An Example of Process Verification:
the Gries/Dijkstra Design Method

Robert B. Terwilliger

CU-CS-646-93 March 1993

%‘University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

An Example of Process Verification:
the Gries/Dijkstra Design Method

Department of Computer Science
University of Colorado
Boulder, CO 80309-0430
email: ’terwilli@cs.colorado.edu’

ABSTRACT

We have constructed a simulation of the formal design pro-

. cess described by Gries in his book The Science of Program-
ming. The system takes a pre- and post-condition
specification and transforms it into a provably correct design
using a library of cliches, complex knowledge structures
representing commonly occurring situations. In this paper,
we briefly describe the simulation’s design and sketch a
demonstration of its correctness. The argument has has two
parts. First, we show that the system always produces correct
designs if all the cliches in the library are valid, and second,
we demonstrate that the cliches in the library always produce
designs which satisfy their specifications.

1. Introduction

Some have suggested that formal methods can
enhance both the software specification and design
processes [2-7,12,16,17,22,27,38]. For example,
Dijkstra and Gries [8,9, 13, 14] have developed a pro-
cess which takes a pre- and post-condition specification
written in first-order predicate logic and incrementally
transforms it into a verified design written using
guarded commands. Although this technique has been
used and taught for over a decade, at present is it
difficult to either define it precisely, determine if it has
been applied properly, or evaluate it for effectiveness.

There are many approaches to defining software
processes. For example, advocates of process pro-
gramming believe that describing development
methods using programming language constructs
should ultimately allow these processes to become
automated, and their execution to be monitored and
tuned for maximum efficiency [15,20,23,29,30]. Toa
certain extent, these goals overlap with knowledge-
based software engineering [1,10,11,19,21,24-
26,28]. An important contribution of this community
is the notion of cliche (or plan or schema): a complex
knowledge structure representing a commonly occur-
ring situation.

We have been investigating the formal design
method described by Gries in his book The Science of
Programming; our three part approach includes walk-
throughs, simulations, and process programming [33-
37]. Our simulation of the Gries/Dijkstra process uses

a library of cliches to create a provably correct design
from a pre- and post-condition specification. The simu-
lation is designed using guarded commands, and we
have rigorously verified its correctness [33,36]. This
argument has has two parts. First, we show that the
simulation always produces correct designs if all the
cliches in the library are valid, and second, we demon-
strate that the cliches in the library always produce
designs which satisfy their specifications.

In the remainder of this paper, we present the
design of our simulation and argue for its correctness in
more detail. In section two, we discuss the architecture
of our system, and in section three, we present the basic
data type and correctness definitions. In section four,
we describe the design process itself and argue for its
correctness assuming that all the cliches it uses behave
properly. In section five, we present a fairly detailed
description of a simple cliche and its verification, as
well as a larger cliche and its proof in less detail.
Finally, in section six we summarize and draw some
conclusions from our expetience.

2. Simulation Architecture

Figure 1 shows the architecture of the design
process implemented in our simulation program. It has
two levels. At the lower level, the design derivation
sub-process transforms formal specifications into
verified designs using a library of cliches representing
solutions to common programming problems. On the
upper level, a cliche derivation sub-process constructs
and verifies cliches. Cliche derivation is considerably
more difficult than cliche application; therefore, the
portion of the process inside the dashed box is
automated and the rest is performed by a human.

The simulation inputs both a pre- and post-
condition specification and the library of pre-verified
cliches. Each cliche has an applicability condition, as
well as a rule for transforming specifications into more
complete programs. The simulation applies cliches
until a complete design is produced or no cliches are
applicable. The library of cliches is searched in a fixed
order, with the simplest (least expensive to apply)
cliches appearing first. Application of a cliche may

Proof Rules Strategies
I I
Cliche I I
Derivation ' Formal X
i\ Specifications / |
e T .| !
! :
!]
1

1 . Design :
| Cliches Derivation !
| :
! |
e |]
! Verified !
I . I
' Designs i

1
. |
| |
Y .}

Figure 1. Simulation Architecture

generate sub-specifications for which a design must be
created, and a simple backtracking scheme allows
transformations to be undone if they do not lead to a
complete solution.

Since the correctness of a final design depends
on the correctness of the cliches used in its derivation,
each cliche must be proven to produce only designs
that satisfy the corresponding specification. The
advantage of our two level architecture is that proofs
are performed mostly at "compile" rather than "run"
time. Cliche construction and verification is quite
difficult, but is done only once for each cliche and is
performed by a human. On the other hand, cliche
application is reasonably easy and is performed repeat-
edly by the machine.

The design of our simulation is based on the
architecture in Figure 1 and uses constructs that can be
reasonably implemented in most programming
languages [33,34,36,37]. A prototype has been writ-
ten in Prolog that follows the design very closely; in
fact, the implementation can be generated using
methods similar to [31,32]. The prototype is somewhat
sketchy, especially the logic manipulation and theorem
proving routines; however, it does demonstrate the

design’s basic validity.

3. Data Type and Correctness Definitions

Figure 2 shows the type declarations used in the
design of our simulation. The most fundamental is the
design ("dsgn") record. Each "dsgn" contains a pre-
and post-condition, both of which are boolean expres-
sions; a symbol table ("st"), defining the context in
which the design is to be interpreted; and an abstract
syntax tree for the command. The structure of the tree
depends on the statement represented. For example,
the record representing an assignment statement has a
"cmd" field of "asgn", and its variant record part
includes a list of the expressions to be computed and
the variables they are to be assigned to.

The record representing a loop has a "cmd" field
of "do" and a field for each sub-component of the loop,
while the record representing an if statment has a
"cmd" field of "if" and holds a list of guarded com-
mands. Each "gemd" record includes both a boolean
expression (the guard) and a design (the command). A
design record with a "cmd" field of "undef" represents

type dsgn = record
pre,post : bool_expr;
st : symtab ;
case cmd of
asgn: (v : seq(sym) ;
e : seqg(expr)) H
if : (cmds : seg(gcmd));
do : { init : dsgn ;
inv : bool_expr ;
bnd : int_func ;
grd : bool expr ;
dec : dsgn ;
body : dsgn) ;
seq : (sl,s2: dsgn)
skip, undef : (Yy
end dsgn ;
type spec = dsgn where
s:spec => s.cmd=undef ;
type gcmd = record
grd : bool expr ;
cmd : dsgn ;

end gcmd ;

Figure 2. Simulation Type Definitions

a specification ("spec"): pre- and post-conditions with
no statement in between. (Note that many of the con-
straints on designs are not enumerated; for example,
the types of expressions and variables must match for
assigniment stateinentis.)

Figure 3 shows the functions that define the
correctness of our simulation. The goal of the
Gries/Dijkstra process is a provably valid design; there-
fore, correctness is defined with a proof rule for each
construct. Analogously, "correct” is defined in terms of
five functions, one for each proof rule (we will present
an example function in a later section). While this
describes correctness for a single design, it does not
define the relationship between designs.

We can think of (partial) designs as representing
sets containing all the (complete) designs which can be
produced from them. A design ("d1") then refines
another ("d2") if the set corresponding to "d1" is a

function correct (d:dsgn):boolean is
.cmd=skip A skip rule(d) V
.cmd=asgn A asgn_rule(d) V
.cmd=seq A seqg_rule(d) V
.cmd=do A do_rule(d) \"4
.cmd=if A if rule(d) ;

Q000

function dsgneqg(dl,d2:dsgn) :boolean is
dl.stcd2.st A dl.pre=d2.pre A
dl.post=d2.post A dl.cmd=d2.cmd ;

function refines(dl,d2:dsgn) :boolean is
dl.cmd=undef A
dl.stcd2.st A dl.pre=d2.pre A
dl.post=d2.post A correct (d2) V
dsgneqg(dl,d2) A (
dl.cmde {asgn, skip,undef} V
dl.cmde {do} A
refines (dl.init,d2.init) A
refines (dl.dec, d2.dec) A
refines (dl.body,d2.body) V
dl.cmde {seq} A
refines(dl.sl,d2.sl) A
refines(dl.s2,d2.s2) V
dl.cmde {if} A
(Vj:0<3<|dl.cmd]|:
refines(dl.cmds{[j] .cmd,
d2.cmds{j].cmd}));

Figure 3. Process Correctness Definitions

subset of the one corresponding to "d2". The function
"refines” formalized this relationship. For example, a
design refines a specification if it has the same pre- and
post-conditions, its symbol table is a superset of the
specification’s (this allows for additional declarations),
and the design itself is correct.

"Refines" references the function "dsgneq”,
which returns true if two designs are equivalent at the
top-level; more precisely, if they have the same com-
mand, the symbol table of the first is a subset of the one
for the second, and their pre- and post-conditions are
identical. A design ("d2") "refines" another ("d1) if the
two are "dsgneq" and the sub-designs of "d2" refine
those of "d1". For example, the designs of two loops
refine each other if they are equal at the top-level and
the initialization, decrement, and body of the second
refine those of the first.

The types and definitions presented so far define
the framework in which our simulation is constructed;
however, the system is based on cliches. The records
representing cliches consist of two functions. "Pre"
takes a specification as an argument and returns a
boolean result, while "apply” takes a specification and
returns a design.

type cliche = record
function pre (s:spec)
function apply (s:spec)
end cliche

where c:cliche, s:spec =>
(c.pre(s) => refines(s,c.apply(s)});

: boolean ;
: dsgn ;

"Pre" evaluates to true if the cliche is applicable to the
specification in question, while "apply" retums the
result of applying the cliche in the proper manner.
Cliches are constrained to maintain the "refines" rela-
tion; specifically, for any cliche "c", if "c.pre(s)" evalu-
ates to true, then the value returned by "c.apply(s)"
refines "s".

Our simulation is based on simple constructs that
can be reasonably implemented in most programming
languages, although cliches may be problematic. We
define the correctness of designs in terms of proof rules
for each construct, and we describe the correctness of
the process in terms of a "refines" relation between
designs. We require the correctness of cliches; there-
fore, for the moment we will assume their validity and
turn our attention to the design process itself,

4. Design Process

Figure 4 shows the code for the design process.
There is a global variable "all_cliches" that holds all
the cliches currently known to the system. The func-
tion "derive_design” takes a specification and produces
a correct design, while "derive_subs" takes a design

——— -1 P P
A (= e LA O
function derive design(s:spec):dsgn is

{Q: true}
var d : dsgn :=s ; k integer := 0 ;
{inv P: 0<k<|all_cliches| A refines(s,d)}
{bnd t: |all cliches]|-k}
do k#|all cliches| A —complete(d) —
c,k := all cliches[k],k+1 ;
if c.pre(s) —
d := optimize(
derive_subs (c.apply(s)));
 —c.pre(s) — skip ;
£i ;
od ;
derive design := d ;
{R: refines(s,derive design)}
end derive design ;

function derive subs (d:dsgn) : dsgn is
{Q: true}
var ds dsgn := d ;
if d.cmde{if} —
var k: integer := 0 ;

{inv P: 0<k<|d.cmds| A
dsgneqg(d,ds) A
(V3:0<59<k:
refines(d.cmds []j] .cmd,
ds.cmds[j].cmd)) }
{bnd t: |d.cmds|-k}
do k#|d.cmds| —
) ds.cmds[k].cmd, k :=
derive design(d.cmds[k].cmd) , k+1;

od ;

I d.cmde{do} —
ds.init := derive design(d.init) ;
ds.dec := derive design(d.dec) ;

ds.body := derive design (d.body) ;
[d.cmde{seq} —
ds.sl := derive design(d.sl) ;
ds.s2 := derive_design(d.s2) ;
[ds.cmde {asgn, skip,undef} — skip ;
fi ;
derive subs := ds ;
{R: refines(d,derive subs)}
end derive subs ;

Figure 4. Design Process Code

and derives any sub-components necessary to complete
it. "Derive_design" uses the functions "optimize",

which takes a design as input and returns a new one
that has improved performance characteristics, and
"complete”, which returns true if all the unknowns in a
design have been filled in.

function optimize (d:dsgn)}
where d:dsgn =>
refines (d,optimize (d)) ;

dsgn ;

function complete(d:dsgn) : boolean is
d.cmde {skip,asgn} V
d.cmde {if} A
(Vced.cmds:complete(c.cmd)) V
d.cmde {do} A
complete (d.init) A
complete(d.dec) A
complete (d.body) V
d.cmde {seq} A
complete (d.sl) A complete(d.s2);

"Derive_design" takes a specification and if pos-
sible produces a complete design; in any case, it always
preserves the "refines” relation. The body of the func-
tion consists of a single loop, each iteration of which
concerns a different cliche. If the current cliche is
applicable to the specification, then it is applied and the
result passed to "derive_subs" and then "optimize";
otherwise, nothing is done. The loop terminates when
a complete design is produced, or when all the cliches
have been tried.

"Derive_subs" takes a design and, if necessary,
derives sub-designs to produce a complete program.
The body consists of an if statment with an alternative
for each command type. For example, if the top-level
design is for an if statement, then "derive_subs" loops
through all the guarded commands generating a design
for each one. On the other hand, if the top-level design
is for an assignment statement or a null command then
nothing is done.

The design process just presented is quite simple,
but for our purposes this is actually an advantage; it
allows at least some hope of rigorously arguing for its
correctness.

4.1. Correctness of Design Process

To show that the design process described in Fig-
ure 4 is correct, we first demonstrate that "derive_subs"
satisfies its specification, and then use this result to
show that "derive_design" is also correct. In both
cases, the demonstrations are in terms of the "refines"
relation that must be maintained by application of the
cliches. Therefore, the process will function correctly
as long as it uses correct cliches.

Since “derive_design" and "derive_subs" are
mutually recursive, to be extremely formal we should

really perform an induction on the number of recursive
calls, or a structural induction on the "dsgn" data type.
For the purposes of this paper, suffice it to say that the
base case is when "derive subs" is called with an
assigninent, null of unknown statement, and that the
induction step then assumes that only n recursive calls
are needed and that they will execute correctly.

For the present, we will proceed less rigorously,
performing a detailed check on the process design
rather than a fully formal proof. We begin by assum-
ing that "refines(d,derive_design(d))", and then show-
ing that "refines(d,derive_subs(d))". The latter is
implied by the pre- and post-conditions for
"derive_subs"; therefore, we will prove the following.

Theorem 1: {Q} derive_subs.body {R}

where Q:true, R:refines(d,derive_subs)

{Q} ds:=d {Q1} IF {R1} derive_subs:=ds {R}
where Q1: dsgneq(d,ds), R1: refines(d,ds)

1) {Q} ds:=d {Q1}
true => dsgneq(d,d)

2) {Ql}IF {R1} by Lemma 1

3) {R1} derive_subs:=ds {R}
refines(d,ds) => refines(d,ds)

therefore, {Q} derive_subs.body {R}.

The proof of this theorem has three parts. First, we
show that "Q1" is true following the assignment
"ds:=d"; second, we show that the if statement is
correct with respect to "Q1" and "R1"; and third, we
show that the assignment "derive_subs:=ds" establishes
"R" from any state where "R1" holds. The first and
third items are quite simple, but the second requires a
lemma of its own,

Lemma 1: {Q1} IF {R1}
where Q1: dsgneq(d,ds), R1: refines(d,ds)
1) Q1 => d.cmde {if} Vv
d.cmde {do} V d.cmde {seq} V
d.cmde {asgn,skip,undef}
2.1) {QlAd.cmde {if}} S1 {R1}
by Lemma 1.1
2.2) {QlAd.cmde {do}} S2 {R1}
dsgneq(d,ds) A d.cmde {do} A
refines(d.init,ds.init) A
refines(d.dec,ds.dec) A
refines(d.body,ds.body) =>
refines(d,ds)
23) {QlAd.cmde {seq}} S3 {R1}
dsgneq(d,ds) A d.cmde {seq} A
refines(d.s1,ds.s1) A
refines(d.s1,ds.d1) => refines(d,ds)
24) (QlAd.cmde {asgn,skip,undef}} skip {R1}
dsgneq(d,ds) A
d.cmde {asgn,skip,undef} =>
refines(d,ds)

therefore {Q1} IF {R1}.

The proof of this lemma follows the rule for if
statements given in [14]; it has two conditions for
correctness:

1) at least one of the guards must be true whenever
the statement begins execution

2) execution of any command with an open guard
must establish the post-condition.

The if statement has four alternatives. The proofs of
the last three are quite simple, but the first requires a
lemma.

Lemma 1.1: {Q1 A d.cmde {if}} S1 {R1}
where Q1: dsgneq(d,ds), R1: refines(d,ds)
1) {Q1 Ad.cmde {if}} k:=0 {P}
{Q1 Ad.cmde {if}} => P¥
=> 0<0< | d.cmds | A dsgneq(d,ds) A
(Vj:0<5<0:
refines(d.cmds[j]l.cmd,ds.cmds[j].cmd))
2) {PAk#|d.cmds|]} S (P}
PAk#|demds| A
refines(d.cmds(k].cmd,ds.cmds[k].cmd)
=> Plf—»l
=> 0<k+1< | d.cmds | A dsgneq(d,ds) A
(Vj:0<j<k+1:
refines(d.cmds{j].cmd,ds.cmds(j].cmd))
3) PAk=]demds| =>R
dsgneq(d,ds) A
(Vj:0<j< | d.emds | :
refines(d.cmds[jl.cmd,ds.cmds[j].cmd)) =>
refines(d,ds) ;
4) PAk#|dcmds| => |d.cmds|-k>0
5) {PAk#|d.cmds|} tl:=t; S {t<tl]}
PAk#|demds] =>
| d.cmds | -(k+1)< | d.cmds | -k

therefore, {Q1 A d.cmde {if}} S1 {R1}

The proof of this lemma follows the rule for
loops given in [14]; it has five conditions for correct-
ness.

1) the invariant must be initialized correctly

2) the loop body must maintain the invariant

3) termination of the loop with the invariant true must
guarantee the post-condition

4) the bound function must be non-negative while the
loop is running

5} the loop body must decrease the bound.

The proof of all these conditions is straight forward,
although somewhat involved. The second condition is
the most complicated. In this case, we have taken the
result of one part of the multiple assignment
("ds.cmds[k].cmd := derive_design(d,cmds[k].cmd)"),
extracted the logical consequences from the post-
condition of "derive_design" (refines(d.cmds[k].cmd,
ds.cmds[k].cmd), and moved them to the left hand side
of the implication. This greatly simplifies the
remainder of the computation.

Our argument for the correctness of
"derive_subs" is now complete, We can use this result
to prove "refines(s,derive_design(d))". This is implied
by the pre- and post-conditions for "derive_design";
therefore, it is equivalent to ihe following.

Theorem 2: {Q} derive_design.body {R}
where Q:true, R:refines(s,derive_design)

The proof of this theorem is reasonably straight for-
ward, fairly lengthy, and similar to Theorem 1; there-
fore, it will not be given here. This proof, as well as
any others not elaborated in this paper, may be found in
[331.

Our argument for the correctness of the design
process is now complete. We have not been extremely
formal, but we have significantly increased our
confidence that the program preserves the "refines”
relation assuming it is maintained by each cliche. In
other words, we have argued that the process will pro-
duce correct designs if it uses correct cliches. We now
turn to an examination of cliches and their correctness.

5. Cliches

We have constructed two distinct cliche libraries
including a number of cliches which differ in many
aspects [37]. However, for the purpose of verification
only one distinction is important. For the simpler
cliches, it was possible to describe and verify their
designs in terms of implementation level constructs.
On the other hand, the description and proof of the
more complex cliches is at a higher level of abstraction.
In this section we present an example cliche at each
level and argue that its application preserves the
"refines" relation.

5.1. Simple Cliche with Proof

The following is a high level representation of
the "simple_assignment” cliche, which generates (mul-
tiple) assignment statements.

cliche simple;assignment is

{Q} Var;..Vary := Soln,..Solny {R}
if
Q => R[[Var;..Vary / Soln;..Solngl]

end simple assignment ;

The cliche states that the assignment "Var,..Vary :=
Soln;..Solny" is correct with respect to pre-condition
"Q" and post-condition "R" if "Q" implies "R" with
"Soln,..Solny" substituted for "Vary..Vary". This
representation makes understanding the cliche simple,
and we can see that its correctness follows directly
from the proof rule for assignment statements; how-
ever, it leaves many details to the imagination.

Figure 5 shows a more precise description of
"simple_assignment”. The cliche is applicable to a
specification only if "asgn_able" is true, and applica-
tion in these situations is guaranteed to produce a

i "asgi To discuss ihis

design ihat saiisifies "asgn_rule".
representation, understanding of the following symbol
table routines is necessary.

function modlist (s:symtab) seq(sym) ;
function uselist (s:symtab) seqg(sym) ;
function newsym(ss:seqg(sym)) :seqg(sym);

The function "modlist" takes a symbol table as an
argument and returns a list of the modifiable symbols in
the current context. Similarly, "uselist” returns a list of
the accessible symbols. The function "newsym" takes

cliche simple_assignment is

function pre(s:spec) : boolean is

{Q: true}

var m :seqg(sym) := modlist{s.st);
var u :seqg{sym) := uselist({s.st);
var ss:seq(sym) := newsym(m) ;
pre := can_solve(ss,u

bool _expr(s.pre =>
subst (ss,m,s.post}))};
{R: pre = asgn_able(s)}
end pre ; '

function apply (s:spec)
{Q: asgn_able(s)}
var m :seq(sym)
var u :seq(sym)
var ss:seq(sym)
var np:bool expr:=
subst (ss,m, s.post}) ;

: dsgn is

modlist (s.st);
uselist(s.st);
newsym{m) ;

apply.e :=
solve (ss,u,
bool_expr(s.pre => np));
apply.st,apply.pre,apply.post :=
s.st,s.pre,s.post;
apply.cmd,apply.v := asgn,m ;
{R: asgn_rule(apply)}
end apply ;

end simple assignment ;

Figure 5. Simple_Assignment Cliche

a sequence of symbols and produces a new sequence
that is identical to the original, except that the symbol
names in the new list are unique.

To apply a general cliche for assignment state-
ments, we must somehow find a list of expressions that
make a logical formula true. In general this problem is
undecidable [18]. Our purpose is not to consider the
difficulties and technology of theorem proving; there-
fore, we will encapsulate the problem by defining the
following routines.

function solvable (m,u:seqg(sym);
f:bool expr):boolean is
(dss:seqg(expr(u)):
provable (subst (ss,m,f)));

function can_solve(m,u:seq(sym);
f:bool_expr) :boolean;
post can_solve => solvable(m,u,f) ;

function solve (m,u:seq(sym) ;
f:bool_ expr) :seq(expr);
pre can_solve(m,u,f) ;
post provable (subst (solve,m,f)) ;

A boolean expression "f" is "solvable" for modifiable
symbols "m" by terms in the usable symbols "u" if
there exists a list of expressions "ss" such that "f" with
"ss" substituted for "m" is provably correct. The func-
tion "can_solve" returns true (not necessarily if, but)
only if its input is "solvable", while "solve" is called
with a solvable problem and returns a solution. Notice
that "solvable" represents the absolute solubility of a
problem, while "can_solve" is a sound approximation
to this function.

We can now translate the proof rule for assign-
ments and the conditions necessary to apply the
"simple_assignment” cliche into our programming
notation.

function asgn rule(a:dsgn) : boolean is

a.cmd =asgn A

provable (bool_expr(a.pre =>

subst (a.e,a.v,a.post})}));

function asgn_able(s:spec) : boolean is
can_solve (ss,u,

bool_expr(s.pre =>

subst (ss,m,s.post))));
ss= newsym(modlist (s.st)) A
m modlist{s.st) A
u uselist (s.st) ;

where

n

The function "asgn_rule” returns true if the design in
question is for an assignment statement, and the for-
mula "a.pre => (a.post)iy" is provably correct. The

predicate "asgn_able" holds for a specification if the

formula required to prove the correctness of an assign-
ment which would satisfy the specification can be
solved.

The specification of "pre" requires that it return
true if and only if "asgn_able(s)" is true. This is
implied by the pre- and post-conditions for the func-
tion; therefore, we argue as follows.

Lemma 2: {Q} pre.body (R}
where Q: true, R: pre=asgn_able(s)
let ss’= newsym(modlist(s.st)),
u’ = uselist(s.st),
m’ = modlist(s.st),
f* = bool_expr(s.pre => subst(ss’,m’,s.post))
1) wp("pre:=can_solve(st ...)",R) =
Q3: can_solve(ss,u,
bool_expr(s.pre => subst(ss,m,s.post))
) = asgn_able(s)
2) wp("m:=modlist(s.st); u:=uselist(s.st);
ss:=newsym(m)",Q3) =
Q1: can_solve(ss’,u’,f*) = asgn_able(s)
HQ =>Ql
=> can_solve(ss’,u’.f’) =
can_solve(ss’,u’ f")
by definition of asgn_able
therefore, {Q} pre.body {R}.

The proof of this lemma is straight forward, although
reasonably involved. The weakest pre-condition for
the four assignments that constitute the body of "pre" to
establish the post-condition is first calculated, and then
the pre-condition is shown to imply it.

The specification of "apply” requires that it
return a design that satisfies "asgn_rule’ if "asgn_able"
is true of the specification given as input. The proof of
this is similar to Lemma 2, and so will not be given
here.

Lemma 3: asgn_able(s) =>
asgn_rule(simple_assignment.apply(s))

Lemma two can be rewritten as follows.
Lemma 2: simple_assignment.pre(s) = asgn_able(s)
Therefore, it directly follows that

Theorem 3: simple_assignment.pre(s) =>
asgn_rule(simple_assignment.apply(s))

We will take this as proof that "simple_assignment”
preserves the "refines” relationship.

This completes our argument for the correctness
of this cliche. In this simple situation, we were able to
verify the design at a level not far removed from the
implementation, although we did encapsulate consider-
able complexity into external logic manipulation rou-
tines. Unfortunately, this level of analysis is not practi-
cal for many of the cliches we constructed. In these
more complex situations, we verified the design at a

higher level of abstraction and then developed the
implementation more informally.

5.2. More Complex Cliche with Proof

For example, Figure 6 shows a simplified
representation of the "conditional_iteration_on_set"
cliche, application of which can solve problems that
require the use of a loop with an embedded conditional.
The post-condition of the cliche states that "Var" is
equal to the value of "Iop(Set,Cond)"; in other words,
that the result is equal to the value of an iteration
operator applied to a set with a certain condition.

The body of "conditional_iteration_on_set"
declares two local variables. "Lset” is a set containing
all the items still to be considered, while "Lvar" is the
item currently being processed. "Lset" is initialized to
"Set" and the result to "Id" (the identity element). The
loop interates over all the items in "Set". If the item in
question satisfies "Cond” then "Var" is set to
"Op(Var,Lvar)"; otherwise, nothing is done.

cliche conditional_ iteration on_set is

{Q}

var Lset : set (Stype)
var Lvar : Stype ;
Lset,Var := Set,Id ;

{inv P:LsetcSet A
Var=Iop(Set-Lset,Cond)}
{bnd t:|Lset]}
do Lset#{} —
choose (Lset, Lvar) ;
Lset :=Lset-Lvar ;
{Ql:Var=VAR}
< 81 >(Var:inout Rtype) ;
{R1l:—Cond(Lvar) A Var=VAR V
Cond (Lvar) A
Var=0p (VAR, Lvar) }
od .
{R: Var = Iop(Set,Cond)} ;

if
(Id,Op (Var,Lvar),Iop(Set,Cond))
€ iop table ;

end conditional_ iteration on_set ;

Figure 6. Conditional Iteration_on_Set Cliche

This cliche can be applied if its pre- and post-
conditions unify with the current specification and the
identity element and result modification operator match
one of the elements in a pre-computed table. Each
eniry in "iop_table" satisfies the foliowing properties.
Property 1:

(Id,0p(Var,Lvar),Iop(Set,Cond)) € iop_table =>
1) Id = Iop({ },Cond)
2.1) (sess A Cond(s) =>
Iop(ss,Cond) = Op(Iop(ss-s,Cond),s))
22) (sess A—=Cond(s) =>
) Iop(ss,Cond) = Iop(ss-s,Cond))

These are exactly those necessary to prove the correct-
ness of the cliche body and ensure that all the designs
produced from the cliche will be correct. In a sense,
we have encapsulated considerable complexity within
this table; each entry requires a (possibly non-trivial)
proof that it displays the necessary properties.

Figure 7 shows the fully annotated version of the

cliche body which we will use to argue for its correct-
ness.

{Q}

var Lset : set (Stype) ;
var Lvar : Stype ;
Lset,Var := Set,Id ;

{Q": Var=Id A Lset=Set}
{inv P:LsetcSet A
Var=Iop (Set-Lset,Cond)}
{bnd t: |Lset]}
do Lset#{} —
{Q1l": P A Lset#{} A
Lset=LSET A Var=VAR}
choose (Lset, Lvar); Lset:=Lset-Lvar;
{Q1l: Var=VAR A
Q2: LSETcSet A
VAR = JTop(Set-LSET,Cond} A
Lset=LSET~-Lvar A LvareLSET}
< 81 >(Var:inout Rtype) ;
{R1l: Q2 A
—Cond (Lvar) A Var=VAR V
Cond (Lvar) A Var=0Op (VAR, Lvar)}
od
{R": P A Lset={}}
{R: Var = Iop(Set,Cond)} ;

Figure 7. Fully Annotated Cliche Body

Theorem 4: {Q} conditional_iteration_on_set.body {R}
where Q:true, R:Var=Iop(Set,Cond)
{Q}I{Q'} DO {R’} {R}
1) {Q) Lset,Var := Set.Id {Q’)
Q =>Id=Id A Set=Set
2) {Q’} DO {R’} by Lemma4

3) R"=>R
LsetcSet A Var=Iop(Set-Lset,Cond) A Lset={}
=> Var=Iop(Set,Cond)

To show that the cliche is correct, we prove that
the initialization sets up the loop in the proper manner,
that the loop is correct, and that correct termination of
the loop ensures the post-condition for the routine is
satisfied. The proofs of the first and third of these con-
ditions are both simple and straight forward. The proof
of the loop is a a bit more complicated; therefore, we
will make it a lemma.

Lemma 4: {Q’} DO {R’}
where Q’:Var=Id A Lset=Set, R’:P A Lset={}
) QQ=>P
Var=Id A Lset=Set => Py 5"
Q’ => SetcSet A Id = Iop(Set-Set,Cond)
1d = Iop({},Cond) by Property 1.1
2) {PAB}S {P) ‘
{PAB} {Q1’} ST’ {Q1} S1 {R1]} {P}
P ALset={} =>Q1’
{Q1’} S1 {Q1} by Lemma 4.1
{Q1} S1 {R1} by assumption
R1=>P byLemma4.2
3) PA-B =>R’
P A —(Lset#{}) => P A Lset={}
4) PAB =>(120)
=> |Lset| =0
5) {PAB}tl:=t;S1’; S1 {t<t1}
{PAB} tl:=t {t1=t} S1° {t<tl} S1 {t<t1}
{PAB} tl:=t {t1=t}
{t1=t} choose(Lset,Lvar) {t1=tA Lvare Lset}
{t1=t A Lvare Lset} Lset:=Lset-Lvar {t<tl}
{t<tl} S1 {t<tl}
because S1 modifies only Var

therefore, {Q’} DO {R’}.

The proof of this lemma is somewhat involved.
In the first condition, the equalities from the left hand
side of the implication (Var=Id, Lset=Set) are
transformed into substitutions and then applied to the
right hand side. The fifth condition relys on the fact
that "S1" does not modify "Lset", and therefore can not
change the value of the bound function. The second
condition is the most complex; it assumes that the unk-
nown in the loop body is completed correctly and uses
two lemmas that we present separately.

Lemma 4.1: {Q1’} S1° {Q1}
where Q1’:P ALset#{} ALset=LSET A Var=VAR,
Q1:Var=VAR ALSETcSet A
VAR = Iop(Set-LSET,Cond) A
Lset=LSET-Lvar A Lvare LSET

The proof of the first lemma is a rather routine
matter of substitution and expansion, so we will not
present it here. However, we should note that "Q1"
simply names the current values of "Lset" and "Var"
with the new constants "LSET" and "VAR" respec-
tively. The proof of the second lemma is somewhat
more interesting and demonstrates the necessity of Pro-
perties 1.2.1 and 1.2.2

Lemma 4.2: R1 =>P
where R1:Q2 A (—Cond(Lvar) A Var=VAR V
Cond(Lvar) A Var=Op(VAR Lvar)),
P: LsetcSet A Var=Iop(Set-Lset,Cond)
R1 =>Q2
=> LSETcSet A
T1:(Lset=LSET-Lvar A Lvare LSET)
=> Pl:LsetcSet
R1=>Q2
=> T2: (VAR = Iop(Set-LSET,Cond))
R1 => T3:(Cond(Lvar) A Var=Op(VAR Lvar)) V
T4: (—Cond(Lvar) A Var=VAR)
TIAT2AT3 =>P2:(Var = lop(Set-Lset,Cond))
by Property 1.2.1
T1AT2 AT4 => P2 by Property 1.2.2
PIAP2=>P

therefore, R1 =>P

The proof of the loop is now complete, and with
it our argument for the correctness of "conditional_
iteration_on_set". We will take this as a demonstration
that application of the cliche produces only designs that
are totally correct with respect to their specifications
and thereby preserves the "refines" relation. Although
we were not able to verify this cliche at a level close to
its implementation, we have significantly increased our
confidence that it will function properly.

6. Summary and Conclusions

We have constructed a simulation of the formal
design method described by Gries in his book The Sci-
ence of Programming [33-37]. The system takes a pre-
and post-condition specification and incrementally
transforms it into a provably correct design using a
library of cliches, complex knowledge structures
representing commonly occurring situations.

The system is designed using guarded com-
mands, and we have rigorously verified its correctness
[33,36]. This argument has has two parts. First, we
have shown that the simulation always produces
correct designs if all the cliches in the library are valid,
and second, we have demonstrated that the cliches in
the library only produce designs which satisfy their

specifications.

The cliches are verified at two different levels of
abstraction. For the simpler cliches, it was possible to
describe and verify their designs in terms of implemen-
tation level constructs. Unfortunately, for many of the
more complex cliches this was not practical. In these
situations, we verified a more abstract version of the
design and then developed the implementation infor-
mally. In both cases, significant complexity was
encapsulated within external routines and pre-
computed tables.

Our experience with process verification has
been both enjoyable and illuminating. Producing
rigorous arguments of correctmess forced us to think
more carefully about the system we were constructing
and probably resulted in a cleaner, more elegant struc-
ture. Both our designs and proofs went through a
number of iterations before reaching the forms
presented in this paper. Unfortunately, this process
was reasonably time consuming; therefore, for the
present such efforts will probably be restricted to
smaller, more precisely defined processes.

7. References

1. Barstow, D. R., *‘Domain-Specific Automatic Programming”’,
IEEE Trans. Software Eng. SE-11, 11 (Nov. 1985), 1321-1336.

2. Bemot, G. and M. C. Gaudel, ‘‘Software Testing Based on
Formal Specifications: a Theory and a Tool”’, Software Eng. J.
6,6 (Nov. 1991), 387.

3. Bjomer, D, *“On The Use of Formal Methods in Software
Development’’, Proc. 9th Intl. Conf. Software Eng., 1987, 17-
29. .

4. Broy, M. and M. Wirsing, eds., Methods of Programming:
Selected Papers on the CIP-Project, Springer-Verlag, New
York, 1991.

5. Chen, W. and J. T. Udding, ‘‘Program Inversion: More Than
Fan’’, Science of Computer Programming 15, 1 (1990), 1-13.

6. Cunningham, H. C. and G. C. Roman, ‘“‘A UNITY-Style
Programming Logic for Shared Dataspace Programs”’, IEEE
Trans. Parallel Distributed Systems 1,3 (July 1990), 365.

7. Delisle, N. and D. Garlan, ‘“A Formal Specification of an
Oscilloscope’’, IEEE Software 7, 5 (Sept. 1990), 29-36.

8. Dijkstra, E. W., ‘‘Guarded Commands, Nondeterminacy and
Formal Derivation of Programs’, Comm. ACM 18, 8 (Aug.
1975), 453-457.

9. Dijkstra, E. W., A Discipline of Programming, Prentice Hall,

Englewood Cliffs, NJ, 1976.

Feather, M. S., “‘Constructing Specifications by Combining

Parallel Elaborations’’, I[EEE Trans. Software Eng. 15, 2 (Feb.

1989), 198-208.

Fickas, S. and R. Helm, ‘‘Knowledge Representation and

Reasoning in the Design of Composite Systems’’, [EEE Trans.

Software Eng. 18, 6 (June 1992), 470-482.

Futatsugi, K., J. Goguen, J. Meseguer and K. Okada,

‘‘Parameterized Programming in OBJ2"", Proc. 9th Intl. Conf.

Software Eng., 1987, 51-60.

Gries, D., ‘“An Illustration of Current Ideas on the Derivation of

Correctness Proofs and Correct Programs”, IEEE Trans.

Software Eng. SE-2, 4 (Dec. 1976), 238-244.

Gries, D., The Science of Programming, Springer-Verlag, New

York, 1981.

10.

11

12.

13.

14.

10

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

Proc. 7th Intl. Software Process Workshop, IEEE Computer
Society Press, Los Alamitos, CA, 1991.

Jones, C. B., Systematic Software Development Using VDM,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

Linger, R. C, H. D. Mills and B. I Witt, Structured
Frogramming: Theory and Practice, Addison-Wesley, Reading,
MA, 1979.

Loeckx, J. and K. Sieber, The Foundations of Program
Verification, John Wiley & Sons, New York, 1984.

Lor, K. E. and D. M. Berry, ‘‘Automatic Synthesis of SARA
Design Models From System Requirements’’, JEEE Trans.
Software Eng. 17, 12 (Dec. 1991), 1229-1240.

Madhavji, N. H. and W. Schafer, *‘Prism - Methodology and
Process-Oriented Environment’’, IEEE Trans. Software Eng. 17,
12 (Dec. 1991), 1270-1283.

Moriconi, M. S., ‘*A Designer/Verifier's Assistant’’, IEEE
Trans. Software Eng. 5, 4 (July 1979), 387-401.

Morzenti, A., D. Mandrioli and C. Ghezzi, ‘“‘A Model
Parametric Real-Time Logic’’, ACM Trans. Programming
Languages Systems 14, 4 (Oct. 1992), 521.

Osterweil, L. 1., “‘Software Processes Are Software Too’’, Proc.
9th Intl. Conf. Software Eng., 1987, 2-13.

Perry, D. E., **Version Control in the Inscape Environment’’,
Proc. 9th Intl. Conf. Software Eng., 1987, 142-149.

Potts, C. and G. Bruns, ‘‘Recording the Reasons for Design
Decisions’’, Proc. 10th Intl. Conf. Software Eng., Aprl 1988,
418-427.

Rich, C. and R. C. Waters, eds., Readings in Artificial
Intelligence and Software Engineering, Morgan Kaufman
Publishers, Los Altos, CA, 1986.

Shaw, M., Alphard: Form and Content, Springer-Verlag, New
York, 1981.

. Smith, D. R., “KIDS: a Semiautomatic Program Development

System’’, IEEE Trans. Software Eng. 16, 9 (Sept. 1990), 1024-
1043.

Sutton, S. M., D. Heimbigner and L. J. Osterweil, ‘‘Language
Constructs for Managing Change in Process-Centered
Environments’’, Proc. 4th ACM SIGSOFT Symp. Software
Development Environments, Dec. 1990, 206-217.

Taylor, R. N,, F. C. Belz, L. A. Clarke, L. J. Osterweil, R. W,
Selby, J. C. Wileden, A. Wolf and M. Young, ‘‘Foundations for
the Arcadia Environment Architecture’’, Proc. Symp. Practical
Software Development Environments, 1988, 1-13.

Terwilliger, R. B. and R. H. Campbell, ‘‘An Early Report on
ENCOMPASS®’, Proc. 10th Inil. Conf. Sofiware Eng., April
1988, 344-354.

Terwilliger, R. B. and R. H. Campbell, ‘“‘PLEASE: Executable
Specifications for Incremental Software Development”, J.
Systems Software 10, 2 (Sept. 1989), 97-112.

Terwilliger, R. B., ‘A Process Program for Gries/Dijkstra
Design’’, Rprt. CU-CS-566-91, Dept. Comp. Sci., U. Colorado
Boulder, Dec. 1991.

Terwilliger, R. B., ‘‘Simulating the Gries/Dijkstra Design
Process’, Proc. 7th Knowledge-Based Software Engineering
Conf., Sept. 1992, 144-153.

Terwilliger, R. B., “Evolving Tools to Support the
Gries/Dijkstra Design Process’’, Rprt. CU-CS-631-92, Dept.
Comp. Sci., U. Colorado Boulder, Dec. 1992.

Terwilliger, R. B., **A Second Simulation of the Gries/Dijkstra
Design Process”, Rprt. CU-CS-618-92, Dept. Comp. Sci., U.
Colorado Boulder, Oct. 1992.

Terwilliger, R. B., ““An Evolving Simulation of the
Gries/Dijkstra Design Process’’, Rprt. CU-CS-632-92, Dept.
Comp. Sci., U. Colorado Boulder, Dec. 1992.

Woodcock, J. C. P., “‘Structuring Specifications in Z*, Software
Eng.J.4,1 (Jan 1989), 51.

