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Abstract

The automatic reclamation of storage for unreferenced objects is very important in object
databases. Existing language system algorithms for automatic storage reclamation have been
shown to be inappropriate. In this paper, we investigate methods to improve the performance of
algorithms for automatic storage reclamation of object databases. These algorithms are based
on a technique called partitioned garbage collection, in which a subset of the entire database is
collected independently of the rest. Specifically, we investigate the policy that is used to select
what partition in the database should be collected. The new partition selection policies that
we propose and investigate are based on the intuition that the values of overwritten pointers
provide good hints about where to find garbage. Using trace-driven simulation, we show that
one of our policies requires less I/O to collect more garbage than any existing implementable
policy and performs close to an impractical-to-implement but near-optimal policy over a wide
range of database sizes and connectivities.



1 Introduction

Object database management systems (ODBMSs) can be viewed as an integration of research re-
sults from the areas of database management systems and programming language systems. The
goal of the integration is to support the definition of a richer set of types for data and to support
the manipulation of those data using a more powerful, programming-language-like model of compu-
tation [18]. Two concepts that were extensively developed in the programming language area and
that are now profitably employed in ODBMSs are direct support for complex, highly interconnected
data and a notion of object identity separate from object value.

The introduction of these two concepts, however, has greatly complicated a critical perfor-
mance aspect of database management systems, namely the reclamation of storage for persistent,
secondary-memory objects that are no longer accessible. As shown by decades of experience with
network and relational databases, the presence of inaccessible data, while not affecting the func-
tional behavior of an application, can have a profound impact on its performance, since such data
increase the effective size of the database and can increase access time.

Designers of ODBMSs actually have some choice in how storage is reclaimed (see Figure 1).! The
two most basic options are manual reclamation, in which explicit deallocation commands are issued
by an application, and automatic reclamation, in which the underlying management system itself
directs a process of “discovering” implicitly inaccessible objects. Within automatic reclamation
there is a choice between reference counting, in which the discovery of inaccessible objects can
be made using only local information (i.e., the reference count), and garbage collection, in which
discovery is made using global information that is obtained (at least conceptually) by traversing
the graph of “live” objects.

Of course, each approach has its advantages and its disadvantages. Manual techniques give the
application fine control over the timing and extent of reclamation, but run the risk of insidious
errors, such as dangling references and unreclaimable space. Reference counting techniques are
attractive because of their basis in local information, but are ineffective, without complex enhance-
ments, in the presence of cyclic data. Garbage collection techniques are appropriate and safe for

all kinds of data, but their basis in global information makes them difficult to efficiently implement

!For comprehensive surveys of the field of storage reclamation, see the papers by Cohen [11] and Wilson [30].
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Figure 1: Approaches to Storage Reclamation.

in a distributed setting. We note that a recently proposed standard for ODBMSs suggests using
manual reclamation for some of the programmatic interfaces to an ODBMS, while at the same time
suggesting garbage collection for other interfaces [9].

Although the choices described above may seem few, they represent only the surface of the de-
sign space available to ODBMS developers. And while a similar problem has been studied for three
decades by designers of programming language systems in the realm of transient, primary-memory
(heap) objects, only recently has a strong interest developed in formulating the storage reclamation
techniques that are commensurate with the size, complexity, and stability characteristics of persis-
tent, secondary-memory objects in ODBMSs [3, 4, 19, 20, 31]. In fact, it has been shown that the
reclamation algorithms developed for programming language systems are, as currently formulated,
inappropriate for use on object databases [4, 31].

This paper reports on the design and evaluation of several new storage reclamation algorithms
specifically intended for use by ODBMSs. Our designs fall into the class of reclamation algorithms
know as partitioned garbage collection algorithms [31], in which a subset of the entire database is
collected incrementally and independently of the rest. The primary distinction among our algo-
rithms is the policy by which each selects a partition (i.e., the subset) of the database to examine
during a particular activation of the garbage collector. We evaluated the algorithms using trace-
driven simulations [10] of applications that create, access, and modify objects. Our results show
that the partition selection policy can significantly affect application performance and that a new

policy we propose has the highest performance of the implementable policies that we considered.



In the remainder of this section, we provide some important background to the work described
in this paper. In particular, we discuss some lessons learned from programming-language-system

algorithms and clarify the notions of partitioning and partitioned garbage collection.

1.1 Background

Useful insights into storage reclamation for ODBMSs can be gained from the programming-language-
system experience. One fundamental insight is that the performance of garbage collection over a
large address space is improved if the objects in the address space are partitioned into groups,
where storage in each group can be reclaimed independently [2, 21]. Thus, only a subset of a po-
tentially huge set of objects needs to be considered at any point by a collector. There are two key
advantages to collecting a subset of the total object space: the locality of reference of the collection
algorithm is greatly improved, substantially reducing paging I/O operations, and the disruption
caused by interfering with the application during garbage collection is reduced. A corollary of this
reasoning is that the collection algorithm can be made incremental with respect to the application;
reclamation of the entire database amounts to a series of individual collections of portions of the
database.

The obvious, but critical, question that arises is: what criterion should be used to partition
the object space? In general, the answer is a criterion that will make each collection maximally
effective—that is, one that gathers together objects likely to contemporaneously become garbage.
In the programming language domain, garbage collection algorithms are dominated by those that
use object age as the criterion, since empirical data on programs clearly demonstrate that objects
of similar age usually exhibit similar lifetimes [14, 25, 32, 34]. Thus, these algorithms are referred
to as generational collection algorithms [21, 28]. In ODBMSs, no such universal criterion has yet
emerged. In fact, a number of different criteria for partitioning an object database—predating the
recent interest in garbage collection and hence not designed with garbage collection in mind—have
already been built into those systems. Three of those criteria are: (1) partition objects based on
access patterns (e.g., [24, 27]); (2) partition objects based on the unit of transfer between a server
and a client(e.g., [15]); and (3) partition objects to increase locking granularity and thereby decrease

overhead (e.g., [7]). We follow Yong, Naughton, and Yu in generically referring to ODBMS garbage



collection algorithms that examine groups of objects independently of other groups as partitioned
collection algorithms [31].

The previous discussion points up a key distinction between programming language systems and
ODBMSs that makes the design of garbage collection algorithms for ODBMSs especially challeng-
ing. In programming language systems, designers of collection algorithms have complete control
over storage management. For example, they are free to decide how to partition the object space.
They are also free to decide where objects should be relocated in primary memory as part of the
actual recovery of space. In contrast, designers of garbage collection algorithms for ODBMSs are
constrained in their choices, since, as pointed out above, those choices are historically driven by
performance considerations unrelated to storage reclamation. Thus, in ODBMSs, any new garbage
collection algorithm must be carefully designed to integrate with traditional database storage or-
ganization and performance concerns.

If the criterion used to partition the object space is essentially a given, then what is the crucial
element in the design of an ODBMS garbage collection algorithm? The answer is partition selection,
the selection of which partition to examine for garbage during a particular collection. Since we
cannot guarantee that inaccessible objects will end up collocated in an obvious partition, as we
fairly well can for programming language systems (i.e., the “youngest” partition), we must invent
other ways to effectively find partitions likely to contain garbage. Thus, the essence of the problem
we are addressing here is the design and evaluation of partition selection policies.

We illustrate the problem in Figure 2. In the figure, we depict an object database that has been
divided into three partitions for some reason (e.g., to improve access performance). The figure shows
how objects in the database are interconnected (indicated by the arrows between objects), where
some of the connections are within a partition (solid arrows) and others are between partitions
(dashed arrows). We refer to such connections simply as pointers. The objects that are still in use
(white objects) are reachable from a so-called root set by a transitive traversal of the pointers. The
root set serves as the entree into the database for applications. The remaining objects, which are
not reachable from the root set, are garbage (shaded objects) waiting to be collected.

At each (incremental) collector activation, a partitioned garbage collection algorithm uses a
selection policy to chose which single partition in the database to examine for inaccessible objects

currently in that partition. For example, if Partition 1 in the figure were selected for collection, then
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Figure 2: Example of a Partitioned Object Database

two objects would be reclaimed. To correctly collect one partition without entirely scanning the
others, information must be kept about object pointers that cross partition boundaries (i.e., inter-
partition pointers). For example, if the pointer from Partition 2 into Partition 1 was not considered
when Partition 1 was collected, a live object would be incorrectly considered to be garbage. The
space and time overhead of maintaining sets of inter-partition pointers is one cost of a partitioned
collection approach. This example also illustrates the importance of the partition selection policy.
Intuitively, selecting Partition 3 for collection is likely to result in the best performance because
more inaccessible objects will be reclaimed.

The evaluation described in this paper compares the performance of three quite different par-
tition selection policies, including two new ones that we devised and one previously existing one
that we enhanced. All three are based on the intuition that the values of overwritten pointers
provide good hints about where to find garbage. This intuition has not previously been explored,
even within the programming language community. Using trace-driven simulation, we compare the
policies to each other and to a near-optimal, but impractical-to-implement, policy. Our simulations
show that one of the new policies we propose results in applications requiring significantly fewer
I/O operations and less storage than any of the other implementable policies we considered. Fur-

thermore, this partition selection policy has performance close to that of the near-optimal policy



both in terms of total number of I/O operations performed and in terms of maximum database
growth. We also show that these results hold for databases ranging from 4 to 40 megabytes in size.

The remainder of this paper has the following organization. In Section 2, we discuss related
work that investigates ODBMS garbage collection. We then describe the policies for partition
selection in Section 3 and the methods used to evaluate the algorithms derived from the policies in
Section 4. The test database is described in Section 5 and, in Section 6, we present the results of

the evaluation. We summarize our conclusions and discuss future work in Section 7.

2 Related Work

Most research investigating the use of garbage collection in ODBMSs has not been explicitly di-
rected at partitioned garbage collection algorithms. Although some of the proposed algorithms
do act incrementally on subsets of the database, the partitioning aspects of those algorithms have
been treated secondarily at best. The first work that specifically recognized the importance of
partitioning was that of Yong, Naughton, and Yu [31]. Here we briefly summarize their work and
the work of others in the area of ODBMS garbage collection.

Campin and Atkinson describe a breadth-first, copying garbage collector? used in the PS-Algol
persistent programming language [5]. They chose to use a copying collector to simplify error
recovery when a crash occurs during collection. Their collector performs garbage collection across
multiple databases, allowing the collection of only one database at a time, if desired.

Matthews describes a mark-and-sweep garbage collector for a persistent version of ML called
Poly [22]. The collector performs a complete reachability analysis, but at the granularity of a page.
The analysis is neither depth-first nor breadth-first. Rather, it can be said to be page-first, since
all intra-page object references are followed before any inter-page object references are considered.
The advantage of this scheme is that it minimizes the number of times a page needs to be read
from secondary memory.

Kolodner, Liskov, and Weihl propose using copying garbage collection in a “stable heap” [19].
Their collection algorithm, atomic garbage collection, guarantees heap consistency during a system

crash and interacts with the recovery system to insure correctness. More recently, Kolodner and

2Techniques for garbage collection may be classified by whether the algorithm relocates objects during execution.
Copying algorithms are allowed to relocate objects as needed, whereas non-copying algorithms leave objects in place.



Weihl propose an enhancement of their original algorithm that is also incremental and works on
stock hardware [20]. As with the original algorithm, their collector accommodates system failures.

Bjornerstedt describes an algorithm for collecting a distributed persistent object system [3].
His algorithm decouples collection of objects in primary memory from those in secondary memory,
collecting secondary-memory objects using a distributed mark-and-sweep approach.

Butler investigates the performance of different persistent storage management algorithms using
probabilistic models of program reference and update behavior [4]. For a number of dynamic storage
allocation algorithms, she shows the expected I/O costs based on complex formulas. Her results
show that the incremental collection proposed by Baker [1] provides significant advantages over
other traditional primary-memory collection algorithms when applied to object databases. Butler
did not consider partitioned collection algorithms.

A somewhat different thread of related research has occurred in the area of garbage collection
for programming languages that support persistence and transactions. Detlefs investigates the use
of concurrent, atomic garbage collection for transaction-based programming languages [13]. Nettles
and O’Toole have developed a concurrent, replicating garbage collection algorithm to support
persistence in ML programs [23].

In very recent work, Yong, Naughton, and Yu present a comprehensive evaluation of incremental,
reference counting, and partitioned garbage collection algorithms in client/server persistent object
stores [31]. They conclude that an incremental partitioned collection algorithm shows the best
performance based on a number of metrics including scalability, reclustering capability, and locality
improvement.

Our work extends and complements the work of Yong, Naughton, and Yu. We agree with their
general conclusion that an incremental, partitioned algorithm is the most appropriate way to collect
an object database. We take the next step in this work by investigating the specific problem of

partition selection.

3 Garbage Collection Policies

Because garbage collection of ODBMSs is an area of relatively recent interest, there is still much to
understand about the design of appropriate algorithms. To make the investigation of the space of

design parameters proposed in our research more systematic, we have identified independent and



Policy Some Alternatives

How to reclaim space e Copying
e Non-copying

How database partitions relate to GC partitions |e They are the same
e DB partition contains > 1 GC partition
e GC partition contains > 1 DB partition

How to traverse objects during collection e Breadth-first
e Depth-first

e Partition-first
o Page-first

When to perform collection e When more space is needed
e When performance degrades
e When garbage is created

e Opportunistically

When to grow database e When free space is exhausted

e When collector efficiency is low
How to maintain inter-partition pointers e Sequential store buffer

e Page or card marking
Which partition to select for collection e MUTATEDPARTITION

e UPDATEDPOINTER
¢ WEIGHTEDPOINTER
¢ RaANDOM

Table 1: Partial List of Policies Contributing to an ODBMS Garbage Collection Algorithm. The four
partition selection policies mentioned in the table are described later in this section.

separable policy decisions (of which partition selection is one) that must be made when designing
and implementing an ODBMS garbage collector.

Many of these policy decisions can be made by the ODBMS implementor; a handful of the
decisions should be left to the database administrator as tuning parameters. Every one of the
policies can significantly affect the performance of the algorithm. Table 1 summarizes some of the
policies contributing to a partitioned garbage collection algorithm.

As mentioned above, our concern in this paper is primarily with one of the policies, namely
the selection of a partition to collect (i.e., the last entry in the table). Our approach to studying
this policy is to make reasonable decisions for the other policies and to hold them constant while
varying the selection policy. In the future, we plan to study the effects of different choices for those

other policies.



For the purposes of this paper, most of the other policies should be understandable from their
brief description in Table 1. The only one that deserves further explanation is the policy concerned
with maintaining the inter-partition pointers. These pointers are commonly stored in a data struc-
ture called the remembered set [28], which records all inter-partition pointers into a partition on a
per-partition basis. Each time a write occurs there is a possibility that an inter-partition reference
has been created or destroyed. The remembered set is therefore maintained by identifying when
inter-partition references are created or destroyed, a process occurring at the so-called write-barrier.
Language system techniques for maintaining the remembered sets and the write barriers exist and
can be applied in the domain of object databases. A number of well-known and effective imple-
mentations, including those mentioned in the table, have been evaluated and compared [17, 33]. In
addition, most object databases already make use of the write barrier for other purposes, such as
concurrency control and recovery. Furthermore, since secondary-memory writes involve a great deal
more overhead than primary-memory writes, the additional CPU impact of maintaining the write-
barrier in an object database is less significant than it is for language system collection algorithms,
where the overhead has been already found acceptable.

In any event, all algorithms based on partition garbage collection must maintain remembered

sets and so their implementation will not differ among the policies we examine.

3.1 Partition Selection Policies

If we assume the goal of garbage collection is to reclaim the most garbage, then the ideal partition
selection policy would select the partition that contains the most garbage. Because it is unrealistic
for an implementation to actually have this information, partition selection policies use heuristics,
attempting to guess at the optimal partition. We investigate the relative performance of three poli-
cies based on three different heuristics, MUTATEDPARTITION, UPDATEDPOINTER, and WEIGHT-
EDPOINTER. We compare these policies with three other policies, RANDOM, MOSTGARBAGE, and
NoCOLLECTION, that are intended to place upper and lower bounds on the effect of partition

selection on application performance. All six partition selection policies are described below.

MUTATEDPARTITION. Under this policy, the partition selected is the one in which the most
pointers have been updated since the last collection. The rationale for this policy is that
the partition in which the most pointer mutation has occurred is also likely to contain the
most garbage, making collection more efficient. This policy is an enhancement of the Yong,



Naughton, and Yu policy, which selects the partition that had been mutated the most, without
regard to whether the mutations were to the partition’s pointers or to its data. Our enhanced
version should lead to better performance, since pure data mutations, which do not affect
object connectivity and, hence, cannot create garbage, are not considered.

To implement this policy, we perform the following operations. When a write occurs, we
determine if the value being written is a pointer, and if it is, we increment the counter
associated with the partition being written into. When a collection is required, we select the
partition with the most mutations. After the collection of a partition, we zero the counter
for the partition collected and begin again.

This policy is inexpensive to implement for the several reasons. First, it does not require any
additional storage except for a counter per partition. Second, it does not add to the number
of I/O operations performed by the collector, because a partitioned collector must maintain
the write-barrier in any event. The per-partition mutation count is a small array that can
easily be maintained in memory.

UpPDATEDPOINTER. This policy is based on the observation that when a pointer is overwritten,
the object it pointed to is more likely to become garbage. Reference counting algorithms
carefully record such pointer deletions; with this policy, pointer deletions are used as a hint
to determine a partition that contains garbage. In particular, this policy records, for each
partition, the number of overwritten pointers that pointed into that partition since the last
garbage collection. The partition with the most overwritten pointers into it is selected for
collection.

This policy is very similar in cost to MUTATEDPARTITION. In particular, the only difference
is that when a pointer write is about to occur, the value of the pointer being overwritten
must be read and its partition determined. Once the partition is determined, the count for
that partition is incremented.

WEIGHTEDPOINTER. This policy is a refinement of UPDATEDPOINTER based on the observation
that not all pointers are equal. In particular, when the object connectivity is low (i.e., most
objects are pointed to by one other object, as in a tree), loss of connectivity to objects near
the root results in many other objects becoming garbage at the same time. Conversely, when
pointers to objects far from the roots (and near the leaves) are deleted, few other objects are
likely to become garbage at that time. This partition selection policy augments all pointers
with information about their distance from the database root objects; pointers close to the
root have a greater weight than pointers far from it.

Specifically, our implementation maintains 4 bits of weight information per object—an ob-
ject’s weight is the one plus the minimum of the weights of the edges pointing to it. The
weight approximates the distance the object is from the root (with a maximum of 16). Like
the UPDATEDPOINTER policy, when pointers are overwritten, the partition they point into is
noted. In this case, however, an exponentially-weighted sum of pointers into each partition
is maintained, where the exponential weight is 2'6~%, and the partition with the greatest
weighted sum is chosen to be collected. Figure 3 illustrates the weights for a simple graph of
objects. As an example of how the weights are used, if the pointer from A to B in the figure
were overwritten, the sum for the partition that B is in would be increased by 262 = 16384.

10



Figure 3: Object Weights in a Simple Directed Graph.

This policy is somewhat more expensive than UPDATEDPOINTER for the following reasons.
First, it must maintain 4 bits of additional information (i.e., the weight) per object. Assuming
objects average 100 bytes, the space overhead of the weight information is 0.5%.

Also, to maintain the weights correctly, the following must occur at the time a pointer is
stored: The from-object’s and to-object’s weights must be read and then the to-object’s
weight must be compared to the from-object’s weight plus one. If it is greater, the to-object’s
weight must be updated to reflect the new lower-weight edge pointing to it. This operation
is performed transitively if it affects the weights of objects it points to. Finally, if this is a
pointer overwrite, the old to-object’s partition counter must be updated with the exponential
weight.

Ranpom. This policy selects a partition to collect at random. We include this policy to determine

the extent to which clever heuristics improve or degrade the performance of garbage collection.

MosTGARBAGE. This policy is not practically implementable, but we include it for purpose

of comparison. Using an oracle (provided by our simulation system), this policy always
correctly selects the partition that contains the most garbage. Note that at each collection,
MosTGARBAGE selects the current optimal partition to collect, but that selection does not
necessarily make it the globally-optimal algorithm (either in terms of I/O costs or storage
utilization) over all collections.

NoCoLLECTION. This policy does not perform any garbage collection. Instead, when more

space is needed, additional partitions are allocated. This policy establishes an upper bound
on the amount of space that the application uses. We also use the policy to determine
the degree to which garbage collection improves the locality of reference by compacting live
objects. In terms of space consumption, the other policies typically fall somewhere between
NoCoOLLECTION and MOSTGARBAGE.

When combined with decisions for the other policies listed earlier, these six partition selection poli-

cies result in six different garbage collection algorithms. For purposes of evaluation, the algorithms

we investigate select only a single partition during a particular garbage collection. A full implemen-
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tation might allow more than one partition to be collected at a time, if doing so was determined

to be of importance.

4 Evaluation Method

In this section, we describe the experiments that we conducted to evaluate the different partition
selection polices. First we describe our choices for the other collection algorithm policies and then

we describe the simulation techniques we used in comparing the resulting algorithms.

4.1 Complete Partitioned Garbage Collection Algorithm Design

To fairly compare different partition selection policies, we must make decisions about the other
aspects of the algorithm (see Table 1) and hold them constant. Here, we document the decisions

made.

Reclaiming Space. The partition selection policies are evaluated in the context of a copying
garbage collector. This choice allows garbage collection to not only reclaim the space occupied
by garbage but also to compact the collected partition’s live objects for improved reference
locality. Copying is done in a breadth-first traversal from the partition’s roots, iterating over
the roots one at a time. Breadth-first copying was chosen to preserve the object placement
policy of the test database. Pointers leaving the collected partition are not traversed.

By compacting live objects in a partition during collection, internal fragmentation is elim-
inated. The storage overhead of these algorithms includes space occupied by unreclaimed
garbage and external fragmentation caused by managing storage in units of partitions.

Partition Organization. Following Yong, Naughton, and Yu, we chose to partition objects
physically, segmenting the address space into contiguous partitions. Partition size was varied
between 24-100 8-kilobyte pages per partition, depending on the size of the database used.
We chose these sizes because they resulted in the test databases requiring between 15 and
25 partitions. Our main concern was to have enough partitions in the database so that the
selection policies could differentiate themselves. Partition size (relative to the database size)
also affects how often a collection is performed, since with smaller partitions, each collection
reclaims a smaller fraction of the database.

How to Traverse Objects. During a collection, objects are traversed in breadth-first order
and copied into an empty partition. After all the live objects in the collected partition have
been copied, the collected partition then becomes the empty partition for the next collection.
Thus, every algorithm measured maintains one empty partition at all times.

When to Perform Collection. We chose to invoke garbage collection based on the number
of pointer stores that the application performs. In particular, garbage collection is triggered

12



after a fixed number of pointer overwrites. In our simulations, this number varied from
150-300 overwrites, which resulted in approximately 20-30 partition garbage collections per
simulation.

We chose the criterion of pointer overwrites for two reasons. First, because many pointer
overwrites result in creation of garbage, the number of stores should be closely correlated
to the amount of garbage available for collection. Second, this choice means that collector
invocation is independent of the partition choice and allows the different partition selection
policies to be compared fairly (i.e., every algorithm performs the same number of collections).

When to Grow Database. The issue of when to grow the database is related to the issue of
when to collect. The algorithms we evaluated use the following policy. If an allocation occurs
and there is insufficient free space anywhere in the database, a new partition is added. There
is no limit on the number of partitions that can be created.

How to Maintain the Inter-partition Pointers. The algorithms maintain the remembered
sets for inter-partition pointers explicitly in auxiliary data structures. To understand what
happens when an inter-partition pointer is created, we use the following terminology. Sup-
pose that pointer P, pointing to partition ToPartition, is written into object O in partition
FromPartition. First, we must maintain a map (the remembered set) from each partition to
the inter-partition pointers into that partition; thus, the location of P is added to the remem-
bered set for ToPartition. Second, we must maintain a map, for each partition, of all objects
containing pointers that point out of the partition; thus, O is added to the out-of-partition
set of pointers for FromPartition.

The out-of-partition set of objects must be maintained for the following reason. When we
collect a partition, garbage is reclaimed. Some of that garbage may contain pointers into
another partition, in which case the locations of those pointers will be recorded in the re-
membered sets of the partitions into which the pointers point. When we discover that an
element of the out-of-partition set is garbage, we must remove the locations of the pointers
in it from the remembered set of the partition into which they point. Otherwise, when we
collect that partition, we will unnecessarily preserve objects pointed to by garbage.

4.2 Performance Evaluation Method

We use trace-driven simulation to evaluate alternative partition selection policies. This method
has been applied effectively in evaluating many kinds of computer systems, including computer
architectures [26], programming languages [29], and database systems [10, 31]. To evaluate the
performance of storage reclamation in ODBMSs, our simulation system simulates the physical and
logical structure of the database implementation being measured.

To perform trace-driven simulation of ODBMS collection algorithms, a trace of application
events (e.g., object creations, object mutations, etc.) is generated. Details of the traces used to

drive our simulations are provided in [12]. To obtain the results presented in this paper, we used
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synthetic, probabilistic models of application behavior to generate a test database application.
Details of the ODBMS system that we model are provided in Section 5.

One advantage of using trace-driven simulation is that we are able to evaluate and compare
the performance of impractical to implement, near-optimal algorithms like MOSTGARBAGE. As a
result, we are able to determine how close our heuristics come to the near-optimal solution. Another
advantage of using trace-driven simulation is that we are able to investigate the performance of the
policies over a broad range of simulation parameters including the database connectivity, database
size, object size, partition size, large object frequency, etc. With these results, we have established
a clear understanding of the sensitivity of our policies to the values of these parameters. In the
future, we plan to also capture traces from existing ODBMSs applications and use them to evaluate
policy alternatives.

The cost model used to evaluate the performance of the simulated algorithms is based on
tracking the number of page I/O operations over the life of the simulation. We simulate the
database’s I/O buffer and determine the number of disk I/O operations needed for each read and
write. To determine when disk I/O operations take place, we simulate a database I/O buffer of a
particular size (a parameter to the simulation), using an LRU policy for page replacement and a
write-back scheme for updating pages. More detailed cost models can be built that would derive
actual disk costs in terms of head seek, rotational delay, and transfer times, or that might model
network costs for a distributed or client/server database. The goal of our simulations is to measure
the time-varying behavior of application I/O operations and memory usage and to be able to relate
this behavior to the garbage collection policies investigated.

Whenever possible, we evaluate the performance of the policies based on multiple simulation
runs that differ only in the initial random number seed. In our results, we present the mean and

standard deviation of the values obtained.

5 Test Database Design

The characteristics of the simulated database and the operations on it can be a determining factor
in the validity of the results obtained through simulation. We model a single-process application
sharing a buffer with the ODBMS, which executes on the same processor. The following list presents

the database characteristics and the reasons behind the choices.
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Database Structure. The test database is a forest of augmented binary trees of objects, where
each tree root is itself a root object of the database. By augmented binary trees we mean that
in addition to the basic tree edges connecting nodes, there are also some number of dense
edges. The dense edges connect random nodes in the same tree. We vary the proportion of
dense edges to explore how the connectivity of the database can affect garbage creation and
collection, but always keep the connectivity near 1 (from 1 to about 1.2).

Object Size. Object sizes are randomly distributed around an average of 100 bytes each. The
distribution is uniform, with bounds at 50 and 150 bytes. We selected this size after looking
at previous work and experimenting with a variety of sizes. Butler uses 50-byte objects,
although she is expressly modeling Lisp structures [4]. Yong, Naughton, and Yu use objects
with an average of about 80 bytes [31]. Cattell’s OO1 benchmark averages about 100 bytes
per object [8]. Using much larger objects (e.g., on the order of the page size) would tend to
reduce the impact of garbage collection on access behavior, since pages would then be more
likely to contain either only all garbage or all live objects and, thus, they would only influence
database size. We observed this effect in simulation runs that used such larger objects. We
do, however, include the creation of a few large objects averaging 64 kilobytes each. These are
always leaf objects and comprise about 20% of the space of all objects, in a manner similar
to the document nodes in the OO7 benchmark [6].

Object Placement FEach augmented binary tree is created in a breadth-first manner and the
database attempts to place a new object near its parent. For an empty partition, then, a new
tree would be placed in the database in a strict breadth-first order.

Database Size. Our simulations vary from small databases of about 3 megabytes of allocated
objects up to just over 40 megabytes; garbage collection causes the actual space used by the
databases to be smaller than this maximum, except for NOCOLLECTION, of course. Most of
our simulations fall between 5 megabytes and 10 megabytes of allocated objects.

Edge Read/Write Ratio. The test inputs are generated by a program that probabilisticly
creates, visits, and modifies the database of augmented binary trees. Thus the edge read/write
ratio is not explicitly specified but rather results from the probabilities of operations. In our
simulations, the edge read/write ratio varies from about 15 to 20. This read/write ratio
approximates a reasonable application; with a less mutated database the issue of when to
collect becomes more significant, but we do not explore that issue here.

Traversals. Visits to the database are performed as partial tree traversals, either in a depth-first
or in a breadth-first manner. At each edge, there is a 5% chance that the edge will not be
traversed and thus the subtree below it not visited. Traversals are only done on the edges that
constitute the binary trees, not over the dense edges. The particular trees that are visited
are chosen randomly, with odds set at 30% for no traversal, 20% for a depth-first traversal,
and 50% for breadth-first traversal. We chose this ratio because we feel that a breadth-first
style of traversal (i.e., visiting an object’s siblings along with the object) is a more common
access pattern than a depth-first traversal. Additionally, when an object is visited, it has a
1% chance of being modified.
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Generating Garbage. Garbage is generated by randomly deleting tree edges from the binary
trees. Because of the presence of the dense edges, however, all, part, or none of the subtree
that the deleted tree edge pointed to may become garbage.

I/0O Buffer Size. We chose the I/O buffer size to be the same as the size of the partitions, which
varied depending on the size of the simulation run. We did this because a buffer significantly
smaller than a partition may cause a garbage collector to perform an excessive number of I/O
operations, while a much larger buffer could overwhelm any improved reference locality that
resulted from the collections. The buffer sizes range from 24 8-kilobytes pages for the smaller
runs (4 megabytes total allocated objects) to 100 8-kilobytes pages for the largest ones (40
megabytes total allocated objects).

Length of Run (Number of Collections). The simulation data presented here are based on
runs involving approximately 25 collections. This number of collections has proven to be
sufficient to distinguish significantly among the partition selection policies.

Warm-start vs. Cold-start. Our simulations have all begun with a cold start of the database—
that is, starting from an empty database and empty page buffer. Because we are measuring
relative garbage collector performance and not just pure database performance, the only effect
that the cold start has on the simulations is to lessen the differentiation among the various
algorithms. Cold starts do not qualitatively change the results, since the first few collections
will occur when there are not many partitions to choose from, thus making it more likely that
a poor policy will pick a good partition. The selection policies all start out showing relatively
close performance and it is only once the simulation warms up that the true differentiation
among the policies becomes evident. Based on our evaluation of more simulations than are
reported here, we did not find that our choice affects the data in a significant manner.

Clearly, some of these choices for the design of the test database can affect the results of the
simulation. But there is not currently an established or widely accepted body of knowledge about
“typical” object databases and applications. While there are indeed several benchmarks emerging,
they tend to be weak in database evolution modelling as appropriate for measuring garbage collec-
tion performance. Rather they are meant to measure the database system performance. But it is
exactly the knowledge about evolution that is required for evaluating garbage collection algorithms.
Our simulation system, since it is based on the use of traces, is well positioned to make use of that

knowledge once it becomes available.

6 Results

In this section, we show and explain the results of our simulations through both aggregate (tabular)

data of throughput, space usage, and collection efficiency, and with time-varying plots of secondary
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storage space usage. The tabular data reported here are means (and standard deviations where
appropriate) of 10 sets of simulation runs, each set with the same configuration parameters but
with a different random seed. For the data presented in Tables 2 through 4, the partition size and
buffer size was set at 48 8-kilobyte pages and the database contained a maximum of approximately
5 megabytes of live data. The time-varying plots are from a single set of simulation runs. We also
show some results related to the scalability of the policies, and how the connectivity of the database
affects the performance of the policies. These simulations required approximately one month of
continuous execution of a MIPS R4000-based DECstation 5000/260 computer with 112 megabytes
of physical memory.

Because we have focussed on the partition selection policies and not on other decisions that may
affect the absolute performance of collection, such as when and how often to collect, it is important
to look at the relative performance of the selection policies and not the absolute performance—
further investigation into these other decisions will produce a comprehensive set of garbage collec-
tion policy decisions.

The rest of this section provides the detailed results, while section 6.6 provides a summary of

the results.

6.1 Throughput

The performance of a database system in terms of how long it takes to complete some set of
application events (creation, modification, and visitation) is of utmost importance. Adding the
burden of garbage collection (but with it, the possibility of increased reference locality) further
increases the importance of this measurement.

Table 2 shows the throughput of the policies across simulation runs, measured as the number of
page I/0 operations, where fewer I/O operations indicates better performance. Table 2 also shows
that the benefits resulting from improved locality can outweigh the costs of garbage collection.
Most importantly, we see that UPDATEDPOINTER performs very close to MOSTGARBAGE, while
MUTATEDPARTITION performs 9% worse on average. There is a relatively smooth progression from
the best policies (UPDATEDPOINTER and M0STGARBAGE) through to MUTATEDPARTITION, which
actually shows that a poor policy can degrade performance below what NOCOLLECTION achieves

(i.e, no collection can be better than bad collection).
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Application I/Os | Collector I/Os | Total I/Os | Relative Total I/Os
Selection Policy Mean | Std Dev | Mean | Std Dev Mean Mean | Std Dev
NoCOLLECTION 36836 5582 0 0 36836 1.073 0.021
MUTATEDPARTITION | 35548 5586 1906 236 37454 1.092 0.027
RanNDOM 34502 5873 1720 262 36222 1.053 0.019
WEIGHTEDPOINTER | 33989 5637 1791 315 35780 1.041 0.034
UPDATEDPOINTER 33098 5559 1665 207 34763 1.011 0.016
MosTGARBAGE 32860 5426 1510 235 34370 1.000 0.000

Table 2: Throughput as Number of Page I/O Operations (Relative is MOSTGARBAGE=L1).

Max Storage Required # of
Selection Policy (kilobytes) Relative Partitions
Mean | Std Dev Mean Mean | Std Dev
NoCOLLECTION 11158 1252 1.529 29.5 3.50
MUTATEDPARTITION | 9214 1379 1.263 24.0 3.59
RaNDOM 8745 1481 1.198 23.1 3.67
WEIGHTEDPOINTER 8596 1645 1.178 22.8 4.24
UPDATEDPOINTER 7721 1387 1.058 20.6 3.53
MosTGARBAGE 7298 1262 1.000 19.5 3.37

Table 3: Maximum Storage Space Usage (Relative is MOSTGARBAGE=1).

Amount of Fraction of Collector
Garbage Reclaimed | Garbage Reclaimed Efficiency
Selection Policy (kilobytes) (%) (KB per I/0) | Relative
Mean | Std Dev Mean | Std Dev Mean Efficiency
NoCOLLECTION 0 0 0 0 0 0.00
MUTATEDPARTITION | 2608 355 37.36 5.20 1.37 0.44
RaNDOM 3104 463 44.52 7.20 1.80 0.56
WEIGHTEDPOINTER | 3365 807 48.17 11.56 1.88 0.60
UPDATEDPOINTER 4293 499 61.62 8.07 2.58 0.82
MOSTGARBAGE 4727 479 67.79 5.35 3.13 1.00
Actual Garbage 6999 529

Table 4: Collector Effectiveness and Efficiency (Relative is MosSTGARBAGE=L).
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The test database size varied quite a bit between simulation runs and, as a result, the standard
deviation of application I/O operations was quite high. However, the relative performance of the
different policies investigated changed very little between simulation runs, and we see this fact

reflected in the small standard deviation of the Relative Total I/Os.

6.2 Space Usage

Besides throughput, space usage is the other major factor in determining the performance quality
of the database system. The degree to which the garbage collector finds and reclaims the most
garbage determines how fast the storage space for the database will grow and how much space will
be wasted. We show the maximum amount of space required by the database, which includes any
fragmentation and uncollected garbage, as the measure of true space usage of the database. Also,
combining the amount of garbage reclaimed with the amount of work performed by the collector,
where work is expressed in terms of the number of I/O operations, reveals the efficiency of the
collector.

Table 3 shows the maximum size reached by the database under each selection policy; this
size includes live objects, any unreclaimed garbage, and any fragmented space. Again, UPDATED-
PoOINTER performs close to MOSTGARBAGE, while the others are significantly and progressively
worse. The ratio of 1.529 to 1 between NOCOLLECTION and MOSTGARBAGE reflects the fact that
the test database has a significant amount of garbage generated in it during the simulation runs.
Furthermore, the relative sizes of 1.263 for MUTATED PARTITION and 1.058 for UPDATEDPOINTER
show the importance and the impact of good partition selection.

Table 4 shows the space and collection efficiency of the policies, and supports the observation
that a copying collector’s efficiency is proportional to the amount of garbage it finds—that is, the
efficiency is inversely proportional to the amount of live objects it must copy. This result implies that
a better partition selection policy not only reclaims more garbage, but that it is more efficient in
doing so; table 4 shows that UPDATEDPOINTER is almost twice as efficient as MUTATED PARTITION.
Also, the large standard deviation of WEIGHTEDPOINTER is due to the fact that the performance
of WEIGHTEDPOINTER varies because its heuristic is heavily influenced by the removal of single

edges.
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Figure 4: Uncollected Garbage Over Time.

6.3 Time-varying Performance

The tables so far have shown aggregate measurements of the performance of the various selection
policies. We now show graphs of the behavior of the collectors over time during one simulation. In
all these graphs, time is measured as the number of application events that have occurred. Note
that (internal) garbage collection events, resulting from copying objects and traversing pointers,
are not considered to advance time. These graphs are taken from a simulation of a database whose
storage grew to about 20 megabytes with no garbage collection, and to about 10 megabytes with
the MosTGARBAGE partition selection policy.

Figure 4 shows a graph of the amount of unreclaimed garbage over time for each policy, where
a lower amount shows better performance. One can see that the policies quickly differentiate them-
selves, with MOSTGARBAGE and UPDATEDPOINTER doing much better than the others. RANDOM
and WEIGHTEDPOINTER stay approximately even with each other, and MUTATEDPARTITION wors-
ens as time goes by. Towards the end, UPDATEDPOINTER and MOSTGARBAGE overlap and are

essentially indistinguishable.
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Figure 5: Database Size Over Time.

Figure 5 shows the database size, including live objects and unreclaimed garbage, over time. The
separation among the various selection policies follows exactly their separation in Figure 4, with
UPDATEDPOINTER following MOSTGARBAGE closely, actually dropping below (i.e., performing
better than) MosTGARBAGE for a time. As mentioned above, this is because MOSTGARBAGE is
optimal in the sense of selecting the partition with the most garbage at that instant—it does not
know what will happen in the future and, thus, might collect a partition that is going to have
much more garbage created soon after the collection. One can see basically three groupings, with
UPDATEDPOINTER doing as well as MOSTGARBAGE, WEIGHTEDPOINTER following RANDOM, and

MUTATEDPARTITION doing poorly.

6.4 Scalability of Policies

We have looked at the performance of the selection policies as a function of the size of the database.

Partitioned collection is naturally scalable in different dimensions, with partition size being allowed
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Figure 6: Storage Required as a Function of Selection Policy and Maximum Allocated Storage.

to grow with the database, or with the number of partitions being allowed to increase. Our initial
investigations have explored scaling the size of the partitions.

Figure 6 shows the total storage required for simulations of different sizes of databases, with
maximum allocations ranging from about 4 to 40 megabytes. For each database size, the partition
size was scaled up with the size of the database, resulting in partitions with sizes ranging from
24-100 8-kilobyte pages. [Note—the partition size of the largest database was not scaled in pro-
portion to the others. This discrepancy is due to the fact that we were unable to rerun the large
database simulations again before submitting this paper. This deficiency will be corrected in a final
submission.].

The figure illustrates that as the database size increases, the relative performance of the most
important policies remains the same. In particular, UPDATEDPOINTER remains close to MosT-
GARBAGE across all database sizes, while MUTATED PARTITION does measurably worse in all cases.
The fact that the 20-megabytes data points show abnormally good collection is because the 20-

megabyte (and 40-megabyte) data points are single-run values, not averages over 10 runs. So in this
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% of Garbage Reclaimed
Selection Policy for Given DB Connectivity (C)
C =1.167 | C =1.083 | C = 1.040 | C = 1.005
NoCOLLECTION 0 0 0 0
MUTATEDPARTITION 28.8 35.9 38.58 39.3
RAaNDOM 41.6 40.9 41.23 62.7
WEIGHTEDPOINTER 41.4 50.1 53.08 57.8
UPDATEDPOINTER 57.6 61.1 62.53 74.7
MosTGARBAGE 66.5 66.3 61.58 79.0

Table 5: Database Connectivity Effects on Garbage Collection Performance.

particular case, the 20-megabyte data points show a database that resulted in conditions favorable
to collection while the 40-megabyte data points show results from a less favorable database; but in

each case the best partition selection policies maintain their position.

6.5 Effects of Database Connectivity

We have also investigated the effect of database connectivity on the performance of the policies
using approximately 5-megabyte simulated databases. Again, the partition and buffer size for
these measurements was set at 48 8-kilobyte pages. The object connectivity was varied from 1.005
pointers per object to 1.167 pointers per object, as shown in Table 5. The table shows that as
the connectivity increases, the performance of all of the policies degrades to some extent. This
result can be explained by noting that as more pointers are added to the database, the number
of inter-partition pointers also increases. Thus, when collecting a particular partition, the amount
of data in the partition that is considered alive will increase with the number of pointers into the
partition.

Note that inter-partition pointers from dead objects into a partition cause data in a partition
to be considered alive (so-called nepotism in generational collectors [29]). Thus, as connectivity
increases, so does the incidence of nepotism, and as a result, the efficiency of collection decreases.

The results in Table 5 show that nepotism plays a part (although not a large one) in reducing the
efficiency of collection, even with the near-optimal MosTGARBAGE policy. Other policies are more
strongly affected; in particular, WEIGHTEDPOINTER, which is based on a heuristic that assumes a

tree-like database, performs quite poorly with moderate amounts of interconnections.
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As the database connectivity increases, the potential for distributed cyclic garbage also increases
(that is, cycles of self-referential garbage structures that cross partition boundaries). Our collectors
do not reclaim these garbage structures, although our future work will investigate this phenomenon
in more detail. While there has been some work done in handling distributed cyclic garbage in
distributed systems [16], which can be applied to partitioned collection, previous work in partitioned
collection has maintained that cross-partition cycles will “probably” not be a problem [28, 31]. We
have, however, seen that even small increases in the connectivity of the database can produce
significant amounts of distributed garbage due to nepotism. Ultimately, we feel that distributed

garbage will need to be addressed in a graceful and scalable manner.

6.6 Summary of Results

To summarize, our results show that our UPDATEDPOINTER partition selection policy performs
significantly better than the other implementable policies and close to the impractical to imple-
ment and near-optimal MOSTGARBAGE policy in all cases. These results hold across a range of
database sizes and connectivities. Qur complex WEIGHTEDPOINTER policy, most suitable for tree-
like databases, most often performs worse than UPDATEDPOINTER, thus not warranting its extra
cost. We have seen improved performance on WEIGHTED POINTER when the amount of augmented
pointers in the trees is reduced, this being because a tree-like database more closely approaches the
weighted heuristic that WEIGHTEDPOINTER uses. WEIGHTEDPOINTER quickly degrades, though,
even with a still relatively low connectivity, well below 1.1.

Furthermore, our data show that MUTATEDPARTITION performs fairly poorly and we see two
main reasons this performance. First, MUTATED PARTITION ranks the partitions based on what
partitions are being modified, and not necessarily where garbage is being created. As a result, it
apparently incorrectly guesses where the most garbage is. Second, MUTATEDPARTITION does not
differentiate between new pointer stores occurring during object creation and pointer overwrites
that occur outside of object creation. Thus, it is influenced by the creation of new objects, which
is not correlated to the creation of garbage.

An important result, supported by the data in this section, is that a copying collector is more
efficient when it finds more garbage—it is actually “cheaper” to collect a partition with more

garbage than it is one with less garbage. Thus, when one just looks at the amount of garbage
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collected, the difference between selection policies might not appear that great. However, when the

efficiency of the collection is observed, as in Table 4, the benefit of a good policy is very clear.

7 Summary

ODBMSs benefit from partitioned garbage collection because partitioning allows only a small part
of a much larger database to be collected independently of the rest of the database. In this
paper, we have investigated heuristics for selecting a partition to collect when a garbage collec-
tion is necessary. We have described two new partition selection policies (UPDATEDPOINTER and
WEIGHTEDPOINTER), as well as one enhancement to an existing policy (MUTATEDPARTITION),
for partitioned garbage collection of object databases. We compared those policies with each other
and with an optimal, but impractical-to-implement, selection policy (MOSTGARBAGE).

We have shown that the UPDATEDPOINTER policy, which is based on heuristically identifying
garbage by observing what pointers are being overwritten, is significantly better than any existing
partition selection policy. Furthermore, UPDATEDPOINTER performs close to the near-optimal
MosTGARBAGE policy in every respect over a variety of database configurations ranging from 4 to
40 megabytes in size.

Using trace-driven simulations, we have shown that the UPDATEDPOINTER policy correctly
identifies partitions containing large amounts of garbage. By doing so, this policy reduces the total
number of I/O operations that must be performed, reduces the total database size, and increases the
efficiency of garbage collection. We believe that this policy, when combined with other incremental
collection techniques, provides a solid foundation for implementing garbage collection in object
databases.

Another important conclusion we have reached is that there is a general lack of understanding
about the time-varying behavior of real object databases. Even existing object database bench-
marks, such as 001 [8] and OO7 [6], focus primarily on the database access patterns and not the
time-evolution of the contents of the database. As we have noted, an understanding of algorithms
for language system garbage collection evolved from accumulated experience and empirical results
about how languages allocate objects. With object databases, such experience and measurements
do not yet exist and, as a result, many of the policy decisions mentioned in Table 1 are not well

understood. In the future, we intend to measure the time-varying behavior of real object databases.

25



References

[1]

[2]

[3]

[4]

[5]

[6]

[11]

[12]

[13]

[14]

[15]

[16]

Henry G. Baker, Jr. List processing in real time on a serial computer. Communications of the ACM,
21(4):280-294, April 1978.

Peter B. Bishop. Computer Systems with a Very Large Address Space and Garbage Collection. PhD
thesis, MIT Laboratory for Computer Science, Cambridge, Massachusetts, May 1977.

Anders Bjornerstedt. Secondary Storage Garbage Collection for Decentralized Object-Based Systems.
PhD thesis, Stockholm University, Department of Computer Systems Sciences, Royal Institute of Tech-
nology and Stockholm University, Kista, Sweden, 1993. Also appears as Systems Development and
Artificial Intelligence Laboratory Report Number 77.

Margaret H. Butler. Storage reclamation in object-oriented database systems. In Proceedings of the
ACM SIGMOD International Conference on the Management of Data, pages 410-423, San Francisco,
CA, 1987.

Jack Campin and Malcolm Atkinson. A persistent store garbage collector with statistical facilities. Per-
sistent Programming Reserarch Report 29, Department of Computing Science, University of Glasgow,
Glasgow, Scotland, 1986.

Michael J. Carey, David J. DeWitt, and Jeffrey F. Naughton. The OO7 benchmark. In Proceedings
of the ACM SIGMOD International Conference on the Management of Data, Washington, DC, June
1993.

M. Cart and J. Ferrié. Integrating Concurrency Control into an Object-oriented Database System. In
Proceedings of the Second International Conference on Extending Database Technology. Springer-Verlag,
March 1989.

R. G. G. Cattell. The Benchmark Handbook for Database and Transaction Processing Systems, chapter 6,
pages 247-281. Morgan Kaufmann Publishers, Inc, San Mateo, CA, 1991.

R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufmann, 1993.

H.-T. Chou and D.J. Dewitt. An Evaluation of Buffer Management Strategies for Relational Database
Systems. In Proceedings of the 11th International Conference on Very Large Data Bases, pages 127-141.
Morgan Kaufmann, August 1985.

Jacques Cohen. Garbage collection of linked data structures. ACM Computing Surveys, 13(3):341-367,
September 1981.

Jonathan Cook, Alexander Wolf, and Benjamin Zorn. The design of a simulation system for persis-
tent object storage management. Technical Report CU-CS-647-93, Department of Computer Science,
University of Colorado, Boulder, Boulder, CO, March 1993.

David L. Detlefs. Concurrent, Atomic Garbage Collection. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, October 1990.

John DeTreville. Heap usage in the Topaz environment. Technical Report 63, Digital Equipment
Corporation System Research Center, Palo Alto, CA, August 1990.

D.J. Dewitt, P. Futtersack, D. Maier, and F. Velez. A Study of Three Alternative Workstation-Server
Architectures for Object-Oriented Database Systems. In Proceedings of the 16th International Confer-
ence on Very Large Data Bases, pages 107-121. Morgan Kaufmann, August 1990.

Aloke Gupta and W. Kent Fuchs. Garbage collection in a distributed object-oriented system. IEEE
Transactions on Knowledge and Data Engineering, 5(2):257-265, April 1993.

26



[17]

Antony L. Hosking, J. Eliot B. Moss, and Darko Stefanovi¢. A comparative performance evaluation of
write barrier implementations. In ACM SIGPLAN 1992 Conference on Object Oriented Programming
Systems, Languages and Applications (OOPSLA ’92), pages 92-109, Vancouver, British Columbia,
Canada, October 1992.

W. Kim. Introduction to Object-Oriented Databases. The MIT Press, 1990.

Elliot Kolodner, Barbara Liskov, and William Weihl. Atomic garbage collection: Managing a stable
heap. In Proceedings of the ACM SIGMOD International Conference on the Management of Data,
pages 15-25, Portlang, OR, June 1989.

Elliot Kolodner and William Weihl. Atomic incremental garbage collection and recovery for a large
stable heap. In Proceedings of the ACM SIGMOD International Conference on the Management of
Data, Washington, DC, June 1993.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes of objects.
Commaunications of the ACM, 26(6):419-429, June 1983.

David C. J. Matthews. Poly manual. SIGPLAN Notices, 20(9), September 1985.

Scott Nettles and James O’Toole. Real-time replication garbage collection. In SIGPLAN’93 Conference
on Programming Language Design and Implementation, pages 217-226, Albbuqueuque, NM, June 1993.

K.P. Shannon and R.T. Snodgrass. Semantic Clustering. In Proceedings of the Fourth International
Workshop on Persistent Object Systems, pages 361-374. Morgan Kaufmann, 1991.

Robert A. Shaw. Empirical Analysis of a Lisp System. PhD thesis, Stanford University, Stanford, CA,
February 1988. Also appears as Computer Systems Laboratory tech report CSL-TR-88-351.

Alan J. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, September 1982.

M. M. Tsangaris and J. F. Naughton. A stochastic approach for clustering in object bases. In Proceedings
of the SIGMOD Conference on Management of Data, pages 12-21, Denver, CO, March 1991.

David Ungar. Generation scavenging: A non-disruptive high performance storage reclamation algorithm.
In SIGSOFT/SIGPLAN Practical Programming Environments Conference, pages 157-167, April 1984.

David Ungar and Frank Jackson. An adaptive tenuring policy for generation scavengers. ACM Trans-
actions on Programming Languages and Systems, 14(1):1-27, January 1992.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceedings of the International Work-
shop on Memory Management, St. Malo, France, September 1992.

Voon-Fee Yong, Jeffrey Naughton, and Jie-Bing Yu. Storage reclamation and reorganization in client-
server persistent object stores. In Proceeedings of the International Conference on Data Engineering
(to appear), 1994.

Benjamin Zorn. Comparative Performance Evaluation of Garbage Collection Algorithms. PhD the-
sis, University of California at Berkeley, Berkeley, CA, November 1989. Also appears as tech report
UCB/CSD 89/544.

Benjamin Zorn. Barrier methods for garbage collection. Technical Report CU-CS-494-90, Department
of Computer Science, University of Colorado, Boulder, Boulder, CO, November 1990.

Benjamin Zorn and Dirk Grunwald. Empirical measurements of six allocation-intensive C programs.
SIGPLAN Notices, 27(12):71-80, December 1992.

27



