find the distinct sets M (u,v); recurse on each such set, making its tree a subtree of 7. To find
sets M (u,v) repeat the following: Let u be an element whose set has not been found (if no such
element exists then stop). M(u,v) is the maximal closed set of P, not containing v, if such exists.

This procedure is easily implemented using an oracle for P,. The time to process the root r is
the same as Lemma 4.2.

The algorithm for general intersecting families is similar: As noted in Section 3, for a triangle
centroid Pp is easily computed from P,. To construct the children of the root, note that the first
child (the set B’ of Lemma 2.2(7i)) can be constructed from the output of the centroid algorithm,
B' = BN M*(e). The other children are the maximal F-sets disjoint from B’ + e. They are found
as in the element centroid case.

We now estimate the time for the construction. As in Section 2 the bound is oriented toward
general families with dense posets (better bounds are in Sections 8-10). Considering 7 as a function
of n we expect 7(n) = Q(n3), since 7 measures the time to construct n posets on n vertices that

can have total size ©O(n?).

Theorem 4.1. For any intersecting family with an oracle for P,, 7(F) can be constructed in time

O(7(n)) if 7(n) = Q(n3).

Proof. The hypothesis and Lemma 4.2 shows that the time spent to construct the root of 7(F)
along with its labels, and identify its children, is O(7(n)). Suppose the algorithm stores every poset
P, e € S. Then the time at any nonroot node z of 7(F) is easily seen to be proportional to the
total size of the posets P, for all elements y € S, i.e., O(|S;|*). Thus as in the proof of Theorem

3.1 the total time at nonroot nodes is at most a constant times Y o° 2:¥1(n/2¢)3 = O(n3).

A disadvantage of the approach sketched in this proof is that it needs O(n®) space to store all

posets P, e € 5. In practice this is not necessary. Usually (e.g., for all examples in this paper) an
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oracle is available for not just F, but for all families (X). The algorithm uses this oracle to find
the posets at each nonroot node of 7(F).

To elaborate suppose such an oracle for posets of F(X) is available, and on any set X it uses
time 7(jX|). Assume that 7{n) = ©(n®f(n)) where f is a nondecreasing function. The theorem
holds for this case as well: 7(F) can be constructed in time O(7(n)). The proof is the same as
above, with the observation that the total time for all oracles is bounded by 3 ¢° 2:+1(n/2%)3 f(n) =
O(n3 f(n)). The space for the algorithm is the space for 7(F) plus the space used by the oracle.

We close the section by discussing an advantage of the centroid algorithm for triangle-free
families. It can be adapted to work with a related oracle, which is the oracle of choice in Section
8. A sequence of calls to the related oracle returns the posets P!. Here P! is defined as the poset
representing all F-sets that contain e but no element f whose poset P} was returned in-a previous
call. (Thus each F-set is represented precisely once in all posets P..)

To adapt the centroid algorithm to the related oracle, consider an execution of the algorithm
with the original oracle. Consider an iteration where the oracle returns element e and its poset P.. If
in some previous iteration, the oracle returned an element f and its poset Py, such that e € M(f,c)
in that iteration, then the current iteration for e can be skipped (since M(e,c) = M(f,c)). In the
opposite case, let F' be the set of all elements whose posets have been previously returned by the
oracle. Then F N M(e,z) = { for any z € C. Thus M(e,z) can be computed correctly from the

poset P! returned by the related oracle.

5. Graph families

This section improves the bounds of Theorem 3.1 and 4.1 for a number of families, including
those of Sections 8-10. We state the principle for graphs although it is more geﬁeral.

For a graph G' = (V, E) write n = |V|, m = |E|. For a set X CV define

nx = |X|; (2)

mx = the number of edges with both ends in X.

Let F be an intersecting family defined on V. F has the sparse poset property if for any X C V
and v € X, poset P, for family F(X) has size O(nx + mx). A crossing family F has the sparse
poset property if for any s the intersecting families 7° and F; have the sparse poset property. The

following result is for representations without weight functions.

Lemma 5.1. Let F be an intersecting family with the sparse poset property.
(1) |T(F)| = O(mlog(n®/m)).
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(¢¢) Suppose any poset P, for a family F(X), X C V can be constructed in time
O(mx f(nx,mx)) for f a nondecreasing function of nx and mx. Then 7(F) can be constructed
in time O(nm f(n,m)).

(#22) T¢(F) can be constructed from 7(F) in time O(nm).

Proof. We begin with an observation for all three parts. For any integer ¢, consider all nodes
of C such that n/2i+! < |§;| < n/2'. The total number of vertices and edges in graphs induced
by these sets S, is O(min{m, n?/2'}). To see this recall from the proof of Theorem 3.1 that for a
given ¢, the sets §, are disjoint. Now the upper bound O(m) follows since a given vertex or edge of
G occurs in at most one subgraph induced by a vertex set S;. The upper bound O(n?/2") follows
since the total number of vertices and edges is < 2i+1(n/2¢)? = O(n?/2%).

(7) Since F has the sparse poset property, the above bound also applies to the total size of all
posets for the nodes . Now the size of all posets for values of ¢ < log (n%/m) is O(mlog(n?/m))
by the first bound. The size for all values of ¢ > log(n?/m) is O(m) by the second bound.

(¢7) At the root of C, all posets P, can be constructed in time O(nmf(n,m)). Lemma 4.2
shows the root of 7(F) along with its labels, and the identity of its children can be constructed
in the same bound O(nmf(n,m)). Thus the total time to construct 7(F) is at most a constant
times 3 o°(n/2")mf(n,m) = O(nmf(n,m)).

(421) The transitive closure of the posets of the root can be found in time O(nm). As in (i)

the time to compute all transitive closures is a constant times Y ;" (n/29)m = O(nm). s

For some applications it suffices to store the centroid tree C(F) rather than 7 (F). In addition
we store the values v(v). Given this information we can efﬁciently‘ construct the posets of 7(F)
labelling a given node z, as follows. Let e be the element labelling #. To construct poset P, we only
need to know e and the vertices of S,. To construct poset Pa first find C = M*(e) as M(f,e), for
any vertex f € C (choose f as the vertex labelling the first child of z). P, is the subgraph of P,
induced by C.

For graphs we use representations where the weight function is the degree function d, i.e., for
any vertex v, d(v) is the total number of edges incident to v (these edges can be directed to or from
v). Consider the centroid tree for the degree function C(F,d). Let F be an intersecting family with
the sparse poset property. Let f be defined as in Lemma 5.1(¢1).
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Lemma 5.2. For any vertex v, the posets for nodes on the path from v(v) to the root of C(F,d)
have total size O(m). They can be constructed in time O(mf(n,m)).

Proof. A node z of depth 7 has total weight < m/2i~1. This quantity bounds the size of the

subgraph induced by S,. Thus the posets at z have size O(m/2'). This implies the desired bounds.
|

6. Intersection queries

This section illustrates how the representation is used for a sample application: For a family
F over § and any @ C S, define u(Q,F) as the intersection of all F-sets containing . Usually
the family F is clear from context and we write u(Q). If no F-set contains @ then u(Q) = S by
convention. An intersection query for  C S returns the set p(Q). We wish to process a sequence
of intersection queries (for a fixed F). Let ¢ = |@|. The submodular flow algorithms of this paper
perform intersection queries for F crossing with ¢ = 1; the algorithms of [Ga93b] perform queries
for F intersecting with ¢ = 1,2. We give algorithms for arbitrary ¢ and also note simplifications
for these special cases.

Observe that if F is intersecting, #(Q) is S or the smallest F-set containing Q. If F is crossing,
#(@Q) need not be an F-set.

First consider an intersecting family F. Without loss of generality, enlarge F so it contains S.
F is still an intersecting family, and now p(Q) is always the smallest F-set containing Q.

Looking forward to crossing families we introduce a related function called x~1 (a slight abuse
of notation): p~1(Q,F) = {u | p(u) N Q # 0}. As above we abbreviate this to up=1(Q).

For a set of elements () define a poset P(Q) that is a label of 7(F), as follows. Let z be the
nearest common ancestor in C(F) of all nodes v(v), v € Q (e.g., z = v(v) for Q = {v}). P(Q) is
one of the posets labelling x: Suppose z is labelled by element e. If e corresponds to a triangle
- centroid and poset Py contains a node [v] for each v € @, then P(Q) = Pa; otherwise P(Q) = Pe.
(Recall that [v] exists in all P, posets along the path from v(v) to the root, and possibly in some
PA posets.)

- Lemma 6.1. Let F be an intersecting family. u(Q) consists of all elements u such that in P(Q),
some [v], v € Q, precedes [u]. p~1(Q) consists of all elements u such that in P(u), [u] precedes

some [v], v € Q.

Proof. First consider u(Q)). Let 2 be the nearest common ancestor used to define P(Q). Set S,

is an F-set containing @, so (@) C S;. The definition of nearest common ancestor implies that
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#(Q) is not represented in the poset of any proper descendant of z. Thus u(Q) is represented in a

poset labelling z.
The set described in the lemma is clearly an F-set containing @, and it is the smallest such
set in a poset labelling . Thus it is u(@).

The characterization of 4~1(Q) follows from the characterization of u(u). n

We estimate the time for all algorithms assuming a complete list of the elements of u(Q) or
p~1(Q) is desired. In this section assume that with 7(F) we store v(v) values. Also in this section
the parameter m denotes the size of the largest poset in 7(F). (For a crossing family F, m denotes

the size of the largest poset in T(F?) or T(F;).)

Lemma 6.2. Let F be an intersecting family.
(7) Given a transitively-closed representation 7°(F), u(Q) and p~(Q) can be found in time
O(gn). |
(¢7) Given T(F), u(Q) can be found in time O(m) p£~1(Q) can be found in time O(|7 (F)|).

Proof. The algorithms and time bounds for p(Q) follow easily from Lemma 6.1.

To compute p~1(Q), visit the posets along the paths from v(v) to the root, for each v € Q.
For each such poset compute the predecessors of all elements of () and apply Lemma 6.1.

Now we verify the time bound for x~*(Q). For (4%) it is clear that the total time is proportional
to the size of all posets visited. For (¢) implement the algorithm so that an element u is checked

only once, in the poset P(u). Since u is checked in time O(g), the time bound O(gn) follows. §
We turn to crossing families F. First we characterize u(@Q).

Lemma 6.3. Let F be a crossing family. Fix an element s. For any set Q C 5,

W@, F) =@, F°)npH(Q,F,).

Proof. u € pu(Q,F) iff u is in every F-set containing Q. wu is in every F-set containing @ but
not s iff u € u(@Q,F?). u is in every F-set containing ¢ and s iff no F-set contains @ and s but
not u, iff no complement of an F-set contains u but no member of @ + s, iff p(u, Fs) meets @, iff

u € p~1(Q,F,). (The lemma holds for cases such as s € Q or s € u(Q,F) by the conventions on
. ]
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The previous two lemmas show that an intersection query for a crossing family F can be
answered in these time bounds: Given 7¢(F?) and T¢(F,), the time is O(gn). Given T(F*) and
T(Fs), the time is O(|T(F*)| + |T(Fs)))-

We turn to special cases of intersection queries that arise in the submoduiar fiow aigorithms
mentioned at the start of the section. These cases can be processed efficiently using the centroid

tree for the degree function. Define f as in Lemma 5.1(it) .

Lemma 6.4. Let F be a family with the sparse poset property.

(¢) For F crossing, given C(F*,d) and C(F,,d) an intersection query can be answered in time
O(gm f(n,m)) and space O(m).

(47) For F intersecting, given C(F,d) a sequence of ¢ intersection queries with a common vertex

can be answered in time O(m( f(n,m) + ¢)) and space O(m).

Proof. (i) As noted above, to compute u(Q) we need only visit the posets (of both centroid trees)
on the paths from »(v) to the root, for v € Q. Thus Lemma 5.2 implies the result.
(i7) Let v be the common vertex. Before processing the first query, construct and store the

posets for nodes on the path from v(v) to the root. Lemma 5.2 implies the desired bounds. B

The k-vertex-reachability problem of [Ga93b] has the special structure of part (i¢): the query
sequence breaks up into subsequences with a common vertex.

We conclude by noting bounds that can be achieved without the representation. For intersect-
ing families and queries p(@Q), the bound O(m) of Lemma 6.2(#¢) can be achieved at the expense of
storing n posets P.. The bound O(gn) of Lemma 6.2(7) can be achieved by storing n transitively
closed posets. For crossing families and the special case of single-element queries pu(u), time O(n)

can be achieved at the expense of O(n?) space, using Lemma 6.3.

7. General remarks on examples

The next three sections illustrate our general results by discussing specific intersecting and
crossing families. They analyze the representation of each family and give an efficient construction
algorithms. The first two examples, minimum edge cuts and minimum vertex cuts, illustrate the
two cases for our representation, triangle-free families and general families.

First recall a basic fact that gives rise to intersecting and crossing families. A function f :
F — R is submodular if F is a riﬁg family and for all X,Y € F,

F(X)+1(Y) 2 J(XUY)+ (X NY).
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The minimizers of f form a ring family. The minimizers over F — {@} (F — {0,5}) form an
intersecting (crossing) family. (All these assertions follow easily from the defining inequality.) The

intersecting and crossing families in the next three sections all arise in this way.

8. Minimum edge cuts

Consider a network G = (V, E) with edge-capacity function c. A set of vertices X minimizing
p(X) over § C X C V is a minimum (edge) cut of G. The edge connectivity A is the minimizing
value p(X). It is well-known that p is submodular on 2¥. Thus the minimum cuts form a crossing
family.

We represent the minimum cuts by the intersecting families F° and F;, for an arbitrary vertex
s. JF* consists of the vertex sets X C V — s having p(X) = X. F, consists of the vertex sets
X C V — s having p(X) = A in the graph G with all edges reversed. Thus we represent all
‘minimum cuts using two representations of the form 7(F*). (One of these families 7° can be
empty, e.g., if s belongs to every set X having p(X) = A.)

In the following lemma assume that F° nonempty, i.e., some set X C V — s has p(X) = A
(This version of the lemma gets used below. However in the opposite case the lemma still holds if

A denotes the minimum value p(X) for 0 C X CV —s.)
Lemma 8.1. F° is a triangle-free intersecting family for A > 0. It is a ring family for A = 0.

Proof. Suppose A > 0. For any sets A, B C V let d(A4, B) denote the number of edges that join
A— B and B—A (in either direction). Recall the identity p(A)+p(B) = p(ANB)+p(AUB)+d(A, B).

Consider two intersecting sets A,B € Fs. The identity implies that AU B, AN B € F°.
Furthermore d(A,B) = 0. This implies p(A @ B) > 2A > A. Thus A® B ¢ F°. Now Lemma
2.1(¢i7) shows F* is triangle-free.

It is easy to see that when A = 0 F? is a ring family. n

The Centroid Theorem now implies that for A > 0, F° has an element centroid. This can
be restated as follows: Consider a network with A > 0. Any vertex s has a vertex ¢, one or
both of which are in any minimum cut with more than half the vertices. In general one vertex
cannot “cover” all minimum cuts with more than half the vertices (e.g., a directed cycle). Also
simple examples show that for A = 0, even if G is weakly connected such a cover may require O(n)
vertices.

Some submodular flow algorithms use a more general notion of minimum edge cuts, allowing

vertex weights (see [FF84, Ga93a]). Each vertex v has a real-valued weight w(v) (w(v) can be
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positive, negative or zero). A set of vertices X minimizing p(X) + w(X) over  C X C Vis a
minimum cut. Define A and F* as above. The new version of Lemma 8.1 states that F* is triangle-
free as long as A # 0. The proof is exactly as before. However in the rest of this section we return
to ordinary edge cuts.

Lemma 8.1 implies it is a simple matter to represent all minimum cuts of a network having
A = 0. Specifically the dag representation of F* has nodes that are the strong components of the
graph G the edges are those edges of G joining two distinct strong components. So there is no
need for our representation 7(F*) when A = 0. Now it will be convenient to restrict the discussion
of T(F*) to networks with A > 0.

Our representation uses the representation of Picard and Queyranne for all minimum s, ¢-cuts
of a network [PQ]. This representation is constructed as follows. (For convenience we describe the
representation of all sets T’ containing ¢ but not s and having minimum indegree p(T).) Start with
the residual graph for a maximum flow from s to . Contract each strong component. Furthermore
contract ¢ and all its predecessors; delete s and all its successors; add an edge from [t] to each
source # [t]. The minimum cuts containing ¢ but not s correspond one-to-one with the sets having
no entering edges in this dag. The dag has at most m + n edges. It can be constructed from the
residual graph in linear time.

A similar construction applies if we start with the residual graph for a maximum preflow from
s to t. To wit, note that a minimum cut containing ¢t but not s is a set containing ¢ but not s or
any vertex with positive excess, and having no entering residual capacity. Thus the only change in
the above construction is that all vertices that are successors of either s or a vertex with positive
excess get deleted.

The following discussion is stated for F* but as mentioned, it applies to the representation of

all minimum cuts of a network.
Theorem 8.1. For F* defined for edge cuts of a network with A > 0, |7(F*)| = O(mlog(n?/m)).

Proof. A poset P, for a family F°(X) is constructed as follows. Start with the subnetwork induced
by X. Add a new vertex s. In addition for each vertex 2 € X add an edge sz whose capacity
equals the total capacity of all edges directed to z from a vertex not in X. Poset P, is the Picard-
Queyranne representation of all s, v-cuts. (The poset is empty if a minimum s, v-cut has capacity
larger than A.) P, has size O(nx + mx), so F* has the sparse poset property. Now the theorem

follows from Lemma 5.1(%) . L
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Next we discuss algorithms for constructing 7(F*). We begin with an algorithm that works
on any network with A > 0.

The main step in constructing 7(F?) is finding a centroid. We do this using the mincut
algorithm of Hao and Orlin, which finds a minimum cut in a network in time O{nmiog(n®/m))
[HO]. We first briefly review the mincut algorithm. The algorithm finds, for a given network and
distinguished vertex s, a minimum cut containing s. It does this by processing the vertices of V — s
in a certain order. We use this order to identify the vertices of V — 3,50 V — s = {1,...,n — 1}.
The algorithm computes » — 1 maximum value preflows. The ith such preflow has sink vertex
¢ and source vertices s,1,...,7 — 1 (equivalently these i vertices are contracted into one source
vertex). The desired minimum cut is found from the preflow of smallest value. The total time for
the algorithm is O(nmlog(n®/m)).

We find a centroid of F using the centroid algorithm for triangle-free families. The oracle for
this algorithm is derived from the Hao-Orlin mincut algorithm. As such our oracle supplies posets
P/ (see the end of Section 4). The details are as follows.

Without loss of generality assume the value A is known at the start of the centroid algorithm.
The centroid algorithm runs the Hao-Orlin algorithm. Each time a maximum value preflow of value
A is found, say from s,1,...,7 — 1 to ¢, the Hao-Orlin algorithm is interrupted. We construct the
Picard-Queyranne representation of all minimum source-sink cuts. That poset is used as the poset
P! for the next iteration of the centroid algorithm.

The rest of the construction of 7 is straightforward: Assume we are constructing the root r of
T. If v is the element centroid at r, we construct the poset P, labelling r by finding a maximum
flow from s to v and constructing the Picard-Queyranne representation. We find the sets M (u,v)

corresponding to the children of r by running the Hao-Orlin algorithm again.

Theorem 8.2. For F* defined for edge cuts of a network with A > 0, 7(F*) can be constructed
in time O(nmlog(n?/m)).

Proof. The correctness of the above algorithm is clear, so we discuss the time. The time to
construct the root of 7 is O(nmlog(n?/m)). This follows from the time bounds for the Hao-Orlin
algorithm and an efficient maximum flow algorithm [GoT).

Now consider all nodes z of 7 having n/2"*! < |§;| < n/2!, for some fixed i. Recall that
an edge of G occurs in the graph induced by at most one of these sets S,. Thus the total time
spent on these nodes is at most proportional to n/2 max{z}-]._.l mjlog((n/2")2/m;)| Y m; <m,

m; < (n/2)?}. Here J is the number of the nodes. It is a simple exercise to show that the
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maximum term is at most m log (n?/m) (since the function z log (C/z) is concave downward). This

implies the total time is proportional to 3°,(n/2¢)mlog (n?/m) = O(nmlog(n?/m)). L]

Next we give an efficient algorithm to construct the representation for a digraph (ie.
have unit capacity). We begin with an observation on the Picard-Queyranne representation (that

is valid for any network).

Lemma 8.2. Let dag D be the Picard-Queyranne representation of all s,t-cuts of a network G.

Given G and the partition of V into the nodes of D, the dag D can be constructed in time O(m).

Proof. The edges of D are constructed by taking each edge of G that joins distinct nodes of D and
placing either it or its reversal (but not both) in D. (This follows since an edge of G joining two
nodes of D is either saturated or void in any maximum flow. So it has residual capacity in precisely
one direction.) We can determine the unknown orientation of the edges of G from a topological
numbering of D. (In a topological numbering, each edge of D is directed from a lower-numbered
node to a higher.) Thus it suffices to number D in topological order.

Node [t] is a source of D and can be numbered 1. In general suppose we have numbered a set
of nodes T'. The next highest topological number can be given to any source of D — T. It is easy
to check that a node = ¢ T is a source of D — T iff p(TU z) = A.

The algorithm maintains the value p(T' U z) for every node z ¢ T'. It initializes this value to
p(z) + A; when [t] is added to T, the value for z is decreased by the capacity of all edges joining
and [?] (in either direction). In general when a source y gets numbered and added to T, the value
for z is decreased by the capacity of all edges joining # and y in either direction. Any node y with

p(T'Uy) = A can be chosen as the next source. i

We also use the following facts relating connectivity and matroids. Given a digraph G, fix
a vertex s and an integer k. A set of k(n — 1) edges T is a complete k-intersection (for s) if T
contains precisely k edges directed to each vertex except s, and T can be partitioned into k spanning
trees. Suppose F° is nonempty. Then A is the largest £ for which G has a complete k-intersection
for s [E69, E72]. A generalization of this relation states that F*° consists of the sets X C V — s
where p(X) C T and each tree of T' contains a spanning tree of X [Ga91b]. This generalization
implies that a vertex v of G is an element centroid if it is an ordinary centroid of some tree of
the complete intersection 7. (This generalization also gives a proof independent from Theorem 2.1

that a network with rational capacities has an element centroid.)
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The above relation is the basis of an algorithm that finds the connectivity A of a digraph,
plus a complete A-intersection and its partition into A spanning trees, in time O(Amlog(n?/m))
[Ga91a]. Given such a partition, [Ga91b] shows that the following two operations can be done in
iime O(m): (i) First note that for any vertex z, the smaliest set of F* containing z is well-defined
(it is the smallest minimum cut containing « but not s). These smallest sets can be represented by
a poset. (The smallest set of F° containing z is the smallest closed set containing z in the poset.)
The first operation finds the partition of V into nodes of the poset. (iz) The second operation finds
the maximal sets of F°.

We now describe the algorithm to construct 7(F*®). It starts by finding a complete A-
intersection T for s. Next it constructs each node of 7(F*). We describe how the root is contructed,
and then indicate the modifications for constructing the remaining nodes.

Choose a centroid as an ordinary centroid v of any tree of T. To construct P, add an edge
from v to every vertex z. Any set X C V — s with p(X) = A in the new graph contains v. Apply
the above operation (3). Tt finds the nodes of P,. Then construct the poset P, using the algorithm
of Lemma 8.2.

Finally to find the sets M(u,v) we use a different graph: Starting with G, add an edge sv.
Any set X C V — s with p(X) = X in the new graph does not contain v. Find the maximal sets of
indegree A using the above operation (it).

The above procedure constructs the root of 7(F*). To construct the other nodes recursively,
consider a maximal F°-set X not containing v. As noted above, each tree of T' contains a spanning
tree of X. In fact adding the edges of p(X), one per spanning tree, gives a complete intersection
of the subgraph modelling F*(X) (this subgraph is described in the proof of Theorem 8.1). Thus

the above procedure can be applied recursively.

Theorem 8.3. For F* defined for edge cuts of a digraph with A > 0, 7(F*) can be constructed
in time O(Amlog (n?/m)).

Proof. We need only prove the time bound. The time to find a complete \-intersection for s is
O(Amlog(n?/m)). The time to construct the root of 7 is O(m). Now the argument of Lemma
5.1(7) shows the time to construct all nodes of 7 is O(mlog(n?/m)). i

Note that the centroid tree for the degree function C(F,d) can be constructed in the same

time.
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Some algorithms (see Section 13 and [Ga93b]) represent F* by the node form of T(F?*). For
any intersecting family F, in the node form each poset label of T(F) is replaced by a list of its
nodes (and their constituent vertices). The node form for F has size O(nlogn). For the Picard-

tion, aiiy poset label of 7(F°) can be constructed from G and the appropriate

node list, in linear time (Lemma 8.2).

9. Minimum vertex cuts

Consider a digraph G with a vertex capacity function ¢ : V. — Ry. Let I'" and Tt be the
neighbor functions: for X C V, I'" (X)) is the set of all vertices of V — X on an edge directed to X
I't(X) is defined similarly using edges directed from X. Define ¢cI'~ by ¢I'~(X) = ¢(T'~(X)) and
similarly for ¢cI't. Thus ¢I'~ and ¢I't count the capacity of the neighbors of a set. It is well-known
that ¢cI'~ and ¢I't are submodular. We use these functions to derive an efficient representation for
minimum vertex cuts. The special case ¢ = 1 is of interest, in which case the ¢I' functions count
the number of neighbors.

A vertex cut is a partition of V into sets C', 57 and 52, the latter two nonempty, with no edge
directed from Sy to S2. A minimum vertex cut has ¢(C) minimum; this minimum value ¢(C) is the
vertex connectivity K.

The family of minimum vertex cuts need not be intersecting or crossing. Our representation
is based on a number of intersecting families of the same type. We now define this family. The
family is also used in to solve the k-vertex-reachability problem in [Ga93b)].

Consider a network of vertex connectivity k. For an arbitrary vertex s define the family

Fo={X|XCV-T%(s)=s, cI' (X) = &}
F? is an intersecting family since it is the family of nonempty minimizers of a submodular function.
(F® may be empty.)

A family F* can contain triangles. In fact the family may have no element centroid, only
triangle centroids. We illustrate this on undirected graphs for any connectivity x. Form a graph
by starting with K, and adding extra vertices s,z;, ¢ = 1,...,n, each adjacent to all vertices of
K. This graph has vertex connectivity k — the vertices of K, form unique minimum cardinality
separating set. F*° consists of all nonempty subsets of X = {z; | ¢ = 1,...,n}. Thus {zy,29,23} is
an F*-triangle. Any z; is not in the (F*)*-set X — z;, so ; is not an element centroid.

We represent all minimum vertex cuts using a number of families F* as follows. For a given
vertex s, a minimum vertex cut Sy, 59, C either has s € S7, which is represented by F*, or s € 53,

which is represented symmetrically, or s € C. To handle the last case let s range over all vertices
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when c is arbitrary, and over any k + 1 vertices when ¢ = 1. Note this representation is redundant,
since F* can have triangles.

Now we discuss the posets for 7(F*). We use a network that models vertex capacities. More
precisely, suppose we wish to represent the minimum vertex cuts containing vertex { but not
s. Construct a network having vertices {v™,v* | v € V} and edges {v " vt,vtv™ | v € V} U
{vtw™ | vw € E}; edges v~ v have capacity ¢(v) while all other edges have infinite capacity.

Consider the Picard-Queyranne representation of all minimum s*,¢~-cuts in this network. In
this representation the closed set corresponding to a set X C V — s with ¢ € X and I~ (X) =
k contains vertices {z7,2% | ¢ € X} U {2t | = € T7(X)}. Thus both X and its neighbors
are represented. This feature increases the efficiency of the algorithm for k-vertex-reachability in
[Ga93b].

In some cases the standard poset P; gives a representation using slightly less space than if we
use the Picard-Queyranne representation. To obtain P; (the poset of F*-sets containing t) from

the Picard-Queyranne representation, identify vertex v with the network vertex v~; if edge v~vt
is in the residual graph then contract v* and v~ else delete v* (in the latter case vt is a sink of
the Picard-Queyranne representation). Using the posets P; it is easy to see that F* has the sparse
poset property. (To model the family F*(X) for a set X C V, construct a network using the graph
induced by X UT~(X).)

Theorem 9.1. Consider F* defined for vertex cuts.

(1) |T(F*)] = O(mlog(n?/m)). The representation of all minimum vertex cuts has size
O(nm]log(n?/m)) for arbitrary ¢ and size O(kmlog(n?/m)) for ¢ = 1.

(#1) For ¢ = 1, T(F*) can be constructed in time O(min{x,/n}nm).

Proof. Part (i) follows from Lemma 5.1 since F has the sparse poset property. For part (ii) the
time to construct a poset P; is dominated by the time to find a maximum flow on a network
with unit vertex capacities, which is O(min{x,+/n}m). This gives total time O(min{k, /n}nm) to
construct the posets at the root of C. The hypothesis of Lemma 5.1(é¢) does not quite hold, since
constructing the posets at a node for X, X C V, uses time O(min{k, /nx }nxm'y); here m'y is
the number of edges with at least one end in X. However it is easy to see that the proof of Lemma

5.1(41) still holds if we change mx to m/y. §

If we label nodes of 7 (F*) with the Picard-Queyranne representation, part (i7) of the theorem
continues to hold. In part (z), the size of T(F*) becomes O(mlogn). (This follows since C has
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height logn.)

10. Count matroids

Matroids defined by counts on graphs arise in the study of graph rigidity and scene analysis
[W]. Consider an undirected graph G = (V, E). For X C F let n(X) denote the number of distinct
vertices in the edges of X. For fixed integers a,b with b < 2a define v(X) = a|n(X)| — b. 7 is a
submodular function. In the count matroid, X is independent if |A] < v(A) for any set A with
0 C A C X. The special case a = 2, b = 3 is known as the rigidity matroid (recall Section 1). An
independent set in the rigidity matroid contains no redundant bars, when graphs model bar-and-
joint frameworks in the plane [LoY] (a bar is “redundant” if removing it does not introduce a new
degree of freedom of motion).

Now suppose that for graph G, E is independent in the count matroid and |E| = v(E). Define
the set family

F={X|XCE, |X|=+(X)}

F is an intersecting family, since it is the family of nonempty minimizers X of the function y(X) —
|X|. In the special case of the rigidity matroid the assumption on E means that graph G is a
minimally rigid bar-and-joint framework (“minimally rigid” means that removing any edge from G

makes it nonrigid). F is the set of all nonempty rigid subgraphs of G.
Lemma 10.1. F is a triangle-free intersecting family for b # 0, a. It is a ring family for b = 0.

Proof. First suppose b # 0,a. It suffices to prove the condition of Lemma 2.1(i7), i.e., any two
nonempty disjoint F-sets A and B have AU B ¢ F. Suppose on the contrary that A and B are
disjoint F-sets with AUB € F (“disjoint” means the sets have no common edge, although there may
be common vertices.) Then an(AUB)—-b=+(AUB) = |AUB| = |A|+|B| = a(n(A) + n(B)) — 2b.
Equivalently, b = a(n(A) + n(B) — n(A U B)). But this is impossible since b # 0,a and b < 2a.
Next suppose b = 0. To prove F is a ring family it suffices to show that the union of two
disjoint F-sets A and B is an F-set. The number of edges in A U B is a(n(4) + n(B)). By
“independence this number is at most a(n(AU B)). Thus n(A) 4+ n(B) < n(A U B), which implies
n(A) + n(B) = n(AU B). This implies AU B € F. i

As a footnote to the proof observe that in the rigidity matroid, the union of three edge-disjoint
rigid graphs can be rigid, e.g., 3 triangles where 1 edge of each forms another triangle. Also observe

that the case omitted in the lemma, b = a, is neither a ring family nor triangle-free. This is
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illustrated by the graph of 3 paths with a common endpoint, with @ = b = 1. (The F-sets are the
subtrees of the graph.)

The Cehtroid Theorem shows that for b # 0,a, F has an element centroid. This has the
following interpretation in the rigidity matroid: Any minimally rigid graph has an edge whose
removal leaves no rigid piece of > m/2 edges. Simple examples show this bound is best possible.

We turn to the representation 7(F). Assume b # 0, since otherwise the ring family 7 has a

trivial representation.

We first discuss the posets P.. We use a network flow model suggested by Imai [I]. Represent
the given graph G = (V, E) by a graph with vertices {s,t} UV UE and edges {se |e € E} U {ev | v
is an endpoint of e} U {vt | v € V}. The capacity of an edge is 1 if it is of the first type se, oo if
it is of the second type ev, and a if it is of the third type vt. Call this network N. For any edge e
the network N, ¢ is obtained from N by increasing the capacity of edge se by b.

It is easy to check that a minimum s,¢-cut has éapacity |E| in N, and capacity |E| + b in any
N.. Furthermore a set {s} U E'UV', where E' C E and V' C V, has out-degree |E| + b in N, iff
e € E' and an(E') — b= |E'|. (This uses the assumption b > 0.) Thus the F-sets containing e are
represented by the Picard-Queyranne representation of N.. The size of this poset is O(m) = O(an).

Theorem 10.1. Consider F defined for count matroids with b # 0.
(2) |T(F)| = O(anlogn).
(i) T(F) can be constructed in time O(b(an)?).

Proof. The argument is similar to Lemma 5.1.

(i) For any integer ¢, consider all nodes z of C such that m/2*! < |§;| < m/2¢. The total size
of all posets for these nodes is O(m). Thus |7(F)| = O(mlogn) = O(anlogn).

(¢7) To construct 7(F) first construct network N and find a maximum flow. Its value is
|E| = an — b. Now a poset P, is constructed by augmenting the flow to a maximum flow on N,
and then constructing the Picard-Queyranne representation.

A maximum flow on N, is found in time O(bm), since we need only find b augmenting paths.
Thus the poset oracle constructs all posets P, in time O(bm?). For a given 1, the time to construct

the posets of all nodes of part (i) is O(bm?/2). This gives total time O(bm?). i
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11. Submodular flow algorithms

Our algorithms for submodular flow problems are implementations of Frank’s 0-1 submodular
flow algorithm [F82] (we also implement [F81], a special case of the flow algorithm). This section
sketches Frank’s algorithm and describes the probiem that is often the bottieneck in the impiemen-
tation. (A complete description of Frank’s algorithm and our use of the representation in it is in
[Ga93al.)

The submodular flow problem is defined on a digraph G = (V,E). The 0-1 submodular
flow problem asks for a maximum-weight subgraph of G satisfying certain flow constraints. The
algorithm does a sequence of < m “augmentations.” Each of these amounts to a shortest-pathv
calculation on a working graph H. H contains certain artificial “jumping edges.” Constructing the
jumping edges is often the dominating part of the computation (e.g., this holds for the algorithms
discussed here and in [Ga93b)).

We model the construction of jumping edges using the problem of Section 6: Let F be the
family of all sets S C V where the current flow constraint is “tight.” F is an intersecting or crossing
family. Constructing H amounts to answering a sequence of intersection queries pu(v,F) for each
vertex v. (We do not construct all jumping edges at once, as in [F82]. Rather when a vertex v is
reached in the search, we construct the jumping edges from v using a query p(v). This organization
limits the space for H to O(m), rather than O(n?) if all jumping edges were constructed at the
start.)

12. Dijoins

Consider a digraph G = (V, E). For a set of vertices 5, # C § C V, the set of edges directed
from V — § to S is a dicut if 6(.5) = 0. A dijoin is a set of edges that meets every dicut. Note that a
weakly connected digraph can be made strongly connected by contracting (or adding the reverse of)
every edge of a dijoin. The minimum-cost dijoin problem is, given a digraph with edge-cost function
c: F — Ry, find a dijoin with smallest possible total cost. (To put this in perspective recall that it
is NP-complete to make a digraph strongly connected by adding the fewest number of edges chosen
from a given set E' [ET).) The Lucchesi-Younger Theorem gives a minimax characterization of the
solution [LY, GLS]. Frank gives an algorithm that finds a minimum-cost dijoin in timé O(n®*m)
using O(m) space, or O(n? M(n)) time using O(n>) space [F81].

For the dijoin problem Frank’s algorithm does < n augmentations. Now we describe the family
that defines the jumping edges. The algorithm maintains a dijoin D. The family defining jumping

edges is
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F={X|XCV,§X)=0, pp(X)=1}.
Here § is the out-degree function for G and pp is the in-degree function for the dijoin D currently
constructed by the algorithm. F is a crossing family. (Note u(v) need not be an F-set since possibly
poli{(v)) > 1.) Our definition of u{v) is equivalent to [F81] by proposition {(5.1) of [F81]. [F8i]
finds all sets u(v), v € V, in time O(n*m) or O(nM (n)). We reduce this by a factor of n, achieving
the following.

Theorem 12.1. A minimum-cost dijoin can be found in O(n?m) time using O(m) space, or alter-

natively O(nM(n)) time using O(n?) space.

Proof. Define a multidigraph G p by starting with G, adding another copy of eéch edge of F, and
adding the reverse of each edge of D. The F-sets are precisely the vertex sets of out-degree one in
Gp.

Construct the centroid trees for the degree function C(F*,d) and C(F,,d). This uses time
O(mlog(n?/m)) (by Theorem 8.3 with A = 1). A poset P, can be constructed in O(m) time,
using the Picard-Queyranne representation on graph Gp. Thus Lemma 6.4(¢) shows that a set
p(v) can be found in time O(m). This gives time O(nm) to find all sets u(v). Since there are <n
augmentations, the total time is O(n®m). The space is O(m).

An alternate implementation constructs the representations 7(F*) and 7(F;), and converts
them to transitively-closed forms 7°(F?*) and 7¢(F,). The time to convert is O(M(n)) and the
space for these representations is O(n?) (see Section 3). The time to find all sets u(v) is O(n?), by

Lemma 6.2(7). This gives total time O(nM(n)) and space O(n?). i

An application of the dijoin problem is finding a minimum-cost feedback arc set for a planar

digraph. Feedback arc sets correspond to dijoins in the dual graph (since directed cycles correspond

to dicuts) [GLS].

Corollary 12.1. A minimum-cost feedback arc set in a planar digraph can be found in O(n?®) time

and O(n) space. .

13. Connectivity orientation
An orientation of an undirected graph assigns a direction to each edge. The k-edge-connected
orientation problem is to orient a given undirected graph G to make it k-edge-connected or show

this is impossible. Nash-Williams gives a minimax characterization of the solution [NasW]. In the
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minimum-cost k-edge-connected orientation problem each orientation of an edge has a cost and we
seek a k-edge-connected orientation of smallest possible cost.

[F82] shows that a minimum-cost orientation can be found in two steps: First find a k-edge-
connected orientation. Then appiy Frank’s submodular flow aigorithm to convert the orientation
to one with minimum cost. We begin by discussing this conversion step.

The conversion step does < kn augmentations. The family that defines the jumping edges is
the family of minimum edge cuts in a graph G’. G’ is an orientation of the given graph G having

edge-connectivity k.

Theorem 13.1. Given a k-edge-connected orientation, a minimum-cost k-edge-connected orien-
tation can be found in O(kn?m) time using O(m) space, or alternatively O(kn(kmlog(n?/m) +

M(n))) time using O(n?) space.

Proof. Our implementation of the conversion step is similar to the dijoin problem. We use the
representation of minimum edge cuts for G’. Theorem 8.3 shows the representation is found in time
O(kmlog(n?/m)).

Suppose (as in Theorem 12.1) we use centroid trees for the degree function C(F?®,d) and
C(Fs,d). In addition we store the two complete k-intersections for G’ used to construct these
representations. A poset P, is constructed in O(m) time (as in the algorithm for constructing
the representation). Thus Lemma 6.4(:) shows that each augmentation uses time O(nm). (Since
k < n, this dominates the initial time to construct the representation.) Since there are < kn
augmentations, the total time is O(kn?m). The space is O(m).

Using transitively-closed representations as in Theorem 12.1 gives the second bound of the

theorem. |

It remains to solve the k-edge-connected orientation problem. This is done in [Ga93a] in time
dominated by Theorem 13.1. Thus a minimum-cost k-edge-connected orientation can be found in
the time bounds of Theorem 13.1. [Ga93b] improves the time to find a k-edge-connected orientation

by extending [Ga93a] with the node form of the representation.
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