Dynamic Scheduling Strategies for an Adaptive,
Asynchronous Parallel Global Optimization Algorithm

Sharon L. Smith and Robert B. Schnabel

CU-CS-625-92 November 1992

%'University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Dynamic Scheduling Strategies for an Adaptive,
Asynchronous Parallel Global Optimization Algorithm!

Sharon L. Smith? and Robert B. Schnabel®

CU-CS-625-92 November 1992

!Research supported by NSF grant CDA-8922510, AFOSR grant AFOSR-90-0109, and ARO
grant DAAL 03-91-G-0151.

CERFACS, 42, Avenue Gustave Coriolis, 31057 Toulouse Cedex, France
(smith@orion.cerfacs.fr) :

®Department of Computer Science, Campus Box 430, University of Colorado, Boulder, Col-
orado, 80309 U.S.A. (bobby@cs.colorado.edu)

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Dynamic Scheduling Strategies for an Adaptive, Asynchronous Parallel Global
Optimization Algorithm

Abstract

This paper explores the use of dynamic scheduling strategies for irregular parallel algorithms in dis-
tributed memory computational environments. The target application we consider is an adaptive
asynchronous parallel algorithm with irregular structure that is used to solve the global optimiza-
tion problem. In this algorithm the number of tasks and their sizes may change dynamically, so that
dynamic scheduling is needed to insure that the workload is evenly distributed across the proces-
sors. We consider three dynamic scheduling strategies for implementing this algorithm: centralized
scheduling, which uses a master-slave approach; distributed scheduling, which uses local informa-
tion about processor workload to determine when tasks should be requested from or sent to other
processors; and a new hybrid approach that we refer to as centralized mediation, that uses aspects
of both centralized and distributed scheduling. The iﬁlplementation of the global optimization
algorithm using the scheduling strategies is discussed, and their performance is thoroughly assessed
through a combination of analytic modeling, simulation, and distributed implementation. In these
performance studies, the centralized mediation strategy often exhibits the best performance for

both different numbers of processors and different loading conditions.

1. Introduction

In recent years, the increased availability of inexpensive hardware to construct parallel computer
systems has provided researchers with the hardware tools to investigate the design and imple-
mentation of parallel algorithms for complex problems. In many cases, significant performance
improvements have been realized for algorithms with straightforward parallelism. There are many
algorithms, however, that exhibit irregular structure and that may suffer from load imbalance, poor
processor utilization, and consequently, poor program performance.

In order to develop efficient algorithms for irregular computations on parallel computers,

algorithm designers have begun to consider and develop alternative approaches, such as adaptivé
and asynchronous algorithms (see, for example [3], [19], [27], and [14]). Adaptive algorithms attempt
to identify the parts of a computation that should receive the most attention, and then dedicate
the appropriate amount of resources to those parts. A parallel adaptive algorithm may accomplish
this by creating or removing tasks dynamically, or by varying the workloads of individual tasks.
Asynchronous algorithms ‘allow each part of the computation to proceed independently of other
parts. Because the use of these techniques may cause variation in the numbers and sizes of tasks,
robust scheduling techniques are needed to ensure that the workload is evenly distributed among
the processors.

Part of our research has been concerned with developing an adaptive asynchronous par-
allel algorithm for solving the global optimization problem (see [25]). Our initial experience with
this algorithm using a centralized scheduling strategy has led us to cénsider alternative scheduling
strategies and how they may be used to implement irregular parallel computations. The principal
focus of this paper is to examine in detail different scheduling strategies for the parallel global
optimization algorithm, and how well these strategies perform for distributed systems. Distributed
systems in this context will mean computers with local memory connected by a local network and
communicating via message passing. While the experimental environment employed is a local area
network of computers, this research also is applicable to general distributed memory multiproces-
sors, such as hypercubes and mesh-connected MIMD computers.

Because implementation of complex parallel algorithms can be difficult and time consum-
ing, we have developed simulation models and analytic models of the scheduling strategies examined
in this paper to aid in the evaluation of the different sirategies. To demonstrate the usefulness of
this type of evaluation, we present validations of these models with actual implementations of two
of the scheduling strategies.

Although we limit our attention to the application of global optimization in this paper,
it is possible that the results of this study of scheduling methods will also be applicable to other

parallel algorithms with similar characteristics. The extent to which this is the case is not known,

At iteration k:

1. Generate a random set of sample points in S and calculate their function values.

2. Select a subset of the low sample points to be start points for local minimizations.
3. Perform minimizations from all start points, each terminating at a local minimizer.
4

. Decide whether or not to stop, and if not, repeat this process.

Figure 2.1: Static Global Optimization Algorithm

however, and will not be the focus of this paper.

The paper is organized as follows. Section 2 introduces the parallel adaptive asynchronous
algorithm for solving the global optimization problem, which is the target of our study. Section 3
" describes the centralized, distributed, and hybrid scheduling strategies and how they are used to
implement the parallel global optimization algorithm. Section 4 presents a performance evaluation
of the three strategies using analytic modeling, simulation, and implementation. Finally, Section 5

presents conclusions about this work.

2. Overview of Adaptive, Asynchronous Global Optimization

Our most extensive performance analysis of the scheduling methods described in this paper has
used analytic modeling, simulation, and implementation to assess their performance when applied
to one particular parallel algorithm for solving the global optimization problem. In this section we
describe this algorithm.

The global optimization problem is to find the minimum value of a nonlinear function f
that may have multiple local minimizers over a domain, §. This problem arises in many areas of
science and engineering, and is often very expensive to solve. Our algorithm to solve this problem
is based upon the stochastic methods of [22]. Figure 2.1 gives a high-level outline of the stochastic
approach.

A static synchronous parallel algorithm based on these methods is presented in [5]. The
parallel algorithm evenly divides the domain S into P subregions, where P is the number of available

processors. Each processor performs steps 1 and 2 on its subregion. The processors synchronize

For each subregion s of the domain space S, at every iteration, %,

1. Sampling :
Generate a prescribed number of random sample points within s and calculate their function values.

2. Start point selection :
Select sample points with low function values in s to be start points, using a procedure that is similar to the
static algorithm but which does not involve communication with any other subregions.

3. Adaptive decisions :
Apply a heuristic procedure to determine the sample size for s for the next iteration, whether s should be
split, and whether s should be scheduled or skipped at the next iteration.

4. Local minimizations :
Perform local minimizations, if any, from the start points generated at step 2.

Figure 2.2: Adaptive Asynchronous Global Optimization Algorithm

after step 2 in order to eliminate potentially redundant searches, and then distribute the start
points among the précessors, perform the local minimizations of step 3, and synchronize again
after this step to determine if the stopping conditions have been satisfied.

The static algorithm performs well for small, regular problems, but has two major weak-
nesses. First, the synchronizations after steps 2 and 3 can lead to severe load imbalance, because
both the time for the start point selection step and for local minimizations can vary greatly between
subregions and hence processors. Secondly, the algorithm makes no effort to adapt its sampling
density to give more attention to productive subregions, those that appear more likely, as the
computation proceeds, to produce the global minimizer.

The adaptive asynchronous algorithm, described in Figure 2.2, addresses these weaknesses.
The adaptive aspect of the algorithm is used to identify portions of the domain space that appear
productive and give them more attention, while diverting attention away from portions that are
less fruitful. A convenient way to make the adaptive adjustments is to divide the domain space
into subregions, and then to adjust the subregion sizes and/or the amount and frequency of work
that is done in different subregions, according to how productive the subregions appear. Specific

techniques we use to do this include splitting of subregions. adjustment of sampling densities, and

/

delayed scheduling of particular subregions. The asynchronous behavior is used to address the
load imbalance caused by synchronization. It is achieved in part by using a new procedure that
allows each subregion to decide independently whether to conduct local searches, thus eliminating
the need for the synchronization after step 2, and by relaxing the global concept of an iteration
(see Section 3.3.1). For a complete discussion of the adaptive and asynchronous features, including
ways to determine which subregions are most productive, see [25]. The experimental results in that
paper show that the adaptive and asynchronous features can Iea(} to very large reductions in the
execution time required by the algorithm.

It is useful to illustrate the behavior of the adaptive asynchronous algorithm through an
example. Figure 2.3a shows the initial partition of the domain space for some function, f, with a
two-dimensional domain. The sample points(x), start points(s), and local minimizers(m) found in
the first step of the algorithm are also displayed. (In the figures new start points are circled and
new local minimizers are surrounded by a square.) After the sampling and start point selection
steps for the first iteration, the adaptive heuristics are applied and yield the new division of the
domain space illustrated in Figure 2.3b. This figure also shows the new start points for iteration
2 and the local minimizers discovered from them. Figure 2.3c illustrates the final division of the
domain space and the final set of start points and minimizers discovered. The global minimum is
surrounded by a diamond. In this figure, subregion 2 is bordered by a dotted line to indicate that
the adaptive heuristics found this subregion to be “unproductive”, so that no sampling, start point
selection, or local minimizations were executed for this subregion in iteration 3.

If we define a subregion task to consist of the sampling, start point selection and adaptive
heuristic parts of the algorithm, and a local minimization task to consist of the local minimization
step of the algorithm, the example in Figure 2.3 can be described by the task precedence tree
shown in Figure 2.4. In this figure, the subregion tasks are depicted by oval nodes, and the local
minimization tasis are depicted by circles. The precedence tree shows the relationship between
tasks in an execution of the algorithm, defining an order in which tasks are created and executed.

In particular, a subregion task at level & precedes the creation and execution of its child local
IS 7 o

sub 1 sub 2
O H . "
x
X X X
) x
X x x X X
e N
x x x
x ®
X X X X
. X X
x x
Figure 2.3a: Iteration 1
sub 1b sub?2
X
s m X x| x X X x
x x x x =X x *
X x © x
m W & x X x
s x ® x B x x
; e
o= : :
m X X X
x x
X X s X x X
X _x x x
x T x X X X X x
X x x X X x
sub la
Figure 2.3b: Iteration 2
sub 1b e, sube.
X I x
smx @ m X X X X X
X x" e x x
XX x x: x x
m LI @Sm : XX :
s X X3 N X X.
X X X . X m X X
X X . X
. X
X § X
s m X X X . m X X X
X X x
X X 8 X X
X X X X M X :
x _'x “x x : x :
x x X X x x xx _:
X, x X x x X X X x:
X . S 0. SR S B,
sub la
Figure 2.3c: Iteration 3

Figure 2.3: Global optimization example

ITERATION
LEVEL 1

ITERATION
LEVEL 2

- - e e ke e = e = e e e e e e Ee e e M G e me e

ITERATION
LEVEL3

e e e e e em e e e o TR A MR MR e e e MR e Me e T e e G TR e MR mR W M e e R e e M M e e e e e ke e e s

Figure 2.4: Task p‘recedence in the adaptive global optimization algorithm

minimization tasks at iteration k, and the creation and execution of a subregion task at level k
precedes the creation and execution of its child subregion task at level k + 1, but otherwise the
order of execution is not constrained. In the next section we will described the scheduling of these

tasks.

3. The scheduling strategies and their implementation of global optimization

This section presents the scheduling strategies, describes telated work in this area, and discusses
how the scheduling strategies are used to implement the adaptive, asynchronous global optimization

algorithm.

3.1. Description of the scheduling strategies

The scheduling strategies considered in this research are centralized strategies, where the scheduling

and task distribution decisions are performed by a single processor; distributed strategies, where

---------------------------- HMASTER PROCESSOR.
Repeat
SCHEDULE tasks for all idle slave processors based on priority
queue of available tasks.
TASK finished at some slave processor?
=> UPDATE computation status of processor.
BEW TASKS generated by some slave processor?
~> INSERT into global priority queue.
if appropriate
-> CHECK if global stopping criteria is satisfied and if it is
—--> SEND STOP message to all processors.
Until done

———————— - SLAVE/COMPUTATIONAL PROCESSOR-=mmmmmmmmmmmmmmm

EXECUTE a task.
SEND results and newly generated tasks to master processor.
WAIT for a nev task to execute or STOP message.
STOP message received?
~-> DONE = TRUE
Until done

Figure 3.1: Centralized Scheduling

scheduling and task distribution decisions are performed by all processors; and hybrid strategies,
which have aspects of both centralized and distributed strategies.

The first strategy, centralized scheduling, uses a master-slave approach. The master pro-
cessor maintains a priority queue of the tasks that are ready to run. When a slave processor finishes
a task, it informs the master process and sends it any new tasks that it has created. In return, the
master process sends the slave processor the next task to be executed, based on the priority queue
ordering of the tasks.

At the other extreme from centralized scheduling is a fully distributed approach to schedul-
ing. In this approach, each processor maintains a local queue of tasks that are ready to run, and
schedules tasks from the queue to run locally if possible. The purely local workload may become
too heavy or too light, however, so two strategies are possible for distributing tasks to and receiving
tasks from remote nodes. The first is a receiver-initiated strategy in which tasks are requested from
remote nodes if a given processor decides that it needs more work than it has locally. The second is
a sender-initiated strategy in which tasks are sent out without being requested if a given processor

determines that it has too much work and needs to give some away. In either strategy, the local

ALL PROCESSORS - ——

Repeat
SCHEDULE and EXECUTE a task.
HEW TASKS generated?
=> INSERT new tasks into the local priority queue.
UPDATE computation status
-> PROCESS update messages from other processors.
HEED work?
-> SEND request to a randomly selected processor.
-> BLOCK for a reply.
if appropriate
-> CHECK if global stopping criteria is satisfied, and if it is
--> SEND STOP message to all other processors.
STOP message received?
~> DORE = TRUE

Interrupts:
~> When a NEED WORK message is received from some other processor -
Is EXTRA WORK available?
YES - SEND a task to the requesting processor.
B0 - Forward request to another randomly selected
processor (if not above probe limit).

Figure 3.2: Distributed Scheduling (Receiver-initiated approach)

processor also decides which other processor to request work from or send work to. This scheduling
approach is related to the adaptive load sharing policies of [9] in distributed systems.

The third dynamic scheduling strategy considered is a new centralized mediation approach
that uses aspects of both the centralized and distributed strategies. In this strategy, a processor has
a local task queue and schedules tasks to run locally if possible, as is done in the distributed case.
If a processor decides it has too much work, rather than sending work directly to other processors,
it sends a task to a centralized mediator processor. Likewise, if a processor determines that it needs
more work, it sends a request to this same, centralized, mediator processor. The mediator processor
then matches available tasks to requests and sends the tasks to the processors that requested them.
In this way, the mediation approach combines the sender and receiver initiated aspects of distributed
scheduling with a centralized approach. In contrast to the centralized strategy, which handles all
tasks and requests, the central mediator processor handles only the tasks and requests that cannot
be accommodated locally.

High level pseudo-code descriptions of the control framework for the centralized, dis-

e -===ALL PROCESSORS===mmnmmmmmm e e e

SCHEDULE and EXECUTE a task.
KEW TASKS generated?
-> INSERT new tasks into the local priority queue.
UPDATE computation status
~> PRCCESS update messages from other processors.
EXTRA work?
-> SEND a task message to a randomly selected processor.
if appropriate
-> CHECK if global stopping criteria is satisfied, and if it is
~=> SEND STOP message to all other processors.
STOP message received?
-> DONE = TRUE

Interrupts:
=> When a TASK message is received from some other processor -
Is EXTRA WORK needed?

YES - SEND a request NEW TASK to the processor sending the

task message.
WAIT for the task data to arrive.
HQ - Forwvard request to another randomly selected
processor (if not above probe limit).

=> When a NEW TASK data request is received
SEND task.

Figure 3.3: Distributed Scheduling (sender-initiated approach)

10

........ MEDIATOR PROCESSOR---

Repeat
REQUEST WORK message received?
- If tasks are available then send a task to the requesting
processor.
~ Otherwise, insert into the request queue.
EXTRA WORK message received?
= If requests are available then send a task to the requesting
processor.
- Othervise, insert into the task queue.
UPDATE computation status.
~> PROCESS update messages from the computational processors.
if appropriate)
~> CHECK if global stopping criteria is satisfied, and if it is
-=> SEND STOP message to all processors
Until done
-——- - COMPUTATIONAL PROCESSOR -
Repeat
SCHEDULE and EXECUTE a task.
HEW TASKS generated?
=> INSERT new tasks into local priority queue.
UPDATE computation status.
=> PROCESS update messages from mediator processor.
HEED work?
=> SEND request to the mediator processor.
=> WAIT for a reply.
EXTRA work?
-> SEND a task to the mediator processor.
STOP message received?
-> DOBE = TRUE;
Until done

Figure 3.4: Centralized Mediation

tributed receiver-initiated, distributed sender-initiated, and centralized mediation strategies

shown in figures 3.1, 3.2, 3.3, and 3.4, respectively.

3.2. _Related Work

he centralized, master-slave organization has been used frequently in the design of parallel

11

are

ap-

plications and can take various forms. For example, in the static synchronous global optimization
algorithm described in [5], the master processor is responsible for partitioning the problem, starting
the slave processors, synchronization, distributing local minimization tasks, and collecting results,
but its scheduling decisions are trivial. In many other contexts, such as the parallel branch and

bound algorithm of [27], the master has a complex role in scheduling due to the dynamic numbers

of tasks and the asynchronous character of these computations.

Centralized organizations are also prevalent in the implementation of parallel algorithms
on shared memory systems where a shared task queue replaces the master processor and each
processor sends all of its tasks to the centralized shared queue. Examples of this arrangement can
be found in [7], [14], and [4], and many other systems.

At the systems support level, distributed dynamic load balancing has been an active
area of research. The distributed strategies discussed here are similar to the sender-initiated and
receiver-initiated policies (also referred to as bidding and drafting policies) investigated in [9], [8],
(23], and [20]. Distributed policies that allow both a sender or a receiver to initiate a task transfer
have also been investigated, such as the gradient model presented in [17]. In general, research at
the systems support level assumes that different tasks come from different applications and are
unrelated.

Dynamic load balancing also has been used at the environment and language level to
perform load balancing specifically on those tasks involved in one parallel computation. Load
balancing strategies in this situation can be similar to those mentioned above. Because the tasks
involved are part of the same parallel computation, however, communication requirements may
constrain which tasks can be moved from one processor to another. Some examples of environments
and languages that employ or provide for dynamic load balancing are the Chare Kernel [12, 13],
DIB [10], and the distributed scheduler described in [26].

Strategies related to our centralized mediation strategy have been used in very different
contexts. First, a parallel branch and bound algorithm described in [15] uses a somewhat related
approach. The processors in this algorithm inform a central scheduler when they need more work,
but not when they have too much work. The scheduler obtains work to fill these requests by
broadcasting a request to all the processors for more tasks, when it has run out of the tasks from
its previous broadcast. Thus, this strategy relies on the centralized scheduler to determine when
tasks should be sent from a processor to the centralized work queue, whereas in the centralized

mediation strategy described in this paper, this decision is carried out locally, by eacl processor.

12

In [1], related ideas are used for two level scheduling in shared memory systems. Scheduling of
threads, or fine grained tasks, is accomplished by keeping threads in queues local to processors in
order to circumvent the waiting associated with accessing a single, centralized shared queue. When
the size of a local queue exceeds some predetermined threshold, half of its threads are sent to the
centralized shared queue to prevent load imbalance. A processor without threads in its local queue

may obtain some from the centralized shared queue.

3.3. Implementation Details

In this section we describe how the scheduling strategies are used to implement the parallel algo-
rithm for global optimization. In particular, for each strategy we describe how task priorities are
determined, and the criteria used by processes to determine that they need more work or that they

have too much work. First the definitions of global and local iterations are given.

3.3.1. Global and Local Tterations

In the subsequent discussion, a global iteration will consist of all the tasks at a particular level of
the task precedence tree. Global iteration k is said to complete when all the subregion and local
minimization tasks at level & in the tree have\‘ completed execution.

A local iteration is the subset of a global iteration seen by one processor. This subset
arises in the following way. Initially, each processor starts out with one or more subregion tasks.
(The number of initial subregions is a multiple of the number of processors.) The tasks generated
by these initial subregion tasks are inserted into a local priority queue. Local iteration & is said to
be complete when all tasks at level &£ in the local priority queue have completed execution.

It is possible that a subregion or local minimization task will be transferred to another
processor to achieve load balance. When a task of level k is moved away from a processor, this
processor no longer considers the task part of its local iteration k. Conversely, when this same task
of level k arrives at a neW processor, this processor inserts the new task into its priority queue and

the new task is considered to be part of that processor’s local iteration k (unless, of course, the

13

task is moved again).

Finally, it is possible that a task or group of tasks may arrive at a processor with an
iteration number I < k, where k is the last completed local iteration at the processor. When this
occurs, that processor resets the last completed iteration to ! — 1, and continues to schedule and

execute tasks as before.

3.3.2. Task Scheduling Priorities

In all of the scheduling strategies, tasks are placed into a priority queue according to the following
criteria which is used regardless of whether the queue is local (for centralized mediation and dis-
tributed scheduling) or global (for centralized scheduling and centralized mediation at the mediator
process): All tasks of level k& precede tasks of level k£ + 1, and all subregion tasks of level & precede
local minimization tasks of level k. Tasks of the same type and level are prioritized in the order of
their arrival. Note that this ordering is consistent with the task precedence tree.

Tasks with the highest priority are scheduled from the queue to run on a processor if
they are current. Current tasks are tasks with an iteration level within an acceptable distance
from the last known completed global iteration. This distance is known as the asynchronicity level
because it limits the number of iterations that can be in progress at one time, and it ensures that
the task precedence tree is explored in close to a breadth-first manner. In all of the experiments
to be described in Section 4, we have used an asynchronicity level of 2. Several values for the
asynchronicity level were examined for these experiments and the value chosen exhibits the best

performance overall.

3.3.3. Task Transfer Policies

The task transfer policies for the centralized mediation, distributed receiver, and distributed sender-
initiated strategies consist of (1) a policy for giving work away and (2) a policy for determining
if work is needed. In both cases, application specific criteria and application independent criteria

are possible and have been examined in [24]. In this paper, however, we restrict our attention

14

to application specific policies. In general, a policy based on application independent information
would use information such as that maintained by most operating systems for an estimate of
workload, for example, the number of tasks waiting to execute. In contrast, an application specific
policy incorporates some knowledge about the tasks or some other facet of the application.

A policy for determining whether work is needed is used in centralized mediation and dis-
tributed receiver-initiated scheduling to request work from the mediator or another processor, and
in distributed sender-initiated scheduling to determine if work should be accepted. The application
specific policy used is that requests are made or work is accepted when a processor has no current
subregion tasks. The philosophy behind this strategy is that subregion tasks represent immediate
work, as well as the possibility of future work. Therefore, it is desirable to distribute subregion
tasks rather evenly, when possible.

A policy for giving work away is used in centralized mediation and distributed sender-
initiated scheduling to send work voluntarily to the mediator or another processor, and in dis-
tributed receiver-initiated scheduling to determine if a i'equest for work should be satisfied. The
policy used is that each processor sends a subregion task to the centralized mediator or to a re-
questing processor if it has at least two current subregion tasks. If a processor has only one current
subregion task, and more than one local minimization task, it sends a local minimization task to
the mediator or the requesting processor.

In conjunction with the policies involved with task transfer, there is a location policy that
determines which processor receives a task, or a request for a task. In both the distributed policies,
the processor wanting to make a task request or send a task randomly selects another processor to
receive this information. The receiving processor accepts the information if it can, or forwards the
task or task request to another processor. This is called probing, and is carried out a limited number
of times. In the centralized mediation and the centralized scheduling strategies, the location policy
is a first-in-first-out policy, that sends the first task in the priority queue to the first processor that

requests it.

15

4. Performance of the Scheduling Strategies

This section examines the performance and scalability of centralized scheduling, distributed schedul-
ing and centralized mediation as applied to the parallel algorithm for global optimization. One
concern is how well each strategy addresses the problem of dynamic task distribution for parallel
adaptive computations under different types of task loading conditions. In particular, the success
of a strategy is evaluated with respect to processor utilization and overall execution time for the
global optimization algorithm for problems that produce light, medium, and heavy task workloads.
Another concern is how the scheduling algorithms scale. In this case, we examine how each of the
scheduling strategies performs as the number of processors and the problem size increases.

The performance of the three scheduling strategies is assessed using a combination of
simulation, analytic modeling, and actual implementations of the parallel programs. First, a sim-
ulation model for the centralized scheduling strategy was developed, using execution traces and
measurements from an existing implementation of centralized scheduling (see [25]). Next, the cen-
tralized scheduling simulation model was compared with performance measures from the actual
implementation in order to validate the simulation model. This validated model for the central-
ized scheduler provided a basis for performing simulation experiments with the other scheduling
strategies. Both distributed receiver-initiated scheduling and distributed sender-initiated schedul-
ing, with both threshold and application specific task transfer policies were investigated, although
in this paper only performance results for the receiver-initiated application specific task transfer
policy (the best of these alternatives) are presented. The experimentation influenced the design of
the scheduling strategies, leading to the consideration and development of the centralized mediation
strategy and a simulation model for it.

The simulation models for centralized scheduling, distributed scheduling, and centralized
mediation provide the opportunity to study a wide variety of situations such as different numbers of
processors and different task loading conditions. Because there are possibly many interesting test
cases to explore, we developed analytic models of centralized scheduling and centralized mediation

to assist in identifying the most interesting test cases to examine by simulation. Finally, because

16

of the favorable performance results of centralized mediation in the simulation experiments, this
strategy was chosen to verify the results of the modeling précess. A parallel implementation of this
strategy was developed, tested, and compared against the simulation results.

Section 4.1 describes the analytic models and their results, Section 4.2 describes the sim-
ulation methodology, including the use of the execution traces and the simulation results, and
Section 4.3 describes the implementations used to validate the centralized scheduler and verify the
centralized mediation simulation.

Both the implementations and the simulations discussed in these sections are evaluated
using different configurations of and execution traces from a single test problem that is described
in [25]. The advantage of using a single test problem is that we were able to make a detailed and
controlled comparison of various aspects of the scheduling strategies, such as the number of tasks
involved in the computation and the scalability of processors and task sizes. The disadvantage of
using a single test problem is that the results may not be representative of the general behavior
of the scheduling strategies. Although we believe that the experiments associated with this test
problem have indicated some interesting general differences between the scheduling strategies, more
extensive experiments will be necessary before general conclusions about the strategies can be made.

Finally, while we model communication costs accurately, we do not discuss their impact
in the remainder of this section. The reason for this is that communication costs are a minor factor
in these algorithms, since the average computation time of a task is usually 15 to 20 times larger

than the average time required to send or receive a message.

4.1. Analytic Models

This section presents a simple queueing network model to describe the general behavior of the
centralized scheduling and the centralized mediation implementations of the adaptive, asynchronous
algorithm for parallel glob(;xl optimizaticn. The model aﬂows us to characterize the performance
differences between the two scheduling strategies in terms of the number of processors involved in

the computation. This analysis has been used to gnide the selection of the simulation experiments

17

COMPUTATIONAL PROCESSORS

4
/

Figure 4.1: High level queueing network model for centralized strategies

described in Section 4.2.

The queueing network model that we describe is based on results from operational analysis
[6], [16]. Both the centralized scheduler and the centralized mediator are modeled using a closed
queueing network with two service centers and one infinite server. The general model used for both
strategies is shown in Figure 4.1. One of the service centers, SC, represents the centralized sched-
uler or mediator, the other service center, SC,, models any queueing delay incurred in scheduling,
and the infinite server models the computational processors.

The queueing network models the behavior of a parallel computation in the following
manner. The computational processors perform one or more tasks. Tasks in this case are the basic
units of useful work in a parallel computation. After processing the tasks, a processor sends a
“transaction” to the service center SCy. In centralized scheduling, a transaction can be a request
for a new task or a new task message, which announces that a new task is available. In the case
of centralized mediation, a transaction can additionally be a “computation status” message, which
informs the mediator of the current workload and computation progress at a processor. After the
transaction at SCy is finished, some percentage of the request transactions are also processed at
S5Cy, which models the time spent waiting for a task to become available. A processor resumes

computation after the transaction exits from either SC; or SC5.

18

In general, in order to evaluate a closed queueing network model such as the one described
here, a set of model inputs are given and, using the technique of mean value analysis [16], [21],
a set of model outputs can be derived. These model outputs can then be used with other input
parameters to express the total parallel computation time.

The model inputs are the number of processors (P), the demand at service centers SCy
and SC; in Figure 4.1, and the “think” time (Z) of each processor. The values for the model inputs
that we use in the analytic experiments are either measured from actual experiments or projected
to reflect different situations of interest. In the case of the number of processors, P, we use several
values between 8 and 64 to examine the scalability of the strategies. For expressing the demand at
service center, SCy, which represents the total amount of time spent processing transactions at the
centralized scheduler or the centralized mediator, we have used values from actual experiments with
the centralized scheduling implementation. The same values for SC; (485 ms for test problem A,
and 615 ms for test problem B) are used in the analytic models for both centralized scheduling and
centralized mediation, since the times these two models take to process transactions are expected
to be similar. The demand at the second service center, SC;, corresponds to a “task-matching”
wait experienced with either the centralized scheduling or the centralized mediation strategy. We
model the worst case situation in which a request for a task must always wait for a task to arrive to
fill that request. The values used in the analytic experiments for the centralized scheduler (829 ms

kfor test problem A and 1112 ms for test problem B) are average values obtained from measurements
of the implementation for centralized scheduling, and the values used for the centralized mediation
strategy (2437 ms for test problem A and 1585 ms for test problem B) are obtained from preliminary
simulations. Finally, Z, the think time of the ﬁrocessors, is expressed in terms of the average task
time, s, and the communication time, ¢, which are both measured experimentally. (For example,
we obtained s = 9500 ms for problem A, s = 13300 ms for problem B, and ¢ = 25 ms for both
test problems). In centralized scheduling a transaction occurs after every task, so the think time
is Z = s + 2c. In centralized mediation, the think time between transactions to the centralized

mediator is considerably longer than in centralized scheduling since tasks are scheduled locally if

19

possible. We express this think time as Z = ks+ 2¢, where k is the number of tasks that execute in
between transactions and where k is measured from the simulation of the centralized mediator with
8 processors, and is also used for larger numbers of processors. From our simulations, we obtained
k = 2.6 and k= 1.8 for test problems A and B.

In addition to the inputs that are to be used directly in the calculation of the queueing
model outputs, two additional parameters are used in the calculation of the parallel computation
time. These parameters are 7, the total number of tasks in the computétion and t, the total number
of transactions in the computation. In all the above models, n and ¢ are measured experimentally
from the centralized scheduling implementation for 8 processors (we obtained n = 151 and t = 53
for test problem A, and n=120 and t=65 for test problem B). To project situations where P = 8K
(for some integer K > 1), both n and t are multiplied by K. This has the eﬂ"e;:t of keeping the
amount of work done by each processor the séme for all values of P.

As mentioned earlier, we can calculate several model outputs using mean value analysis
and the given model inputs for the queueing network model. The quantities of interest can then
be derived from these outputs and the model inputs. In particular we are interested in the overall
execution time of the parallel computation, the utilization of the centralized processor (service
center SC1), and the utilization of the computational processors.

For both the centralized scheduling and the centralized mediation strategies, the overall
execution time for each processor is the time spent by each processor doing useful work plus the
time each processor spends waiting. In general, each processor may execute different numbers
of tasks with varying computational requirements. To make the model as simple as possible,
however, we make the assumption that each processor executes the same number of tasks (%).
The computational time used for each of these tasks will be the average computation time, s,
as measured in the centralized scheduling experiments, so that the total time that a processor
spends doing useful work is %s. The total time spent waiting for transactions to complete is the
sum of the communication time to and from the service centers and the time resident while being

serviced there, or %(QC + Ryys), where Ryys is a model output calculated using mean value analysis

20

Table 4.1: Centralized Scheduler Analytic Experiment Results

Problem A Problem B
P OVERALL Usrhed Ucomp || OVERALL Ucehed Ucomp
8 4:11 29 % 1% 5:28 27 % 73 %
16 3:52 64 % 78 % 4:01 59 % 79 %
24 4:.06 90 % 73 % 5:11 85 % 76 %
32 4:57 99 % 61 % 6:00 98 % 66 %
40 6:08 99 % 49 % 7:22 99 % 54 %
48 7:22 100 % 41 % 8:51 100 % 45 %
56 8:36 100 % 35 % 10:19 100 % 38 %
64 9:49 100 % 31 % 11:48 100 % 33 %

that represents the mean time a transaction spends at service center SC; and SCs, and ¢ is the
total number of transactions. We also assume that each processor executes the same number of

transactions. The overall time of the computation is thus given by
n t
OVERALL = "1'53 + F(?C + Rsys).

The utilization for the processors is the ratio of the time spent doing useful work to the

overall time. That is, the average utilization of a processor is

ns
ns +t(2c + Rgys) '

Uproccssor

These equations characterize the general behavior of both the centralized scheduling and
the centralized mediation strategies. The differences between the analytic model for two strategies
are the values of SC3 and k, and the percentage of tasks that are serviced as requests at SCj.

A number of cases of the analytic model were run to examine the scalability of each
scheduling strategy, and to identify interesting cases for use in the simulation study. This was done
by varying the number of processors, P in the model. In particular we wanted to determine the
number of processors that place the centralized scheduler or the centralized mediator in a “heavily
loaded” state, which occurs when their utilizations approach 100%. The values of P examined are
multiples of 8, from 8 to 64.

The results of the model for two problems are given in Tables 4.1 and 4.2. OVERALL,

Uscheds Umed and Ucomp Tepresent the overall execution time, the utilization of the centralized sched-

21

Table 4.2: Centralized Mediation Analytic Experiment Results:

Problem A Problem B
P || OVERALL | U, .4 | Ucomp || OVERALL Uned | Ucomp
8 3:33 11% 85 % 4:22 9% 91 %
16 3:22 24 % 89 % 4:16 19 % 93 %
24 3:19 37 % 90 % 4:15 30 % 94 %
32 3:18 50 % 91 % 4:14 40 % 94 %
40 3:17 64 % 91 % 4:14 51 % 94 %
48 3:18 76 % 91 % 4:14 61 % 94 %
56 3:19 86 % 90 % 4:14 71 % 94 %
64 3:23 95 % 88 % 4:14 80 % 94 %

uler processor, the utilization of the centralized mediation processor, and the average utilization of
the computational processors, respectively.

We draw the following conclusion from these results. The degradation of performance is
more gradual in the case of centralized mediation because there are far fewer transactions to the
centralized mediator than there are to the centralized scheduler. The centralized scheduler becomes
heavily loaded around 32 processors, and the centralized mediator around 64 processors or more.
These results are reflected in the choice of the numbers of processors examined for the simulation

experiments.

4.2. Simulation

This section describes the simulation methodology and performance results for the three scheduling
strategies as applied to the parallel global optimization algorithm.

To model the execution of the adaptive parallel algorithm using various scheduling strate-
gies, we have used simulations based on the execution traces generated by an implementation of
the parallel global optimization algorithm using the centralized scheduling strategy. The execution
traces were obtained from experimental runs for different problems running on up to 8 slave pro-
cessors. The execution traces consist of computation times for the various steps of the algorithm,
and information about what is happening in each subregion, such as the number of local searches

generated at each iteration, the number of subregions, and the sample size of each subregions. This

22

information is used in discrete event simulations for each of the scheduling strategies.

As mentioned at the beginning of the section, the simulations will address two issues to
assess the performance of the various scheduling strategies. The first issue is how well the scheduling
strategies distribute tasks under different loading conditions. The second issue is how well the
scheduling strategies scale. In order to investigate these issues using simulation, the execution
traces have been modified.

To investigate different loading conditions, the execution traces have been modified to
represent light, medium, and heavy loading. Lightly loaded conditions might occur, for example, if
there were fewer minimizers in the test problem, or if the function evaluations of this test problem
were more expensive. Conversely, heavily loaded conditions might occur if there were more mini-
mizers in the test problem, or if the function evaluations of this test problem were less expensive.
For light loading, the traces have been modified by pruning branches of the task precedence tree
for an experimental run. This allows us to observe the performance of the scheduling strategies
when there are not enough tasks to keep all the processors busy. In a similar manner, we have
modified the traces to depict heavy loading conditions by duplicating productive branches of the
task precedence tree. This modification results in an abundance of work being available to the
processors. No modification is necessary to observe the behavior of medium loaded conditions.

To investigate how well the scheduling strategies scale, each set of traces has been dupli-
cated (in multiples of 8) to examine the behavior of the algorithms on as many as 64 processors.

The simulation results presented here show the behavior of the global optimization al-
gorithm for 3 different scheduling strategies, centralized scheduling, centralized mediation, and
distributed receiver-initiated scheduling, as applied to two versions of a single global optimization
test problem (called A and B) under various workload and processor combinations. (The two ver-
sions differ only in the initial sample density). Preliminary results indicated that the distributed
sender-initiated strategy performed worse than the distributed receiver-initiated strategy, so we
did not experiment further with this strategy. The main objective of this evaluation is to contrast

the performance characteristics of centralized mediation with the pure centralized and distributed

23

strategies.

There are three tables for each of the two problems, organized as follows. The first table
presents the simulation results when a small number of tasks are created and there is not enough
work to keep all the processors busy all the time. The second table presents the simulation results
for a medium number of tasks in the system, enough work to go around if carefully distributed.
The final table presents the results for a large number of tasks and abundant work in the system.

Fach t'qble contains the simulation results for each scheduling strategy for 8, 16, 32, and
64 processors. For each case it shows the mean computation times, the 95% confidence intervals
for the computation times, and the range of processor utilizations. For centralized scheduling and
centralized mediation, it also shows the master utilization, which is the utilization of the processor

running the centralized scheduler or centralized mediator process.

4.2.1. Centralized Scheduling vs. Centralized Mediation

First consider the situation in which a small number of tasks are created (Tables 4.3 and 4.4). For
8 processors, the confidence intervals show conclusively that the centralized mediator strategy is
slower on both test problems. The range of computational processor utilizations with centralized
scheduling indicates that there is not enough work to keep the computational processors occupied
all the time. The range of computational processor utilizations for the centralized mediator show
that it is not as effective at distributing the tasks. For 16 processérs, centralized scheduling is, on
average, faster for problem A and slower for problem B. Under the same loading conditions with 32
and 64 processors, the centralized mediator always performs better than the centralized scheduler.
In these cases, the differences between the two scheduling strategies are significant since there is no
overlap in their confidence intervals.

For medium numbers of tasks (Tables 4.5 and 4.6) and large numbers of tasks (Tables
4.7 and 4.8) in the system, there is no significant difference between the performance of the two
scheduling strategies at 8 processors, as reflected by the large overlap in the confidence intervals

for these situations. For 16 or more processors, however, the advantage of centralized mediation

24

is apparent, and this strategy can be significantly faster (up to 4.3 times as fast in some cases)
than centralized scheduling. The centralized scheduling processor becomes a bottleneck at 32 or
64 processors for both problems in both the medium and heavily loaded situations, while the
centralized mediator is no more than 33 % and 67 % loaded at 32 and 64 processors, respectively,
in any of these cases.

In summary, the centralized scheduler becomes a bottleneck considerably more quickly
than the centralized mediator, and as a result, experiences significant performance degradation. The

centralized scheduler is superior only for a light workload and a very small number of processors.

Table 4.3: Comparison of scheduling techniques for problem A tests involving small numbers of tasks for 8, 16, 32,
and 64 processors :

Number of Scheduling Comp. time Comp. time Processor util | Master util
Processors Strategy (Mean) (95 % con{. int.) (Range) (Mean)
centralized scheduler 2:41 2:35 - 2:46 50 % - 81 % 38 %
8 centralized mediator 3:40 3:22 - 4:23 24 % -90 % 11 %
distr. receiver 4:03 3:46 - 4:20 23 %-176 % -
centralized scheduler 2:27 2:22 - 2:34 42%-78 % 32 %
16 centralized mediator 2:51 2:37 - 3:04 25%-95% 21 %
distr. receiver 3:18 3:14 - 3:38 21 % - 74 % -
centralized scheduler 3:52 3:41 - 4:07 26 % - 54 % 87 %
32 centralized mediator 2:53 2:42 - 3:04 26 %-92% 41 %
distr. receiver 3:24 3:21 - 3:44 20%-77T% -
centralized scheduler 6:57 6:07 - 7:45 14%-29% 94 %
64 centralized mediator 3:14 2:36 - 3:51 23%-89% 76 %
distr. receiver 3:37 3:18 - 3:55 18%-713% -

4.2.2. Centralized Mediation vs. Distributed Receiver-Initiated Scheduling

We first note that in comparing the centralized mediation and the distributed receiver-initiated
scheduling strategies, we have, for convenience, always used one additional processor for the cen-
tralized mediator strategy than for the distributed receiver strategy. This processor is dedicated
to the centralized mediator process. By examining the simulation results, we see that the work
done by this processor is fairly small in all cases, amounting to approximately 1 % of the total
computational effort. In comparison to the performance difference between the centralized medi-

ator and the distributed receiver strategies, we therefore see that combining this processor with a

25

Table 4.4: Comparison of scheduling techniques for problem B tests involving small numbers of tasks for 8, 16, 32,
and 64 processors

Number of Scheduling Comp. time Comp. time Processor util | Master util
PIocessors Strategy {(Mean) {95 % conf. int.) (Range) (Mean)
centralized scheduler 3:06 2:56 - 3:15 67 % -90 % 43 %
8 centralized mediator 4:30 4:09 - 4:53 40 % -94 % 8 %
distr. receiver 4:43 4:20 - 5:06 33%-82% -
centralized scheduler 3:15 3:05 - 3:26 59 % -84 % 67 %
16 centralized mediator 2:59 2:48 - 3:01 54 % - 95 % 18 %
distr. receiver 3:34 3:11 - 3:43 42 % - 80 % -
centralized scheduler 5:37 5:05 - 5:39 34 % - 50% 85 %
32 centralized mediator 2:56 2:46 - 3:01 55 % - 96 % 34 %
distr. receiver 3:47 3:21 - 3:50 36 % - 96 % -
centralized scheduler 9:55 8:58 - 9:21 18 % - 30% 92 %
64 centralized mediator 3:20 3:03 - 3:36 50 %-91% 61 %
distr. receiver 3:43 3:04 - 4:20 33%-79% -

computational processor (thus giving each strategy an equal number of processors) would not be
expected to alter the overall comparison between the strategies.

In comparing the two strategies, we rely heavily on the confidence interval results to discern
significant differences between the two strategies. For the majority of the 8 processor experiments,
there is some overlap in the confidence intervals of the computation times for the two strate’gies.
Because of this and the fact that the centralized mediator strategy uses one additional processor,
there is no significant difference between the two strategies even though the computation mean
times are lower for centralized mediation in all these cases.

For 16 and 32 processors, there are some clear differences between the two strategies. In
the situation where small and medium numbers of tasks are present in the system (see Tabies 4.3,
4.4, 4.5 and 4.6), centralized mediation exhibits a performance gain that ranges from 14% to 28 %,
with no overlap in the computation time confidence intervals of the distributed receiver strategy.
With large numbers of tasks in the system, the centralized mediation strategy exhibits significantly
faster performance than the distributed receiver strategy in problem B; for problem A the mean
computation time for centralized mediation is lower but the computation time confidence intervals
overlap (see Tables 4.7 and 4.8). For 64 processors, centralized mediation is significantly faster

than distributed receiver in problem B for medium and large numbers of tasks. Under all other

26

Table 4.5: Comparison of scheduling techniques for problem A tests involving medium numbers of tasks for 8, 186,
32, and 64 processors

Number of Scheduling Comp. time Comp. time Processor util | Master util
Pprocessors Strategy (Mean) (95 % conf. int.) {Range) (Mean)
centralized scheduler 3:30 3:16 - 3:44 77 % -95 % 51 %
8 centralized mediator 3:08 3:01 - 3:25 62 % - 96 % 7%
distr. receiver 3:36 3:14 - 3:39 66 % - 92 % -
centralized scheduler 4:02 3:51 - 4:36 64 % -84 % 82 %
16 centralized mediator 3:11 3:05 - 3:26 59 % -97% 15 %
distr. receiver 3:52 3:28 - 4:18 59 % - 91 % -
centralized scheduler 6:57 6:27 - 8:47 33%-52% 94 %
32 centralized mediator 3:18 3:11 - 3:34 58% - 97 % 20 %
distr. receiver 3:55 3:34 - 4:12 52 % -91% -
centralized scheduler 13:31 11:07 - 15:54 16 % - 28 % 97 %
64 centralized mediator 3:34 3:00 - 4:09 53% - 95 % 63 %
distr. receiver 4:08 3:28 - 4:48 43 %-85% -

conditions, although the mean computation times of the centralized mediator strategy are lower
than for the distributed receiver strategy, the confidence intervals of the computation times overlap
enough so that the performance improvements may not be significant.

When the centralized mediator strategy does exhibit better performance than the dis-
tributed receiver strategy, a key reason is that the processor utilizations are generally higher for
centralized mediation than for distributed receiver under all loading conditions. This is because the
productive utilization of each computationél processor in either strategy is limited by the amount of
overhead it incurs in scheduling. In the distributed strategy, as the number of processors increases,
the number of requests in the system usually increases linearly with the number of processors,
while the number of computation status messages increases proportional to square of the number
of processors. In the centralized mediation strategy, the centralized mediator incurs most of the
overhead of scheduling, and the increase in scheduling overhead for the computational processors is
far lower. Thus, the computational processors realize higher processor utilizations in this strategy.

It is also intveresting to compare these results to those predicted by the analytic models.
Although the analytic models show the centralized mediator beginning to saturate at 64 processors,
the worst processor utilization time observed by the mediator at 64 processors in the simulations

is 76 %. (Recall that the analytic model made some worst case assumptions regarding the latency

’ 27

Table 4.6: Comparison of scheduling techniques for problem B tests involving medium numbers of tasks for 8, 16, 32,
and 64 processors

Number of Scheduling Comp. time Comp. time Processor util | Master util
Processors Strategy (Mean) (95 % conf. int.) (Range) (Mean)
centralized scheduler 4:14 4:00 - 4:28 86 % - 98 % 46 %
8 centralized mediator 3:46 3:45 - 4:03 83 %-97% ™%
distr. receiver 4:23 4:03 - 4:49 86 % - 98 % -
centralized scheduler 5:08 4:41 - 5:16 74 % - 89 % 78 %
16 centralized mediator 3:43 3:37 - 3:58 83% -97 % 15 %
distr. receiver 5:09 4:36 - 5:13 88 % -92% -
centralized scheduler 8:43 7:50 - 8:47 39 % -56 % 90 %
32 centralized mediator 3:38 3:33 - 3:57 82 %-99% 17 %
distr. receiver 4:57 4:23 - 5:16 77T % - 93 % -
centralized scheduler 16:04 15:01 - 17:06 19%-32% 95 %
64 centralized mediator 3:46 3:40 - 3:51 80 % -99% 59 %
distr. receiver 5:21 4:27 - 6:13 73 % -89 % -

between new task messages arriving to the centralized mediator; these presumably account for
the differences.) This is under conditions that place the most strain on the centralized mediator,
namely, there are small numbers of tasks in the system and not enough work to go around, so that
many requests are made to the mediator.

In summary, the centralized mediator never performs significantly worse than the dis-
tributed scheduler in these tests, and performs significantly better in a number of cases. The
centralized mediator is not yet a bottleneck at 64 processors in these tests, although it would

becomes one for P sufficiently large.

4.3. Validation and Verification of the Simulation Models

This section presents the experimental results for validating the centralized scheduler simulation
model and for verifying the centralized mediation model.

For the implementations that are discussed here, we ran experiments for the centralized
scheduling and centralizedk mediation implementatibns using a dedicated test environment of 9 SUN
3/60 workstations (8 computational processors plus 1 master processors) for each test problem. The
applications were implemented using Grail, a set of message passing library routines developed by

Maybee [18], with primitives similar to those provided by PVM [2] and P4 [11]. In both tests

28

Table 4.7: Comparison of scheduling techniques for problem A tests involving large numbers of tasks on 8, 16, 32,
and 64 processors

Number of Scheduling Comp. time Comp. time Processor util | Master util
PIoCessors Strategy (Mean) (95 % conf. int.) (Range) (Mean)
centralized scheduler 3:48 3:36 - 3:58 82%-95% 47 %
8 centralized mediator 3:03 3:00 - 3:27 T %-98% 7%
distr. receiver 3:34 3:20 - 3:47 75 % - 96 % -
centralized scheduler 4:18 4:11 - 4:37 60 % - 85 % 80 %
16 centralized mediator 3:04 2:59 - 3:32 5 %-99 % 14 %
distr. receiver 3:45 3:20 - 4:10 1%-9 % -
centralized scheduler 7:15 6:54 - 7:48 37 %-54 % 94 %
32 centralized mediator 3:17 3:10 - 3:48 67 % -98% 33 %
distr. receiver 3:36 3:28 - 4:10 68 % -93% -
centralized scheduler 13:55 12:53 - 14:56 18 % - 30 % 97 %
64 centralized mediator 3:19 2:54 - 3:43 69 % -97T% 67 %
distr. receiver 3:44 3:17 - 4:10 62 % -89 % -

shown here, the experimental results for each problem are averaged over 10 runs. The performance
comparisons shown in Tables 4.9 and 4.10 are the mean and 95 % confidence interval of the system

time, and the range of processor utilizations.

4.3.1. Validation of the Centralized Scheduler

We have validated the centralized scheduler simulation model by comparing the simulation based
upon the unmodified execution traces derived from the experimental runs to the actual experimental
runs. Table 4.9 shows some of the comparisons. The simulation computation times are very close
to the times observed in the actual implementations. There is also a large overlap in the confidence
intervals of the computation times indicéting that there are no statistically signiﬁcant’differences
between the simulation results and the implementation results. These results show that a discrete
event simulation can be constructed from execution traces that closely agrees with actual runs of the
program. This observation led to the initial decision to use simulatioﬁ as a means to explore different
scheduling strategies and parallel environments for the adaptive asynchronous global optimization

algorithm.

29

Table 4.8: Comparison of scheduling techniques for problem B tests involving large numbers of tasks on 8, 16, 32,
and 64 processors

Number of Scheduling Comp. time Comp. time Processor util | Master util
Processors Strategy (Mean) (95 % conf. int.) (Range) (Mean)
centralized scheduler 4:02 3:58 - 4:04 87 % - 94 % 44 %
8 centralized mediator 3:43 3:33 - 4:05 85 % -98% 7%
distr. receiver 4:59 4:53 - 5:03 88 % - 97 % -
centralized scheduler 4:46 4:37 - 4:51 74 % -89 % 4 %
16 centralized mediator 3:34 3:26 - 4:03 84 % -97T% 14 %
distr. receiver 5:09 4:33 - 5:18 88 % - 96 % -
centralized scheduler 7:45 7:28 - 7:53 40 % - 59 % 89 %
32 centralized mediator 3:36 3:32 - 3:59 85 % -99 % 30 %
distr. receiver 5:13 4:49 - 5:18 85 % -96 % -
centralized scheduler 14:37 14:06 - 15:07 19%-32% 94 %
64 centralized mediator 3:44 3:25 - 4:03 78 % - 99 % 58 %
distr. receiver 5:20 5:06 - 5:33 83 % -94% -

Table 4.9: Comparison of the simulation and implementation results for the centralized scheduling strategy

Test Evaluation Computation Time | Computation Time | Processor Util | Master Util
Case Strategy (mean) (95 % conf. int.) (range) (mean)
A simulation 3:30 3:16 - 3:44 T %-95% 51 %
implementation 3:25 3:02 - 3:32 82 % -91% 54 %
B simulation 4:14 4:00 - 4:28 86 % - 98 % 46 %
implementation 4:05 3:46 - 4:17 95 % - 97 % 54 %

4.3.2. Verification of Centralized Mediation

The scheduling extensions made to the original simulation model were verified by implementing
the centralized mediation strategy on a network of workstations. A representative subset of the
simulation results and the parallel implementation results are shown in Table 4.10. In both test
problems, the complete implementation execution times are, on average, within 6% of the simulation
times. The implementation processor utilizations are, in all cases, slightly higher than the processor
utilizations in the simulation. This may indicate that the centralized mediator strategy obtains
better load balance than predicted by the simulations. The general trends in load balancing are
estimated with reasonable accuracy by the simulations, however, since the computation times and

processor utilization ranges for both the simulations and the implementations are comparable in

30

Table 4.10: Comparison of simulation results and implementation results for the centralized mediation strategy

Test Evaluation Computation Time | Computation Time | Processor Util | Master Util
Case Strategy (mean) (95 % conf. int.) (range) (mean)
A simulation 3:08 3:01 - 3:25 62 % - 96 % 7%
implementation 3:14 2:57 - 3:28 83 % - 96 % 4%
B simulation 3:46 3:45 - 4:03 83 %-97T% 7%
implementation 3:32 3:14 - 3:49 89 % -99 % 3%

all test problems.

The mediator utilizations in both implementation cases are considerably smaller than
predicted by the simulation. Since all the estimates for the service time by the centralized mediator
that were used in the simulations were based on measurements from the centralized scheduler, it
is possible that these measurements were an overestimation of the centralized mediator’s actual
service requirement. To investigate the implications of this overestimation, we reran the analytic
and simulation models for the centralized mediator with a reduced service time. The system

execution times did not change significantly for the situations examined in this paper.

5. Summary

This paper has described several dynamic scheduling strategies and their implementation for a
parallel adaptive algorithm for the global optimization problem. The adaptive and asynchronous
features of the parallel algorithm are used to enhance the performance of the computation, but
they complicate the implementation of the algorithm on distributed memory computers, thus ne-
cessitating the use of dynamic scheduling strategies. We described how three scheduling strategies,
centralized scheduling, distributed scheduling, and centralized mediation, are used to implement
the parallel global optimization algorithm.

We have evaluated the three different scheduling strategies using a combination of simu-
lation, implementation, and analytic modeling. Not only were these evaluation techniques useful
for assessing the performance of the strategies, but they were also instrumental in the development

of a new scheduling strategy. We initially considered two strategies, centralized and distributed

31

scheduling, but the simulations using these strategies led us to develop and consider the centralized
mediation strategy.

The performance evaluation of these three scheduling strategies focused on the scalability
of the approaches in the context of the global optimization algorithm. The centralized mediation
often exhibited the best performance of the scheduling strategies at 16 and 32 processors, and
shared the best performance with the distributed receiver strategy at 64 processors. At 64 proces-
sors, however, the utilization of the centralized mediator is always above 50 %, so the scalability
of this strategy, like any other centralized strategy, is limited. The overhead costs associated with
distributed scheduling also increase as the number of processors increases, thus limiting the scal-
ability of this approach as well. As expected, the éentralized scheduler saturates with far fewer
processors than the centralized mediator or distributed strategy. Thus, the centralized mediator or
distributed strategies are best suited to scale with the number of processors, but either would need
to be implemented in a hierarchical manner for sufficiently large numbers of processors.

Finally, the scheduling strategies for centralized scheduling and centralized mediation were
validated and verified with actual parallel implementations. These comparisons indicated that the
simulation experiments are a reliable indicator of the performance of the scheduling algorithms.

It is important to mention that we believe that centralized mediation is likely to be an
easier strategy to implement and debug than the distributed receiver strategy. First, the distributed
receiver strategy requires that processors receiving task messages be interrupted to determine in a
timely fashion whether there is work to give away. This is not necessary in the centralized mediation
strategy since the mediator is dedicated to processing this type of information. Second, because the
new task, task request, and computation status messages in the centralized mediation are sent to a
centralized location, it is easier to isolate programming bugs than in the distributed strategy, where
any processor may receive these messages. Thus we feel that the centralized mediation strategy

may be a promising scheduling strategy for dynamic, adaptive parallel computations.

32

References

(1]

(8]

(°]

(10]

(11]

(12]

(13]

(14]

(15]

T. E. Anderson, E. D. Lazowska, and H. M. Levy. The performance implications of thread management al-
ternatives for shared-memory multiprocessors. JEEE Transactions on Computers, 38(12):1631-1644, December
1989.

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. A users’ guide to PVM Parallel Virtual
Machine. Technical Report ORNL/TM-11826, Oak Ridge National Laboratory, Oak Ridge, TN. 37831-6367,
September 1991.

M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. Journal of
Computational Physics, 54:484-512, 1984.

B. N. Bershad, E. D. Lazowska, H. M. Levy, and D. B. Wagner. An open environment for building parallel
programming systems. In Proceedings of the ACM SIGPLAN Conference on Parallel Programming: Ezperience
and Applications, pages 1 - 9, July 1988.

R. H. Byrd, C. L. Dert, A. H. G. Rinnooy Kan, and R. B. Schnabel. Concurrent stochastic methods for global
optimization. Mathematical Programming, 46:1-29, 1990.

P. J. Denning and J. P. Buzen. The operational analysis of queueing network models. Computing Surveys,
10(3):225-261, September 1978.

J. J. Dongarra and D. C. Sorenson. Schedule: Tools for developing and analyzing parallel fortran programs. In
D. B. Gannon, L.H. Jamieson, and R. J. Douglass, editors, Characteristics of Parallel Algorithms, pages 363 —
394. MIT Press, 1987.

D. L. Eager, E.D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous distributed systems.
IEEE Transactions on Software Engineering, SE-12:662-675, 1986.

D. L. Eager, E.D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-initiated adaptive
load sharing. Performance Evaluation, 6:53-68, 1986.

R. Finkel and U. Manber. Dib - a distributed implementation of backtracking. ACM Transactions on Program-
ming Languages and Systems, 9:235-256, 1987.

J.Boyle, R.Butler, T.Disz, B.Glickfeld, E.Lusk, R.Overbeek, J.Patterson, and R.Stevens. Portable Programs for
Parallel Processors. Holt, Rinehart, Winston, Inc., New York, NY, 1987.

L. V. Kale and W. Shu. The chare-kernel language for parallel programming: A perspective. Technical Report
UIUCDCS-R-88-1451, Department of Computer Science - University of Illinois at Urbana-Champaign, August
1988.

L. V. Kale and W. Shu. Comparing the performance of two dynamic load distribution methods. In International
Conference of Parallel Processing, August 1988.

J. A. Kapenga and E. De Donker. A parallelization of adaptive task partitioning algorithms. Parallel Computing
- North-Holland, 7:211-225, 1988.

G. Kindervater. Ezercises in Parallel Combinatorial Computing. PhD thesis, Erasmus University, Rotterdam,
The Netherlands, 1989.

33

(16]

(17]

(18]

(19]

[20]

(21]

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance: Computer
System Analysis Using Queueing Network Models. Prentice-Hall, New Jersey, 1984.

F.C.H. Lin and R.M. Keller. Gradient model: A demand-driven load balancing scheme. In Proceedings of the
6th International conference on Distributed Computing Systems, pages 329-336, August 1986.

P. Maybee. Grail: A system for parallel distributed programming. Technical report, University of Colorado,
Boulder, Colorado 80309-0430, 1989.

S. McCormick and D. Quinlan. Asynchronous multilevel adaptive methods for solving partial differential equa-
tions on multiprocesors: performance results. Technical report, University of Colorado at Denver, Denver, CO
80204, October 1988. To appear in Parallel Computing.

R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive Ioad‘ sharing in heterogeneous distributed systems.
Journal of Parallel and Distributed Computing, 9:331-346, 1990.

M. Reiser and S. S. Lavenberg. Mean value analysis of closed multichain queueing networks. Journal of the
ACM, 27(2):313-322, April 1980.

A. H. G. Rinnooy Kan and G. T. Timmer. A stochastic approach to global optimization. In P. Boggs, R. Byrd,
and R. B. Schnabel, editors, Numerical Optimization, pages 245 — 262. STAM, Philadelphia, 1984.

A. Ross and B. McMillin. Experimental comparison of bidding and drafting load sharing protocols. In The
Fifth Distributed Memory Computing Conference, pages 968-974, April 1990.

S. L. Smith. Adaptive, Asynchronous Distributed Algorithms for Parallel Computation. PhD thesis, University
of Colorado, Boulder, Colorado 80309-0430, December 1991.

S. L. Smith, Elizabeth Eskow, and Robert B. Schnabel. Adaptive, asynchronous stochastic global optimization
algorithms for sequential and parallel computation. In T. F. Coleman and Y. Li, editors, Proceedings of the
Workshop on Large-Scale Numerical Optimization, pages 207 — 227. SIAM, Philadelphia, 1989.

D. A. Tanqueray and D. F. Snelling. A distributed self-scheduler for partially ordered tasks. Parallel Computing
- North-Holland, 8:267-273, 1988.

H.W.J.M. Trienekens. Parallel Branch and Bound Algorithms. PhD thesis, Erasmus University, Rotterdam,
The Netherlands, 1990.

34

