Formality Considered Harmful: Experiences,
Emerging Themes, and Directions

Frank M. Shipman III and Catherine C. Marshall

CU-CS-648-93 April 1993

%‘Univemity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

FORMALITY CONSIDERED HARMFUL: EXPERIENCES,
EMERGING THEMES, AND DIRECTIONS

Frank M. Shipman 111

Department of Computer Science &
Institute for Cognitive Science

University of Colorado, Boulder, CO 80309-0430

(303) 492 - 1218
E-mail: shipman@cs.colorado.edu

ABSTRACT

This paper reviews experiences in designing, developing,
and witnessing the shortcomings in a variety of systems.
The authors anecdotally suggest that the cause of a number
of unexpected difficulties in human-computer interaction is
the user’s unwillingness to make structure, content, or
procedures explicit. Besides recounting experiences with
system use, this paper discusses why users are often justified
in rejecting formalisms and how system designers can
anticipate and compensate for problems users have in
making implicit aspects of their tasks explicit. Incremental
and system-assisted formalization mechanisms, as well as
techniques to evaluate the task situation, are proposed as
approaches to this problem.

KEYWORDS: Formalization, structure, hypermedia,
argumentation, design environments, knowledge-based
systems, groupware, representation.

INTRODUCTION

Computer systems use abstract representations as the basis
for user interaction for a variety of reasons - to structure a
task or the user’s work practices, to provide users with
computational services like information management and
retrieval functionality, or simply to make it convenient for
the computer program to process the user’s data. We refer to
these abstractions as formalisms.

To work with formalisms embedded in computer systems,
users engage in activities that might not ordinarily be part of
their tasks - breaking information into chunks,
characterizing information via keywords, categorizing
information, or specifying how pieces of information are
related to each other, for example. In terms of interacting
with the Unix operating system, these activities might
correspond to creating files, naming them, putting them in a

Catherine C. Marshall

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304
(415) 812 - 4740
E-mail: marshall@parc.xerox.com

directory struéture, or making symbolic links between
directories or files.

The abstract representations that computer systems impose
on users may involve varying levels and types of
formalization beyond what they are accustomed to. In some
instances, little additional formalization is necessary to use a
computer-based tool; text editors, for example, require
minimal additional formalization beyond that demanded by
other mechanisms for aiding in the production of linear text.
Correspondingly, the computer can perform little additional
processing without the use of heuristic techniques. In other
cases, more formalization brings more computational power
to bear on the task; idea processors and hypertext writing
tools demand more specification of structure, but they also
provide functionality that allows users to reorganize text or
present it on-line as a non-linear work. We refer to these
systems and their embedded representations as semi-formal,
since they require some - but not complete - encoding of
information into a schematic form. At the other end of the
spectrum, formal systems require people to encode materials
in a representation that can be fully interpreted by a
computer program. When the level or type of formalization
demanded by a computer system exceeds what the user
expects, needs, or is willing to tolerate, the user will often
reject the system.

In this paper, we suggest that creators of systems that
support intellectual work like design, writing, or organizing
and interpreting information are particularly at risk. of
expecting too great a level of formality from their users. To
understand the effects of imposing or requiring formality,
we draw on our own experiences designing and using such
systems.

First, we give some anecdotal accounts of our own
experiences as well as corroborative reports by others. We
then discuss possible reasons why users reject formalisms,
and propose some solutions for system designers who are
trying to avoid making these same mistakes. In particular,
we focus our proposals on mechanisms that are based on
incremental system-assisted formalization and restructuring
as people reconceptualize their tasks; we also consider ways

designers can work with users to evaluate appropriate
formalisms for the task at hand.

LEARNING FROM EXPERIENCE

The systems we discuss in this section have been successful
by many metrics; yet they have all exhibited similar
problems with user interaction that may be attributed to their
underlying formalisms., To focus the discussion on these
formalisms, we have deliberately left out any description of
the interfaces by which users interact with the formalisms.
In so doing, we hope to expose a dangerously seductive line
of reasoning - that if you build the right interface to an
embedded representation, users will formalize the desired
aspect of their task domain.

What do systems supporting intellectual work require users
to formalize? First, many hypertext systems try to coerce
their users into making structure explicit. With few
exceptions, they provide facilities for users to divide text or
other media into chunks (usually referred to as nodes), and
define the ways in which these chunks are interconnected
(as links). This formalism is intended as either an aid for
navigation, or as a mechanism for expressing how
information is organized without placing any formal
requirements on content,

Systems that support argumentation and the capture of
design rationale go a step further than general-purpose
hypertext systems in requiring users to formalize their
information. They usually require the categorization of
content within a prescriptive framework (for example,
Rittel’s Issue-Based Information Systems (IBIS) [16]) and
the corresponding formalization of how these pieces of
content are organized.

Other systems - in particular, knowledge-based systems -
are built with the expectation of processing content. Thus, to
add or change knowledge that the system processes, users
are required to encode domain structure and content in a
well-defined representational scheme. This level of
formalization is built into a system with the argument that
users will receive significant payback for this extra effort.

Groupware systems supporting coordination formalize
something different from the structure of the information or
its content. They expect a formalization of interactions
between users of the system. This type of formalization
allows the system to help coordinate activities between
users, such as scheduling meetings or distributing
information along a work-flow.

In this section, we examine each type of system -
hypermedia systems that support the formalization of
structure, knowledge-based systems that rely on the
formalization of content, and groupware systems that
require the formalization of procedure and interaction - with
an eye toward how formalization influences system use and
acceptance. We also look at activity-directed systems that
have specific formalisms embedded in them, in this case,
systems for the capture of argumentation and design
rationale and design environments that combine semi-

20f7

formal design rationale with more formal representations of
domain knowledge.

Formalisms used in each of these types of systems involve
computer-mediated communication or coordination with
other humans, or the capture and organization of implicit
knowledge. As a point of contrast, we also discuss results of

efforts to sunnort the

Ciiorts o support U nftuonra anoinaaring nroacaaa oyctpmc

soft
v BULLWaIv Ungliitlliiig paUCUSS, 5y Suwiiid

designed specifically to aid in the production -of a
formalized artifact, a computer program.

General Purpose Hypermedia

Hypermedia systems generally provide a semi-formal
representation where chunks of text or other media can be
connected via navigational links. The goal of these links is
to better provide for individualized reading patterns through
the non-linear traversal of the document. Authors formalize
structure during the creation of such hyperdocuments.

Learning how to write, and to a lesser extent learning how to
read, in a hypertext system takes time. Although the first
author had used NoteCards [13] previously, his first real
experience with writing in a hypertext system was with
KMS [1]. He spent several months writing hierarchical
outlines and full pages of text connected by a single link to
the next page of text, as if he was still using an outlining tool
and word processor. By defaulting to his previous
experience, he did not have to decide what information
should be chunked together or what links should be created.
Information that fit on a page became a chunk with a link to
the next page.

Many NoteCards users reported similar problems. The
second author’s experiences training information analysts to
use NoteCards showed that they had difficulties chunking
information into cards (“How big is an idea? Can I put more
than one paragraph on a card?”), naming cards (““What do I
call this?”), and filing cards (“Where do I put this?”). Typed
links - the strongest formalization mechanism provided -
were rarely used, and when they were, they were seldom
used consistently. Both link direction and link semantics
proved to be problematic. For example, links nominalized as
“explanations” sometimes connected explanatory text with
the cards being explained; other times, the direction was
reversed. Furthermore, the addition of “example” links
confounded the semantics of earlier explanation links; an
example could easily be thought of as an explanation.
Monty documents similar problems in her observations of a
single analyst structuring information in NoteCards in [24]

Aquanet [21] has a substantially more complex model of
hypertext that involves a user-defined frame-like knowledge
representation scheme with a graphical presentation
component. We observed that even sophisticated users with
a background in knowledge representation had problems
formalizing previously implicit structures. A case study of a
large-scale analysis task documents these experiences in
[22].

Argumentation and Design Rationale
Recently there have been many different proposals for
embedding specific representations in systems to capture

argumentation and design rationale. Some of them use
variations on Toulmin’s micro-argument structure [29] or
Rittel’s issue-based information system (IBIS) [16]; others
invent new schemes like Lee’s design representation
language [17] or MacLean et al’s Question-Option-Criteria
[18].

The benefits of havi
rationale method have been almost grall hke in scope:
shorter production time, lower maintenance costs on
products, and better designs are just a few of the promises
[14]. There have been a number of applications of these
mechanisms, from McCall et al’s use of PHI [23] to
Yakemovik and Conklin’s use of itIBIS [31]. The results
can be interpreted both as successes and as failures. On one
hand, by some measures, the methods did result in long-
term costs reductions. On the other hand, only severe social
pressure, extensive training, or continuing human
facilitation seems to be adequate to get most people to use
the methods. In fact, in [6], Conklin and Yakemovik report
that they had little success in persuading other groups to use
itIBIS outside of Yakemovik’s development team, and that
meeting minutes had to be converted to a more conventional
prose form to engage any of these outside groups.

s reraaa e b

Like the general-purpose hypermedia systems, these
systems force their users to divide information into chunks
which are categorized as certain types, such as issue,
position, or argument. Users of these methods must then
specify connections between chunks, such as answers,
supports, or contradicts links. We have noticed several
problems users have in effectively formalizing their design
rationale or argumentation in this type of system; these
problems can be predicted from our experiences with
hypertext.

First, people aren’t always able to chunk intertwined ideas;
we have observed, for example, positions with arguments
embedded in them. Second, people seldom agree on how
information can be classified and related in this general
scheme; what one person thinks is an argument may be an
issue to someone else. Both authors have engaged in
extended arguments with their collaborators on how pieces
of design rationale or arguments were interrelated, and
about the general heuristics for encoding statements in the
world as pieces of one of these representation schemes (see
[21] for a short discussion of collaborative experiences
using Toulmin structures). Finally, there is always
information that falls between the cracks, no matter how
well thought out the formal representation is. Conklin and
Begeman document this as well in their experiences with
gIBIS [5].

Knowledge-Based Design Environments

Design environments consist of a number of components
integrated to support the process of design [7]. These design
environments include different mechanisms for representing
knowledge, including formally represented domain
knowledge, semi-formal argumentation and informal textual
annotations.

30of7

This variety of knowledge representations has led to the
development of different mechanisms for supporting the
modification of knowledge in the systems. One such
mechanism is the set of end-user modifiability (EUM) tools
developed to support designers in modifying and creating
formal domain knowledge with task agendas, explanations,
and examples [8]. In a description of user studies on EUM

1o (s h +
tools Girgenschn says that most of the problems found in

the last round of testing “were related to system concepts
such as classes or rules” [10]. In short, one finding of these
user studies was that, although the EUM tools made the task
significantly easier, people still had problems in dealing
with the formalisms imposed by the underlying system.

Knowledge-Based Systems

Knowledge-based systems have long exclaimed the goal of
having users add or correct knowledge in the system. End-
user knowledge acquisition imposes formalization
requirements on users that are similar to those imposed by
design environments except that they lack much of the
support provided by the EUM tools. Users must learn the
knowledge representation used by the system, even if it is
hidden by a good interface, so they may understand the
effects of their changes.

A different approach to the problem of creating user
modifiable expert systems was taken by Peper et al. in [26].
They removed the inference engine and just created a
hyperdocument where the user was asked a question and
based on their answer, they went to a new point in the
document. This meant that users could add new questions or
edit old questions by using English since the computer was
not doing any processing over the information. By reducing
the need for formalized knowledge, they realized an
advantage in producing a modifiable system.

Groupware Systems

Groupware systems that require the formalization of
procedure and interaction have suffered many of the same
problems as systems that enforce formalization of structure
and content. For example, systems that extend electronic
mail by attaching properties or types to messages require
their users to classify exactly what type of message they are
sending or what type of reply is acceptable. Experiences
with systems like the Coordinator [30] and Information
Lens [20] point out that many users ignore the formal
aspects of such systems, and generally use them as basic
electronic mail systems [4].

Other groupware systems also exhibit this property. Systems
that require keywords selected from a limited vocabulary,
even one as rich as the Medical Subject Headings (MeSH)
used by medical journals, also force users to express
concepts in a language which may lack the terms that they
had previously applied to their work.

Coordination oriented systems have the additional burden of
formalizing social practices which are largely left implicit in
normal human-human interactions. Automatic scheduling
systems have met with limited acceptance [12] due to the
unwillingness of users to describe their normal decision
methods for whether and when to schedule a meeting with

other people. The same rules of scheduling that apply to
your boss do not apply to an unknown person, but
formalizing such differences is difficult.

Software Engineering
Software engineering echoes the difficulties described
above. In both cases people are required to explicitly

ommunicate information to a comnuter, The interfaces
V\Illllll\llllv“\a\l AXIXANJEIRICALANIL “ V\)lllk}\)b A ARV RIRLVARGAWWID

through which this communication occurs are often part of
the problem, but they only contribute what Brooks calls
“accidental complexity” [3] to the overall task. Whether a
person uses popup menus, dialog boxes, “English-like”
formal languages, or low level programming languages to
state the information explicitly, the person must still know
what they want to state, be it a relationship between two
pieces of text or a complex algorithm,

In software engineering, deciding what needs to be stated
explicitly (the specification) has been termed ‘“‘up-stream
activity”. The software technology program at MCC was
explicitly charged by its director, Les Belady, to create
support for tasks leading up to specification [2]. The
resulting work supports the process of coming up with a
specification, the storage and retrieval of information
associated with this process, and visualization of the result.
These same goals could be used to focus work on supporting
formalization in other domains.

WHY USERS SHOULD NOT FORMALIZE

From the above discussion we hope to impart the notion of
how endemic we believe the problems of expecting
formalization are. In this section we explain why we believe
that the users are making the right decisions, in some sense,
by resisting premature, unnecessary, meaningless, or
cognitively expensive formalization.

From the user’s perspective formalization poses many risks.
“What if I commit to this formalization only to later find out
it is wrong?” “What do I do when the ideas or knowledge is
tacit and I cannot formalize it?” “Why should I spend my
time formalizing this when I have other things to be doing?”
“Why should I formalize this when I cannot agree with
anyone else on what the formalization should be?” These
are all valid questions and the answers that systems provide
are often insufficient to convince people to use a system’s
formal aspects.

Imposing Unnecessary or Premature Structure

One well known reason why users will not formalize is the
negative effects of prematurely or unnecessarily imposing a
structure. This cause was noted by Malone in his studies of
how people organized information in their offices [19]. One
problem he found is that in many cases trying to create a
new formalization from information in a previous
formalization is more difficult than formalizing the
information from an informal state. Malone’s study found
some people having piles of papers waiting to be filed
because the person did not yet know where to file them. In
essence, the difficulty associated with undoing the
formalization - in this case, filing - may compare with the
formalization process itself.

40f 7

Another problem associated with unnecessary structure is
the perception that information that is formalized incorrectly
or inconsistently will be of less use (or at least more
expensive to use) than information not formalized. This can
be seen in the directory structures of UNIX, Mac OS, or
DOS users who have huge numbers of files at the top level
directory (or filebox) of their machine or account Their

ANInian “Quamn £ T Arcanicoad thoon fils ntc ¢t
UPILL\UAI Ab JULV, U 1 ULEAIIZAAL LUV LAL\JD 1ll I.ll\.r llglll

hierarchy I might have less difficulty in dealing with them,
but how would I ever find anything that I put in the ‘wrong’
place?” Functionality such as the notorious UNIX ‘find’
command has been created in an attempt to help users with
such problems, but many users find learning about the
intricacies of such commands or tools unacceptable.

Analytic Structure vs. Generative Structure

Many of the representations that designers have embedded
in systems are the result of an analysis of existing material.
For example, argument representations are often derived
from analyzing existing argumentative discourse, and
classifying discourse units in categories, then describing in
general terms how these categories are related. But post hoc
analysis is very different from generation. When these
descriptive models are given to users, they find it very
difficult to formalize knowledge as they are generating or
producing it. An example is the observation in [9][8] that
design students have difficulty producing IBIS-style
argumentation even though videotapes of their design
sessions show that their naturally occurring discussions
follow this structure.

This relates to the more general difficulty in expressing tacit
knowledge. The introspection necessary to produce and
apply a formal representation during a task necessarily
interrupts the task, structures and changes it. As a simple
example, if a person is asked to describe what it means to
breath normally, they will probably be unable to continue to
do so. Furthermore, chances are that introspection about
what normal breathing means will cause the person’s
breathing to become abnormal - exaggeratedly shallow,
overly deep, irregular.

This simple example predicts the second author’s
experience with Aquanet. In Aquanet, users are faced with a
meta-task of describing how their domain is structured or
choosing among an existing library of schematic structures.
Experience suggests that users can not (or will not)
articulate how their tasks are formalized at the outset. Once
a formalization is selected, users have a tendency to use as
few distinctions and as little structure as possible, but we
still feel that the formality of the representation shapes both
the kind of information collected and how it is interpreted
[22].

Cognitive Inflation

Adding information to a system is cognitively expensive;
adding formal knowledge breaks the bank. Just trying to
figure out how a domain is organized to collect and
categorize semi-structured notes or classify email messages
is difficult enough, but formalizing that information so that a
computer can reason about it is much worse. First of all the
user must learn the computer’s language. Some limited

domains, such as circuit design, have formal languages to
describe a certain type of information. General purpose
formal languages, such as languages for frames and
semantic nets, are almost never used for tasks not dealing
with a computer.

Reasons why these formalisms are too difficult for people to

naa nftan nnnrarn tha manv avira danicinng that thau ranmnira
uS\J AVALLVLR WURIVWVALL U lllsul] VAua UUNACIDAIVLID uidaL I-ll\/] Lv\iuu\l

to specify anything. Many of these extra decisions concern
chunking, linking, and labeling. People spend years learning
how to divide up ideas into sentences and paragraphs in
natural language, and formal languages require much more
explicitly defined boundaries, connections between chunks,
and labels for such connections.

In an experiment in applying Assumption-based Truth
Maintenance Systems (ATMS) derived dependency analysis
(described in [15]) to networks of Toulmin micro-argument
structures in NoteCards, one of the authors came to the
conclusion that the cognitive cost was not commensurate
with the results, even though dependency analysis had long
been a goal of explicitly representing the reasoning in
arguments. Although the hypertext representation of the
informal syllogistic reasoning inherent to Toulmin
structures (the data-claim-warrant triple) captures a
dependency relationship, additional formalization is
necessary to perform automated analysis by an ATMS
model. In particular, it was important to identify
assumptions, and contradictory nodes. Not only was it
difficult to identify contradictions in real data (belief was
qualified rather than absolute) and impossible to track
relative truth values over time, but also - and most
importantly - by the time contradictions had been specified
and relative truth values had been determined, a
signification portion of the network evaluation had been
done by the user. In this case, the additional processing done
by the ATMS mechanism added little value.

Different People, Different Tasks, Different Structure
The difficulties of creating useful formalizations for
individual use are compounded when different people must
share the formalization. An analogy can be drawn between
collaborative formalization and writing a legal document for
multiple parties who have different goals. The best one can
hope for in either case is a result sufficiently vague that it
can be interpreted in an acceptable way to all the
participants; ambiguity and imprecision are used in a
productive way. Formalization makes such agreements
difficult because it requires the formalized information to be
stated explicitly so that there is little room for different
interpretations.

For different people to agree on a formalization they must
agree on the chunking, the labelling, and the linking of the
information. As we have shown by earlier examples in the
use of tools to capture design rationale, the prospects of
negotiating how information is encoded in a fixed
representation is at best difficult.

This problem does not occur just when multiple people use
the same structure but can also occur when the creator of the

Sof7

structure has a different task than before. The context of the
new task may not match well with the structuring scheme.

Anecdotal evidence shows that a representation that is
suitable for one task may not be appropriate for a very
similar related task. For example, in [22] we describe how a
representation developed for an analytic task - an

nacacamant nf faraion machina tranclotinn affarfa ad tn
assessment o1 1oreign macnnd wans:ation enorts - PIovea o

be of limited value in a very closely related task, evaluating
Spanish-English machine translation software. The second
task shared a subset of the content with the first task, but the
representation did not formalize appropriate aspects of the
material. Attributes like speed and accuracy as well as cost
and computer platform turned out to be very important in
evaluating software, but only of secondary importance in a
general assessment of the field, while in the general
assessment of the field, the technical approach of the various
systems was deemed important. In short different structures
will be of use in different situations [28].

LEARNING TO ANTICIPATE USER NEEDS

While difficulties caused by formalization are widespread
and users are justified in their resistance to or rejection of
some formalization tasks, there are some partial solutions to
this dilemma for system designers. First, designers should
decide what information must be formalized for the task to
be performed and provide for that. Second, designers should
decide what other services or user benefits the computer can
provide based on trade-offs introduced by additional
formalization. Finally, designers should expect, allow, and
support reconceptualization and incremental formalization
in longer tasks.

Essentials for Task
Some information must be formalized for the computer |
system to perform almost any task. A word processor must
know the order of characters, a drawing program must know
the color and shape of objects being drawn, and a circuit
analyzer must know the logical circuit design. Interaction
based on a limited-domain formalism can become
transparent when the user has become skilled in the
formalism. Failure to get the user to formalize information
that is essential for the central task means rejection of the
system.

But what is the central task for more general-purpose
systems and, informationally, what does it require? What
must by formalized for a system to support the organization
and sharing of information? Does the content just have to be
entered into the system, or for the system to work does extra
information, such as hypertext links and labels need to be
specified? To answer these questions, participatory design
techniques can be applied to gain an understanding of the
users’ work practices and the formalisms necessary to
support these practices [11].

The Non-Essential Cost/Benefit Trade-off

Many systems provide features which are not necessary for
some uses of the system but are available for users who
want the added benefits of providing more information. Font
style and size could be considered such information in a
word processor. Users can accept the default style and size

to write a paper, and thus never have to explicitly state their
preference, but there is the option for different fonts.
Certainly many people seemed very happy to take
advantage of this particular feature, placing many fonts on
every page until some notion of aesthetics became common.

Other features may be much less widely used. Spreadsheet

Alads werhinh ad
programs i include many features which arc used uln_y uy a

small percentage of the user community [25]. The rest of the
users either get by without using the features, or ask for help
when they cannot avoid doing otherwise. In designing
information systems where formalization is required for use
of some of the features, systems designers must balance the
effects of cognitive inflation, which can leave your services
worth little compared to the cost of formalization.

One system design goal can be to provide functionality
based on inferred structures in informally represented
information; structures can be inferred by spatial, textual,
temporal, or other patterns. The system’s inferences will be
incorrect at times but, as long as the inferences are right part
of the time and it is apparent to the user when the system has
made the wrong inference, these features will cost the user
little for the benefit they provide.

Gradual Formalization and Restructuring

Two of the reasons why users resist formalization, namely
the threat of premature formalization and inability to
formalize with current understanding, will change over
time. Furthermore, tasks are frequently reconceptualized
during performance. This is why systems where incremental
formalization and restructuring can occur seem to be
necessary.

Supporting gradual formalization can be more than just
allowing users to add formalized information when the urge
hits them. Systems can be designed to support the process of
formalization, particularly the process of collaborative
formalization. Systems can also make suggestions about
what formalizations might be appropriate by noticing
patterns in informally represented information [27]. As with
providing services based on inferred structure, suggestions
based on such inferences do not have to be correct all the
time; the user just needs to be able to know when to accept
them and when not to. Suggestions can also lower the cost
of defining structure, by providing an initial formalization
which can then be modified rather than having to be created
from scratch.

CONCLUSIONS

We have tried to describe the extent of the difficulties
caused by systems that require users to formalize
information. These problems are pervasive in systems
designed to support intellectual work such as hypermedia,
argumentation, knowledge-based systems, and groupware.

The difficulties that users have in formalizing information is
not just an interface problem. Users are hesitant about
formalization because of a fear of prematurely committing
to a specific perspective on their tasks; it may also be
difficult for them to formalize knowledge that is usually
tacit. The added cost of formalizing information over using

60f7

informal information makes formalized information far less
attractive for users to provide. In a collaborative setting,
people must agree on a formalization and the heuristics for
encoding information into it.

There are decisions that system designers can make to
reduce the need of formal information by systems and also

mathAada ¢t wadirnn tha Frnee svommn I s

IV UIUUD LU IVUULL e dxffxpuuy AU UDULD L }}lUVlulllg l_lllb
information. Systems should use the domain-oriented
representations used to communicate unambiguously
between humans when possible. Systems should provide
services based on inferred structure in informally
represented information. Finally, systems should support the
process of incremental formalization and structure evolution
as tasks are reconceptualized.

As system designers, it is tempting to add more whiz-bang
features which rely on formalized information. We must
temper that urge and consider the difficulty that the user will
have providing that information before counting on it for the
success of our systems.

ACKNOWLEDGEMENTS

We thank the members of the HCC group at the University
of Colorado and the Collaborative Systems Area at Xerox
PARC for discussions that have aided in the formation of
these ideas. We also thank Jonathan Grudin and Tom Moran
for reading and providing comments on early versions of
this paper. This research was supported in part by grant No,
IRI-9015441 from the National Science Foundation.

REFERENCES

1. Akscyn, RM., McCracken, D.L., Yoder, E.A. “KMS:
A Distributed Hypermedia System for Managing
Knowledge in Organizations”. Communications of the
ACM 31,7 (July 1988), 820-835.

2. Belady, L. “MCC: Planning the Revolution in
Software”. IEEE Software (November 1985), 68-73.

3. Brooks Jr.,, F.P. “No Silver Bullet: Essence and
Accidents of Software Engineering”. IEEE Computer
20, 4 (April 1987), 10-19.

4. Bullen, C.V., Bennett, J.L. Learning From User
Experience With Groupware. Proceedings of the

Conference on Computer-Supported Cooperative
Work (CSCW’90), New York, 1990, pp. 291-302.

S. Conklin, EJ., Begeman, M.L. gIBIS: A Hypertext
Tool for Exploratory Policy Discussion. MCC
Technical Report Number STP-082-88, Austin, Texas,
1988.

6. Conklin, E.J., Yakemovic, K.C. “A Process-Oriented
Approach to Design Rationale.” Human Computer
Interaction Vol. 6, No. 3 & 4, 1991, pp. 357-391,

7. Fischer, G., Grudin, J., Lemke, A.C., McCall, R,
Ostwald, J., Reeves, B.N., Shipman, F. “Supporting
Indirect, Collaborative Design with Integrated
Knowledge-Based Design Environments”. Human
Computer Interaction 7, 3 (1992). (in press).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Fischer, G., Girgensohn, A. End-User Modifiability in
Design Environments. Human Factors in Computing
Systems, CHI'90 Conference Proceedings (Seattle,
WA), ACM, New York, April, 1990, pp. 183-191.

Fischer, G., Lemke, A.C., McCall, R., Morch, A.
Making Argumentation Serve Design. Human
Computer Interaction, 6, 3-4, 1991, pp. 393-419.

Girgensohn, A. End-User Modifiability in Knowledge-
Based Design Environments. Ph.D. Dissertation.,
Department of Computer Science, University of
Colorado, Boulder, CO, 1992.

Greenbaum, J., Kyng, M. (Eds.) Design at Work:
Cooperative Design of Computer Systems. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1991.

Grudin, J. Why CSCW Applications Fail: Problems in
the Design and Evaluation of Organizational
Interfaces. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW’88),
ACM, New York, September, 1988, pp. 85-93.

Halasz, F.G., Moran, T.P., Trigg, R.H. NoteCards in a
Nutshell. Human Factors in Computing Systems and
Graphics Interface, CHI+GI'87 Conference
Proceedings (Toronto, Canada), ACM, New York,
April, 1987, pp. 45-52.

Jarczyk, A,. Loeffler, P., Shipman, F. Design Rationale
for Software Engineering: A Survey. Proceedings of
the 25th Hawaii International Conference on System
Sciences, 1992, pp. 577-586.

de Kleer, J. "An Assumption-based TMS" Artificial
Intelligence 28, 1986, pp. 127-162.

Kunz, W., Rittel, H-W.J. Issues as Elements of
Information Systems. Working Paper 131, Center for
Planning and Development Research, University of
California, Berkeley, CA, 1970.

Lee, J. SIBYL: A Tool for Managing Group Decision
Rationale. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW ‘90),
New York, October, 1990, pp. 79-92.

MacLean, A., Young, R., Bellotti, V., Moran, T.
“Questions, Options, and Criteria: Elements of a
Design Rationale for User Interfaces”. Human
Computer Interaction Vol. 6, No. 3 & 4, 1991, pp.
201-250.

Malone, T.W. “How do People Organize their Desks?
Implications for the Design of Office Information
Systems”. ACM Transactions on Office Information
Systems 1, 1 (January 1983), 99-112,

7of7

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Malone, T.W., Grant, KR., Lai, K.-Y., Rao, R,,
Rosenblitt, D. Semi-Structured Messages are
Surprisingly ~ Useful for Computer-Supported
Coordination. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW'86),
MCC, Austin, TX, December, 1986, pp. 102-114.

Marshall, C., Halasz, F., Rogers, R., Janssen, W.
Aquanet: a hypertext tool to hold your knowledge in
place. Hypertext ‘91 Conference, 1991, pp. 261-275.

Marshall, C.C., Rogers, R.A. Two Years before the
Mist: Experiences with Aquanet. To appear in
Proceedings of European Conference on Hypertext
(ECHT 92), Milano, Italy, December 1992.

McCall, R., Schaab, B., Schuler, W. An Information
Station for the Problem Solver: System Concepts.
Applications of Mini- and Microcomputers in
Information, Keren, C., Perlmutter, L. (eds.), Elsevier,
New York, 1983.

Monty, M.L. Issues for Supporting Notetaking and
Note Using in the Computer Environment.
Dissertation, Department of Psychology, University of
California, San Diego, 1990.

Nardi, B.A., Miller, JR. An Ethnographic Study of
Distributed Problem Solving in Spreadshet
Development. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW’ 90),
1990, pp. 197- 208.

Peper, G., Maclntyre, C., Keenan, J. Hypertext: A New
Approach for Implementing an Expert System.
Proceedings of 1989 ITL Expert Systems Conference,
1989.

Shipman, F. Supporting Knowledge-Base Evolution
using Multiple Degrees of Formality. Tech. Rept. CU-
CS-592-92, Department of Computer
University of Colorado, Boulder, CO, 1992,

Suchman, L.A. Plans and Situated Actions. Cambridge
University Press, Cambridge, UK, 1987.

Toulmin, S. (Ed.) The Uses of Argument. Cambridge
University Press, UK, 1958.

Winograd, T., Flores, F. Understanding Computers
and Cognition: A New Foundation for Design. Ablex
Publishing Corporation, Norwood, NJ, 1986.

Yakemovic, K.C., Conklin, EJ. Report of a
Development Project Use of an Issue-Based
Information System. Proceedings of the Conference on
Computer-Supported Cooperative Work (CSCW’ 90),
1990, pp. 105-118.

Qerianca
[1V3 Lwz § LV 2y

