Scalable Internet Resource Discovery
Among Diverse Information

Darren R.Hardy
CU-CS-650-93 May 1993

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Scalable Internet Resource Discovery Among Diverse Information

Darren R. Hardy, University of Colorado, Boulder (hardy@cs.colorado.edu)

University of Colorado Technical Report
CU-CS-650-93 May 1993
M.S. Thesis directed by Assistant Professor Michael F. Schwartz

Abstract

Internet users need tools to help them discover resources that are available throughout the
network. Unfortunately, current Internet resource discovery systems are inadequately prepared
for the Internet’s rapid growth. In particular, scalable techniques that adapt to growth in informa-
tion diversity will provide a basis for future Internet resource discovery systems. To explore
some techniques, we have built two resource discovery systems: Dynamic WAIS, which provides
seemless information-level access to remote search systems through the Wide Area Information
Servers (WAIS) interface; and Essence, which exploits file semantics to index a variety of types
of data.

Acknowledgments

I would like to thank Sean Coleman, Jim O’Toole, Panos Tsirigotis, and David Wood for
their helpful comments on earlier drafts of Chapter 4 (Essence). 1 would like to thank the many
people who have offered comments and ideas during the development of Essence and Dynamic
WAIS, including Tim Berners-Lee, Jonny Goldman, Jim Fulton, Simon Spero, Panos Tsirigotis,
and Greg Whitehead. I would also like to thank Roger King and Ken Klingenstein for their sup-
port, comments, and interest in this thesis.

I would especially like to thank Mike Schwartz for his support, encouragement, and guid-
ance throughout my years of Internet resource discovery research, and in the development of this

thesis.
Finally, I would like to thank my family, friends, and Michelle for their support.

This material is based upon work supported in part by the National Science Foundation

under grant NCR-9105372, and a grant from Sun Microsystems’ Collaborative Research Pro-

gram.

-1I -

Table of Contents

Chapter 1: Introductionccccovieiiiniiiiininnienenieneenne,

1.1. Internet Resource Discovery e

1.1.1. Why is Internet Resource Discovery Difficult?

1.1.2. Approaches to Internet Resource Discovery
1.2. Internet Growthcoociiiiiiiniiiiiiiiiiinee e

1.2.2. USer Baseccucceviiiiiiiiniiciiiiienicnnienic e

1.2.3. Information DIiversityc...ccocccevenniennueenecnnnen.

Chapter 2: Information Diversitycccoccooeviniiiiinnnn.
2.1. Problems for Resource DiscOVerycccccceecvevennnnnnnn.
2.1.1. Information System Diversitycccocceeevveennee.

2.1.2. Resource Representation Diversity

2.1.3. Heterogeneity et

2.1.4. INCONSISIENCY eeenvrearrieniieeieeirrenieeeeresaeenseessnas

2.1.5. INCOMPIBLENESS ...evvreiiriierieciiieniereiienieeeeenanes

2.2. Approaches for Adapting to Information Diversity
2.2.1. Operation Mappingcccceeeeeeevienneenieeencennnee.

2.2.2. Data Mapping ...ccceeeeeeeereeenienieenieeieeeneeessneennnens

Chapter 3: Operation Mapping — Dynamic WAIS
3.1. Information System Gatewaysccccecceevvererieecuearnrennne
3.1.1. Menu-Level Gatewaysccccceeeeieieeiieeeniieeennns

3.1.2. Information-Level Gatewaysccccceeveevenncen.

3.2. The Dynamic WAIS SyStemccccceeevieciiininniianirennns
3.2.1. Supported Remote Search Systems

3.2.2. Dynamic WAIS Designcccccoveeiivciencnncns

3.3, PIOOLYPE wvveeiiieeiiieeiiteeirteeiie et reeseneerseeseeesrneenneennes

3.3.1. WAIS-to-Netfind Information-Level Gateway

3.3.2. WAIS-to-archie Information-Level Gateway ..

3.3.3. Prototype Availabilitycccccoevvenniiiniinninnnce.

3.4, CONCIUSIONS ..cociiiriiiiiiiiiiiiienrieiertct e e eeceeean
Chapter 4: Data Mapping — ESsencecccccuveeeeneennennne.
4.1. Full Text vs. Filename vs. Semantic Indexing

4.2. The Essence SYSemcccovirriericeniiennieniecieeeeeeneneens

4.3. Design OVEIVIEWccciiiiiiiiiiieniienireeieeeeeeeeesiveeneens

4.4. Scalable Techniquescccoecceerieniiiiienieinieenie e
4.4.1. Determining File TyPesc.cocccvvvvccenrenveneeens

...

..

..

...

...

..

.....................................

..

...

..

...

...

.......................................

..

...

...

...

...

..

...

...

...

..

..

...

...

...

..

...

...

...

..

O O 0NN NN R RN

[T T T e T o S e S e S e S o WY = WY o G GH Gy WO U S Y
0~ N NN R W W N - O

4.4.2. Nested File SIUCIUTEooouiiiiiiiiiiiiiie ettt eire et re st ee e e e ennne

4.4.3. SUMMATIZETS ...ueeiiiiiiiniiiieiieteetieeenereessntteeieeesseeesaseesssaesnseesssseessssssssessnses

4.5, PIOTOLYPE weeiiniiiiiiiiiiiiiiiiiiie ettt st st s saae sab saae sbbeeabesonabenesnnaes
4.5.1. Determining FIE TYPES ..veeevieeiiieariieiiieeiteeitcesiieeie sttt eie e eesraesreese e

4.5.2. SUMMATIZETS ...veivireriieirieeiieeeteeeieenssreeissaesssessssssssensseesssessessssessassssessssssessane

4.5.3. WAIS INEITACE ..couviiiiiiiiiiiiiieiit ettt ettt e sate e ebsabe e ene

4.5.4. PETTOITNANCEcviiiiiiiiiiiiiiiieeieeenite et e siieee b eeettessreseteansestsnansesnssaesssessensesens

4.5.5. Analysis of Keyword QUalitycoccoeceeieniiiniiniiieienietcne et sreeneeenesee s

4.5.6. Prototype Availabilityccccciiimiiiniiniiniiiiicicciecene ettt

4.5.7. Anonymous FTP INAeXINgcccceiiriiiiiiiiiiniiiniinnteeienieseeeeie e aeseeseeanne

4.6, CONCLUSIONS ..eeieriiiiiriieiieieniieetieeeeeeieeetreteteeeeteesneenbecesseesssesaseensesnsassseerssesssssseennses
Chapter 5: Related WOTKccoooiiiiiiiieeccee ettt et eaeeveeas et e ereans e
5.1. Identifying and Locating File RESOUICEScccccoiiiimiiiiiiiniiiiiiieseienee e

5.2. Exploiting File Semantics ..ottt s

5.3. Semantic File INAEXING ..ccooiiiiiiiiiiiiii ettt ceae e s teese et e e e e aennnnns

S HYPETIEXT coniie ittt ittt ettt ettt et ettt s sate et et e et ae b aeesbesbeeesbecasnaneenaneen

5.5. Semantic Data MOEING ...coviieiiiieiiiiieiiieeeeete ettt et er s re e stae e tensnne s

5.6. Heterogeneous, Distributed Databasescccocciriiiiiiniinnieninnienieeresneie s
Chapter 6: Future DIrectionsccccoeiieiiiiiieniini ettt eve e e sese v
6.1. Scalable Content-Based Searchingcccoceeiiiiiiiiiiniinniinieieete e

6.2. General Techniques for Information-Level GateWayscceceveerenienienreeerineeennes

6.3. Supporting Differing Query Semantics in WAIS ...
Chapter 7: SUIMIMALYc.cooiiiiiiiiiiiieniieceeereieereteessreesstesssesseesssessssesssessassssesssesssessesssss
Chapter 8: RefereNCesc.coiieiiiiiiiiiiiieiiiiiiiie et te e et rreeese s s aesseesseessaesssesssessesessnne

Table 1:

Tahle 2-

GRS 4w

Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

List of Tables

Approaches to Information System GatEWAYSccceecueevievrienieeerneeesrreeseeenree e
Supported File Types in Common File System Environmentsccocovveveiviniennn.

Essence Summarizer Techniques

..

Time and Space Measurements for WAIS and EsSsencecccoeoveeeecvieeeniieniieennen,

Weighted Time and Space Avera
Percentage of Interpretable Data
Nested File Structure Overhead

ges for WAIS and Essencecccceveevecevcennnan,

...

...

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

List of Figures

Menu-Level Gateway: Internet Gopher-to-Netfind

Information-Level Gateway: WAIS-to-Netfind ...

Information-Level Gateway: WAIS-to-Archie
Organization of the Essence System
How a Summarizer Worksccccocoeeiiiiiineinnnnn.
WAIS Search Using Essence-based Index
NCSA Mosaic: archie QUETYcccccovvivieeiancreanns
NCSA Mosaic: archie Responsecccoeuveeveene.
Indexing Space Efficiency vs. Representativeness

- Vi -

..

...

...

...

..

..

..

...

Chapter 1
Introduction

The Internet is a collection of high-speed computer networks which interconnects nearly a million computers
around the world [Lottor 1992]. Each day millions of people use the Internet to transfer data, communicate via elec-
tronic mail, access remote computers, and retrieve information from a wide variety of databases. The Internet has
evolved into a unique medium that promotes global collaboration and communication [LaQuey 1993].

For many years, the Internet community has concentrated on building the world’s largest and fastest computer
network. Unfortunately, the rapid evolution of the Internet’s physical infrastructure has left behind an immature
information infrastructure. The Internet’s resources, which include a wide variety of information, software, comput-
ers, and people, are loosely structured, and as a result, locating Internet resources is difficult. The need for Internet
resource discovery tools has grown dramatically in the past several years. The Internet community has started to
meet this growing demand by developing several resource discovery tools [Schwartz et al. 1992b]. Nevertheless,
these tools are inadequately prepared for the Internet’s rapid growth. This thesis focuses on overcoming these inade-
quacies by developing scalable Internet resource discovery techniques that will support the next generation of
resource discovery systems.

This chapter introduces Internet resource discovery, and characterizes the growth of the Internet. Chapter 2
discusses the problem of growing information diversity in the Internet, and outlines two approaches to this problem:
operation mapping and data mapping. Chapter 3 examines the operation mapping approach by analyzing tech-
niques used in Dynamic WAIS. Chapter 4 examines the data mapping approach by analyzing techniques used in
Essence. Chapter 5 discusses some related work to the techniques presented in chapters 3 and 4. Chapter 6 explores
some future directions for improving these techniques. Finally, chapter 7 offers a summary.

1.1. Internet Resource Discovery

The Internet resource discovery field has gained much popularity recently. Users find that Internet resource
discovery systems indeed help them use the Internet more effectively. Internet resource discovery techniques, how-
ever, need improvement to support the Internet’s rapidly evolving environment. Understanding current techniques
helps in the development of such improvements.

The following subsections first describe why Internet resource discovery is difficult. They then discuss some
common approaches used in Internet resource discovery systems.

1.1.1. Why is Internet Resource Discovery Difficult?

Discovering Internet resources is difficult primarily for two reasons: the Internet’s decentralized administra-
tion, and the Internet’s massive amount of diverse resources.

First, the Internet consists of many autonomous networks that span geopolitical boundaries, and are each man-
aged by their own organization. In many of these networks, its management is divided further among several
autonomous organizations. For example, Westet manages a network spanning Arizona, Colorado, Idaho, New
Mexico, Utah, and Wyoming. This network is connected to the Internet in Utah. Westnet’s network itself consists
of dozens of smaller networks that are managed by autonomous organizations such as universities, non-profit organi-
zations, and businesses. Although these smaller networks connect to the Internet via Westnet’s network, Westnet
has little control over their administration. Therefore, no organization has administrative control over the Internet as
a whole. In fact, the Internet is close to an anarchy, because the administration of the Internet’s networks is so
decentralized. The Internet is governed loosely by community consensus rather than a cohesive organization.

This lack of a controlling body creates difficulties for users who are trying to locate Internet resources. In par-
ticular, no organization controls which resources should be available on the Internet; and furthermore, no organiza-
tion maintains a directory of the available Internet resources. Some organizations, however, maintain customized

-1-

directories that contain some of the available resources at their site. Each directory has its own semantics, organiza-
tion, and scope. As a result, conglomerating these directories from different organizations into a meaningful, global
resource directory is difficult. Therefore, Internet resource discovery tools need non-trivial approaches to adapt to
diverse administrative techniques such as site-specific resource directories.

Second, the Iniernei coniains a massive amouni of diverse resources. Hundieds of gigabyies worih of
resources are available from public Internet file archive sites alone [Emtage & Deutsch 1992]. For a system to cre-
ate a single, global Internet resource directory, it needs to gather sufficient information about Internet resources from
many different rescurce directories, or from the resources themselves if they are not contained within a directory. To
gather this information, the system needs techniques to extract information from these heterogeneous repositories. It
must also adapt to the sheer magnitude of building a global resource directory. As the Internet grows, creating a
global resource directory is an infeasible task. Therefore, Internet resource discovery systems need to rely on novel
techniques to discover resources without the aid of a global Internet resource directory.

In summary, discovering Internet resources is difficult due to the Internet’s decentralized administration and
massive volume of diverse Internet resources. Users need Internet resource discovery tools to help them use the
Internet more effectively. These tools need to employ non-trivial resource discovery techniques.

1.1.2. Approaches to Internet Resource Discovery

In this section, we discuss several Internet resource discovery systems’, and analyze two common resource
discovery paradigms: browsing and searching.

The whois system, an Internet directory service, was one of the first tools to help users discover Internet
resources [Harrenstien et al. 1985]. whois is a centralized database of registered Internet users, hosts, networks, and
organizations. Users with whois client programs can query a whois server over the network to retrieve matching
resource information.

The Wide Area Information Servers (WAIS) system is a distributed collection of databases from which users
can search and retrieve documents [Kahle & Medlar 1991]. For efficiency, WAIS uses an index to represent the rela-
tionships between keywords and documents. To support fine-grained information access, WAIS builds full-text
indexes, in which every keyword from a textual document appears in the index. As a result of using full-text index-
ing, WAIS has large space requirements: its indexes are comparable in size to the data files they represent. Because
of these space requirements, WAIS distributes the indexes among the hosts that provide data. This approach is pri-
marily useful for purely textual, widely popular data since it consumes a large amount of storage resources.

The archie system is an Internet file location service [Emtage & Deutsch 1992]. Periodically, archie retrieves
file listings from known public Internet file archive sites, and then builds an index. archie avoids large space
requirements by using only filenames as keywords in the index. Users can query archie’s index to locate files that
are available from public Internet file archive sites, also known as anonymous FTP sites.

Netfind is an Internet user directory service [Schwartz & Tsirigotis 1991]. Netfind uses heuristics to dynami-
cally locate Internet users, and discover user information. It continually gathers information from the Internet about
where to search for users. When a user queries Netfind, they supply information about where a user might be
located (for example, within a specific city or university). With this information, Netfind executes a narrowly-
focused search for user information. Currently, Netfind is able to reach more than 5 million Internet users — more
than any other Internet user directory service.

X.500 is a distributed resource directory service in which resources are hierarchically organized [CCITT/ISO
1988]. Users then traverse the hierarchy to locate resource information. For example, some initial X.500 proto-
types, such as Performance System International Inc.’s white pages project (WPP) [Rose 1991], contain Internet user
information. WPP’s hierarchy contains many levels starting with countries, then organizations, then departments

! For a more detailed discussion of Internet resource discovery system approaches, refer to [Schwartz et al.
1992b].

-3

within organizations, and so on. Thousands of entries are possible on each level. Browsing through such a large
hierarchy can be difficult, so X.500 supports subtree searches. Searching in WPP, however, is limited to a small
number of levels, since the amount of information grows quickly. The X.500 standard does not specify how to sup-
port searching, so implementations vary in their support of searching.

Prospero provides an organizational model that allows users to create their own private hierarchical views of
Internet file resources [Neuman 1992]. Once users have built their own views, access to file resources is transparent.
Users traverse their views to locate information.

Internet Gopher organizes Internet resources into a hierarchical, menu-based user interface [McCahill 1992].
Users traverse menus to locate Internet resources, and then select menu items to access the corresponding Internet
resource. Internet Gopher maintains information about where resources are located, so when a menu-item for a
resource is selected, Internet Gopher can connect the user to the resource. The Veronica service supports searching
the registered menu items [Foster 1992], but the information contained within the resources themselves is not visible
to Veronica.

These Internet resource discovery systems have two common paradigms for discovering resources: browsing
and searching.

Browsing is a user-guided activity where users discover resources by traversing a graph, typically a hierarchi-
cal, directed graph. Consider locating a user within the WPP X.500 Internet user directory. Users must first traverse
several levels of the hierarchy, sifting through potentially thousands of entries at each level, to reach the department
or organization with which the desired user is associated. Once users reach this level, browsing for the desired user
information is less labor-intensive, since the scope of the resources left to be browsed is narrowly focused. For
example, consider users who are looking for information about a University of Colorado student. Once they have
found the level containing information about University of Colorado students, they only need to browse the user
information at this level. Therefore, browsing is least labor-intensive during the final stages of resource discovery,
when the scope of the resources to be browsed has been sufficiently narrowed, such that the remaining resources are
closely related to the desired resource. Fine-grained resource discovery occurs when the desired resource lies
within a narrowly focused set of resources. Browsing at the lowest levels of WPP’s hierarchy is an example of fine-
grained resource discovery.

Searching is an automated activity where a system discovers resources by locating those resources whose
descriptions match user-provided keywords. Consider locating information within WAIS. Users supply WAIS with
keywords that describe the contents of the desired information. WAIS then matches these keywords with the key-
words in the full-text index. If WAIS finds any matches, then the documents associated with the matching keywords
are returned to the user. Typically, keyword searching returns many matching resources, since it is difficult for users
to provide enough specific keywords to exactly match the desired resource. Therefore, searching is most effective
for narrowing the collection of resources to search, by locating resources that are closely related. Rough-grained
resource discovery occurs when the desired resource lies within a large collection of resources whose contents are
usually closely related. Searching all anonymous FTP sites for a file is an example of rough-grained resource dis-
covery.

Most current Internet resource discovery systems use some combination of these two paradigms. To support
future Internet resource discovery systems, we would like to find the most effective and efficient combination that
will scale in the Internet’s rapidly growing environment. Before defining such a combination, we first analyze the
problems associated with these two paradigms.

Organization, the classification of resources based on attributes that typically describe a resource’s contents, is
essential to the effectiveness of these resource discovery paradigms. Without organization, these paradigms fail -
like finding a needle in a haystack. The degree to which these paradigms fail differs, however.

Browsing depends on strict resource organization, since its performing fine-grained resource discovery to
locate a specific resource. If resources are not sufficiently organized, browsing them quickly becomes too difficult.
Searching, however, does not rely on such strict resource organization, since it is performing rough-grained resource
discovery and is only responsible for locating a collection of related resources. Effective searching is possible with
only loosely organized resources. For example, archie users can locate file resources using only filename-based
descriptions. Filename-based descriptions only loosely organize resources since they represent the brief, subjective

perceptions of resource contents of many people, rather than a cohesive organization like call numbers for published
books.

For Internet resource discovery, a major distinguishing characteristic of organization is whether or not
resource organization relies on human guidance. Organizing resources by filename, for example, relies on manual
organizaiion, since filenames are manually written by humans to refiect a resource’s conienis. Similaily, organizing
books by call number relies on manual organization. A published book is assigned a call number by a human to
reflect the book’s contents. In Internet resource discovery, manual organization does not scale well since it relies on
human guidance. Automated organization, where a program organizes resources without human guidance, scales

better since it relies on a program to make classification decisions.

Indexing improves the efficiency and scalability of searches. Indexes are only computed once to represent the
organization of resources by associating a resource to a keyword that describes the resource’s content. Searching for
resources is reduced to finding matching keywords in an index and then returning the associated resources. Since
indexes are precomputed, resources need only to be scanned once; thus, saving future searches the computational
and communication costs for scanning them.

Programs can generate indexes automatically, although some people do generate indexes by hand (a personal
address book that uses last names as keywords, for example). Automated index generation is a more scalable tech-
nique than manual index generation, since an automated program can generate a large number of index entries rela-
tively quickly and inexpensively. A major problem with automated index generation is obtaining resource descrip-
tions, without relying on users to manually write them; thus, automated resource classification techniques are
needed to support automated index generation. Automated index generation involves two distinct steps which are
performed by a program: first, identifying a resource’s representation and interpreting it to generate a resource
description (automated resource interpretation), and second, deciding how to classify a resource based on its
description (automated resource classification).

WAIS’s full-text indexing is an example of an automated resource classification technique. WAIS classifies
files depending on each word they contain. This technique, however, is too space inefficient to scale well. archie’s
filename indexing is a resource classification technique that is more space efficient. It relies, however, on filenames
which users must manually write to describe a resource’s contents, so it is not as fully automated as WAIS’s tech-
nique. Typically, filenames do not sufficiently describe a resource’s contents. An automated resource classification
technique is needed that sufficiently describes resource contents, yet is space efficient.

A promising combination of searching and browsing for Internet resource discovery systems is where users
first search for a collection of narrowly focused, closely related resources (rough-grained resource discovery), then
browse these resources for the desired resource (fine-grained resource discovery). This approach saves users from
browsing through too much information, and doesn’t rely on searching to produce exact resource matches. Also, to
support scalable, efficient searching, an Internet resource discovery systems can use automated resource classifica-
tion and automated index generation techniques. This thesis, in particular, focuses on developing such techniques.

1.2. Internet Growth

Now that we have examined both Internet resource discovery problems and approaches, we want to develop
some requirements for the next generation of Internet resource discovery systems. To develop these requirements,
we first look at how the Internet is growing, and how current Internet resource discovery approaches fail to adapt to
this growth. Understanding the dimensions of the Internet’s growth [Lottor 1992, Klingenstein 1992, Lynch &
Rose 1993] will help develop useful approaches for the next generation of Internet resource discovery systems

The following subsections focus on defining the dimensions of the Internet’s growth, and describing how cur-
rent Internet resource discovery approaches are inadequately prepared for this growth. This thesis focuses on one of
these dimensions, information diversity, since developing techniques to adapt to this growth provides a basis for
future Internet resource discovery systems.

1.2.1. Information Volume

As the number of users, hosts, and applications continues to grow, so does the amount of information avail-
able in the network. An information base is the information resources that an Internet resource discovery system
includes in its scope. Future Internet resource discovery systems will need to accommodate much larger information
bases. Doing so, however, is ditficult.

Although archie covers a large information base, it restricts its functionality by only supporting filename-
based searches. WAIS also covers a large information base, yet it supports content-based searches. WAIS, however,
restricts users to somewhat arbitrarily focused searches. Users only receive a brief, ad-hoc description of a
database’s content, so focusing searches is difficult. Internet Gopher also covers a large information base, but it
restricts its functionality by only supporting limited searches and forcing users to learn many different user inter-
faces to access information. archie, WAIS, and Internet Gopher demonstrate an unbalanced trade-off between func-
tionality for the user and the information base supported by the system.

Current Internet resource discovery systems either sacrifice functionality to support a large information base,
or focus on a small set of information to retain a high degree of functionality. Internet resource discovery systems
will need to ease this trade-off, so that systems can support enormous information bases without sacrificing too
much functionality in the process.

1.2.2. User Base

The number of Internet hosts is growing at 10-15% per month [Lynch & Rose 1993]. As the number of hosts
increases, so does the number of Internet users. Centralized information repositories will become obsolete as users
distributed throughout the Internet will demand efficient access to information. Sophisticated replication and
caching techniques is a promising approach to providing users with efficient information access, and at the same
time, minimizing Internet backbone traffic. Internet resource discovery systems will need to employ these tech-
niques to efficiently handle information access requests from users distributed throughout the Internet.

Current Internet resource discovery systems have limited support for efficient information access. WAIS,
whois, and Internet Gopher do not support replication or caching of information. As these systems increase in popu-
larity, demands on the Internet backbone will continue to increase. The Netfind and archie databases are manually
replicated to provide users more efficient information access. As these systems increase in popularity, however,
manual replication is infeasible, especially with systems like archie whose databases are hundreds of megabytes.
Although X.500 supports replication, the brief practical experience with X.500 prototypes in the Internet offers littie
insight to efficient replication techniques.

1.2.3. Information Diversity

Information in the Internet is typically available either through an information system interface (as with
WALIS), or directly available as an autonomous resource (as with files available via anonymous FTP). In the Inter-
net, the diversity of information is increasing as both information systems and autonomous resource representations
diversify. For Internet resource discovery systems to include as much information as possible, they must adapt to
this information diversity. For example, automated resource classification techniques need to interpret and classify a
wide variety of diverse resources.

Users benefit when Internet resource discovery systems can include as many resources as possible throughout
the Internet. Developing scalable techniques for adapting to information diversity provides a basis for these Internet
resource discovery systems. Techniques that adapt to the Internet’s growing user base and information volume,
however, only address problems with resources that the Internet resource discovery system already includes. There-
fore, this thesis focuses only on developing scalable resource discovery techniques to adapt to growing information
diversity, both in information system diversity and in resource representation diversity.

Chapter 2
Information Diversity

In this chapter, we examine the problems for Internet resource discovery systems that strive to adapt to infor-
mation diversity. Then, we outline two promising approaches to adapting to information diversity on which this the-
sis focuses.

2.1. Problems for Resource Discovery

Information diversity surfaces in two different ways in the Internet, diverse resource representations and
diverse information systems, and it is primarily problematic because of its heterogeneity, inconsistency, and incom-
pleteness. In the following subsections, we further discuss information system diversity and resource representation
diversity, and analyze its characteristics of heterogeneity, inconsistency, and incompleteness.

2.1.1. Information System Diversity

The number of information systems in the Internet is growing as communities develop information spaces,
each of which serve a community’s specific interests. The Usenet news system is a good example of a collection of
these information spaces [Quarterman 1990]. Usenet is divided into thousands of information spaces, or news-
groups, each of which is a forum for discussion on a specific topic. Usenet, however, has a general interface since it
services a diverse user base. On the other hand, Telesophy, an information system for molecular biologists who
study a species of nematode worm, has a custom interface [Schatz 1990]. This interface better services unique
queries that molecular biologists require, such as DNA sequence matching. In general, information spaces have
interfaces that best suits its user community.

2.1.2. Resource Representation Diversity

Applications are shifting the face of information from simple text to multimedia. This revolution brings with
it a wealth of different file formats and resources, such as sounds and images. In other words, resource representa-
tions are diversifying.

Consider the documents generated by various word processing applications. Although most of word process-
ing applications are similar in functionality, many use their own proprietary file format for storing documents.
Interoperability between these applications suffers since these file formats differ so much. Some tools can convert
these file formats into a single, common format like PostScript [Adobe 1990], but much of the original document’s
semantic information is lost in translation. In general, diverse file formats cannot be accurately transformed into a
smaller subset of file formats. Therefore, since translations do not work well, Internet resource discovery systems
that want to include documents with diverse file formats in their information base must understand a wide variety of
file formats. In addition, the increasing number of different file formats shows no sign of slowing, since proprietary
file formats are flourishing. As a result, the diversity of file formats will continue to plague Internet resource discov-
ery systems.

2.1.3. Heterogeneity

Resources representations can vary from unstructured text as in electronic mail messages, to structured,
tagged information as in bibliographic databases. Although tools can transform one representation into another,
important semantic information about the resource might be lost in the translation.

Information system interfaces can vary from keyword-based searching as in WAIS, to browse-based systems
such as X.500. Accessing information from each of these systems is fundamentally different, so homogeneous
approaches fail.

Since homogeneous resource interpretations might lose semantic information during translation, and homoge-
neous access meihods 0 miormailon sysiems fail, Iniemei resource discovery sysieins rmusi adapi iake a heieroge-
neous approach to heterogeneous resources, so that they can include as many resources as possible in their informa-
tion base, and minimize the lost of semantic information from these resources.

2.1.4. Inconsistency

Internet resource discovery systems must quickly adapt to rapidly changing resources; otherwise, users will
receive out of date information about resources. For example, many popular software package are available through
anonymous FTP sites. Initially a software package may only be available from a handful of sites, but in a matter of
days, it may become available on dozens of sites throughout the Internet. When a new version of the software is
released, all of the sites might not receive the updated software. Internet resource discovery systems, such as archie,
need to update their information on resource locations quickly, and maybe even remove the locations of the outdated
software packages, so that the user is referred to sites containing the updated software packages. archie updates its
resource location information monthly, and therefore it adapts to the relatively static nature of anonymous FTP sites.
For some Internet resource discovery applications, such as a Usenet news information location system, resources
change much more quickly, thus requiring a more swift updating approach than archie.

2.1.5. Incompleteness

Netfind uses both user account information such as electronic mail hosts and user-defined information such as
finger information [Zimmerman 1990] to extract information about users. In general, since most resources contain
only a limited scope of information, Internet resource discovery systems may need to include information from sev-
eral different resources to acquire enough relevant information.

This incompleteness also occurs with information available through information system interfaces. Internet
resource discovery system may need to access multiple information systems to produce a more complete resource
description. For example, an Internet resource discovery system might extract user information from both whois,
which might include an electronic mail address, postal address, telephone number, and title, and Netfind, which
might include research interests, home machine name, and previous login time, to form a more complete description
of a user. Internet resource discovery systems need to adapt to incomplete resources to supply users with more com-
plete resource information.

2.2. Approaches for Adapting to Information Diversity

The next generation of Internet resource discovery systems need scalable approaches to deal with diversifying
information in the Internet. The following two subsections outline two promising approaches: operation mapping,
for adapting to information system diversity, and data mapping, for adapting to resource representation diversity.

2.2.1. Operation Mapping

Many Internet resource discovery systems force the user to explicitly access information system resources. To
access information available through autonomous information systems, Internet Gopher supports menu-level gate-
ways. Users browse hierarchical menu items until they locate an interesting resource. When a user selects the menu
item for a resource, if this resource is an information system, then Internet Gopher connects the user with the remote
information system’s user interface. At this interface, users extract information from the information system. Users
are forced to learn a different interface for each remote information system that they want to access from Internet
Gopher. In menu-level gateways, users explicitly access the information from the autonomous information system
interface, but they need not remember the details to connect to the information system’s user interface. As the

number of information systems increases, however, Internet Gopher users must continue to learn more interfaces.

More sophisticated approaches are needed to remove the user from both the process of connecting to the infor-
mation system’s user interface as well as the process of accessing information through an autonomous user interface.
These approaches can provide automated information system access through a single interface. Future Internet
resource discovery systems need to employ these approaches to support resources available through disparate,
diverse information systems. By providing automated means for this information access, these approaches scale
well as the Internet’s information system diversity increases.

Operation mapping is such an approach. It provides automated, transparent access to information that is
available through heterogeneous information system interfaces, by using information-level gateways. In essence,
operation mapping maps the operations of many heterogeneous information system interfaces into a single interface
without losing functionality. Operation mapping can adapt well to new information system interfaces, and save
users from continually learning new information system interfaces. Knowbots is a step forward in this
direction [Droms 1990]. Users query the Knowbots system for user information through a single user interface.
Knowbots then extracts information from several, heterogeneous user directory services, and combines it into a
structured response for the user. Other systems have taken similar automated approaches to heterogeneous resource
access [Schwartz et al. 1987].

2.2.2. Data Mapping

By reducing all file resources to a common automated resource interpretation method (extracting a filename),
archie does not need to worry about resource representation diversity, as all resources are treated the same. Rather
archie forces the user to worry this diversity, since the user needs either to verify that the matching resources are in
the appropriate representation, or to issue more sophisticated queries that match resources in the appropriate repre-
sentation.

Like archie, WAIS interprets all file resources identically. WAIS extracts every word from a file and uses
them as keywords in an index, regardless of the file’s representation. WAIS does have limited support for diverse
file resources such as electronic mail, but it is not automated. The user must explicitly instruct WAIS to interpret
files differently. Since it treats all resources identically, however, semantic information is lost from the resource dur-
ing its interpretation.

Although X.500 interprets diverse resources, how it interprets a resource is determined when it is added to the
directory. The user (or program) that adds resources to the directory is responsible for explicitly identifying a
resource’s representation and its interpretation through rules [Lynch & Rose 1993].

In general, many Internet resource discovery systems skirt the problems of automated resource classification,
by shifting the burden of automated resource classification from the system to the user. Future systems need more
automated approaches to scale.

Data mapping is such an approach. It provides automated resource interpretation and classification of hetero-
geneous resource representations, while preserving semantic information about resources. Data mapping adapts to
new resource representations well, since it employs automated resource classification.

Chapter 3
Operation Mapping — Dynamic WAIS

In this chapter, we discuss some approaches that build information system gateways, including menu-level
and information-level gateways, to access information available through disparate information systems. In particu-
lar, constructing information-level gateways is an effective technique to cope with diversifying information systems.
We’ve built Dynamic WAIS [Hardy & Schwartz 1993b] to experiment with such an operation mapping technique.
Finally, we discuss the details of our prototype, and its effectiveness in seemlessly integrating information spaces
though information-level gateways.

3.1. Information System Gateways

Information system gateways can provide users with access to information available through disparate infor-
mation system interfaces. Some systems, however, do not provide any of these gateways. Consider the problem of
looking for popular public-domain software that is available via anonymous FTP. First, the user might want to
access information available through Usenet to discover the most popular software that the Internet community
offers. In order to access this information, the user needs to know how to connect to the Usenet system. Usually
users issue a command to execute a Usenet news reader like rn. Many sites use the Network News Transfer
Protocol [Kantor & Lapsley 1986]. In this case, users must also supply the name of their NNTP server, although
system administrators usually supply this information rather than the users. Then, the user needs to know how to
use the news reader interface. A user might read the comp.archives news group to find out information about the
anonymous FTP sites that have the latest, most popular, public-domain software releases. After finding this infor-
mation, the user exits the news reader interface, and connects to the file transfer protocol (FTP) interface. The user
also needs to supply FTP with the hostname of the anonymous FTP site that has the desired software. Then, the user
uses the FTP interface to transfer the desired software.

In this example, the user needs to know how to connect to the information systems. To connect to Usenet, the
user supplies a command name and a NNTP server hostname. To connect to the anonymous FTP site, the user sup-
plies a command name and the hostname for the anonymous FTP site.

The user also needs to know how to use the information system interfaces. To access Usenet information, the
user issues commands to read news articles from the comp.archives newsgroup. To access anonymous FTP infor-
mation, the user issues commands to transfer files from the remote site to the local machine.

In this case, no information system gateway is provided, since users themselves act as a gateway between the
systems. In practice, most sites have experienced users to help others with the details of connecting to information
systems, and using their interfaces. Similarly, many Internet users refer to guides or documentation instead of local
experienced users [Krol 1989, NSF 1989, Granrose 1990, LaQuey 1990, Kehoe 1992, Krol 1992, Martin
1993, LaQuey 1993].

In general, without an information systems gateway, users must know many details, including a host name,
port number, and commands, to connect to an information system. Users must also learn the interface to each infor-
mation system, which usually have non-trivial interfaces. As a result, this approach do not scale well as information
systems diversify and grow. An enormous amount of user effort is required to keep pace with the Internet growth.
Approaches that remove this burden are needed.

Information system gateways can provide users with access to information available through disparate infor-
mation system interfaces. In the following subsections, we discuss two approaches to building gateways as shown
in Table 1: menu-level gateways where users need to know only an information system’s interface; and information-
level gateways where the user does not need to know either how to connect to an information system, or to use its
interface.

- 10 -

Table 1: Approaches to Information System Gateways

Gateway Information System
Type Connection Interface Interaction
None user-provided user-provided
Menu-Level automated user-provided
Information-Level automated automated

3.1.1. Menu-Level Gateways

Instead of requiring users to supply the details on how to connect to an information system, Internet Gopher
only requires users to select a menu item. Internet Gopher handles the connection to the remote information system.
As Figure 17 shows, when Internet Gopher users select the “Netfind server at the University of Colorado, Boulder”
menu item, the Internet Gopher system initiates a remote login session to the remote Netfind information system.
The user does not need to know how to initiate the remote login session (Internet Gopher uses the felnet command).
Nor does the user need to which Internet host has the Netfind information system interface (Internet Gopher uses
bruno.cs.colorado.edu). In this example, Internet Gopher forms a menu-level gateway to the Netfind information
system, since the details of connecting to the remote information system are handled by the system.

Users, however, still need to learn information system interfaces. As Figure 1 shows, users must understand
the Netfind interface to access the information available through Netfind. Even though menu-level gateways burden
users, they still provide an advantage. Internet Gopher’s immense popularity is a testament to this fact.

3.1.2. Information-Level Gateways

As information systems diversify, users have difficulty remembering the details of using varying information
system interfaces. An approach that removes this burden from users is needed. Information-level gateways take this
approach. Information-level gateways allows users to access information from a variety of information systems
without having to know the details of connecting to each information system, and without having to learn new infor-
mation system interfaces. These gateways have automated means for connecting to information systems, as well as
accessing information available through the information system interface.

Knowbots implements an information-level gateway between user directory services, such as whois and
X.500 [Droms 1990]. Users query the Knowbots system for user information through a single user interface.
Knowbots then extracts information from several user directory services, and then combines the information into a
structured response for the user. Knowbots users do not need to know how to connect to the different user directory
services. Nor do they need to know how to use the different user directory services. The Knowbots system’s infor-
mation-level gateways automates both of these processes.

3.2. The Dynamic WAIS System

Dynamic WAIS? uses an operation mapping approach which implements an information-level gateway
between WAIS and remote search systems. In this section, we discuss the types of remote search systems that
Dynamic WAIS supports. We also discuss how Dynamic WAIS implements its information-level gateways, and the
scalability of this approach.

 Reprinted with permission from [Bowman et al. 1993].

2 WAIS extracts information from a static collection of textual documents. Dynamic WAIS, however, extracts
information from remote search systems whose information spaces are typically dynamic, and hence how it received
its name.

-11-

Internet-wide e-mail address searches

Netfind search for Internet e-mail addresses overview
<tel» Netfind server at BARNet (Melbourne, Bustralia)
<tel> Netfind server at Catholic University, Santiago, Chile
<tel> Netfind server at OpenConnect Systems, Dallas, Texas
<tel> Netfind server at Slovak Academy of Sciences, Czech and Slovak Fed. Repub.
<tel> Netfind server at University of Alabama, Birmingham
Wetfind server at University of Minnesota
- Netfind server at the University of Coleradeo, Boulder
USENET contributor e-mail addresses
USENET contributor e-mail addresses overview
<tel> X.500 directory
[®] telnet

Fet{ |Trying 128.138.243.151 ...
sel¢ |Connected to bruno.cs.colorado.edu.
Escape character is "™17.

S5un0S UNIX (bruno)
Login as “netfind” to access netfind server

login: []

Figure 1: Menu-Level Gateway: Internet Gopher-to-Netfind

3.2.1. Supported Remote Search Systems

In Netfind, users first narrow the search scope to a handful of promising Internet domains. They then direct
Netfind to search those domains for user information that matches user-supplied keywords. In archie, users first
select one of the many archie servers, then they search the archie server for Internet file resources that match user-
supplied keywords. In whois, users first select one of the many whois servers, then they search the whois server for
user and domain information that match user-supplied keywords. These remote search systems, Netfind, archie, and
whois, have a common attribute; they each require two search phases for a successful search. Dynamic WAIS takes

-12.

advantage of this common attribute to map this two-phase search into WAIS’s search and retrieval paradigm. Map-
ping the operations of these remote search systems into a single paradigm prevents user from having to learn new
interfaces to access information available from these remote search systems.

3.2.2. Dynamic WAIS Design

Dynamic WAIS modifies WAIS to support automated access to information available from remote search sys-
tems. Users perceive this information as if it were coming from a static textual database, rather than from a dynamic
remote search system. The Dynamic WAIS design recognizes that the operations of certain remote search systems,
like Netfind, archie, and whois, can be mapped into the WAIS search and retrieval paradigm. In this respect,
Dynamic WAIS contributes an important conceptual mapping between WAIS’s operations and the operations of
remote search systems. Furthermore, an effective operation mapping approach requires this type of conceptual map-
ping. An appropriate conceptual mapping is fundamental to the seemless intergration between information systems,
through information-level gateways.

In WAIS, users supply keywords for their search. Then, the WAIS server receives the keywords, looks them
up in an index, and returns brief descriptions about the matching documents, known as headlines. Users may then
choose among these headlines to retrieve an entire document.

In Dynamic WAIS, users supply keywords for their search. The Dynamic WAIS server receives the key-
words, stores them, and returns brief descriptions about the choices that the remote search system requires during its
first search phase. Dynamic WAIS, however, represents these choices as standard WAIS headlines. When the user
chooses to retrieve one of the “documents,” the Dynamic WAIS server searches using the keywords previously
stored and the keywords from the chosen headline. Since the remote search system returns a single result for the
search, the Dynamic WAIS server then is able to return the result in lieu of a static document.

3.3. Prototype

In this section, we discuss the Dynamic WAIS prototype, which implements information-level gateways
between WAIS and Netfind, and WAIS and archie.

3.3.1. WAIS-to-Netfind Information-Level Gateway

Figure 2* shows the information-level gateway between WAIS and Netfind. The user first supplies the key-
words “‘schwartz c¢s colorado” and then directs Dynamic WAIS to search for matching documents. Instead,
Dynamic WAIS returns the choices of promising Internet domains as headlines. As shown in Figure 2, the user
chooses the “cs.colorado.edu’ headline. The retrieved document (shown in the lower rightmost window in Figure
2) is actually the result of the Netfind search for “schwartz” in the Internet domain “cs.colorado.edu,” rather than a
static textual document.

Unfortunately, Netfind queries have different semantics than WAIS queries. In WAIS, queries are simply a
sequence of unordered keywords. In Netfind, however, queries are a sequence of ordered keywords in which a key-
word to match a user comes first, then keywords to match an Internet domain come second. In our Dynamic WAIS
prototype, we assume that the user is aware of the semantics of the remote search system queries, and that the user
supplies an appropriate sequence of keywords.

A potential solution to adapting to differing query semantics is to associate a query template with each WAIS
database. Whenever a user selects to search a WAIS database, the system retrieves a query “‘template” from the
database server. Users then must use the template to structure their queries. In fact, Z39.50 [ANSI 1991], the
search-and-retrieval protocol upon which WAIS is built, provides facilities to support this approach. WAIS,

 Reprinted with permission from [Bowman et al. 1993].

-13 -

however, does not implement these facilities, and as a result, the differing query semantics are the responsibility of
the user rather than the system.

[®] X WAIS Question: Netfind

Congress persons Tell me about:
CS tech reports schwartz cs coloradg,
Domain- Orgs
Essence In Sources: Similar to:
dynarnic-netfindisre
i Roget s thesanrus
-ME"’_“I [Add Source | [Delete Source| [asa D |[Detete D]
Sources: i 10 64.0K (0TATA23) ex.eolordo,edu cotapiiler seierve e, p‘u‘x-;ﬂ’ﬁfu...\. ity of ¢ ilorada, Tundder
1000 64.0K (D1A)1/93) es.col edu comp i department, colorado state university, fort collins
disi~catalog.src 1000 64.0K (0141193) cs.cduieda computer scienee department, university of denver, denver, colorado
DOE_Climate_Data.ss
domain- contacts.sre O] Iorado.sdu Pt department, university of colorado, beulder
kel domain- organizations 0) check name: checking domain cs.colorado.edn. Level = 0
dynamic-archie sre AIL IS FORWARDED TO sehwam@lawur €8 cnloradn edn
dynamie- netfind.sre NOTE: this is ad = so mail intended
Y i - for “schwartz" shtmltl be addressed to "schwartz @cs.colorado.eda"
EC-enzyme.src rather than “schwar os.colorado.edu™,
edis.sre (0} check hecking host latour.cs.colorado.edu. Level = 0
check name: c! s .cs.colorado.edu. Level =
eff -documents.sre SYSTEM: latonr.cs.colorado.edn
eif-talksre Login name: schwartz In real life: Mike Schwartz
|| eos-nesu.sre Directory: /t A fschwartz Shell: /hinfesh
On since Mar 16 02:14:24 on console 29 seconds ldle Time
[Sew] open] [otee] St
Project: Resource Discovery and WAN measurement
[ttetp][Quit] Statms: Plan:
Opeirs o i ipnt e oS
~ Boulder, CO 80309-0430
+1 303 492 3902
schwartz@ecs.colorado.edu
Add Section | Find Key] [Next] [Previous | Save To File |[Done|
Status: |

Figure 2: Information-Level Gateway: WAIS-to-Netfind

3.3.2. WAIS-to-archie Information-Level Gateway

Figure 3 shows the information-level gateway between WAIS and archie. The user first supplies the keyword
“traceroute” and then directs Dynamic WAIS to search for matching documents. Instead, Dynamic WAIS returns
the choices of the many archie servers throughout the Internet as headlines. As shown in Figure 3, the user chooses
the “archie.ans.net’” headline. The retrieved document (shown in the lower rightmost window in Figure 3) is actu-
ally the result of the archie search for “traceroute” as returned by the archie server “archie.ans.net,” rather than a
static textual document.

As with the WAIS-to-Netfind information-level gateway, the query semantics for archie is different than those
for WAIS. In archie queries, only a single keyword or regular expression is meaningful. In our Dynamic WAIS
prototype, we assume that the user is aware of these semantics, and only uses a single keyword for WAIS-to-archie
gateway queries.

3.3.3. Prototype Availability

The Dynamic WAIS prototype, including its documentation and WAIS modifications, is publically available
by anonymous FIP from fip.cs.colorado.edu in /pubicsidistribsidynamicwais. The prototype is written in the C pro-
gramming language [Kernighan & Ritchie 1988], and uses WAIS version 8-b5 {WAIS 1993].

-14 -

[or xwais »
Questions: @] X WAIS Question: New Question &
Tell me about:
[traceroute I Sea:chl
e | jL]
Delete In Sources: Similar to:
Sources: dynamic-archie. sre |
Tectory—ol-seivers ’
dynamic-archie. sre
a c-notfind sre |[2dd Source][Delete Source] [Add Document |[Delete Document
1000 64.0K (03/01/93) archie.rutgers.edu 126.6.18.15 (Rutgers University)
New |{Open || Delete
1000 64.0K (03/01/33) archie.unl.edu 129.93.1.14 {University of Nebraska in
1000 64.0K (03/01/83) archie

.sura.net 128.167.254.178 (RURAnet archie server)
1000 64.0K (03/01/43) archic.ans.net ¥ p.
1000 64.0K (03/01/83) archie.au

Help Status:

Opening new guestion

r 1000 64.0K (03/01/93) archie.funet.fi 128.214.6.100 (Buropean server in Finland
1000 64.0K (03/01/%3) archie.doc.ic.ac.uk 146.169.11.3 (UK/England server}
1000 64.0K (03/01/93) archie.cs.huji.ac.il 132.65.6.15 {Israel server)
1000 64.0K (03/01/93) archie.wide.ad.jp 133.4.3.6 (Japanese Sserver)

[@] archic.ansnet 147.2251.2 (ANS archieserver)

| A

Host agate.berkeley.edu

Location: /pub/3B6BSD/386bsd-0. ljfllesysbsw'us:/oh)/usr shin
DIRECTORY drwXt-Xr-x Jul 13 1992 traceroute
Location: /pub/3B6BSD/386ksd- 0 I/fllesystam/usr/ahln
FILE -r-Xr-xr-x 40960 Jul 13 1992 traceroute
Location: /puk/3B6BSD/386bsd-0. Uillesystaw'usr/src/usr shin
DIRECTORY dIwXr-XI-X 512 Jul 18 1992 traceroute

Host akiu.gw.tohoku.ac. jp

Location: /pub/net
DIRECTORY drwxrwxr-x 512 oct 31 17:46 tracercute

Host archive.cis.ohio—state.adu

Location: /pub
DIRECTORY drwxrwxr-x 512 Jan 19 18:23 traceroute

[Add Secr.iou”!‘ind Keyl[Prsvious”Save To Fila}
Status: |

N

Figure 3: Information-Level Gateway: WAIS-to-Archie

3.4. Conclusions

Dynamic WAIS demonstrates that information-level gateways provide a powerful means for adapting to diver-
sifying information system interfaces. This approach removes the user from the process of connecting to an infor-
mation system, and from the process of extracting information through an information system interface. Further-
more, Dynamic WAIS seemlessly integrates WAIS and remote search systems. Query semantics, however, differ
between information systems. Although Z39.50 supports facilities to support differing query semantics, WAIS does
not implement them. As a result, our prototype assumes that users are aware of the different semantics, and that
they conform to them. In this respect, Dynamic WAIS demonstrates the usefulness of supporting differing query

semantics.

Chapter 4
Data Mapping - Essence

As disks have become larger, cheaper, and more plentiful, resource discovery has become a problem in gen-
eral purpose file systems, such as the Sun Network File System (NFS). Yet, the current set of Internet discovery
tools do not apply well to such an environment, for three reasons.

First, information in general file systems is typically very irregularly organized. Most Internet data is explic-
itly intended for sharing, and hence people often put some effort into organizing the information into a coherent
whole (e.g., placing an entire file system into a meaningful hierarchical directory in an anonymous FTP site). In
contrast, most general file system data are organized according to the individual whims of many people. Therefore,
resource discovery systems that depend heavily on users to organize and browse through data (such as Prospero,
WorldWideWeb [Berners-Lee et al. 1992], or Internet Gopher) do not work well for general purpose file system
data. Instead, automated search procedures are needed. This typically means generating an index of the available
information [Salton & McGill 1983].

Second, Internet resource discovery tools typically focus on information known to be of reasonably broad
interest. For example, anonymous FTP archives typically contain popular documents and software packages, which
exhibit heavy sharing [Schwartz et al. 1992a]. In contrast, general-purpose file systems typically contain mostly
user-specific data that exhibit relatively little sharing [Muntz & Honeyman 1992, Ousterhout et al. 1985]. Current
Internet resource discovery tools have difficulties with such low sharing-value data. For example, WAIS’s full-text
indexing mechanism may locate many uninteresting files if applied to an entire general file system, since keywords
will be generated from files that are of interest to few users.

Third, general file systems contain a range of different resource representations, from unstructured text to
structured data. Systems that use a generic indexing procedure (such as archie or WAIS) produce larger or less use-
ful indexes under these circumstances. For example, WAIS is most effective when used on ASCII text files. Using
WAIS to index executables and other files found in general file systems is not very effective. The indexes tend to do
a poor job of locating information, and tend to be quite large.

In this chapter, we present a system for supporting resource discovery in general purpose file systems. The
system addresses the above problems by generating indexes based on an understanding of the semantics of the files
it indexes. This technique supports compact yet representative summaries for general collections of data. In addi-
tion to supporting file indexes, summaries can be browsed to help decide whether to retrieve a file across a slow net-
work. This search and browse combination forms an effective resource discovery paradigm, as discussed in Section
1.1.2. We call our system Essence because of its ability to summarize large amounts of data with relatively small
indexes [Hardy & Schwartz 1993a].

In particular, Essence focuses on an data mapping approach called semantic indexing. This approach auto-
mates heterogeneous resource interpretation and classification. In Essence, semantic indexing has two major bene-
fits. First, it automates the identification and interpretation of diverse, heterogeneous file resource representations, or
file types. In this sense, we show that Essence demonstrates an effective, scalable data mapping approach that uses
automated resource interpretation techniques. Second, through effective resource interpretation techniques that pre-
serve semantic information, Essence can exploit file semantics to produce compact, yet representative indexes. In
this sense, we show that Essence demonstrates an effective, scalable data mapping approach that uses automated
resource classification techniques which preserve important semantic information about file resources.

We begin with a discussion of indexing techniques. We discuss how Essence accomplishes semantic index-
ing. We also discuss the details of Essence’s data mapping approach, and how Essence uses this approach as a basis

Chapter 4 is an edited and expanded version of [Hardy & Schwartz 1993a].

-15-

-16 -

for resource discovery. Finally, we discuss the details of our prototype, and present some measurements that com-
pare Essence with WAIS and the MIT Semantic File System (SES) [Gifford et al. 1991].

axt vs, Filename vs, Semantic Indexing

WAIS supports fine-grained information access by building full-text indexes, in which every keyword from a
textual document appears in the index. As indicated above, this approach is primarily useful for purely textual,
widely popular data. Moreover, WAIS has large space requirements, so WAIS distributes the indexes among the
hosts that provide data.

A less space intensive indexing approach is used by archie, in which anonymous FTP files are summarized by
name only (i.e., archie indexes contain no information derived from file content). This approach produces indexes
that are roughly one thousandth the size of the data that they represent. In turn, this compact representation allows a
great deal of index information to be collected onto a single machine, supporting far-reaching searches (currently
reaching over 1000 archive sites). Yet, because archie indexes contain only filenames, they support only name-
based searches. Searches based on more conceptual resource descriptions are not possible, except when the file-
names happen to reflect some of these conceptual descriptions.

The range of structure and the low overall sharing value in general purpose file systems, coupled with the need
for conceptual descriptions and the need for compact indexes, all suggest the use of a different means of indexing
data. That means is semantic indexing.

Semantic indexing involves analyzing the structure of file data in different ways, depending on file type. For
example, UNIX manual page files are broken into structured sections from which it is possible to extract information
about a program’s name and description, a usage synopsis, related programs or files, and author information. By
generating information for different types of files in different manners, semantic indexing can generate representa-
tive keywords without including every word from a file. In addition to saving space, this technique can avoid
including keywords that might degrade the quality of an index. For example, it makes little sense to include C lan-
guage constructs like “struct” when indexing C source code, since these keywords do not distinguish the conceptual
content of different C programs.

Semantic indexing involves two stages. The classification stage identifies promising files to index within a
file system,® as well as type information for each identified file. The summarizing stage applies an appropriate
indexing procedure (called a summarizer, to emphasize the space reduction characteristic) to each identified file,
based on the type information uncovered in the classification stage. The combination of these stages produces the
foundation for an effective data mapping approach that automates diverse resource interpretation and classification.

Since summarizers understand file types, they can extract keyword information for both textual and binary
files. For example, many binary executables have related textual documents describing their usage, from which key-
word information can be extracted.

Since keyword information is extracted based on knowledge of where high-quality information might be
located, semantic indexing extracts fewer keywords than full-text indexing, and thus generates smaller indexes. Yet,
it retains the fine-grained, associative access capability of full-text indexes.

4.2. The Essence System

Essence provides an integrated system for classifying files, defining summarizer mechanisms, applying appro-
priate summarizers to each file, and traversing a portion of a file system to produce an index of its contents.

3 For example, this procedure might embody site-specific knowledge that certain parts of the file tree contain
uninteresting administrative information, and hence needn’t be indexed. Our current prototype does not select file
system subsets - it simply indexes whatever file trees are specified.

-17-

Essence determines file types by exploiting file naming conventions (such as common filename extensions
like “.c”’), and locating identifying data or common structures within files (such as UNIX “magic numbers”). Once
Essence determines a file’s type, it executes the appropriate summarizer to extract keywords from the file. Among
other types, Essence understands nested file structures, such as compressed, uuencoded “tar” files. It recursively
extracts fiies Aidden within a nesied fiie, and indexes ihern.

As a design goal, we wanted to allow summarizers to be constructed quickly and easily, so that Essence could
be made to understand many different file types, and so individual sites could customize their summarizers. To
accomplish this goal, we allow summarizers to be as simple as a one line script (perhaps containing a “‘grep” com-
mand).

Essence indexes can allow users to locate needed data. Moreover, Essence produces summaries of file data,
which allow quick perusal of potentially large files.

Essence has many practical resource discovery applications:

« Systems administrators and users can use Essence to locate and learn about resources contained within their file
systems without understanding the details of their local environment. This is particularly helpful in environ-
ments where mount points are “hidden” by the amd auto-mount system.

« Public archive administrators can use Essence to index archive contents, providing compact yet representative
descriptions of files, including compressed archives. These indexes allow users to search for information more
effectively, and examine summaries about files before retrieving them.

= People who wish to index data and search it using WAIS can use Essence to index more file types than WAIS
itself currently supports, and to produce more space efficient indexes.

Once Essence generates an index for a portion of a file system, it exports its indexes via WAIS’s search and
retrieval interface. This allows our indexes to be used within the context of a well established, easy to use informa-
tion system.

4.3. Design Overview
Figure 4 shows how Essence is organized to accomplish semantic indexing. It operates as follows:

« Users supply Essence with the filenames from a select portion of a file system that they wish to index.

» The Feeder module iteratively passes each of these filenames to the Classification module, which determines the
file’s type.

« The Summarize module chooses an appropriate summarizer based on the file’s type. It runs this summarizer on
the file to extract keywords for the Summary Files.

The three modules, Core Filename, Nested File Processor, and Nested File Feeder, allow Essence to support
nested files.

« Essence saves the initially supplied filename as the Core Filename.

« If the Classification modules determines that the file has a nested file type (such as a compressed file), it passes
the file to the Nested File Processor.

» The Nested File Processor extracts the hidden files from the nested file structure and passes the extracted files to
the Nested File Feeder.

» The Nested File Feeder module performs the identical function as the Feeder but bypasses the Core Filename
module.

.18 -

Filenames

Feeder

Filename

Nested File
Feeder

Filename

Y
Filenames [Classification)

Core
Filename

File Type

Nested File i
Filename

Processor

Summarize

Filename
File Type

. Core Filename
Summarizer Output

Figure 4: Organization of the Essence System

4.4. Scalable Techniques
Semantic indexing provides the basis for a sophisticated, scalable data mapping approach that employs tech-

niques for both automated file resource interpretation and classification. In the following subsections, we examine
the three main components of our approach: determining file types, nested file structures, and summarizers.

4.4.1. Determining File Types

Essence determines file types using a combination of exploiting file naming conventions and heuristically
locating identifying data and common structures within files.

Unlike other systems such as WAIS, the user is not responsible for informing the system how to interpret file
types, rather Essence automates the interpretation of diverse file types. Unlike other systems such as archie that use
a generic data mapping approach that looses semantic information, Essence preserves semantic information through
rigorous support of diverse file types. In fact, Essence later exploits the preserved semantic information to generate
compact, yet representative indexes.

-19-

4.4.1.1. Exploiting File Naming Conventions

Observing even simple conventions in file naming can determine file types with fairly high certainty. The
most basic file naming convention is filename extensions. For example, filenames with a “.c” extension are typi-
cally C source code files; filenames with a “.ps” extension are typically PostScript image files; and filenames with a
“txt” extension are typically ASCII text files. File naming conventions also include using specific words within a
filename. For example, information about an entire source distribution or application is often found in files whose
name contains the string “README”. Files named “Makefile” are typically associated with the UNIX make com-
mand [USENIX 1986].

In Essence, file naming conventions are represented as regular expressions. For example, *ps or
[Mm]akefile represent the PostScript and Makefile file types, respectively. Expressing file naming conventions as
regular expressions allows sites to easily integrate their local semantics into Essence.

4.4.1.2. Locating Identifying Data & Common Structures

In addition to using naming conventions, Essence examines file contents to try to determine file types. In par-
ticular, many files have an identifying magic number associated with them. For example, NeXT binary executables
start with the hexadecimal number Oxfeedface, and Sun Pixrect images start with the hexadecimal number
0x59a66a95. Furthermore, common structures within a file may determine its file type. For example, PostScript
images start with the string “%!”; UNIX shell programs start with the string “#!”*; C source code files typically have
comments denoted with the “/* */” delimiters; electronic mail files have distinctive header tags, such as From:,
Received by:, and Sender:; and USENET news articles also have distinctive header tags, such as Newsgroups:, Dis-
tribution:, and Path..

As with exploiting file naming conventions, locating identifying data and common structures within a file is a
rule-based technique expressed with regular expressions. Sites can easily integrate their local semantics into the file
type identification process by modifying these rules.

4.4.2. Nested File Structure

Nested files contain hidden files. Examples include compressed files, tar files, uuencoded files, ZIP files, and
shell archive files. Furthermore, files can be arbitrarily nested within these file types. For example, compressed tar
files or uuencoded compressed files are common. Understanding nested file structures is useful in file system envi-
ronments (such as anonymous FTP file systems) in which the vast majority of files have nested structure.

When Essence determines that a file has nested structure, it extracts the hidden files, determines the resulting
files’ types, and summarizes them. This process continues recursively, until no more nesting is found. Extracting
hidden files from a nested file is accomplished by running a corresponding extraction program, such as the UNIX
uncompress command for compressed files, the UNIX tar command with the “x” flag for tar files, or the UNIX uude-
code command for uuencoded files. Furthermore, defining the interpretation of new nested file structures is a simple
operation in Essence.

Through automated interpretation of nested file structures and file types, Essence scales well as the diversity
of resource representations increases in the Internet.

4.4.3. Summarizers

Figure 5 shows how a summarizer works. The summarizer interprets the file data and exploits its semantics to
extract a few keywords that are representative of the file’s contents. Summarizers increase the scalability of
Essence’s data mapping approach as it confines resource interpretation into a small module that is easily written,
intergrated, and maintained.

Summarizers are simple stand-alone UNIX programs that are easy to write and integrate into the system. This
design provides a powerful paradigm for exploiting file semantics. Each summarizer is associated with a specific
file type, and understands the file’s format well enough to extract summary information from the file. For example,
the summarizer for a UNIX troff-based manual page understands the troff syntax and the conventions used to

-20-

describe UNIX programs. It uses this understanding to extract summary information, such as the title of a program,
related programs and files, the author(s) of the program, and a brief description of the program. Similar techniques
can be used on many other moderately structured file types, such as source code. However, some file types do not
easily lend themselves to automated interpretation. For example, ASCII text files typically contain unstructured data
that is difficult to exploit effectively. Similarly, the UNIX ps2tx program can extract ASCIT text from PostScript

images, but the resulting information is unstructured text.

File : .
Summarizer File Summary
File Data, Exploit Representative
Usually Some Semantics Keywords
Structure

Figure 5: How a Summarizer Works

4.5. Prototype

In this section, we describe how our prototype determines file types, and exploits file semantics. We also dis-
cuss how we integrated Essence with WAIS.

4.5.1. Determining File Types

As described earlier, file types are determined by understanding naming conventions and locating identifying
data and common structures within a file. In the prototype, naming conventions are expressed with case-insensitive
regular expressions. The following example shows some entries from the configuration file that holds the expres-
sions. In this file, the first field is the file type, and the second field is a case-insensitive regular expression for the
corresponding file naming convention.

Compressed *\LZ

ManPage L%\ . [12345678]
PostScript .*\. (psleps)
README .*readme.*
SCCs s\..%

The prototype also uses the UNIX file command to determine file types, based on identifying data and common
structures within a file [USENIX 1986]. file uses the /etc/magic configuration file to specify recognizable file types.
The following list shows some sample entries from /etc/magic, where the first field is the data’s offset into the file,
the second field is the type of this data, the third field is the identifying data or common structure itself, and the last
field is the corresponding file type.

string /¥ C program text
string \037\235 Compressed data
long Oxfeedface NeXT binary program

string #!/kin/perl Perl program
string %! PostScript image

O o o o O

-21-

Creating a suitable magic file is not trivial, because the identifying data or common structures must be distinc-
tive. For example, the “‘/*” delimiter for C programming language comments is not sufficiently distinctive, and will
likely appear in a variety of types of files. A lack of distinctive identifying data or common structures is common
for binary formats, which usually depend on a single magic number. Although distinctive magic entries are difficult

to formulate, carcful sclection of a magic file allows file to accurately identify file types. In Esgence, building the

magic file was accomplished through experimentation with various entries.

4.5.2. Summarizers

In the prototype, summarizers are simple UNIX programs that extract keyword information through under-
standing the syntax and semantics of a specific file type. Currently, the prototype supports summarizers for twenty-
one file types and four nested file types. Table 2 describes these file types, their frequencies of occurrence by num-
ber of files, average file size, and which systems support them in two file system environments: an NFS file system
that contains commonly shared data and programs in our local environment, and a fairly popular anonymous FTP
file system (ftp.cs.colorado.edu). The most frequent file types in the NFS file system were Text, CHeader, and Man-
Page. In the anonymous FTP file system the most frequent file types were CHeader, C, and Text.

Essence supports more of the file types found in common NFS and anonymous FTP file systems than either
WALIS or SFS, as shown in Table 2. Although WAIS and SFS support most of the frequently occurring file types
(such as Text, C, and CHeader), Essence is the only system that supports the file types that contribute most to overall
data size (such as Binary, Tar, and Archive). Occurrence frequencies will be used in our measurements, later in this
chapter. Note that Table 2 does not list file types supported by WAIS or SFS that are not supported by Essence,
since those types are all for fairly specialized formats that mostly do not occur in our measured file systems (and
hence for which we had no measurements). Examples include MedLine and New York Times formats. There are 12
such formats understood by WAIS, and 4 understood by SFS. Also, as indicated in the table, Essence and SFS index
“Unknown” file types. They do so by including the standard UNIX attributes in the index, such as owner, directory,
group, and filename.

Table 3 briefly describes the techniques used by the Essence summarizers for the supported file types, except
for nested types whose techniques were previously discussed. Many other potential summarizers are possible. For
example, writing summarizers for other types of source code (such as Lisp or Pascal) would be an easy extension of
the prototype’s source code summarizers. Writing summarizers for audio or image formats, however, would be

difficult.*

The following sections describe some of the techniques used in various summarizers, representative of
Essence’s supported file types.

4.5.2.1. Directory

Obtaining a listing of the files in a directory is an obvious method for a directory summarizer. However,
Essence strives to obtain a higher-level understanding of a directory’s contents. Therefore, the prototype attempts to
extract copyright information from files, in addition to the directory listing. Copyright information typically con-
tains project, application, or author names. Keyword information from README files is also included in the direc-
tory summarizer, since these files usually contain high-quality information about the directory’s contents.

* One possibility would be to sample a bitmap file down to an icon. While this does not easily support index-
ing, it could be used to support quick browsing before retrieving an entire image across a slow network.

-22.

4.5.2.2, Binary

An obvious method for a binary summarizer is to extract ASCII strings from the binary file, using the UNIX
strings command. However, Essence filters these extracted ASCII strings using heuristics that only keep strings that
convey the binary’s purpose, such as usage, version, or copyright information. Essence also uses cross references to
obtain high-quality summary information from binary executabies. For exampie, ihe binary summarizer 10oks for
associated manual pages for the given binary executable, and generates keywords using the manual page summa-
rizer on them.

Table 2: Supported File Types in Common File System Environments

File File Type File Types Frequency by Average
Type Description Supported By Number of Files File Size
Essence | WAIS | SFS NFS AFTP NFS AFTP
Archive Library archives X X 0.36 0.12 || 626.31 47.52
Binary Binary Executable X X 5.06 0.02 | 145.74 112.00
C C source code X X X 1.27 19.33 3.87 28.36
CHeader C header files X X b 14.73 2242 4.29 2.40
Command UNIX shell scripts X X 1.78 3.06 2.75 1.55
Compressed || Compressed file X 0.69 11.81 114.98 73.29
Directory Directory X X 4.87 5.05 0.81 0.50
Dvi Device-indep. TeX X X 0.03 0.87 33.32 59.18
Mail Electronic mail X X X 0.02 0.17 1.79 35.30
Makefile UNIX makefiles X X X 0.26 3.87 0.85 3.04
ManPage UNIX manual pages X X X 13.78 0.70 6.76 29592
News USENET news articles X X X 0.01 0.04 21.96 1.75
Object Relocatable object file X X 0.00 1.12 0.00 28.11
Patch File difference listing X X 0.02 0.00 1.88 0.00
Perl Perl script X X 0.00 0.02 0.00 3.62
PostScript PostScript images X X 1.42 331 64.64 194.45
RCS RCS version ctrl files X X 0.00 141 0.00 841
README High-quality info. X X X 0.38 1.32 1.95 2.88
SCCS SCCS version ctrl files X X 0.00 0.00 0.00 0.00
ShellArchive || Bourne shell archive X 0.00 0.10 0.00 486.75
Tar Tar archive X 0.00 0.81 0.00 | 1734.21
Tex TeX source docs X X X 0.67 023 17.79 34.17
Text Unstructured text X X X 21.64 | 19.73 7.87 31.11
Troff troff source docs X X 0.03 0.25 9.21 9.08
Unknown Unknown file type X X 32.96 4.26 44,02 16.10

.23

Table 3: Essence Summarizer Techniques

File Type Summarizer Description

Archive Extract symbol table

Binary Extract meaningful strings, and manual page summary

C Extract procedure names, #include’d filenames, and comments

CHeader Extract procedure names, included filenames, and comments
Command || Extract comments
Directory || Extract directory listings, copyright information, and

README files
Dvi Convert to ASCII text
Mail Extract select header fields

Makefile Extract comments
ManPage Extract author, title, etc., based on “‘-man’ macros

News Extract select header fields

Object Extract symbol table

Patch Extract filenames

Perl Extract procedure names and comments

PostScript || Convert to ASCII text

RCS Extract RCS-supplied summary

README || Use entire file

SCCS Extract SCCS-supplied summary

Tex Convert to ASCII text

Text Extract first 100 lines

Troff Extract author, title, etc., based on “-man”, *“-ms”, “-me”
macro packages, or extract section headers and topic sen-
tences.

4.5.2.3. Formatted Text

Although formatted text (such as TeX, troff, or WordPerfect) has structured syntax, effectively summarizing
these files is difficult unless semantic information is also available [Knuth 1984, Lamport 1986, USENIX 1986].
For example, plain troff files or troff files using the “-me” macros are difficult to exploit semantically, since their
syntax is associated with formatting commands (such as font size or line spacing), rather than more conceptual com-
mands (such commands to indicate an author’s name or paper title). troff files using the “-ms” or “-man” macros
are much easier to summarize, since they contain conceptual commands (such as delimiting an abstract, author, and
title).

Essence supports a sophisticated summarizer for troff and the “-me”, “-ms”, and *“-man” troff macros. The
TeX summarizer only extracts ASCII text from TeX files using detex, but exploiting TeX semantics would be a triv-
ial extension of the methods used in our troff summarizer.

4.5.2.4. Simple Text

Simple text is difficult to summarize because it is unstructured. Essence assumes that the highest quality
information in most unstructured text files is near the beginning of the file, as is common with paper abstracts or
tables of contents. Therefore, the text file summarizer extracts keywords from the first one hundred lines of the text
file. Natural language processing techniques might provide a better basis for a text file summarizer, although these
techniques are usually domain-specific [Jacobs & Rau 1990].

-24-

README files, however, typically contain crucial, concise information about a distribution or application.
Using a full-text index of README files provides high-quality keywords without occupying too much space.
Therefore, the README summarizer uses the entire file to generate keywords.

The Dvi, PostScript, and Tex summarizers extract keywords from all of the ASCII text extracted from these
files. Essence assumes that these file types contain generally useful information, and hence generates full text
indexes for them.

4.5.2.5. Source and Object Code

Both source and object code are highly structured, and contain casily exploited semantic information. The C
summarizer extracts procedure names, header filenames, and comments from a C source code file. Similarly, the
object summarizer extracts the symbol table from an object file.

4.5.3. WAIS Interface

Essence exports its indexes through WAIS’s search and retrieval interface, allowing users to use tools such as
waissearch and the X Windows-based graphical user interface xwais. In order to generate WAIS-compatible
indexes, Essence uses WAIS’s indexing software to index the Essence summary files. This mechanism generates
full-text WAIS indexes from the Essence summary files. ,

We modified WAIS’s indexing mechanism to understand the format of the Essence summary files, so that it
generates meaningful WAIS headlines. A headline is a short description of a single file, usually a filename. With
Essence, headlines represent a file’s core filename, its actual filename, and its file type.

To support additional file types, WAIS must be recompiled with new procedures that understand these file
types. With Essence, one need only write a new summarizer, add its name to a configuration file, and add new
heuristics for identifying the file type; no recompilation is necessary. In this sense, Essence modularizes the typed-
file indexing extensions that WAIS can use, because it removes the keyword extraction process from WAIS and
places it instead in Essence. Essence is better suited to incorporating new file types, and can be quickly adapted to
become a comprehensive indexing system.

Figure 6 shows an example search of an index generated by Essence of the fip.cs.colorado.edu anonymous
FTP file system. It shows an ordered list of the ten files that best match the keyword Netfind. The headlines have up
o three fields representing the matching file: the core filename, the filename (if different from the core filename),
and the file type.

Consider the effectiveness of the example search in Figure 6. The best match is a PostScript paper that dis-
cusses a number of techniques for distributed information systems, with particular emphasis on techniques demon-
strated by Netfind; the second match is the same file, but found in the compressed tar distribution ALL.PS.tar.Z. The
third match is the C source code for the interactive user interface to Netfind. The fourth match is the README file
found in the Netfind distribution directory; the fifth match is the same file, but found in the compressed tar distribu-
tion netfind.3.10.tar.Z. The sixth match is the UNIX manual page for Netfind. The remaining matches are PostScript
papers in which Netfind is discussed.

In WAIS, a user retrieves files by selecting a matching headline. With Essence, if the headline represents a file
hidden within a nested file (such as the first headline in Figure 6), the summary file is retrieved, instead of retrieving
the hidden file itself. If the headline represents a plain file (such as the fourth headline in Figure 6), the file is
retrieved. This functionality requires allocating storage for both the required summary files and the index. How-
ever, it allows users to browse through remote file systems by retrieving and viewing small summary files without
having to retrieve complete files. This is useful when trying to decide whether to transfer large files across a slow
network.

-25.

X WAIS Question: New Question

Tell me about:

ﬁetﬁﬁi Search
In Sources: Similar to:

Essence.src

Add Source Iﬁelete Source l lAdﬂ Document I [Delete Documemi

[1000 102.5K fesAtpitechreports/schwartz/PostSeript/Techniques. Wide.Area.ps.Z Techniques. Wide.Area.ps PostScri}J
1000 102.5K /esfftp/techreports/schwartz/PostSeript/ALL.PS.tar.Z PostSeript/Technigues. Wide.Area.ps PostSeript
715 16.9K /es/Atp/distribs/metfind/metfind3.10.tar.Z ServerShell/nsh.e C

699 79K /es/ftpddistribs/metfind/README README

699 7.9K /es/ftp/distribs/netfind/metfind3.10.tar.Z README README

| Abort 635 4.3K /es/tpidistribs/netfind/metfind3.10.tar.Z Doc/netfind.1 ManPage
603 59.0K /es/ftp/techreports/schwartz/PostSeript/Proj. Overview.ps.Z Proj.Overview.ps PostSeript

603 70.9K /es/ftpechreports/schwartz/PostSeript/RD.Comparison.ps.Z RD.Comparison.ps PostSeript
603 59.0K /es/tp/techreports/schwartz/PostScript/ALL.PS tar.Z PostSeript/Proj. Overview.ps PostSeript

603 70.9K /cs/ftpitechreports/schwartz/PostScript/ALL.PS tar.Z PostSeript/RD.Comparison.ps PostSeript
Status: {Found 178 items,

Figure 6: WAIS Search Using Essence-based Index

4.5.4. Performance

In this section, we present measurements of indexing speed and space efficiency, for Essence, WAIS, and SFS.
We also discuss the usefulness and overhead of indexing nested files.

Before presenting measurements of the various systems, we note that it is difficult to interpret time and space
efficiency measurements of the systems being compared, for two reasons.

First, indexing speed and compression are highly dependent on indexing techniques. For example, an indexer
that skips most of the data (such as our Text summarizer) will achieve much higher indexing speeds and compres-
sion factors than one that uses all of these data (such as the Text indexers used by SFS and WAIS). In this case, the
salient issue becomes recall/precision effectiveness of the generated indices (which is difficult to quantify). For
example, a small, fast index would not be a reasonable tradeoff if one could not use this index to locate desired data.

Second, aggregate measurements (as shown in Table 5) are affected by the distribution of different file types
in the sample file systems. Ideally, we would have measured each indexing system against the same file system
data. We did this for WAIS and Essence, but the SFS code was not available at the time we made these measure-
ments. Instead, we attempted to interpret the measurements given in [Gifford et al. 1991]. Notwithstanding these
difficulties in interpreting the measurements, we feel it is worthwhile to present quantitative comparisons of these
systems.

Table 4 presents the space and time measurements for Essence and WAIS, based on file type. (We do not
show measurements for nested file types here. Those measurements are discussed in Table 7). As indicated in Table
2 and with a “~” in Table 4, WAIS and SFS cannot index all of the file types that Essence can. Table 4 shows that
because there is a high amount of overhead associated with interpreting the semantics of a file type, Essence indexes
slower than WAIS for some file types. Essence indexing is faster than WALIS for file types that have a low amount of
semantic interpretation overhead.

Table 5 presents weighted averages of the space and time measurements in Table 4, based on the file type fre-
quencies and average file sizes (as measured in Table 2). The weighted averages were computed using the formula:

Y.(f:a:)v;, where f; is the frequency associated with file type i, a; is the average file size associated with file type i,

i=0

226 -

v; is the indexing rate or the compression factor value from Table 4 associated with file type #, and » is the number
of file types supported by the system. f;a; is used to normalize the measurements, to reflect only the system’s sup-
ported file types. In particular, only non-nested file types are included in the aggregate measurements for WAIS and
SFS (since those systems do not support nested files), while all types (including nested files) are included in the
Essence measurements. We discuss the “‘unraveling’ costs of deaiing with nested fiie siruciures in Tabie 7.

Table 4: Time and Space Measurements for WAIS and Essence

Indexing Rate Compression Factor Semantic
File Type (KB/min) vs. Index Exploitation
Essence WAIS Essence | WAIS Overhead
Archive 3289.18 - 10.89 - : low
Binary 563.40 - 21.15 - high
C 357.84 593.15 2.46 145 high
CHeader 164.87 342.93 1.33 0.65 high
Command 168.20 277.30 1.23 043 high
Dvi 278.71 | 2160.00 0.79 1.76 high
Mail 3718.12 | 1071.89 9.44 0.74 low
Makefile 421.05 648.65 2.33 0.86 high
ManPage 165.67 661.59 3.34 1.18 high
News 1913.29 329.24 20.82 0.63 low
Object 2588.75 - 15.93 - low
Patch 7218.00 993.30 80.20 2.00 low
Perl 282.50 713.68 2.05 0.88 high
PostScript || 1151.19 765.60 4.56 1.67 low
RCS 1293.16 614.25 591 1.27 low
README 390.00 400.83 0.68 0.65 high
SCCS 315.79 | 1500.00 3.12 3.52 high
Tex 598.93 385.52 2.09 092 low
Text 4699.59 | 1346.67 8.13 1.37 low
Troff 703.01 | 2036.92 7.04 1.97 high

Table 5: Weighted Time and Space Averages for WAIS and Essence

Indexing Rate Compression Factor
File System (KB/min) vs. Index
Essence | WAIS SFS Essence | WAIS | SFS
NFS 1489.58 | 891.40 | 712.00 14.40 1.27 6.82

Anonymous FTP || 1826.17 | 897.01 | 712.00 493 1.44 6.82
Average 1657.88 | 894.21 | 712.00 9.67 1.35 6.82

-27.

The Essence and WAIS measurements were performed on a Sun Microsystems 4/280 server running SunOS
- 4.1.1, with a local SMD disk. The SFS measurements were performed on a Microvax-3 running UNIX version
4.3BSD [Gifford et al. 1991]. This machine is approximately one-third as fast as the Sun 4/280.

Table 5 shows that Essence can index data faster than WAIS. Taking into account the slower machine on
which SFS was measured, SFS appears to index data somewhat faster than Essence does.

Essence obtains about a 10:1 index compression factor on the file types that it supports, compared to WAIS
(1:1), SES (7:1), and archie (765:1) [Emtage & Deutsch 1992]. These measurements are not perfect, because
detailed SFS measurements were not available.

Table 6 shows the percentage of data in the measured file systems that Essence, WAIS, and SFS were success-
fully able to interpret and index. The NFS file system contained many custom file formats that the indexing systems
were unable to interpret. However, the anonymous FTP file system contained many more common file formats.
Even though Essence only supports a relatively small number of common file types (21), it can index 75% of the
data found in an average file system — far greater than WAIS (33%) or SFS (18%).

Table 6: Percentage of Interpretable Data

Essence | WAIS SFS

Anonymous FTP 98.51 48.47 | 27.56
NFS 50.70 17.88 8.11

Average 74.61 33.18 | 17.84

We found that seventy-eight percent of the files in our anonymous FTP had nested structure. These measure-
ments indicate that supporting nested file structures is essential for such file systems. In contrast, only one percent
of the files in the NFS file system had nested structure. In the future nested file structures may become less com-
mon, as they mostly represent inadequacies of current file systems and remote access protocols. For example, tar
files are popular in FTP file systems because they make it easier to retrieve an entire directory tree, and FTP does not
provide a recursive retrieval mechanism.

Table 7 shows how much overhead the prototype incurs when indexing nested files in the measured anony-
mous FTP file system. In this table, the Original Data row concerns the data which reside in the anonymous FTP
file system. The Processed Data row concerns the data that Essence processes while indexing the Original Data.
These data include all of the original files and each file within a nested file structure. For example, given the file
foo.tar.Z from our previous example, foo.tar.Z, foo.tar, foo.c, foo.h, Makefile, and README are all included in the
Processed Data. The Summarized Data row concerns the data on which summarizers are run. For example, foo.c,
foo.h, Makefile, and README are all included in the Summarized Data. The Summary Output row concerns the
resulting summary files. The resulting index of the summary files consumed 12.94 megabytes.

Note that this compression ratio (60.22/12.94) understates the actual compression, because the indexed data
actually consumed 132.36 MB. In particular, indexing systems (like WAIS) that do not support nested structure
would have to leave the data uncompressed. Hence, we actually achieve a twofold space reduction. WAIS would
need to keep the uncompressed data around, and then would generate an index whose size was comparable to the
uncompressed data. Essence generates a smaller index, and can function with compressed data. Putting the num-
bers together, WAIS would require approximately 265 MB of space for the uncompressed data plus index, while
Essence requires only 73 MB total.

-28 -

Table 7: Nested File Structure Overhead

Total Total

Number Size
of Files | (in MB)
Original Data 1213 60.22
Processed Data 6409 262.03
Summarized Data 5334 132.36
Summary Output 5334 15.87

4.5.5. Analysis of Keyword Quality

Qualitative analysis of information retrieval systems is difficult. Recall/precision measurements are difficult
to obtain, since they rely on hand-chosen reference sets [Salton & McGill 1983], and hence do not scale well to
measuring large information collections. More effective measurements might be obtained by evaluating the effec-
tiveness of a system from experience with an active user community. We have made the Essence prototype is publi-
cally available to allow users to make their own subjective judgements.

4.5.6. Prototype Availability

The Essence prototype, including its source code and WAIS modifications, is publically available by anony-
mous FTP from fip.cs.colorado.edu in /pub/csi/distribs/essence. The prototype is written in the C and Perl program-
ming languages [Kernighan & Ritchie 1988, Wall & Schwartz 1991], and uses WAIS version 8-b5 [WAIS 1993].

4.5.7. Anonymous FTP Indexing

Currently, an Essence-generated index for file resources available from the anonymous FTP site at
ftp.cs.colorado.edu is available through WAIS using the aftp-cs-colorado-edu.src WAIS source. Hundreds of users
distributed throughout the Internet have used this WAIS interface to our anonymous FIP site. We would like, how-
ever, to make more anonymous FTP sites available through WAIS, using Essence-based indexes. Using Essence to
index public archives allows remote users to search information based on conceptual descriptions and to view sum-
maries before retrieving files. This would help decrease network traffic caused by retrieving unwanted files.

4.6. Conclusions

Automated file resource identification and simple, modular summarizers for automated file resource interpre-
tation form the basis of an effective, scalable data mapping approach. The Essence prototype demonstrates that
these scalable techniques are practical and efficient for supporting resource discovery in general purpose file sys-
tems. Furthermore, Essence’s integration with the WAIS interface, and its use as an alternative interface to anony-
mous FTP sites demonstrate that Essence can effectively support Internet resource discovery through compact, yet
representative indexes.

Chapter 5
Related Work

5.1. Identifying and Locating File Resources

Semantic indexing depends on successfully determining file types. Furthermore, Essence uses semantic
indexing to locate file resources. Many systems can either determine file types or locate file resources, but Essence
integrates both aspects into a single system.

» The Modules system is a sophisticated administrative approach to locating file resources associated with specific
applications [Furlani 1991]. Applications are associated with a particular module, which can be easily incorpo-
rated or removed from a user’s environment. Both the location and identification of the applications and their file
resources are explicitly supplied by an administrator, and are hidden from the user.

» The NeXT file system browser determines common file types by exploiting filename extensions [NeXT 1991].
It then displays an icon representative of the file’s type. Users can launch a specific application by supplying
only a filename, as the application that is launched is determined by the file’s type. Locating file resources is
accomplished by browsing a UNIX file system hierarchy.

» The UNIX file command attempts to determine various file types based on file contents, but provides no mecha-
nism for locating files [USENIX 1986].

» The UNIX find command locates files using an exhaustive search of a portion of a file system. It allows predicates
to be specified concerning which files to locate. Among other things, these predicates can specify location based
on the file types understood by the UNIX file system (such as ordinary file, directory, or symbolic link) [USENIX
1986, Leffler et al. 1989]. Higher-level types (such as image, script, or C source code) cannot be specified.

» Many programs use file naming conventions to infer file types. C compilers, for example, assume that a filename
ending in “.c” is a C source file, while a file ending in “.0” is a relocatable object file. Similarly, make has vari-
ous implicit rules based on file naming conventions.

5.2. Exploiting File Semantics

Semantic indexing also depends on the ability to extract good keyword information from files based on their
file types. A number of UNIX commands can extract information with varying degrees of quality from files based on
their file types [USENIX 1986].

* ctags extracts procedure, macro, and variable names from C source and header files. Some versions of ctags
understand other programming languages, such as Lisp, Pascal, and C++.

« strings extracts embedded ASCII text strings from binary files.

o deroff, detex, and ps2txt extract ASCII text from troff, TeX, and PostScript files, respectively.

» what extracts embedded Source Code Control System (SCCS) information from files.

Essence provides a single cohesive system that integrates determining file types, locating file resources, and
exploiting file semantics to extract good keyword information from files.

5.3. Semantic File Indexing

The MIT Semantic File System (SFS) uses semantic file indexing to provide a more effective storage abstrac-
tion than traditional hierarchal file systems [Gifford et al. 1991]. SFS exploits filename extensions to determine file
types, and then runs transducers on files to extract keywords for building an index. SFS provides a virtual directory
interface to search the resulting index and to access files. Virtual directory names are interpreted as queries against
the index, and the contents of virtual directories are the results from these queries. Therefore, users perceive a
search-based interface to explore file systems, rather than the more traditional hierarchical file system interface.

-29 -

-30 -

Although Essence and SFS use similar semantic indexing techniques, they differ in orientation, summarizer
breadth, and space efficiency.

Orientation

SFS emphasizes semantic indexing as a storage abstraction. In contrast, Essence emphasizes semantic index-
ing as a basis for resource discovery. Concretely, while both systems support flexible associative access to file
data, they export the data differently. Essence exports the data through a search and retrieval interface, while
SES exports the data through a file system interface. The advantage of the SES approach is that it reuses an
existing and familiar storage abstraction. The disadvantage is that doing so leads to undefined semantics. For
example, if a user tries to copy data into a virtual directory (created as a result of an SES query), the semantics
are undefined.

Summarizer Breadth
Essence summarizers are autonomous UNIX programs, which are easy to implement, integrate, and maintain.
The Essence prototype implements summarizers for many more file types than SFS does. Essence can index a
wide variety of textual and binary data common in network file systems.

Space Efficiency
Our prototype provides better index compression than the SFS prototype.

5.4. Hypertext

Hypertext systems provide a less labor-intensive mechanism for users to browse information [Conklin 1987].
These systems use links to associate information within the system. Information is partitioned into nodes, usually a
single paragraph or document. Related nodes are linked together through keyword-based links. Users then can
select one of these keywords which triggers a link to access the related nodes automatically.

Some systems transparently link heterogeneous information resources through a hypertext interface [Noll &
Scacchi 1991]. These systems employ gateways to access information from autonomous repositories. These gate-
ways translate commands from the system into commands for the local repository. Similarly, Dynamic WAIS uses
gateways to access information from autonomous remote search systems. Dynamic WAIS’s gateways, however,
provide more than simple command translations; they also provide a conceptual mapping between the WAIS search
and retrieval paradigm and the paradigm for the remote search system.

For example, NCSA Mosaic is a hypertext-based, front-end user interface to many Internet information
resources [Andreessen 1993]. It supports gateways to documents and other data available through Internet Gopher,
WAIS, World Wide Web, FTP, Usenet, Archie, and many other sources. Figure 7 shows the NCSA Mosaic gateway
interface from which users can query archie. The interface explicitly informs the user of the query semantics for the
remote information system, archie. Since WAIS does not implement the Z39.50 facilities to handle differing query
semantics, Dynamic WAIS similarly forces the user to deal with query semantics.

The Dynamic WAIS information-level gateway between WAIS and archie, however, provides a more power-
ful gateway than NCSA Mosaic. In Dynamic WAIS, users can select to query among many archie servers. In
NCSA Mosaic, the system determines which archie server to query. This distinction is important, especially in the
case of archie whose availability is unreliable. Due to its popularity, archie servers field a large number of queries
each day. As a result, some archie servers take several minutes to reply. Dynamic WAIS users can quickly query
another server that is less loaded if the query is taking too long or if the server is down. NCSA Mosaic users have
no way of specifying another archie server to query.

Figure 8 shows how NCSA Mosaic returns archie results. NCSA Mosaic cross-references the hosts named
within an archie result, so that users can immediately retrieve more information. Dynamic WAIS does not add any
functionality to remote search system results; and therefore, browsing in Dynamic WAIS is more labor-intensive
than NCSA Mosaic which provides hypertext links for users.

-31-

File MNavigale Options Annolate Documents Manuals Help

Document Title: | Archie Gateway

Q)

Document URL: I httrn: //hoohoo . nesa . wiuc . edu: 1235 farchie/indax

Archie Gateway

Archie is asearch tool for locating documents and software packages at anonymous
FTF sites on the Internet,

Enter asingle-tertn search keyword.

Search Keyword: | traceroute,

‘Back|iForward|: Home|:Reload|: Open..| Save As..|iClone|iNew Window|: Close Window|

Figure 7: NCSA Mosaic: archie Query

-32-

File Navigate Options Annolate Documents Manuals Help

Document Title: | Archie Query On traceroute

0)

Document URL: § http: //hoohoo . nesa . uiuc. edu: 1235 /archie/indexs

Archie Query On traceroute

Host esel.cosv.sbg.ac.at

Location: Xpub{mirrorfSBEbsde.1ffilesystemfusrfobjiusr.sbin§

DIRECTORY drwxr-xr-—x 1024 Feb 6 13:05 traceroute |
Location: /pub/mirror/386bsd/0.1/filesystem/usr/sro/usr.sbin g
DIRECTORY drwxr—-xr—-x 1024 Feb 12 05:39 traceroute |}

Host csadfa.cs.adfa.oz.au

Location: /sro
DIRECTORY drwxr—xr-—x 2048 Oct 4 1991 tracercute

Host munnari.oz.au

Location: /bsd-sources/usr.sbin
DIRECTORY drwxr—xr-x 512 B8ep 26 00:00 traceroute

Host cs.dal.ca

Location: /pub/comp.archives
DIRECTORY drwixrwxrwx 512 Jan 28 14:14 traceroute

Host capella.estech.megill.ca

Search Keyword:

Back|i# ovev¢|iHome||Reload| Open..|i Save As..|iClone|iNew Window| Close Window|

Figure 8: NCSA Mosaic: archie Response

5.5. Semantic Data Modeling

Semantic data models incorporate semantic information about data into a database [Hull & King 1987]. These
models emphasize the content of data rather than its physical structure as in other models like the relational data
model. Using semantic data models, database management systems can exploit data semantics to provide richer
query languages that allow users to express their queries more conceptually. Essence exploits file semantics to pro-
vide users with a more expressive, content-based interface, but Essence only assumes the file semantics are present
and it does not provide any mechanism to add such semantics to its information base.

-33.

5.6. Heterogeneous, Distributed Databases

Heterogeneous, distributed databases integrate several heterogeneous databases [Ram 1991, Ozsu & Val-
duriez 1991, Litwin et al. 1990, Sheth & Larson 1990, Thomas et al. 1990]. To support heterogeneous, distributed
databases, systems must integrate the different databases.

One integration approach is to require that all of the supported databases conform to a unified, or a global
schema. The global schema must support the data models for each of the integrated databases. This integration,
however, is transparent to the user who can use the global schema to formulate queries. Through a global schema
approach, heterogeneity problems are resolved through standardizing on a unified schema, but only at the cost of
decreasing the autonomy of the supported databases. This approach differs from our work since it takes a homoge-
neous approach to heterogeneity — unifying schemas into a global schema which is a superset of all the supported
schemas. As previously discussed, Essence does not take a homogeneous approach since semantic information may
be lost while translating one file type into another. Since Essence depends on semantic information to product com-
pact, yet representative indexes, it takes a heterogeneous approach, exploiting file semantics through the use of sum-
marizers, to preserve semantic information better.

Another integration approach is to support heterogeneous, distributed, autonomous databases. This multi-
database, or federated, approach supports sharing without a global schema. It provides mechanisms, or languages,
by which a small portion of the schemas for a set of the supported databases can be integrated. The databases con-
tinue to operate independently, yet through these mechanisms, the system can correlate different schemas to allow
sharing. Typically, multidatabases are read-only databases, since supporting updates is difficult without a global
schema. In this respect, Dynamic WAIS is similar to the multidatabase approach. Dynamic WAIS supports read-
only access to information available through autonomous, information systems. However, since Dynamic WAIS
does not need to conform to database semantics, it does not need to support the same services that heterogeneous,
distributed database systems do like transaction processing and query optimization. Therefore, Dynamic WAIS can
employ simpler techniques which yield better scalability. In particular, distributed transaction processing has diffi-
culty scaling with growing wide-area networks [Ozsu & Valduriez 1991]. Dynamic WAIS does not have these scal-
ability problems since it does not adhere to database semantics, and therefore, does not implement any sophisticated
transaction processing.

Chapter 6
Future Directions

6.1. Scalable Content-Based Searching

Combining Essence’s semantic indexing techniques with more efficient index generation techniques, such as
the two-level hybrid indexing techniques in the Personal Information Retrieval System (PIRS) [Manber & Wu
1993], might prove to significantly increase Essence’s scalability. Figure 97 shows how PIRS combined with
Essence might further the scalability of Internet resource discovery approaches by supporting very compact, yet rep-
resentative indexes. With PIRS’s space efficiency, Essence might support flat content-based searches through 2,000
one-gigabyte disks, approximately all of the data available via anonymous FTP, with a top-level index that fits on a

single one-gigabyte disk.

UNIX find-codes
1000 archie Essence + PIRS?

IS
7]
s
o 100 «
k= PIRS
~
9 Essence
A SFS
w2
= 10
<
A

1 WAIS

File Names Selected Keys Full Text

* = text only indexing Index Contents

Figure 9: Indexing Space Efficiency vs. Representativeness

Even though a combination of Essence and PIRS might generate an extremely small index, gathering the enor-
mous amount of information to be indexed over a wide-area network may be infeasible. Research into distributing
the index computation might result in techniques that minimize the amount of information that is gathered over net-
work links. Once the index is computed, replicating the index to improve access by many users is also a research

problem.

¥ Reprinted with permission from [Bowman et al. 1993].

-34 -

-35-

6.2. General Techniques for Information-Level Gateways

Dynamic WAIS is our only implementation of information-level gateways. As a result, we have too little
experience with these gateways to provide much insight in developing general techniques for building them. Fur-
ther research might lead to the development of some general techniques for building them.

6.3. Supporting Differing Query Semantics in WAIS

Although Z39.50 supports facilities to support differing query semantics, WAIS does not implement them.
Dynamic WAIS demonstrates the usefulness of supporting differing query semantics, so implementing them in
WAIS would be useful.

Chapter 7
Summary

In this chapter we present a brief summary of this thesis.

Internet resource discovery systems are inadequately prepared for the Internet’s growth in information diver-
sity, user base, and information volume. This thesis focuses on developing Internet resource discovery techniques to
adapt to diversifying information which includes both diverse resource representations, such as multimedia file for-
mats, and diverse information systems, such as various remote search systems like Netfind and archie. Developing
these techniques provides a basis for the next generation of Internet resource discovery systems, since it allows the
inclusion a more diverse information base. We have developed two Internet resource discovery systems, Dynamic
WAIS and Essence, to experiment with some of these techniques. Both our Dynamic WAIS and Essence prototypes
are publically available, and they have been used by people at over four hundred sites in two dozen countries.

Operation mapping uses information-level gateways to provide automated, transparent access to information
that is available through heterogeneous information system interfaces. Dynamic WAIS employs this approach to
provide information-level gateways between WAIS and Netfind, and WAIS and archie. The Dynamic WAIS design
recognizes that the operations of certain remote search systems, like Netfind, archie, and whois, can be mapped into
the WAIS search and retrieval paradigm. In this respect, Dynamic WAIS contributes an important conceptual map-
ping between WAIS’s operations and the operations of remote search systems.

Data mapping provides automated resource interpretation and classification of heterogeneous resource repre-
sentations, while preserving semantic information about resources. Essence takes this approach by using semantic
indexing which has two major benefits. First, it automates the identification and interpretation of diverse, heteroge-
neous file resource representations, or file types. Second, through effective resource interpretation techniques that
preserve semantic information, Essence can exploit file semantics to generate compact, yet representative indexes.
Our Essence prototype generates indexes that are compatible with WAIS, so that they can be exported through the
WALIS interface. Currently, we export an Essence-generated index for file resources available from the anonymous
FTP site at ftp.cs.colorado.edu is available through the WAIS interface. Essence’s integration with the WAIS inter-
face, and its use as an alternative interface to anonymous FTP sites demonstrate that Essence can effectively support
Internet resource discovery through compact, yet representative indexes.

-36 -

Chapter 8
References

[Adobe 1990]
Adobe Systems Inc., PostScript Language Reference Manual, Addison-Wesley, Reading, MA, 1990.

[Andreessen 1993]
M. Andreessen, NCSA Mosaic for the X Window System, Software Development Group, National Center for
Supercomputing Applications, University of Illinois at Urbana-Champaign, April 1993, available via anony-
mous FTP from ftp.ncsa.uiuc.edu:/Web/xmosaic.

[ANSI 1991]
ANSI, “ANSI Z39.50,” Version 2, Third Draft, American National Standards Institute, May 1991.

[Berners-Lee et al. 1992]
T. Berners-Lee, R. Cailliau, J. Groff, and B. Pollermann, “World-Wide Web: The Information Universe,”
Electronic Networking: Research, Applications and Policy, 1(2),Meckler Publications, Spring 1992.

[Bowman et al. 1993]
C. M. Bowman, P. B. Danzig, and M. F. Schwartz, “Research Problems for Scalable Internet Resource Dis-
covery,” Technical Report, Department of Computer Science, University of Colorado, Boulder, CO, March
1993.

[CCITT/ISO 1988]
CCITT/ISO, “The Directory, Part 1: Overview of Concepts, Models, and Services,” ISO DIS 9594-1,
CCITT/ISO, Gloucester, England, December 1988, CCITT Draft Recommendation X.500.

[Conklin 1987]
J. Conklin, “Hypertext: An Introduction and Survey,” Computer, 20(9), pp. 17-41, IEEE Computer Society,
September 1987.

[Droms 1990]
R. E. Droms, “Access to Heterogeneous Directory Services,” Proceedings of the 9th Joint Conference of IEEE
Computer and Communications Societies (InfoCom), June 1990.

[Emtage & Deutsch 1992]
A. Emtage and P. Deutsch, “archie — An Electronic Directory Service for the Intemet,” Proceedings of the
1992 Winter USENIX Technical Conference, pp. 93-110, January 1992.

[Foster 1992]
S. Foster, “About the Veronica Service,” Electronic bulletin board posting on the comp.infosystems.gopher
newsgroup, November 1992.

-37 -

- 38 -

[Furlani 1991]
J. L. Furlani, “Modules: Providing a Flexible User Environment,” Proceedings of the USENIX Large Installa-
tion Systems Administration V Conference, pp. 141-152, October 1991.

[Gifford et al. 1991]
D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr., “Semantic File Systems,” Proceedings of the
13th ACM Symposium Operating Systems Principles, pp. 16-25, October 1991.

[Granrose 1990]
J. Granrose, “Anonymous FTP Site Listing,” available via anonymous FTP from pilot.njin.net:/pub/ftp-list,
Cowell College, University of California, Santa Cruz, CA, 1990.

[Hardy & Schwartz 1993a]
D. R. Hardy and M. F. Schwartz, “Essence: A Resource Discovery System Based on Semantic File Index-
ing,” Proceedings of the 1993 Winter USENIX Technical Conference, pp. 361-373, January 1993.

[Hardy & Schwartz 1993b]
D. R. Hardy and M. F. Schwartz, “Extending the WAIS Paradigm to Support Dynamic Information Spaces,”
Technical Report, Department of Computer Science, University of Colorado, Boulder, CO, 1993, In prepara-
tion.

[Harrenstien et al. 1985]
K. Harrenstien, M. Stahl, and E. Feinler, “NICNAME/WHOIS,” Request for Comments 954, SRI Interna-
tional, October 1985.

[Hull & King 1987]
R. Hull and R. King, “Semantic Database Modeling: Survey, Applications, and Research Issues,” ACM Com-
puting Surveys, 19(3), pp. 201-260, September 1987.

{Jacobs & Rau 1990]
P. S. Jacobs and L. F. Rau, “SCISOR: Extracting Information from On-line News,” Communications of the
ACM, 33(11), pp. 88-97, November 1990.

[Kahle & Medlar 1991]
B. Kahle and A. Medlar, “An Information System for Corporate Users: Wide Area Information Servers,” Con-
neXions - The Interoperability Report, 5(11), pp. 2-9, Interop, Inc., November 1991.

[Kantor & Lapsley 1986]
B. Kantor and P. Lapsley, “Network News Transfer Protocol,” Request for Comments 977, SRI International,
February 1986.

[Kehoe 1992]
B. P. Kehoe, Zen and the Art of the Internet: A Beginner’s Guide to the Internet, Widener University, Chester,
PA, 1992.

[Kernighan & Ritchie 1988]
B. W. Kemighan and D. M. Ritchie, The C Programming Language, Prentice Hall, Englewood Cliffs, NJ,
1988.

-39.

[Klingenstein 1992]
K. Klingenstein, “A Coming of Age: Design Issues in the Low-End Internet,” in Building Information Infras-
tructure, ed. B. Kahin,McGraw-Hill, New York, NY, 1992.

[Knuth 1984]
D. E. Knuth, The TeXbook, Addison-Wesley, Reading, MA, 1984,

[Krol 1989]
E. Krol, “The Hitchhiker’s Guide to the Internet,” Request for Comments 1118, SRI International, September
1989.

[Krol 1992]
E. Krol, The Whole Internet User’'s Guide and Catalog, O’Reilly and Associates, Inc., Sebastopol, CA, 1992.

[Lamport 1986]
L. Lamport, LaTeX: A Document Prepartion System, Addison-Wesley, Reading, MA, 1986.

[LaQuey 1990]
T. LaQuey, The User’s Directory of Computer Networks, Digital Press, Burlington, MA, 1990.

[LaQuey 1993]
T. LaQuey, The Internet Companion: A Beginner’s Guide to Global Networking, Addison-Wesley, Reading,
MA, 1993.

[Leffler et al. 1989]
S. J. Leffler, M. K. McKusick, M. J. Karels, and J. S. Quarterman, The Design and Implementation of the
4.3BSD UNIX Operating System, Addison-Wesley, Reading, MA, 1989,

[Litwin et al. 1990]
W. Litwin, L. Mark, and N. Roussopoulos, “Interoperability of Multiple Autonomous Databases,” ACM Com-
puting Surveys, 22(3), pp. 267-293, September 1990.

[Lottor 1992]
M. Lottor, “Internet Growth (1981-1991),” Request for Comments 1296, SRI International, January 1992,

[Lynch & Rose 1993]
D. C. Lynch and M. T. Rose, Internet System Handbook, Addison-Wesley, Reading, MA, 1993.

[Manber & Wu 1993]
U. Manber and S. Wu, “A Two-Level Approach to Information Retrieval,” Technical Report, Department of
Computer Science, University of Arizona, Tucson, AZ, January 1993,

[Martin 1993]
J. Martin, “There’s Gold in them thar Networks! — or — Searching for Treasure in all the Wrong Places,”
Request for Comments 1402, January 1993.

-40 -

[McCahill 1992]
M. McCahill, “The Internet Gopher: A Distributed Server Information System,” ConneXions - The Interoper-
ability Report, 6(7), pp. 10-14, Interop, Inc., July 1992,

[Muntz & Honeyman 1992]
D. Muntz and P. Honeyman, “Multi-Level Caching in Distributed File Systems — or — Your Cache Ain’t
Nuthin’ But Trash,” Proceedings of the 1992 Winter USENIX Technical Conference, pp. 305-313, January
1992.

[Neuman 1992]
B. C. Neuman, “The Prospero File System: A Global File System Based on the Virtual System Model,” Com-
puting Systems, 5(4), pp. 407-432, University of California Press, Fall 1992.

[NeXT 1991]
NeXT Computer, Inc., NeXT User’s Reference, NeXT Computer, Inc., Redwood City, CA, 1991.

[Noll & Scacchi 1991]
J. Noll and W. Scacchi, “Integrating Diverse Information Repositories: A Distributed Hypertext Approach,”
Computer, 24(12), pp. 38-45, IEEE Computer Society, December 1991.

[NSF 1989]
NSF Network Service Center, Internet Resources Guide, Bolt, Beranek, and Newman Inc., January 1989.

[Ousterhout et al. 1985]
J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson, “A Trace-Driven Analysis of
the UNIX 4.2 BSD File System,” Proceedings of the 10th ACM Symposium Operating System Principles, pp.
15-24, December 1985.

[Ozsu & Valduriez 1991]
M. T. Ozsu and P. Valduriez, “Distributed Database Systems: Where Are We Now?,” Computer, 24(8), pp.
68-78, IEEE Computer Society, August 1991.

[Quarterman 1990]
J. S. Quarterman, The Matrix: Computer Networks and Conferencing Systems Worldwide, Digital Press, Bed-
ford, MA, 1990.

[Ram 1991]
S. Ram, “Heterogenous Distributed Database Systems,” Computer, 24(12), pp. 7-10, IEEE Computer Society,
December 1991.

[Rose 1991}
M. T. Rose, The Little Black Book: Mail-Bonding with OSI Directory Services, Prentice Hall, Englewood
Cliffs, NJ, 1991.

[Salton & McGill 1983]
G. Salton and M. J. McGill, An Introduction to Modern Information Retrieval, McGraw-Hill, New York, NY,
1983.

-41 -

[Schatz 1990]
B. R. Schatz, “Interactive Retrieval in Information Spaces Distributed across a Wide-Area Network,” Techni-
cal Report 90-35, Department of Computer Science, University of Arizona, Tuscon, AZ, December 1990.

[Schwartz et al. 1987]
M. F. Schwartz, J. Zahorjan, and D. Notkin, “A Name Service for Evolving, Heterogeneous Systems,” Pro-
ceedings of the 11th ACM Symposium Operating Systems Principles, pp. 52-62, November 1987.

[Schwartz et al. 1992a]
M. F. Schwartz, D. J. Ewing, and R. S. Hall, “A Measurement Study of Internet File Transfer Traffic,” Techni-
cal Report CU-CS-571-92, Department of Computer Science, University of Colorado, Boulder, CO, January
1992.

{Schwartz et al. 1992b]
M. F. Schwartz, A. Emtage, B. Kahle, and B. C. Neuman, “A Comparison of Internet Resource Discovery
Approaches,” Computing Systems, 5(4), pp. 461-493, University of California Press, Fall 1992.

[Schwartz & Tsirigotis 1991]
M. F. Schwartz and P. G. Tsirigotis, “Experience with a Semantically Cognizant Internet White Pages Direc-
tory Tool,” Journal of Internetworking: Research and Experience, 2(1), pp. 23-50, March 1991.

[Sheth & Larson 1990]
A. P. Sheth and J. A. Larson, “Federated Database Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases,” ACM Computing Surveys, 22(3), pp. 183-236, September 1990.

[Thomas et al. 1990]
G. Thomas et al., “Heterogeneous Distributed Database Systems for Production Use,” ACM Computing Sur-
veys, 22(3), pp. 237-266, September 1990.

[USENIX 1986]
USENIX Association, UNIX Supplementary Documents, 4.3 Berkeley Software Distribution, USENIX Asso-
ciation, Berkeley, CA, November 1986.

[WAIS 1993]
Thinking Machines Corp., “WAIS Source Distribution, version 8-b5,” available via anonymous FTP from
think.com:/wais, Thinking Machines Corp., Cambridge, MA, 1993.

[Wall & Schwartz 1991]
L. Wall and R. L. Schwartz, Programming Perl, O’Reilly and Associates, Inc., Sebastopol, CA, 1991.

[Zimmerman 1990]
D. Zimmerman, “The Finger User Information Protocol,” Request for Comments 1288, SRI International,
November 1990.

