Globally Convergant Parallel Algorithms for
Solving Block Bordered Systems fo
Nonlinear Equations

Dan Feng and Robert B. Schnable

CU-CS-633-92 December 1992

—
University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Abstract

Block bordered systems of nonlinear equations are systems whose Jacobian matrix
consists of a series of diagonal blocks, plus a border of possibly dense rows and columns.
Large systems of this type occur in many applications in science and engineering, and
are attractive candidates for solution on parallel computers. Recently, Zhang, Byrd,
and Schnabel developed a new class of algorithms for solving such systems that has
significant computational advantages over previous methods on sequential computers,
and even greater advantages on parallel computers. Its main feature is that the methods
perform multiple inner iterations on the diagonal blocks for each outer iteration on the
overall system, in a new way that retains fast local convergence. This paper investigates
whether one can develop related algorithms that retain these advantages of paralleliz-
ability and fast local convergence, and are also globally convergent and computationally
robust on a broad class of problems, including those where the Jacobian matrix or any
diagonal block is singular or ill-conditioned. We introduce related new algorithms for
solving such systems, and show that they have strong global convergence properties
under very mild assumptions, and retain parallelizability and fast local convergence.

1 Introduction

Efficient numerical methods for solving systems of nonlinear equations find wide appli-
cation in science and engineering. Newton’s method is the basic general purpose iterative
approach for solving such systems. At each iteration, Newton’s method creates a linear
approximation to the nonlinear system of equations based upon the current Jacobian ma-
trix. On parallel computers, an efficient parallel method for solving this system of linear
equations becomes an important consideration [5].

In many practical problems, systems of nonlinear equations are large and have special
structure. A common structure is large, “block bordered” systems of nonlinear equations. In
such problems, the Jacobian matrix consists of a number of square, non-overlapping diagonal
blocks, plus a final set of possibly dense rows and columns. Block bordered nonlinear
equations are common in VLSI design, structural engineering, and many other areas [6, 7].

Due to their near separability, block bordered systems of nonlinear equations are an
attractive candidate for parallel computation. This issue is explored in Zhang, Byrd and
Schnabel[10] and Zhang[8]. An obvious approach is to parallelize Newton’s method, and
utilize the block bordered structure in solving the resultant block bordered system of linear
equations that arises at each iteration. More parallelism can be obtained, however, if more
work is done independently at each iteration on the subsets of equations corresponding
to the diagonal blocks, i.e. by performing more “inner iterations” on these subsystems
per each “outer iteration” on the entire system. Zhang, Byrd and Schnabel{10] showed
how to perform such extra, perfectly parallelizable inner iterations at each iteration, while
retaining the fast local convergence of Newton’s method through a “correction” step. They
also showed that the extra inner iterations improve the computational performance of the
algorithms on practical problems on both sequential and parallel computers.

Two important issues that arise from this approach are how to make the inner iterations
consistent with global convergence, and how to handle possible singularity or ill-conditioning

of either the entire Jacobian matrix or any diagonal submatrix in a way that is consistent
with global convergence and does not harm parallelizability. This paper addresses these
issues. We give a new, computationally practical algorithm that addresses singularity in a
way that is consistent with global convergence, parallel efficiency, and the sparsity structure
of the problem. The algorithm is related to the methods of Zhang, Byrd and Schnabel[10],
but incorporates a new way of dealing with singularity, and a revised way of performing the
inner iterations. We show that this algorithm is globally convergent to a root or critical point
of the system of nonlinear equations under very mild assumptions, namely a continuously
differentiable set of equations with a Lipschitz continuous Jacobian matrix whose norm is
bounded above, and that it retains the fast local convergence properties of the previous
methods.

The remainder of this paper is organized as follows. Block bordered systems of nonlinear
equations and current approaches to solving them are reviewed in section 2. In section 3, two
new algorithms, a basic algorithm for the nonsingular case and a robust, practical algorithm
for the general case, are introduced, and their local convergence properties are discussed.
Then in section 4, the global convergence properties of the new algorithms are analyzed.
Finally, in section 5, we make some brief comments about some possible difficulties and
extensions of our algorithms. :

2 Background on block bordered nonlinear problems

Consider the system of nonlinear equations

fi(zivxq-%-l): 0; ¢ = 17 ccy 4

f‘I+1(x17"'7zq+1):07 (21&)
where
g, eRM fieRM i =1, -, g+ 1, (2.1b)
and
g+1
Z n; = n. (2.1c)
=1 .
Let
zeR” = (x?,---,a:?,x?_,_ﬂT (2.1d)
Flz) R =R = (f1(2),, f1(2), fa(2))". (2.1¢)
The Jacobian matrix
Ay By
As B,
J(z) = SRS I (2.1f)
Ay By
Cl Cy - Cq P

has a block bordered structure, where

A = agif) ERMXN G = 1, ... g, (2.1g)
Bi = gf;:) € RNt = 1, ... g, (2.1h)
¢ = ““af?;i(*x) E RN = 1, g (2.1i)
and
P= %‘fj}? € Rnar1xngrr (2.1))

Block bordered problems of this form arise in many areas of science and engineering
including VLSI design and structural engineering. Efficient algorithms for solving linear
systems of this special structure have been studied in Christara [1], Christara and Houstis
[2], Farhat and Wilson [6], and Mu and Rice [7]. Zhang, Byrd and Schnabel [9, 10] considered
algorithms for solving nonlinear systems of this type. They studied two types.of iterative
methods, explicit and implicit methods. These methods are both related to Newton’s
method. They both try to maintain the advantages of Newton’s method while taking
advantage of the sparsity of the problem, but differ in how fully they utilize the near
separability of the equations.

The explicit method is obtained by simply applying Newton’s method to the problem
defined in (2.1a)-(2.1j), resulting in the system of linear equations

J(zF) Ak = —F(2*).

This block bordered system of linear equations can be solved efficiently by first factoring
~ the diagonal blocks A;, i = 1,---,q, which is essentially the same as using the ith set of
equations to express Az; in terms of Az,qy for each 1 < ¢ < q. Then one completes the
factorization by forming and factoring the Schur complement of the bottom block,

. A
J=P-> CiA7'B;, (2.2)

i=1
after which Az,.; can be solved for. Finally, one can solve for each Az;, i = 1,---,q¢,

using the value of Az, and the factorization of A;. The solution Az* is identical to the
standard Newton step, and the method can be made globally convergent by utilizing a line
search (assuming J(z*) and the diagonal block are nonsingular).

There is perfect parallelism available in two portions of the implicit method, the fac-
torization of the ¢ diagonal blocks A; and the backsolves for the ¢ Az;’s after Azgyy is
calculated. A bottleneck to parallelism exists, however, in the formation and factorization
of the bottom block J, and the solution for Azgyq and its communication to other proces-
sors. Therefore from the point of view of parallel computation, it would be desirable to do

more work on the equations that correspond to the diagonal blocks and the z;’s, and less
work on the final set of equations and z,41. The implicit method attempts to achieve this
goal in a way that is beneficial to the overall speed of the method.

The basic philosophy behind the implicit approach (but not its implementation) is as
follows. First each of the ¢ systems of nonlinear equations

fi(xi,xq'{-l) = 03 t = 19 e q (23)

could be used to solve for 2; for each value of z441. This would mean that each of the z;’s
would be implicitly given by a function of z441. Then the last system of equations could
be viewed as a system in terms of z44; only,

for1(@1(zg41), -+, Tg(Tg41) Tgy1) = 0, (2.4)

which is solved for z,,;. Note that the Jacobian matrix of (2.4) is given by (2.2).

A practical computational procedure related to this idea is to first apply several itera-
tions of Newton’s method to approzimately solve each (2.3) for z;(z,+1) given the current
value of z,41, then to apply one iteration of a second Newton’s method to (2.4) to determine
a new value of z44; using these new values of z;, and finally to combine these results to de-
termine a search direction for the next iterate. The first set of Newton iterations, which we
call “inner iterations”, can be fully parallelized (because the ¢ calculations of the new z;’s
are independent of each other), while the second Newton iteration is generally performed
sequentially because the system (2.4) is generally fairly small. Thus in one overall “outer”
iteration of the implicit method, one would like to apply multiple inner iterations to each
(2.3) more accurately, because of the parallelism available in these calculations, hopefully in
exchange for requiring fewer overall iterations, and consequently less total work, for solving
the overall problem. :

A subtlety involved in applying the implicit approach is that before using the step
(Azy, -+, Azy, Azgyy) calculated by the above procedure as a search direction, a “correc-
tion” needs to be made to each Az; i = 1,---,¢ to account for the change in z,.;. This
correction, which was introduced in [9, 10], consists of adding -A;lBgA.Z‘q_H to each Az,
for 1 <4 < g. With this correction, the outer iterations of the implicit method retain the
local quadratic convergence of the explicit method, whereas without the correction they do
not. Also, we show in Section 3 that with one new modification to the previous corrected
implicit method which does not alter its local quadratic convergence properties, the implicit
method with one inner iteration per outer iteration is the same as the explicit method.

In practice, however, the advantage of the implicit method comes from using more than
one inner iteration per outer iteration. In [9] and [10] it is shown that on a set of practical
problems, performing several inner iterations per outer iteration reduces the number of
overall (outer) iterations required to solve the problem, and the total time required to
solve the problems. Since the inner iterations parallelize fully, this leads to an even larger
advantage over the explicit method (i.e. the conventional Newton’s method) on parallel
computers.

Therefore implicit methods seem to offer a promising computational approach to solving
block bordered systems of nonlinear equations, and it seems important to create versions of
them that are computationally robust in the face of possible singularity or ill-conditioning
of the Jacobian matrix or its diagonal blocks, and that are known to have strong global
convergence properties. This has not previously been accomplished, and is the contribution
of the remainder of this paper.

3 New algorithms

In this section we introduce two new implicit methods for solving block bordered systems
of nonlinear equations. The first, the basic method given in Algorithm A, is the method
that is used as long as the Jacobian matrix and all of its diagonal blocks are nonsingular and
sufficiently well-conditioned. Presenting this algorithm first allows us to introduce several
new features that are used in both new methods, in a simplified setting. The second new
method, the robust method given in Algorithm B, is the complete new algorithm including
provisions for dealing with singularity or ill-conditioning of either the entire Jacobian matrix
or any of its diagonal blocks. It includes Algorithm A as a sub-case. In Section 4 we will
first prove the global convergence of Algorithm A (for the case when the Jacobian matrix
and its diagonal blocks are uniformly nonsingular), and then build upon this to prove the
global convergence of Algorithm B (without any assumption about the singularity of the
Jacobian matrix or its diagonal blocks).

3.1 A basic algorithm

The basic method is fairly similar to the corrected implicit method introduced in [9, 10].
Its framework is as follows. Like all the previous and new implicit methods, it has inner
and outer iterations. Its inner iterations are the same as in the corrected implicit method
of [10] except for their stopping conditions, which are discussed later in this subsection. At
iteration k, for each ¢ = 1,---,¢, the inner iterations consist of solving
k-1 k,j—1 . .
Ade? ™ = = fi(a T wg) 5= 1 g
for some number of inner iterations j; that is determined by the stopping conditions. Here
xf’o = 2% and at the end of each inner iteration, mf’]_l is updated by

kg k,j—1 k,j—1
CL‘Z 7 = :L‘z 7 + A:Ez J .

We exit the inner iterations by setting

:z:f"“ - xf”i‘]
Note that the zf’j are useful for describing the algorithm but do not need to be stored
once the next inner iteration is completed. Note also that as in [10], A; is kept fixed at

A;(2*) throughout the inner iterations for a given outer iteration, rather than re-evaluating

5

it at each a:ff"], because this saves the cost of multiple evaluations and factorizations of the
diagonal blocks per outer iteration without harming the rate of convergence of the outer
iterations.

In the outer iteration, instead of solving

jA$§+1 = -fq+1(il‘lf+1,"~,9L‘§+1,w§+1)
(J given by (2.2)) as in [10], we solve
q
JAm§+1 = —fq+1(xl1°, - -,xg,mfﬂ) - ZC’i(xf“ -z, (3.1)
=1

It is-easy to see that the right hand side of (3.1) is a linear Taylor series approximation to
— forr(2FtY- -,mf“, x§+1). An obvious advantage of using this approximation is the sav-
ing of a function evaluation in the outer iteration, which is desirable because this evaluation
may be expensive and because it would likely be performed sequentially and thus increase
the parallel bottleneck of the outer iteration. Even more importantly, this modification has
significant advantages with respect to global convergence that are discussed later in this
subsection.

Finally, as in the corrected implicit method of [10], the correction
§; = —A7'B;Azk,,

is calculated and added to each increment of Az; obtained in the inner iterations before the
line search is performed.

We now present the entire algorithm and then discuss the remainder of its features. Note
that since we assume for Algorithm A that the Jacobian matrix and its diagonal blocks are
nonsingular, the Schur complement J = P — 7, C;AT!B; is defined and nonsingular. In
general, the Schur complement will also be well-conditioned if the entire Jacobian matrix
and its diagonal blocks are well-conditioned, although we mention in Section 5 that there
do exist somewhat pathological counterexamples.

Algorithm A: Iteration k of the Basic Method

Given ¢* = (zF, .- -,mf;,xfjﬂ) and A;, B;, Ci,1=1,---,¢, P, fi(z),i=1,---,¢+1, F(z)
and J(z) as defined in (2.1a)-(2.1j), and constants @, B, 71, T2, jmaz With 0 < @ < 3 < %,
O<T1 31772213jmax_>.0~

INNER ITERATIONS
For i=1,q Do
Solve A;AzF = ~fi(mf,m§+l) for Az¥;

kVO_ k. . — kc
z;” =z 8 = Azl

(3

ADDITIONAL INNER ITERATIONS SUBALGORITHM
J=0;
While s AT fi(a, 2541) < —nillfi(af, 2540)|?
and [[4;s:]] < T2“fl'(££‘cvx§+1)“ and j < jmaz
Azk=s5j=j+ 120 =ak+s;
Solve A;6; = —fi(zf’j,$§+1) for &;;
si = 8i + 6;;
End{While}
Ji=3-1
End{Additional Inner Iterations Subalgorithm}
t; = —C.gAa::»c.

OUTER ITERATION
‘ Iy
;1,—_0 fl(mi]; $§+1)
i o f2($2’],$§+1)
Let F(z*) = : ;
Too fala§? 2540)

fq+1(zk)
Form J = P — 0, CiA7 By
Solve fAm§+1 = — for1(z®) + sS4 ti for AI};H?
Do the correction: Set Aa:f = ./.\;zcﬁc - A;’le'Azf;H, t=1,--,q;

Perform Line Search: Find A* so that
| F(aF + M Azy)||? = | F(2F)|]* < —ar* F(e*)T F(z*) and
[F(2F + M Az)| = |F(2F)|1? > =B F(2*)T F(z*);

zFtl = ok L ARAZE. O

The conditions enforced in the while loop for the inner iterations of Algorithm A will be
seen, in its global convergence proof, to ensure that the step generated by the algorithm is a
sufficient descent direction (i.e. giving at least 71 times the descent of the Newton direction)
and that its length is bounded above (by 7, times the length of the Newton step). After one
inner iteration, s; = —A;! fi(zf,zk,), which gives sg»rAini(a:f,x§+1)=-|{fi(mf,x§+1)||2,
hence S?Affi(a;f,mgﬂ) < ~Tl|lfi(xf,z§+1)l|2 is satisfied for any 0 < 7 < 1. In addi-
tion, ||A;s| = Hfi(xf,a:f;ﬂ)[[, hence [|A4;s:|| < Tg”fi(:z:f,xé’ﬂ)]l is satisfied for any 7 > 1.
Therefore the while loop conditions always accept the step that is produced after one inner

7

iteration, which by Lemma 3.1 below corresponds to the standard Newton step. The upper
bound on the number of inner iterations, jmae, is not required by the theoretical analysis
but would be imposed in any practical implementation. The optimal choices of 7, and 5
would need to be determined by experimentation on practical problems.

We now show in the following lemma that the search direction Az* generated by Algo-
rithm A satisfies J(z*)Az* = —F(2¥). In Section 4, this will be shown to ensure that Az*
is a descent direction for || F(z)||?, since Lemma 3.1 shows that the dot product of Az* and
the gradient of 3||F(z)||? at z*, J(a*)T F(2*), is equal to (=J(z*)T F(2*))T (J(a*)T F(z*))
= F(z¥)TF(2*), which from the first termination condition of the while loop of Algorithm
A will be shown to be no greater than —7||F(z)]||%.

Lemma 3.1 The search direction Az* generated by Algorithm A at iteration k satisfies
J(z®)Azk = —F(a¥).

Proof. After the inner iterations
k 1 X kg _k
Azi = A7V f(27, b)),
—~
and

Ji)
ti = —Cildaf = C AT flef zk). (3.2)

3
i=0

Hence, after the correction

Ji]
Azt = —A7VS faf 2k) - AT BiAE (3.3)
-
or,
Ji y
AiAzf + Bidak = =57 fa¥ 2k). (3.4)
=0

On the other hand, from the outer iteration Am§+1 solves

7
JA$§+1 = ‘fq+1($lf,"',$§,$§+1)+Zti- (3.5)
i+1
Plugging (3.2) in (3.5) and recalling / = P+ S0, C; A7 ! B;, we have
. q . . Ji bi ok . L.
PAzE + 3 CiAT (=Bidal, = f(af 2k) = = fraa(at, -, af 2k),
3=0

=1

8

which from (3.4) gives

q
PA$§+1 +ZC2AIE:€ = -—fq+l(rf"...7‘7’.§7w§+1)~ (36)

=1
Combining (3.4) and (3.6) yields J(z*)Az* = — F(z*) and completes the proof. O

A corollary of Lemma 3.1 is that Algorithm A with each j; = 0 gives the Newton step,
‘while for the corrected implicit method of [10], this is only true if f,41 is linear. The
difference arises because the previous algorithm evaluates f,41 at the intermediate point,
while the new algorithm evaluates the linear approximation to f;4+1 at the intermediate
point (equation (3.1)). This difference, and the analogous difference when multiple inner
iterations are used which leads to a guarantee of sufficient descent as discussed above, is
advantageous to the global convergence properties of the method. It does not affect the
local convergence properties of the new algorithm, however, because from the theory of
Dennis and Moré [3], it is easy to show that asymptotically the steps generated by the new
method and the method of [8] are arbitrarily close to each other, and to the Newton step,
no matter how many inner iterations are used. Thus by applying the theory in [8], the
new algorithm, like the method of [8], is locally quadratically convergent to roots where the
Jacobian matrix and all its diagonal submatrices are nonsingular.

3.2 The robust algorithm

If any of the diagonal blocks A;, or J, is (nearly) singular, Algorithm A needs to be
modified to be numerically stable and produce a reasonable step. A simple way of dealing
with this situation is suggested in [10]. Their approach is as follows. If any of these matrices,
say G, is nearly singular, then based upon the general purpose approach for dealing with
singular Jacobian matrices described in Dennis and Schnabel [4], they replace G~! by
(GTG + pI)~'GT in their computations, where u is a small number that is a function of
the norm of G. '

In the context of the block bordered algorithm, however, the affect of this perturbation
strategy is unclear. In particular, it is not clear that it is consistent with global convergence.
An alternative would be to perturb the overall Jacobian matrix J of the problem in this
manner if any A; or J were (nearly) singular. This would lead to the solution of a linear
system with the matrix is JTJ 4 ul for some g > 0. However JTJ + uI loses the block
bordered sparsity structure of .J. Hence using this perturbation directly is computationally
inefficient, especially for parallel computation.

Our approach is related to both of the above approaches. It can be interpreted along
the lines of perturbing the Jacobian matrix as a whole. However we do not solve

(J(2")TJ(2F) + u)AzF = —J(a*)T F(z¥)

directly. To motivate our approach, first let us abbreviate the Jacobian matrix of the block

bordered system at z* as

A B -
Jz(CP)’ (3.7)

where
o o T T —
A =diag(Ar, -+, Ag),B=[By,---,B,]",C =[Cy,---,C,). (3.8)

Then the system of (JTJ + D)Az = —JTF can be written as

((é JB;)T(? P)(s (})J)(ﬁﬁ):“(é{ g)T(ﬁ), (39)

where
AXy = [L\Z{7 o -,A:EZ]T, AXy = Axq-l-lvFl = [flT(zk)a) fg(zk)]T’ F= fQ+l(mk)’(3'_le)

and Dy, D, are non-negative diagonal matrices. Since J7J is at least positive semidefinite,
the diagonal elements of Dy and D, can be chosen so that the coefficient matrix is positive
definite.

Multiplying (3.9) out gives

(ATA+CTC + D)AX, + (ATB+ CTP)AX, = ~(ATF +CTR)
(BTA+ PTC)AX, + (BTB + PTP + D))AX, = —(BTF + PTF).

Introducing v = CAX; + PAX; + F; leads to a corresponding symmetric system of linear
equations

ATA+ D, ATB cT AX; ATR
BTA BTB+D, PT AX, | =-| BTR |. (3.11)
C P -1 v Fg

Obviously, (3.11) has the same solution as (3.9) for AX; and AX,. In addition, the attrac-
- tive property of (3.11) is that the coefficient matrix is a block bordered system not much
larger than (3.9). The size of its diagonal blocks are the same as those of J, and the size
of its border is double the size of the border of the original system. Also, the diagonal
blocks of the matrix in (3.11) are of the form A7 A; + (D;);, showing that there is a close
connection between the new approach and an approach that modifies the inner iterations
directly. Our new robust algorithm will be based on solving (3.11) when any 4;, or J, is
(nearly) singular.

We now present the robust algorithm, and then discuss its remaining features. For the
sake of convenience, we will abbreviate (3.11) as

/i E AXl Fl
(A(E)-() e

10

where

- ‘ . - T T
A:ATA'FDLB:[ATB CT}’P: (B BP+ -D2 f[) , (313)
AXQ = [A)(z U]T,Fl = ATFI,FQ = {BTFl Fg]T. (314)

That is, A contains the diagonal blocks, B is the vertical border, and BT is the horizontal
border. Looked at in this way, the augmented system has the same form as the original
block bordered matrix and can be solved using the same algebraic techniques, which is done
in the Singular Case Subalgorithm below.

Algorithm B: Iteration k£ of the Robust Method

Given wk = ($§,‘“,.’L‘§,l‘§+1) and Aiy Bi, Ci7 i = 1,""(]7 P3 fi('r)v t = 17"'7(] + 1,
F(z) and J(z) as defined in (2.1a)-(2.1j), and constants a, 8, T1, T2, Jmaz, €1, €25 L1, f2,
7707With0<a<ﬁ<%30<7-13177‘2_).lajmax2070<€1<p'1¢0<€2<1u2a7203
0<o <.

INNER ITERATIONS

Fori=1,¢ Do
If A7 <y
Then
w; = 0; (* Comment: (Dy); = w;I *)
Solve A;Azf = —fi(xf,x§+1) for Az¥;

ko _
0=

(* Comment: Az¥, will be used to form the Newton step if needed *)
Perform ADDITIONAL INNER ITERATIONS SUBALGORITHM
from Algorithm A to find Az¥ = s; so that
s AT filaf, ofyy) < —nil filzh, ok y0)l|? and
[Assill < mall filzF, 2k)l);
t; = —CZ'AJ::?;
Else

z :L'f?; AmfN = s; = AzF,

Choose w; with €1 < w; < py;

Solve (AT A; + wil)Azf = — AT fi(a¥, 2k,) for Azk;
0= e Acly = s = A

Perform ADDITIONAL INNER ITERATIONS SUBALGORITHM

from Algorithm A, with the Solve statement changed to

x

11

Solve (AT A; + wil)é; = — AT fy(z7, 2% ,)) for 6;
and the While condition changed to

While sT AT fi(2F,25,) < 0 and j < jmas
to find Az¥ = s; so that S;A?f{(xk,$§+1) < 0.

1

OUTER ITERATION
A7) < ‘y foreach 1 <i< g
Then Form J = P — BTA-1B;
If [|A7Y| < y for each 1 <i < g and [|J=1] < 7
Then
Solve JAzf,1 = = fo41(2*) + Dl t: for Azt
Do the correction: Set Az¥ = AzF — Ag—lBi_lA:cf;H, i=1,-.q
Else

Perform SINGULAR CASE SUBALGORITHM FOR SEARCH
DIRECTION COMPUTATION;

Perform Line Search: Find A* so that
| F(z* + /\kAxk)Hz — HF(m’“)H2 < -—a/\kﬁfo(a;k)TF(xk) and
I1F(z* + XeAzp)||? = |F(z%)|? > =BAR AT T (a*)T F(zF);

gl = oF L AFAZR. O

SINGULAR CASE SUBALGORITHM FOR SEARCH DIRECTION COMPUTATION
Let A, B, C be defined by (3.7) and (3.8), AX,, Fy, F; be defined by (3.9), A4,
B, P, AX,, Fy, F, be defined by (3.12) to (3.14);
Let (AX))! = (Azy, -+, Azy), (AX1)? = (Azyy, -+, Azgn);
j;l-_-o AITfl(z’f”}wém)

kg .k
= E]2= ATf2 x x
Let Fl = J=0""2 (2o (I+1) ;

;“.'—_o Aqqu(Q’S’ngH)
Form J = P— BT A~ B with D; = diag(wil, -, w,I) and Dy = 0 if this results

in [|J7Y| < 7, otherwise Dy = w411 for some wyyq with €5 < wyypy < po;

12

Solve J(AX,)! = —Fy + BTA'E, for (AX,)!

and j(Ajrz)z = -—Fz + BTfi—llﬁl for AY2)2

(
Do the correction: Set (AX1)1 (AX))' - ATTB(AX,)!
and (AX1)? = (AX))? - A"1B(AX,)Y

Let AKvl = ((AXl)l,(AXg)I), AX2 = ((AXl)z,(Ang), where (A)(Q)l,
(AX3)? are the first ngy1 components of (AX,)!, (AX,)? respectively
as defined in (3.14).

I (AXHTI(*)TF(a*) < —o]AXY|||J(2%)T F(z*)]]
Then Az* = AX!
Else Az = AX2. O

The first thing to note about Algorithm B is that if J and its diagonal blocks are
sufficiently well-conditioned, in the sense that the inverses of each A; and J are not too large,
then Algorithm B is identical to Algorithm A. Thus it has the same fast local éonvergence
properties as Algorithm A for problems where the Jacobian matrix at the solution is well-
conditioned in this sense. The reason we have based the algorithmic decisions about near-
singularity on the norms of the inverses of the blocks, rather than upon their condition
numbers, is that each block being well-conditioned does not imply that the entire matrix is
well-conditioned. If the elements of J vary widely in magnitude, then the norms of 4; and
J pr obably should also be considered in the determination of near-singularity in Algorithm
B. From the point of view of the theory, the heuristics that are used to determine near-
singularity do not affect the convergence properties, all that matters is that a singular A;
or J is perturbed. Thus many practical variations could be introduced into the decision in
Algorithm B about when A; or Jis perturbed without affecting its theoretical properties.

Note also that in the singular case (when either some A; or J is (nearly) singular),
Algorithm B produces two intermediate trial directions, AX' and AX?, with AX? corre-
sponding to one inner iteration for each diagonal block and AX? corresponding to multiple
inner iterations. The reasons for this are as follows. First, as in Algorithm A, we will see
in Lemma 3.2 below that the step with one inner iteration, AX?, is a perturbed Newton
step and thus a good step from the point of view of global convergence. Second, while in
the well-conditioned case, we can produce independent termination conditions for the inner
iterations that guarantee that the overall step direction that results from using multiple
inner iterations will be a good one, in the poorly-conditioned case where some part of the
matrix is perturbed, there does not seem to be a good way to guarantee this. Intuitively,
the problem stems in part from the fact that we may further perturb the matrix after the
inner iterations. So instead, we keep two trial steps, knowing that the second (AX?) is
guaranteed to be a good descent direction, and that the first (AX!) may often be better
in practice but is not guaranteed to be a good direction. Then we simply test whether the

13

first direction provides sufficient descent, and if so we use it in the line search, otherwise we
use the second direction. The extra expense of this procedure is minimal, just the storage
of one extra trial direction vector and a small amount of extra algebraic work. A related
interesting property of Algorithm B is that if we always used only one inner iteration, it
would become a globally convergent algorithm for the explicit method that is consistent
with sparsity, parallelism, and possible singularity, which by itself is a useful contribution
for solving block bordered systems of nonlinear equations.

It is also easy to verify that Algorithm B parallelizes quite well. In particular, the
major work in the singular case, the formation of J and of the terms BT A1 fy, BT A-1Fy,
A71B(AX;)Y, and A~1B(AX>)?, is analogous algebraically to calculations in Algorithm A
and can also be performed efficiently in parallel. The remainder of the calculations are the
same, or virtually the same, as in Algorithm A and have similar properties for parallelism.

In analogy to Lemma 3.1, Lemma 3.2 shows that the search directions generated by
Algorithm B are the solutions to perturbed Newton equations. This lemma will be a key
to the global convergence analysis of the algorithm in Section 4. The other key will be
establishing that the matrix J¥J + D produced by Algorithm B is nonsingular and that
the norm of its inverse is uniformly bounded above.

Lemma 3.2 The vectors (AX)' = ((AX})!, (AX,)Y), i = 1,2 obtained by Algorithm B at

tteration k satisfy
4 B\ (A (R
BT p A(Xy)) T o)

where (F)' = Fy and (Fy)? = .

Proof. By an almost identical proof as for (3.4) in Lemma 3.1, for either i = 1 or 2, after ‘
the correction, (A X7)* and (AX3)* satisfy

A(AX) + B(AX,) = —(F). ' (3.15)
On the other hand, in the outer iteration, (AX’g)? satisfies
(P - BTA'B)(AX,) = —F, + BTA (&),
which implies
P(AX,) 4+ BTAY(-B(AX,) - (B)) = -5,
which in turn gives
P(AX,) + BT(AX) = - F, (3.16)

by using (3.15). Combining (3.15) and (3.16) completes the proof. O

14

4 Global convergence analysis of the algorithms

In this section we prove the global convergence of both algorithms from the previous
section. Section 4.1 gives the rather simple proof of the global convergence of Algorithm A.
Section 4.2 then gives the more complicated proof of the global convergence of Algorithm
B. Some of the lemmas, and the main theorem, for Algorithm B essentially use the proof
for Algorithm A as a sub-case, since when the diagonal blocks of the Jacobian matrix and
its Schur complement are nonsingular and the norms of their inverses are not too large, the
step taken by Algorithm B is the same as the step taken in Algorithm A. The norm ||.|| is
assumed to be the [norm throughout.

4.1 Global convergence of the basic method

Recall that Algorithm A generates a step that is the solution to the system of equations,

A By Az] Ofl(xl K q+1)
A, By Az Z”—ofz(% L Thy)
Ay By Az, _o fq(l‘q) q+1)

Cl CQ e C'q P A$q+1 fq+1(k)

where each (j; + 1), 1 < i < ¢ is the actual number of inner iterations executed for ith set
of equations. Also recall that the right hand side of this equation is denoted by F(z*). We
first show that the step satisfying this equation is a descent direction on FIF(z)]|2. We
assume in this subsection that each A;, and J, are uniformly nonsingular, so that the step
of Algorithm A is well defined.

Lemma 4.1 The step direction Az* generated by Algorithm A is a descent direction on
SIF(z)||?, as long as each Ay(z*), i =1,---,q and J(z*) are nonsingular and F(z*) # 0.

Proof. Note that the gradient of 1||F(z)||? at z* is J_(xk)TF(:ck), and by Lemma 3.1, the

step direction generated by Algorithm A is —J(z*)~1 F(2*) as long as J(z*) is nonsingular.
The dot product of the gradient and the step direction is

~F(MT J(2F)J (%) F(a®)
= —F(ST E(z)

= Zf(%x o) (Zfa 2411))) = forr(25)T S () (4.1)

< ~(Z il filzd w5)I?) = o (257 fria (a%) (4.2)
1=1

< 0,

15

with the inequality between (4.1) and (4.2) coming from the relation

Ajs; = — Z] o filz .’], q+1) and the condition ST/-le,(LL‘t ,zq_H) -1 fi(2¥, q+1)”2 i
Algorithm A for 1 < ¢ < ¢, and the final inequality coming from 71 > 0 and F(z*) # 0.
This completes the proof. O

Now we conclude our analysis of Algorithm A by proving Theorem 4.2.

Theorem 4.2 If ||J(z)~ || is uniformly bounded above, A;(z) is uniformly nonsingular,
i=1,---,q, and fi(x) is continuously differentiable and V f;(z) is Lipschitz continuous for
1 <1< g+ 1, then the sequence generated by Algorithm A obeys either

(a) J(z®)TF(2*) = 0 for some k > 0, or
(b) limg_o F(zF) = 0.

Proof. By Lemma 4.1, at each iteration, the search direction generated by Algorithm A is
a descent direction on {|F(z)||?. By Theorem 6.3.2 of [4], there exists A\¥ > 0 such that the
line search conditions in the outer iteration of Algorithm A are satisfied at each iteration.
Applying Theorem 6.3.3 of [4 [] to the function 1||F(z)||? and the iterates generated by
Algorithm A gives either J(2%)T F(2*) = 0 for some & > 0, or

JEMTREN)T (AT (2h) 7 F(at))
I O T RYAEa]]

=0, (4.3)

since 3||F(z)||* is bounded below by zero. But for each k

|(J(@*)T P)T (=M (2*) " F(ah))]
| = AR T(2k) =1 F(a*))|
|F(e*)TF(*)]
|7 (z%)=1 F(a*)]
12, f(xf,$§+1) (Z]‘_ofz(i q+1))+”fq+1()“ 1
[(%)= F ()
Tl P @I 4 (| farr (=)

2 TG IE@]
[F(=)|?
2 LTEEE (44)
nllF(=) s

ol J (@)~

where we have again used the mequahty between (4.1) and (4.2) to obtain the numerator in
(4.4), and the relation ||A;s;]] = || 2L, f,(; ,zq+1)|l < 7ol fi(ak ,zq+1)1| t=1,--+,¢, from
Algorithm A (ie. ||(F(z%))]] < 7'2][((2%));]l) along with the definition of F(z) to obtain

16

| F(z*)|| < m2||F(a*)|| for the denominator of (4.4). Since ||J(z)~!| is uniformly bounded,
and 1,7 > 0 are positive constants, (4.3) and (4.5) imply
lim F(z*) =0,

k—co

which completes the proof. O

4.2 Global convergence of the robust method

Recall that the step direction taken by Algorithm B is either the same as in Algorithm
A (if each ||A;]| < v and ||J71|] < 7), or the step AX! from the singular case subalgomthm if
it is a direction of sufficient descent, or the step AX?2 = —(J(z*F)TJ(2%)+ D)~ J(2*)T F(2F)
otherwise, where D = diag(wil, -+ ,wel,wy1]) is chosen at iteration k. The first case has
been analyzed in the previous subsection, and the second case is straightforward since the
search direction is a sufficient descent direction. Thus the key to the global convergence
analysis of Algorithm B turns out to be to show that ||(JTJ + D)~!|| is bounded above
in order to analyze the third case. This is established as follows. We first establish the
relationship between the inverse of the augmented matrix

(ot) (4.6)

and the inverse of J¥J 4+ D by showing in Lemma 4.9 that I(JTJ 4+ D)l is bounded above
if the norm of the inverse of (4.6) is bounded above. Then we show in Lemma 4.10 that the
- norm of the inverse of (4.6) is bounded above if ||.J||, ||A~1|| and the norm of the inverse
of (P — BTA-!B), the Schur complement of (4.6) with respect to A, are bounded above.
In Lemmas 4.11 and 4.12, we establish separately that |A~!|| and H(P BTA-'B)~!|| are
bounded above. These lemmas are sufficient for establishing the boundedness of ||(JTJ +

D)~!||, which is done in Lemma 4.13. This lemma also shows that if Algorithm B takes the
step of Algorithm A (i.e. sets D = 0), then ||J!|| is bounded.

Using these results we show that the step generated by Algorithm B is a descent direction
on 1||F(z)||* in Lemma 4.14, and finish our analysis by presenting the main result of this
paper, the global convergence of Algorithm B, in Theorem 4.15.

Before going into this analysis, in Lemmas 4.3 to 4.8 we present some basic results
related to Schur complements of matrices, that will be used in the proofs of Lemmas 4.9 to
4.13.

Consider the square matrix

~o b

A B i}
(C D)’ (4.7)

where A and D also are square. First we state the following three well-known facts about
this matrix as lemmas without proof.

17

Lemma 4.3 If A is nonsingular and the Schur complement D — CA™1B is nonsingular,
then the inverse of (4.7) exists and is given by

AT+ AT'BSCATY -A7'BS
~-SCA-T S ’
where S = (D — CA™1B)™L,
Paralle] to Lemma 4.3 is the following fact.

Lemma 4.4 If D is nonsingular and A— BD™1C is nonsingular, then the inverse of (4.7)
exists and is given by

(§ -SBD™t)
-D-CS D-'4 D-'CSBD-' |’
where § = (A - BD™1C)~L.
Closely related to Lemma 4.4 is the following fact which will be useful to us.
Lemma 4.5 If the matriz (4.7) and D are nonsingular then A — CD~'B is nonsingular.

Using the above lemmas we now establish three additional lemmas that relate the norm
of the inverse of a matrix to the norm of the inverse of certain submatrices and Schur
complements.

Lemma 4.8 If||A~Y, ||B||, ||C]| and ||(D = CA~'B)~Y|| are bounded above, then the norm
of the inverse of (4.7) is bounded above.

Proof. From Lemma 4.3, the inverse of (4.7) involves A~ B, C, (D — CA™1B)™! and
arithmetic combinations of them. Since ||A~!|, || B||, |C|| and ||(D — CA='B)~|| are all
bounded above, the norm of the inverse of (4.7) is bounded above, which completes the
proof. O

Parallel to Lemma 4.6 is the following lemma.

Lemma 4.7 If||D7Y|, || B|, ||C|| and ||[(A—= BD~'C)~|| are bounded above, then the norm
of the inverse of (4.7) is bounded above.

The following lemma deals with matrices of a special form that we will have use for.

Lemma 4.8 For any matrices X, Y with X square, if
x yT\™
Y -I

is bounded above, then ||(X +YTY)| is bounded above.

18

Proof. First (X + YTY)~! exists by Lemma 4.5. By Lemma 4.4,

X YT\ [(X+YTY)! (X +YTy)yT
Y ~I T\ Y(X+YTY)! T+ V(X +YTY)" iy T

Hence ||(X + Y 7Y)71 is bounded above because otherwise (4.8) is not bounded above. O
Now we present the lemmas that allow us to bound ||(JTJ + D)~
Lemma 4.9 Let J be given by (3 7) with A and P square, D = diag(Dy, D,) be a nonsin-

gular diagonal matriz, and A, B, P be given by (3.13). Then ||(JTJ + D)~ Y| 4s bounded
above if

A B\
BT p
18 bounded above.
Proof. Recall that
i B ATA+ D, ATB cT
(BT P) = BT A BTB+ D, PT |. (4.9)
C P |
Let
v o[ATA+D ATB
- BTA BTB+ D,

and Y = [C' P]. Note that X + YTY = JTJ 4+ D. Applying Lemma 4.8 to the right hand
side of (4.9) completes the proof. O

Lemma 4.10 Let J, A, B, P be defined as in Lemma 4.9. If ||J||, |A~||, and ||(P
BT A-1B)~1|| are bounded above then
>~—1

A
AT

Proof. Simply note that B = [ATB CT). Since ||J|| is bounded above, ||Al], || B]| and ||C]]
are bounded above as well. Hence B is bounded above. Applying Lemma 4.6 completes the
proof. O

o Do

is bounded above.

Lemma 4.11 After the inner iteration in Algorithm B, ||(ATA + D1)~Y| is bounded above
by max{v?, 61—1}, where Dy = diag(wi 1, -, w,l).

19

Proof. We have (ATA + Dy)~! = diag((ATA; + w 1)1, -, (ATA, + w,I)7"). For each
1 <1< q, ifw =0 then ||[(ATA; +)7 = |JATY|? < ~2, since in this case HATH < v
by Algorithm B. If w; # 0 then ||(ATA; + wil)7| < ;1— < ;1-1— by Algorithm B. Hence
(AT A+ Dy)~'|| is bounded above by max(y2,1/e). O

Lemma 4.12 After the outer iteration of Algorithm B, if the Singular Case Subalgorithm
is used, ||(P — BT A=1B)~!|| is bounded above by the function of ||A||, |B|, IC|l, IPl, e,
€2 and ¥ given in ({.10) below.

Proof. Recall that

P-BTA'B
_ (BTB+D, PT BTA Y\, 1 T
BTB + w1l — BTA(ATA+ Dy)7'ATB PT - BTA(ATA + D))~'CT
P - C(ATA+ Dl)—lATB Ny C(ATA + D1)—1CT ;

and from Algorithm B that if w,y; = 0, ||(P = BTA~'B)~!|| < 7. Assume for now that
Wl ;é 0. Let

M = BTB+4w,l-BTA(ATA+ D)) 1AT B,

N = P-C(ATA+ D) 'ATB,

W = —I-C(ATA+ D)) 'CT.
Observe that

M = wy I + BT(I - A(ATA + D,)~1AT)B,

and that BT (I — A(ATA+ D,)"1AT)B is at least positive semidefinite. Also —W is positive
definite with [|[W~1{| < 1. Furthermore,

M- NTw-IN
= weptd + BT(I — A(ATA+ D) 'AT)B + NT(I + C(ATA + D) 'CT)N,

which is positive definite with ||(M — NTW=N)~!|| < == < L since (M - NTW~1N) =

Wet1 = €2
we411 is at least positive semi-definite and wy41 > €. Since also (AT A + Dy)~1 is bounded
above by Lemma 4.11, Lemma 4.7 implies that

()

is bounded above. In addition, from [|[W=!|| < 1, [|[(M = NTW-IN)"Y| < ;1;, and || V]| <
[P+ [|CII AN B]] - max{~?, Ell—}(using Lemma 4.11), it is straightforward to calculate from

20

Lemma 4.4 and the fact that an /, norm of a matrix is bounded above by the sum of the
norms of its submatrices that

WP+ ICTIAMBI - max{y?, &} + 12

I(P = BTATB)™| < max{y, | -} (4.10)

€2

with the first term in the right hand side of (4.10) accounting for the case when w,4; = 0.
a

Lemma 4.13 If ||J(z)| is uniformly bounded above, then ||(J(z*)TJ(2*)+ D)=1|| produced
by Algorithm B is uniformly bounded above, where D = diag(wil, -, wol,wyp1]).

Proof. Assume first that the Singular Case Subalgorithm is used by Algorithm B at
iteration k (i.e. D # 0) By Lemma 4.11, |A~1|| is bounded above by a constant. Also, by
Lemma 4.12 and [|J(2*)]] uniformly bounded (which implies that ||A]], || B||, |C]], and || P]|
are uniformly bounded above), [|(P — BT A1 B)~1|| is bounded above by a constant. Then,
by Lemma 4.10, and the definition of B and the boundedness of ||Al|, IIB]l, and ||C]],

i B\
BT P

is bounded above, which in turn implies ||(J(2*)T J(2*)+D)~1|| is bounded above by Lemma
4.9.

Finally, if the Singular Case Subalgorithm is not used, i.e. D = 0, then [|[A7!|| < 7 for
each 1 < 7 < ¢, which implies ||A~Y|| < 5, and ||J|| = ||(P - CA~ 1B) Yl € 4. Thus by
Lemma 4.3, J(2¥) is nonsingular and from the norms of the submatrices of J(zF) 1,

I75)7HE < 27 + 21BN+ IC1) + IBIIC. (4.11)

Therefore J(z*)TJ(z*) is positive definite, and (J(:z:k)TJ(xk))‘1 is uniformly bounded due
to ||(J(z)TJ(2*))~Y| < [|J(2*)~1||?, (4.11), and || B]|, ||C|| uniformly bounded. O

Lemma 4.14 The direction generated by Algorithm B is a descent direction on the function
HIF(@)))?, if its gradient J(2*)T F(2*) is not equal to zero.

Proof. If Algorithm B uses the Singular Case Subalgorlthm it selects the step direction
Az* to be either AX! or AX2 If it selects AzF = AX!, then from the selection rule we
have

(A5 I (P F(2¥) < —o||azk])]|J(2%)T F (b)) (4.12)

which shows that Az* is a descent direction on 1 HIF(2)||? at 2* (and that J(2*)T F(z*) # 0).
If it selects Az* = AX? = ((AX))}, (AX,)?) then from Lemma 3.2,
AX? = ((AX1)', (AX2)?, v) satisfies

A B AX)? Y 2
\ BT P AX)?)T T\ R)

which is the same as (3.11), and from the equivalence of (3.11) and (3.9), AX? satisfies
(3.9) which is the same as

(J(25TJ(z*) + D)AzF = —J(zF)T F(zF). (4.13)

From Lemma 4.13, (J(z*)TJ(z*) + D)~ exists, and thus is positive definite since D is a
non-negative diagonal matrix. Therefore,

(AR I (T R ()
= —(JEHTFENT (T2 + D) ()T F(z¥) <0

since J(z*)TF(z*) # 0. Hence Az* is a descent direction on 1| F(z)||%.

Finally, if Algorithm B does not use the Singular Case Subalgorithm, then J(z¥)~1 exits
from the proof of Lemma 4.13, and Az* is a descent direction on LI F(2)||* from Lemma
4.1. O

Now we conclude our analysis by giving the global convergence result for Algorithm B.

Theorem 4.15 If ||J(z)|| is uniformly bounded above, and f;(z) is continuously differen-
tiable and V f;(x) is Lipschitz continuous for 1 < i < g+ 1, then the sequence generated by
Algorithm B obeys either

(a) J(aF)T F(z*) = 0 for some k > 0, or
(b) limg—oo J(zF)T F(2*) = 0.

Proof. By Lemma 4.14, the step generated by Algorithm B is a descent direction at each
iteration. Thus Theorem 6.3.2 of [4] ensures that there exists A\¥ such that the line search
conditions are satisfied at each iteration. Applying Theorem 6.3.3 of [4] to the function
$|[F(2)||* and the iterates generated by Algorithm B gives either J(a*)TF(2F) = 0 for
some k > 0, or

- (J(F)TF(aR)TAR Ak

/}52() T AZA] =0 (4.14)

since || F()||? is bounded below by zero. At iteration k, if Az* is selected by the Singular
Case Subalgorithm and satisfies (4.13) (i.e. Az*¥ = AX?), then

(J(@¥)T F(zF))TAk Az
INFAZE
(TP)T (=(J(@*)T (") + D)1 (a*)T F(a*))
| = (J(@)TJ(z*) + D)= (z*)T F(a*)]]

22

Since ||.J(2*)TJ(2*) + D|| is bounded above due to ||J|| bounded above and Wiy, Wet
bounded above, and ||(J(z*)TJ(z¥) + D)~!|| is bounded above by Lemma 4.13, we have

((JEHTFEDT(=(J ()T () + D)7 I (e*) T F(h)]
I = (J(&¥)T (%) + D)= J(«F) T F ()|
. eIy I (@) F ()|
= NG ERTI(R) + D) ()T ()|
17 (z*)T F(z*)]
[17(z*)TJ(z*) + DI(J (=*)T I (2*) + D)~1]|
011 (z*)T F(=*)ll, | (4.15)

v

where 8 > 0 is a positive constant.
On the other hand, if Az* is selected by Singular Case Subalgorithm and satisfies (4.12)
at iteration k (i.e. Az*¥ = AX1), then

|(J(=4)T F(a*))T AeAsH|
]
ollJ (=47 F(=*)lll| A<
= 152
= ollJ(H)TF@Eh), (4.16)

where o is a positive constant.

Finally, if Algorithm B does not use the Singular Case Subalgorithm at iteration k, then
[I7(2%)~Y is uniformly bounded above from Lemma 4.13, and from the proof of Theorem
4.2,

()" (24)) T A+ Ak
Yl
n_I1F(h)| o
> e 2 AFEE
2T Pk .
= “J(HJ)(j)(n s s reh (417)

where the last inequality uses ||J(2*)|| bounded above, and ¢, b are positive constants.
Combining (4.14), (4.15), (4.16) and (4.17) gives

lim J(z¥)TF(z*) =0,
k—oco

which completes the proof. O

23

5 Summary and discussion

We have shown that a computationally robust and efficiently parallelizable algorithm for
solving block bordered systems of nonlinear equations, Algorithm B, is globally convergent
under very mild conditions, in particular assuming only that the Jacobian matrix is Lipschitz
continuous and uniformly bounded above. We have also shown that a simple sub-case of this
method that is intended for well-conditioned problems, Algorithm A, is globally convergent
under the stronger conditions that the Jacobian matrix and its diagonal blocks also are
uniformly nonsingular. In addition, both algorithms are locally quadratically convergent on
problems where the Jacobian matrix and its diagonal blocks are nonsingular and sufficiently
well-conditioned at the solution.

One disadvantage of the new methods is that whereas a robust version of Newton’s
method is locally quadratically convergent on any problem where the Jacobian matrix at
the solution is safely nonsingular, our algorithms also require the diagonal blocks to be
safely nonsingular for fast local convergence. (Note that it is quite possible for the Jacobian
matrix to be nonsingular even though a diagonal block is singular, see e.g. the example
in [8].) The reason is that in order to make the computations on the diagonal blocks
independent so that they can be parallelized efficiently, we make decisions about whether
to perturb these blocks without knowing whether the overall Jacobian matrix is singular or
ill-conditioned. A possible way to avoid this disadvantage would be to move any singularity
that is detected in the diagonal blocks to the borders by a pivoting strategy. For example,
one could use column pivoting to detect a maximal-size nonsingular submatrix of a given
diagonal block A;, and pivot the remaining columns and rows into the border. Such a
strategy would not affect the global convergence properties of the algorithm, and would
‘ensure that if the overall Jacobian matrix is nonsingular then the matrix does not have
to be perturbed. Thus the algorithm would have strong global convergence properties and
the same local convergence properties as a robust implementation of Newton’s method.
The disadvantages of such an approach are its added complexity, and the fact that if after
pivoting extra rows to the border we discover that the enlarged Schur complement is still
singular or ill-conditioned, then we have created extra computations and reduced parallel
efficiency due to the increased size of the border.

Another possible disadvantage of our current approach that is not addressed by the
discussion of the previous paragraph is that even if the whole Jacobian matrix and its the
diagonal blocks are well-conditioned, the Schur complement could be ill-conditioned so that
we might still have to perturb the matrix in some way. A simple example is

I 0 00
0 of T O
J-OI 0 0}’
00 o0 I

24

in which Ay =1, 43 = o,

p=(20) = (30) 7= (32)

It is easy to see that J, A; and A, are all well-conditioned. However, the Schur complement

_ -1 _ al 0
P-CA B_(O 1>’

can be arbitrarily ill-conditioned for small a. In our algorithms this example is not a
problem since we have based our perturbations on the norms of the inverses of each A4; and
of the Schur complement, but there may well be related examples where we would make
perturbations but a robust Newton’s method that works directly on the overall system
would not. This is another possible price that we pay for working on the diagonal blocks
independently, and making decisions about perturbing them independently, in order to
attain good paralle] efficiency.

Note finally that one unnatural aspect of Algorithm B is that in the singular case, it
generates two intermediate trial steps, based on single and multiple inner iterations. An
obvious question is whether one can produce stopping conditions for the inner iterations,
as in Algorithm A, that would make this unnecessary. As we have discussed in section 3,
this appears to be a challenging task and remains a topic for further research.

References

[1] C. Christara, Spline collocation methods, software and architecture for linear elliptic
boundary value problems, Ph.D. dissertation, Computer Science Department, Purdue
University (1988).

[2] C. Christara and E. Houstis, A domain decomposition spline collocation method for
elliptic partial differential equations, in Proc. fth Conf. Hypercubes, Concurrent Com-
puters and Applications, Monterey, CA, (1989).

[3] J. E. Dennis Jr. and J. J. Moré, A characterization of superlinear convergence and
its application to quasi-Newton methods, Mathematics of Computation, 28(1974), pp.
549-560.

[4] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Prentice-Hall, New Jersey (1983).

[5] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM (1991).

[6] C. Farhat and E. Wilson, Concurrent iterative solution of large finite element systems,
Tech. Report, Civil Engineering Department, University of California, Berkeley (1986).

25

[7] M. Mu and J. Rice, Solving linear systems with sparse matrices on hypercubes, Tech.
Report CSD-TR-870, Computer Science Department, Purdue University (1989).

[8] X. Zhang, Parallel computation for the solution of nonlinear block bordered equations
and their applications, Ph.D. dissertation, Department of Computer Science, University
of Colorado (1989).

[9] X. Zhang, R. H. Byrd, R. B. Schnabel, Solving nonlinear block bordered circuit equa-
tions on hypercube multiprocessors, in Pcoc. 4th Conf. Hypercubes, Concurrent Com-
puters and Applications, Monterey, CA, (1989), pp. 701-707.

[10] X. Zhang, R. H. Byrd, R. B. Schnabel, Parallel Methods for Solving Nonlinear Block
Bordered Systems of Equations, SIAM J. Sci. Stat. Comput., 13(1992), pp. 841-859.

26

