A Parallel Algorithm for Computing the Singular
Value Decomposition of a Matrix: A Revision of
Argonne National Laboratory Tech. Report “

ANL/MCS-TM-102
E.R. Jessup and D.C. Sorensen
CU-CS-623-92 October.1992

@]}University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

A Parallel Algorithm for Computing
the Singular Value Decomposition of a Matrix:

A Revision of Argonne National Laboratory
Tech. Report ANL/MCS-TM-102

E.R. Jessup*
Department of Computer Science
University of Colorado
Boulder, Colorado 80309-0430

D.C. Sorensen!
Department of Mathematical Sciences
Rice University
Houston, Texas 77251-1892

October 1992

Abstract

A parallel algorithm for computing the singular value decomposition of a matrix is pre-
sented. The algorithm uses a divide and conquer procedure based on a rank one modification
of a bidiagonal matrix. Numerical difficulties associated with forming the product of a ma-
trix with its transpose are avoided, and numerically stable formulae for obtaining the left
singular vectors after computing updated right singular vectors are derived. A deflation
technique is described which together with a robust root finding method assures computa-
tion of the singular values to full accuracy in the residual and also assures orthogonality of
the singular vectors.

1 Introduction
The singular value decomposition (SVD) of a real m X n matrix A can be written
A = Uzvy,

where U and V are both orthogonal matrices, and ¥ is a diagonal matrix with non-negative
diagonal elements. The columns of U and V are, respectively, the left and right singular vectors
of A; the diagonal elements of ¥ are its singular values. A standard algorithm for computing

*This author was funded by DOE contracts W-31-109-Eng-38 (at Argonne National Lab oratory), DE-ACO05-
840R21400 (at Oak Ridge National Laboratory), and DE-FG02-92ER25122 and by NSF grant CCR-9 109785.

'This author was funded by DOE contracts W-31-109-Eng-38 (at Argonne National Laboratory) and DE-
FGO0f-91ER25103 and by NSF cooperative agreement CCR-9120008.

the singular value decomposition involves first reducing a matrix A to upper bidiagonal form
B using elementary orthogonal transformations [12, 13] as follows

A = UBVT
and then computing the SVD of B = Y£X7. Combining the two results gives
A = UysXTHyT = yxv?,

where U = UY and V = VX.

This paper focuses on the computation of the SVD of the bidiagonal matrix B by divide and
conquer mechanisms based on rank one tearing of the bidiagonal matrix B. Algorithms founded
on this technique have proven accurate and efficient for both serial and parallel computation
of eigensystems of symmetric tridiagonal matrices [6, 10]. The notable speed and accuracy
of the rank one updating process for that problem motivate application of rank one updating
techniques to the singular value decomposition.

The presentation of the updating technique begins in Section 2 with a review of the rank one
updating techniques used for the symmetric tridiagonal eigenproblem. Section 3 continues with
a discussion of some difficulties arising in the design of an SVD algorithm that is both accurate
and efficient. Section 4 describes a basic divide and conquer step for the SVD equivalent to a
rank one tearing of a symmetric tridiagonal matrix.

Sections 5 and 6 are devoted to finite precision deflation rules and the orthogonality of
the computed singular vectors. Section 7 covers implementation of the divide and conquer
algorithm PSVD and the results of numerical experiments.

In all sections, we consider only the case m = n. If m > n, the initial reduction may be
preceded by computing a QR factorization of A and using the m x n triangular matrix R in
place of A . A similar procedure is appropriate for the case m < n .

Throughout this paper, unless otherwise specified, capital Roman letters represent matrices,
lower case Roman letters represent column vectors, and lower case Greek letters represent
scalars. A superscript 7' denotes transpose. All matrices and vectors are real.

2 Divide and Conquer for the Symmetric Tridiagonal Eigen-
problem

In [6], Cuppen presents a divide and conquer technique for finding the eigenvalues and eigen-
vectors of a symmetric tridiagonal matrix. Rank one tearing is applied to divide the tridiagonal
matrix T of order n into

(T Belfef)_(Tl 0) (ek) T T
T_(ﬁele}{ T,) \0 T +h e1 (c> e1)

where 1 < k < n, and e; represents the j-th canonical vector of appropriate length. If the
eigensystems of the two submatrices are T} = QlDlQlT and Ty = QzDgQg, then

T = @p+s(2)E D]t =q D+ e,

Q:(%l 632)’ D:(l())l 32)’

where

2T is the last row of Qy, 27 is the first row of Qg, and p is chosen so that || z ||; = 1. The

problem is then reduced to finding the eigensystem of a diagonal matrix plus a rank one change.
The eigenvalues of T are equal to the eigenvalues of D + pzz7; the eigenvectors of T' are the
eigenvectors of D + pzzT premultiplied by the matrix Q.

An updating technique described in [5, 6, 11] is employed to determine the eigensystem of
D + pzzT. When the diagonal elements of D are distinct and the elements of z are nonzero,
the eigenvalues of D + pzzT are equal to the roots of

w(A) =14 pzT (D = AI)~1T

and can be determined efficiently by a rational interpolation scheme developed in [5]. The
eigenvector corresponding to the i-th eigenvalue A; is found directly from

u; = (D - NIz

When the diagonal elements of D = diag(éy, ..., én) are not distinct (i.e., 6p = dp41 = ... = Sy
), the eigenvector basis is rotated to zero out the components (41, ..., ks of 2z corresponding
to the repeated diagonal elements of D [5]. When the j-th element of z is zero, the element §;
is an eigenvalue of D + pzz”, and the j-th unit vector e; is its corresponding eigenvector.

Multiple diagonal elements of D and zero elements of z result in significant reduction in the
work required to compute the eigensystem of D + pzzT. This phenomenon called deflation has
been refined for use in finite precision arithmetic where nearly equal diagonal elements of D and
small elements of z are deflated [10]. As shown in [6, 10, 15], substantial deflation and resulting
savings in computation time occurs for a wide variety of symmetric tridiagonal eigenproblems.
The computed eigensystem is obtained to high accuracy, and the computed eigenvectors are
orthogonal [10, 14, 20].

An experimental comparison in [16] finds the implementation TREEQL [10] of the divide
and conquer method and bisection with inverse iteration to be the fastest serial techniques for
solving the symmetric tridiagonal eigenproblem. TREEQL is generally fastest when deflation is
significant. The QL method (implemented as EISPACK’s TQL2 [18]) is generally slowest. All
three demonstrate comparable high accuracy in practice, although only TREEQL, TQL2, and
bisection can be proven backward stable [3, 7]. TREEQL is also fast on shared-memory mul-
tiprocessors [10] but less efficient on statically-scheduled distributed-memory multiprocessors
[14].

3 Background

The bidiagonal SVD is closely related to the symmetric tridiagonal eigenproblem. For example,
the matrix products Ty = BTB and T, = BBT are symmetric tridiagonal matrices of order
n having as eigenvalues the squares of the singular values of B and having as eigenvectors,
respectively, the left and right singular vectors of B. Thus, one way to determine the SVD
of B is to compute the eigendecompositions Ty = X¥2XT and T = Y22Y 7. This approach,
however, can be both inefficient and inaccurate. In this section, we review the drawbacks of
using eigensolvers to compute B = Y X7,

First, finding the eigendecomposition of T gives only the singular values and the left singu-
lar vectors of B. Computing the eigendecomposition of T} gives the left vectors Y but requires

redundant computation of the singular value matrix ¥. Because X and Y are computed in-
dependently, it is also generally impossible to correctly pair the left and right singular vectors
associated with equal or nearly equal singular values. It is preferable to compute each right
singular vector using suitable relationships to its corresponding left singular vector.

The vector pairing problem can be overcome by computing the matrix of right singular
vectors directly from X = BTY X~1, This approach fails, however, when ¥ has a zero diagonal
element. Moreover, numerical experiments have shown an increased residual and degraded
orthogonality of right singular vectors computed this way for matrices with large condition
numbers. This is particularly disturbing as the SVD is often called upon when a matrix has
a large condition number. Attempts to avoid conditioning problems through a combination of
the two equations such as

(B+ oDz =(B+ol)Ty (1)

can fail when there are a significant number of small singular values. However, Arbenz and
Golub [2] suggest an iterative procedure using a modified Lanczos process which essentially
corrects initial numerical errors made in equation (1).

Inaccuracies in the small singular values can also result from multiplication of B and its
transpose in finite precision arithmetic [13]. For example, suppose that fi(1 + €?) = 1 in finite
precision arithmetic. If

1 0
5=(; o)

then the computed product 77 = BBT is

196 J=G 1)

with exact eigenvalues 0 and 2. The computed singular values of B are then 0 and 1/2, while

1 1
the true singular values are (-2—]_—62—%%?_;7)5 and (316_2_%@5_2{)5 For this matrix, the relative
error in the smallest computed singular value is one.

Some existing techniques for the solution of the singular value problem bypass these nu-
merical problems by operating on the matrix B and implicitly forming the product BBT. The
Golub-Reinsch QL method [12, 13] for computing the SVD, for example, has been implemented
as the LINPACK routine DSVDC. When using rank one updating techniques, however, it is
not convenient to represent the torn matrix as the product of bidiagonal matrices in this way;
it is necessary to devise a different way to work with the product matrix implicitly.

A final alternative that permits computation of a correct SVD is to embed the order n
bidiagonal matrix in an order 2n symmetric banded matrix: the eigenvalues of the 2n x 2n

matrix
1=

are the singular values of B and their negatives. To compute the SVD of B, the columns and
rows of M, are permuted to the order 1,n+1,2,n+42,...,n,2n to form the 2n X 2n tridiagonal
matrix M, with a zero diagonal. The eigenvector u; of M, corresponding to eigenvalue A; =
o; has as its odd-numbered components the components of the ith left singular vector y; =

(V145 -+, vni)T and as its even-numbered components the components of the ith right singular
vector @; = (Ui, - -, pni)T [12]:

V14 i
Hii K
M2 = 0; :
Vni Uni
Hni Hni

Methods for the symmetric tridiagonal eigenproblem are then applied directly to the matrix
M. This approach is efficient for methods that can take advantage of the zero structure of M,
and that can compute the first n eigenpairs independently of the second n eigenpairs. Bisection
with inverse iteration, for example, falls into this category the divide and conquer method of
[6, 10] described in Section 2 does not [15]. A divide and conquer strategy that maintains the
zero diagonal in the torn submatrices is described in [1].

The remainder of this paper discusses a method for computing the SVD that is both efficient
and stable. It implicitly formulates the matrix product BBT in a way that avoids cancellation
in finite precision arithmetic, and it computes each right singular vector from its corresponding
left singular vector. The formulation presented here is the most accurate of several alternatives
considered in [17].

4 Divide and Conquer for the Bidiagonal SVD

This section presents a divide and conquer technique designed for use with the matrix B. It is
an efficient alternative to the divide and conquer eigensolver applied to a 2n x 2n tridiagonal
matrix. It avoids the numerical difficulties associated with explicit formation of BBT or BT B
by reformulating the product to prevent cancellation. The algorithm relies on rank one tearing.
Specifically, the rank one modification of the matrix B

p = ()= (8 8)es(3) 0

where 3 = S, allows implicit formation of BBT as follows:

BET = <B1 ,Bemzf)(BF 0)

0 B,)\Beel BT
_ (BB} 0) (ﬂek) T TnpT
- (0 By(I - e1el)BY + Bae; (Bej,e1 B3)
_ (BBT 0) (ﬂek> —
B (0 Bng + aey (ﬁek) Géq), (3)

where the matrix 0 0
By = By (0 I)

is the bidiagonal matrix By with its first column replaced by the zero vector, and ae; = Baey.
This splitting may be considered a special case of the general rank one updates to the SVD
described in [4].

The singular value decompositions By = U121V1T and B, = Agf)szT can be computed
independently and used with equation (3) to produce

r _ (Usiuf 0) (ﬂek) T T
BB - (0 Uzngél' + aey (:Bekvael),

Uy 0 x? 0) (ul) T,T](UIT p)
(0 va)[(o £3) *\a,) 0% o o7) “

where u; = BULe;, and iy = aﬁf e;. The eigendecomposition of the diagonal plus rank one
matrix can be found via the updating techniques derived in [5, 10, 11] and summarized in
Section 2.

This computation requires that the diagonal elements of the matrix

¥ 0
0 2

be distinct and that the elements of (uf, @) be nonzero. When these assumptions do not hold,
the problem deflates. However, because the squares of the singular values less than one are
not as well-separated as the singular values themselves, the deflation rules of [10] concerning
nearly equal diagonal values are not appropriate. To develop deflation rules for the SVD, it is
necessary to reformulate the basic step of the updating process and to provide rules based on
the original data rather than on the squared data appearing in equation (4).

To this end, let the (n — k) X (n — k—1) matrix B, be defined by

(0,13’2) =B, =B, (I - elef) .
Now consider the singular value decomposition of B, = ﬁgigfsz, and note that
. - _ () -
By = (0,) (07%) vy,
where % is a unit vector orthogonal to the columns of [72 . When B; = U124 VlT,
21 Uy 0 VlT 0 0
B:([{;If]) g)(o g 22)(0 1 ~0). (5)
2 0 u O 0 0 V&

For notational convenience, we permute equation (5) to obtain

£y 0w\ /VE 0 0
B = ([{)1 [-(]) 2) (0 22 ’U,g) (0 0 VZT) .
2 0 0 u 0 1 0

Deflation rules are then needed for the interior matrix
< _ 21 0 Uy
ME(%): u)E(O ¥, ’M2) (6)
H 0 0 u
where ¥ = diag(d1,...,6n-1) and @ = (fi1, ..., /in—1). (The matrices of equation (5) are not
explicitly permuted in the implementation of PSVD described in Section 7.)

The deflation procedure for M resembles that for tridiagonal matrices. In exact arithmetic,
the problem deflates whenever any of the following occurs:

1. an element of % is zero: fi; = 0.
2. diagonal elements of ¥ are equal: &; = ;, i # j.
3. a diagonal element of ¥ is zero: 5; = 0

It is easily verified that if i; = 0, &; is a singular value of M with left and right singular vectors
equal to the j-th canonical vector e; providing the deflation for case 1. The other two cases
may be reduced to case 1 using appropriate plane rotations to introduce a zero component in
the vector 4.

When ; = ;, two-sided rotations are applied as in the tridiagonal case. A plane rotation
Gy in the (7, j)-plane is constructed and applied to M (and to the other matrix factors in
equation (6) as well) so that

Me—(Gl 0) (Gl‘Z)Gf Glﬂ) (G? O)Z(GliGlT G1ﬂ>.
0 1 0 7 0 1 0 7

A 2 x 3 submatrix of M is affected as follows:

(c —s)(aOﬁ;) _csigz(GOO)
s ¢ 00ﬂj001 0 o 1)’

where 0 = &; = &;. with 72 = (;)? + (i5;)? , ¢ = a;/7 and s = ji;/T.
When 6; = 0, a one-sided rotation G in the (¢,n) - plane is applied from the left using p
to zero out fi;: In this case
M — GQM

and a 2 x 2 submatrix is affected as follows:
)@ %)=G07)
s ¢ 0 u) \O 7
because 7; = 0.

In practice, these deflation rules must be modified to accommodate the limitations of finite
precision arithmetic. Finite precision rules that apply when ¥ or % has small elements or when
¥ has close elements are given in Section 7.

Permuting so that all zero elements in the last column are grouped together, the result of
deflation is a matrix of the form

)

where ¥ has distinct, positive elements, and the vector u has only nonzero elements. P is the
appropriate permutation matrix, and G and H are matrices consisting of accumulated products
of the rotations constructed at each of the deflation steps.

After deflation, one need only compute the SVD of

) £1 0
M =PHMGTPT=| 0 %
0 0

" R O

M= (% Z)EYEXT. (7)

The diagonal elements of $; are taken as singular values of M with appropriate canonical
vectors as singular vectors. The squares of the singular values of M and its left singular vectors
are given by the eigendecomposition

12
vyl = MMT = (‘% 3) + (Z) (uT,).

An eigenvalue o of M M7 is a root of the secular equation

fo?) =147 (2 = oty (£) ®)

and can be computed using the root-finder from [5]. If the sorted diagonal elements of diag(3:?, 0)
are 0 = 6 < 63 < ... < &%, the jth eigenvalue 07 of MMT lies in the interval (5%,5%,,) [3],
and all eigenvalues are positive. The j-th singular value of B is o;, and the left singular vector
of B associated with o; for j = 1,...,nis

£2 - g2) 1y
Y; = (('7)2) 09
—p/o;
where 6 is a normalization factor. The corresponding right singular vector is
T = My
T MTy;]l

That is, a vector in the direction of the right singular vector z; is given by

MTy; = (2; 0) ((22""?)_1")0

ul p —p/o]

(¥2(52 - o?)lu) ,

uT(2~32 - a}’)"lu - ,u/aj2

Recall from equation (8) that o; satisfies

2
T2 _ o 2y-1 Y
u” (X - o7) u—l—(a') 1.

J

Thus, the quantities o;, z;, and y; can be computed as follows
Procedure 4.1 (Solution of the Deflated Updating Problem)

1. Solve equation (8) for o;.

0= ()= (S5

F— PR— T
4 % = Tk % = Tl

The orthogonality of the singular vectors computed according to this procedure is examined in
Section 6.
The singular values of B = YXX7 are those of M and its singular vectors are derived from

those of M. Specifically, .
(5)
N0 X))
. _(Uy 0 0\ (I 0
7=(% a 2)0 v)

T T
oot
0 0 Vf 0 x)
0 1 0

where I is the identity matrix of the same order as 3.

and

5 Deflation Rules for Finite Precision Arithmetic
T
- 0
(7) when (X) has equal diagonal elements, 6; = &;, ¢ # j, or zeros in the last column,
f; = 0. As in the tridiagonal case, these rules can be extended to deflate the problem when
M has close diagonal elements, &; ~ G;, or small elements, |fij| < € for some small positive
value of €. In this section, we present deflation rules for finite precision arithmetic followed by
an analysis to show that the errors imposed by deflation are small.

The finite precision rules are summarized in Procedure 5.1 below. They follow the same
three basic steps as in exact arithmetic, but small elements of @ or ¥ are approximated as zero
and close diagonal elements of ¥ are approximated as equal. To keep track of deflation, two lists
are used: deflate_list holds the indices of all small elements in the last column of the matrix,
and solve_list holds the remaining indices. The list solve_list is initialized with the indices
1,...,n—1 of all diagonal elements in £. When deflation is complete, the list deflate-list holds
the indices of the diagonal elements of the transformed matrix to be accepted as singular values
of M, and solve_list holds the indices of the rows of M retained in the deflated matrix.

Section 4 gives rules for deflating the problem when the matrix M = (Z) from equation

Procedure 5.1 (Deflation in Finite Precision Arithmetic)

1. For all k € solve_list,
if |fix| < €, move k from solve_list to deflate_list.

2. Permute the indices so the elements of solve_list are increasing
adjacent integers and &y < Gxy1 (That is, replace M by P'M P such that Pe, = e, with
k' € deflate_list for 1 < k' < |deflate_list| and k' € solve_list for |deflate_list| + 1 < k' <
n—1.)

3. For all but the last k € solve_list,
if |Gk — Gr+41| is small, apply a two-sided plane rotation so that pj « 0, and move k from
solve_list to deflate_list.

{ In PSVD, the two-sided rotation is applied as follows:

= (B + Bia)

if |(Ok — Grt1)Bkiikr1] < €72 then
¢ = figt1/7 and s = i [T
Ok — €20k + 25441
Ory1 — 825k + 2Opqs
Hrg1 < T
ik <0 }

4. For k € solve_list,

if |ok| is small, apply a one-sided plane rotation so that py, — 0, and move k from solve_list
to deflate_list.

{ In PSVD, the one-sided rotation is applied as follows:

7 = (B} + %)

if |orur| < €r? then
¢=pr/T and s = pjT
O) < COj
pe—r
ik <=0 }

We now examine the errors introduced by Procedure 5.1. The first source of error is the
transformation of the matrix at steps 2 and 3. The exact result of one of the two-sided rotations

would be
_ _ ¢c s 0
0 8 ()
s ¢ 0 Ok41 Bk 0 0 1
O 0 0 R R 0 1 0
(% oo #)+e@-aun(7 g o).)

where 6 = (:26,3 + %0441 and 6pqq = 825'% + c%op41. In step 2, the second term in the matrix
sum in equation (9) is set to zero. Thus, with each rotation an error is imposed of the form

2
E;(c)= ¢ (ek+16kT + 6k6k+1T) ’

where €; = (G — Gry1)fikiik+1/(A} + ftyq). The test to decide when rotations should be
performed guarantees that |ex| < € for all k. Similarly, the exact result of one of the one-sided

rotations would be
c -8 6‘kﬁk_6'k0__00>
(s c>(0 u)‘(o r) 3""(1 0/

10

so that each rotation in step 3 causes an error of the form
3
EIE:) = € (enekT) ’

with |eg| < € for all k.
As in the exact case, the resulting matrix may then be permuted to form

21 U 21 0
(0) u)+E1=(O) u)-}-E, (10)
0 0 u 0 0 pu
where
0 0
Ez(O 0 0)+E1.
0 0 0

In these equations, F; is a matrix with elements bounded by €, 4; = {ix|k € deflate_list}, and
u = {jig|k € solve_list}. Thus, |ef4;| < € for all i and |eJu| > € for all 4.

We approximate the vector %, as zero, accept the diagonal elements of ¥ as singular values
of M, and compute the SVD of the deflated submatrix

Y u
(0 u)
by the procedure outlined in Section 4. Because the constituent errors are small, the SVD of
M computed in this way is the exact SVD of a matrix close to M.
The magnitude of the total error E depends on the deflation tolerance ¢. A reasonable
choice for € is macheps X &pmq, Where macheps is machine precision and G,,,, is the largest
diagonal element of ¥ in the undeflated matrix M. Because the accurate determination of the

small singular values may be important, however, it is also possible to vary the tolerance at
each step of deflation according to the size of the singular value at that deflation step.

6 Orthogonality of the Singular Vectors

Let us now consider the possible limitations on orthogonality of singular vectors due to nearly
equal singular values. Many of the results concerning this issue for the symmetric eigenvalue
problem apply directly. In particular the recent results of Sorensen and Tang [20] concerning
the numerical orthogonality of the computed eigenvectors will apply. Our first result in this
section is a perturbation lemma that demonstrates the inherent difficulty with nearly equal
roots.

For purposes of this discussion, we denote the diagonal elements of ¥ of the deflated matrix
M by 6; and the corresponding components of the vector u by y; for j = 1,2,...,n~ 1 so that
the secular equation (8) becomes

n-—1 P‘z Mz
2y _ i
=1+ =25 (11)
=1 "2
Let
i
H1 B2 =1 1]5
= 12
yo (02_02 5_%_0_29 6%_1“02,“02)[f,(02) ’ ()

11

and let

2

T a11 G1p2 G1hn-1 1
z, = (= ~ e —-1) (13)
© e -0 65 -0 G o 1450 JTLLL(J"_“JZ;

Note that the squares of the singular values of M are roots of f and that the unit vectors z,

and y, are just permuted left and right singular vectors of M corresponding to o when o2 is a

root of f.

Lemma 6.1 Let y, and z, be given by equations (12) and (13) respectively. Then for any
ovy¢{é;i:i=1,...,n—1}U {0},

L@ = 1A
P (f1(0?) f1(v2))?

[(1 + Z 1“22)2) (1 + Z ("JNJ 2)2)} 2 . (15)

Proof: Equation (14) is just the result implied by Lemma 4.2 in [10]. To derive equation (15)
we note that

Iyg‘y“ll = ’02 (14)

and

() =10 |
(@ =77

|25 2, =

(0

52u
bt Z(o T oty 57 = 77)

o?)u? “2 %

) ”Z(a—«ﬂ)(a 7t 22(02 GEED

1+ Z]-l p,J 9 ,M2 n—1 ”j
el — + o — + — —
(crj o %z- o2y? JZ__; (0]2 - 02)((;]2 -72)

= F0) T (P eh)* (16)

Equation (15) follows from equation (14) applied to the second term in equation (16). W

Note that in equations (12) and (13), y, and z, are always vectors of unit length and that
the set of n vectors selected by setting o2 equal to the roots of equation (11) provides the set
of left and right singular vectors for the deflated matrix M in equation (7). Moreover, equation
(14) shows that the set of left vectors are mutually orthogonal, and equation (15) shows that
the set of right vectors are mutually orthogonal whenever o2 and v? are set to distinct roots
of f. Finally, the term |02 — 72| appearing in the denominator of (14) warns that it may be
difficult to attain orthogonal singular vectors when the roots ¢ and v are close.

We now wish to examine the situation of close roots. With an argument. similar to that
given in Lemma 4.6 of [10], one can show that &; — ¢ must be bounded away from zero due
to the deflation process. Because of this, we can expect to compute the differences &; — o to
high relative accuracy. This is quite important with regards to orthogonality of the computed
singular vectors as the following lemma shows.

12

Lemma 6.2 Suppose that 5% and 4 are numerical approzimations to exact roots o2 and 4% of
f. Assume that these roots are distinct and let the relative errors for the quantities 6; — o and
a; — 7 be denoted by 6; and n; respectively. That is, the computed differences are

= (62 - oM (1+6;) and &2 —4? = (52 —yH(1 + m), (17)

fori=1,2,...,n . Let ys and y; be defined according to equation (12), and let x5 and z4
be defined according to equation (13) using the computed quantities given in equation (17). If
16il,|m] < € << 1, then

lv3 3] < €(2 +€) (HE))

and

€2+ ¢)

1-o*

Proof: A proof of the bound on the inner product of the left vectors is given in Lemma 4.7 of
[10]. For the right vectors, note that

IE;;:L‘:YI < -

52,2

53 u?
1 J
* Z GT= A+ 8) 7=+ 7)
— z:l o7u3 Z A
& (6 -1 (&) - = (67— o)1+ 6;)(67 — v2)(1 + n;)
_ Zl 53u3 (0; + m; + 6;n; \
1 (67— 0?)(32) \(1+6;)(1 +n;)/
Thus,
Tas| = &:1 _ 5?”1 0; + n; + 9;m;)
o (67— 0?)(67 —v2) \(1+6;)(1+n;)

(S s (+ E)|

S o7u (2+¢)
’(Z (GRGE 72)') (G=5)

J=1

[(1+ Z (UJ/‘J) (1+Z (UJNJ 2)2)] |
€2+¢)
< (———w(l_e)z),

and the lemma is proved W

IN

=

This lemma shows that orthogonality can be assured whenever it is possible to provide
small relative errors in the computed differences &; — 0. The results of [20] indicate that this
condition may be achieved in practice.

13

We have applied the root-finder used in [10] directly to equation (11) and taken the square
root of g% to get a singular value without any apparent difficulty even when very difficult
problems were solved. Nevertheless, it is certainly conceivable that problems could arise .
Namely, it may be necessary to further refine the root finding process to prevent loss of accuracy
in terms of the form

4

=2 _ 2
I g

when §G; is small and o is near to o;.
Both of the following two modifications to the root finder remove the dependence on o
from all terms other than the term ;. First, one could use

2

W
62— 0% (G4 0)(6; - 0)

and update both 6; — o and &; + o to avoid unnecessary cancellation caused by the squaring.
Alternatively, one could use

Woo_m(_1 1
5‘?—0‘2 25j (5j-{-0’) (5‘j-—0‘) ’

and the results of [20] would apply directly to the evaluation of f in this form.

If either of these last two schemes are employed then it is possible to show that the hypothesis
(Eqn. 17) of Lemma 6.2 will be satisfied when the differences &; — o are computed to high
relative accuracy.

7 Experimental Results

In this section, we present computational results from the implementation PSVD of the divide
and conquer method developed in Sections 4-5. PSVD splits the matrix B recursively into
submatrices of order 8 and solves the subproblems using DSVDC if B is of order 16 or greater
and calls DSVDC without matrix splitting otherwise. DSVDC is the fastest serial method
for solving the problems of very small order [15]. The results reported here concern only the
computation of the SVD of a bidiagonal matrix B and not reduction of a general matrix to
bidiagonal form. In all cases, the full sets of left and right singular vectors were computed along
with the singular values.

The first set of experiments include serial timings and accuracy tests. These were carried
out in double precision on a single Sequent Symmetry S81 processor using the Weitek floating
point accelerator. On this machine, macheps = 2.22 x 10716, We compare the results from
PSVD to those from the LINPACK code DSVDC [8] and the implementation of bisection and
inverse iteration B/III developed in [16].

The five bidiagonal matrices tested are introduced below. A pair of computed eigenvalues
Ai, :\i+1 belong to a cluster if A; — ;\i+1 < 10'14|:\|mm.

1. Matrix [2,1]: All diagonal elements are 2, and all off diagonal elements are 1. All singular

values lie within the interval [1,3]. For all tested matrix orders, the singular values are
computationally distinct.

14

2. Random: These matrices have uniformly distributed random entries between -1 and 1
generated by the uniform pseudorandom number generator RAND available from NETLIB
on both diagonal and off-diagonal elements. The matrices tested turn out to have singular
values with minimum magnitude O(107%).

3. Bw: Inspired by the Wilkinson matrix W [21], this matrix of even order has diagonal
elements 5,...,1,1,...,% and all off-diagonal elements equal to 1. Its smallest singular
value is O(1073), and, in finite precision, its largest singular values have multiplicity two
for matrix orders of about ten and larger.

4. Matrix [2,u]/n: The matrix [2,u]/n of order n has the value 2/n in each off-diagonal
position and the value i/n in the ith diagonal position. This matrix is ill-conditioned and
has one singular value less than 10!* for orders greater than eighty.

5. Modified matrix [2,1]: This matrix is formed from matrix [2,1] by setting the sixth
through ninth diagonal elements g, ..., ag and fifth through eighth off-diagonal elements
Bs,. .., Bs equal to 10~14. This matrix is severely ill-conditioned, having between four and
eight singular values less than 10™® and between two and four singular values less than
10~ for all tested orders.

Let X3YT denote the computed SVD of B. To determine the accuracy of the result, we
measure the residual error and the deviation from orthogonality of both sets of singular vectors:

1

R = ——max|| B#; — 6 |2
leh] T
Ox = (| XTX-T|w
Oy = ||[YTY -1

When all of these quantities are small, the computed SVD of B is nearly the SVD of a matrix
near B [15]. In other words, (X + 6 X)E(Y + 6V)T is the exact SVD of a matrix B + E with
small §X, 6Y, and E.

Table 7 shows the greatest residual and deviation from orthogonality measured for the five
test problems solved by B/III, PSVD, and DSVDC for matrix orders 32, 100, and 200. Even
for ill-conditioned matrices, PSVD attains full orthogonality of singular vectors and a small
residual. Although only PSVD, DSVDC, and bisection (B) are provably stable methods, all
three methods tested achieve similarly good results.

The runtimes for computing the full SVD’s of the five matrices are compared in Figures 1-4
for problem [2,1] and Byw . (These are representative samples from the full set presented in [15].)
For small order problems, PSVD is consistently the fastest method except when PSVD simply
calls DSVDC, and B/III is the slowest. For larger order problems (greater than about 50),
performance depends more strongly on the matrix characteristics. Namely, when significant
deflation occurs, PSVD is the fastest of the three methods. Table 2 shows the fraction of
singular values actually computed (as opposed to deflated) by PSVD for matrices [2,1] and
Byy. The greater degree of deflation for By, accounts for the lower runtime of PSVD relative
to B/III for Bw.

Similar tests were performed on an Alliant FX/8. The operating system was Concentrix 3.0
and the optimization level for the subroutines comprising the units of computation were options
-Ogv. Parallelism was invoked and controlled explicitly through the use of the SCHEDULE

15

matrix | method | maximum maximum maximum
order residual | orthogonality | orthogonality
R (left) (right)
Oy Ox
n =32
PSVD 1.66d-14 7.65d-15 7.54d-15
DSVDC | 1.79d-15 1.13d-14 1.13d-14
B/III 9.77d-16 -9.76d-15 1.02d-14
n = 100
PSVD | 9.39d-14 2.56d-14 2.37d-14
DSVDC | 4.22d-15 2.68d-14 2.86d-14
B/III 2.38d-15 1.90d-14 1.87d-14
n = 200 :
PSVD | 4.09d-15 1.13d-14 1.64d-14
DSVDC | 7.60d-15 8.13d-14 8.14d-14
B/III 5.99d-15 5.42d-13 5.53d-14

Table 1: Maximum residual and orthogonalities of singular value decompositions computed
by B/III, PSVD, and DSVDC for the five test matrices.

PSVD:
matrix | order
fraction of roots computed

[2,1] 32 1.0
100 0.9
200 0.8
Bw 32 0.6
100 0.6
200 0.5

Table 2: The number of roots computed by PSVD for five bidiagonal matrices.

16

order Ratio of Time Ratio of Time
DSVDC (1 proc) / | PSVD (1 proc) /
PSVD (8 procs) | PSVD (8 procs)

100 13.4 5.0
150 14.8 5.3
300 15.7 4.7
350 13.9 4.6

Table 3: Speedups for PSVD on the Alliant FX/8

package [19]. Implementation details are quite similar to the those for the symmetric eigenvalue
routine TREEQL [8]. The recursive matrix splitting leads to a hierarchy of subproblems with
a data dependency graph in the form of a binary tree of height h. The smallest subproblems
are of order n/2" and lie at the leaves of the tree (tree level 0). At level 0, the subproblems are
solved independently in parallel, one problem per processor. At level [, 1 < < h, each problem
of order n/2"~! is solved by updating the solutions to a pair of order n/2h~H1 subproblems from
level I — 1. At these levels, parallelism is achieved by dynamically assigning root-finding and
singular vector computation tasks to processors [17]. As in the symmetric case, this parallel
algorithm can be pipelined with block reduction of a matrix to bidiagonal form [9, 10, 17].
(An implementation of PSVD for distributed-memory machines without dynamically scheduled
processes is described in [15]. Experiments with a similar implementation of the symmetric
eigensolver suggest that PSVD would not be efficient on statically-scheduled multiprocessors
(14, 15].) \

Table 3 shows the speedup of PSVD run on eight processors relative to the PSVD and
DSVDC run on one processor for matrix [2,1]. As can be seen, the performance of the parallel
algorithm compared to DSVDC on a single processor is quite impressive. The somewhat dis-
appointing results in the second column of this table are not yet understood. We attribute it
to two aspects of the implementation. First the deflation step within each SVD update step
is done serially and must be completed before any dynamic allocation is done for root finding,.
This limits the expected speedup. Second, there is potential for cache conflict when explicit
parallel processing is done on the Alliant FX /8. We have not quantified either of these phenom-
ena, however. Speedup of PSVD on eight processors as compared to one processor is limited
to about 5. When the same comparison is done with 4 processors, speedup is limited to about
3. In all cases, the accuracies of DSVDC and PSVD were comparable.

The results in this section suggest that, as for the symmetric tridiagonal eigenproblem,
PSVD provides a fast and accurate serial alternative to DSVDC and B/IIL. More care is needed
in the parallel implementation to increase the speedup observed when PSVD is compared to
itself using one processor and 8 processors. Moreover, a careful study of the effects of deflation
is in order. A cursory examination of the results seemed to indicate that deflation is not nearly
as prevalent in this setting as it has been in the symmetric tridiagonal case.

17

time
(seconds)

matrix order

Figure 1: Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix
order for matrix [2,1]

18

400 T T T
PSVD
B/II - ---
DSVDC
300
time 9
(seconds) 00~
100
0 | 1 T
0 50 100 150 200

matrix order

Figure 2: Times for computation of the SVD by B/IIl, PSVD, and DSVDC wversus matrix
order for matrix [2,1]

19

4 —
PSVD
B/III
DSVDC
3 -
time
(seconds) 27
1 —
0
0

Figure 3: Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix

order for matrix Bw

matrix order

20

40

400 T T I
PSVD
B/ ----
DSVDC
300
time
(seconds) 2007
100
0 = === ’s 1
0 50 100 150 200

matrix order

Figure 4: Times for computation of the SVD by B/III, PSVD, and DSVDC versus matrix
order for matrix By

21

8

Acknowledgements

We are grateful to Peter Arbenz and Gene Golub for several enlightening discussions. In
particular, their paper [2] motivated us to consider the formulation developed in Section 3. We
also wish to acknowledge a stimulating discussion during a special session on divide and conquer
methods during the Gatlinburg X meeting held at Fairfield Glade in October 1987. A question
from Gene Wachspress prompted us to reconsider the computation of right singular vectors so
that we ultimately discovered the method described in Section 6.

References

[1]

[2]

[3]

(4]

[5]

[10]

(11]

(12]

P. ARBENZ, Divide-and-conquer algorithms for the computation of the SVD of bidiagonal
matrices, in Vector and Parallel Computing, J. Dongarra, I. Duff, P.Gaffney, and S. McKee,
eds., Ellis Horwood, 1989, pp. 1-10.

P. ARBENZ AND G. GOLUB, On the spectral decomposition of Hermitian matrices subjected
to indefinite low rank perturbations, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 40-58.

J. BARLOW, Error analysis of update methods for the symmetric eigenvalue problem. To
appear in STAM J. Matrix Anal. Appl.

J. BuNcH AND C. NIELSEN, Updating the singular value decomposition, Numer. Math.,
31 (1978), pp. 111-129.

J. BuncH, C. NIELSEN, AND D. SORENSEN, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

J. CupPEN, A divide and conquer method for the symmetric tridiagonal eigenproblem,
Numer. Math., 36 (1981), pp. 177-95.

J. DEMMEL AND W. KaAHAN, LAPACK working note #3: Computing small singular val-
ues of bidiagonal matrices with guaranteed relative accuracy, Mathematics and Computer
Science Division, Argonne National Laboratory, 1988.

J. DONGARRA, J. BuncH, C. MOLER, AND G. STEWART, LINPACK Users’ Guide, SIAM
Publications, 1979.

J. DONGARRA, S. HAMMARLING, AND D. SORENSEN, Block reduction of matrices to con-
densed form for eigenvalue computations, Journal of Computational and Applied Mathe-
matics, 27 (1989), pp. 215-227.

J. DONGARRA AND D. SORENSEN, A fully parallel algorithm for the symmetric eigenvalue
problem, SIAM J. Sci. Stat. Comput., 8 (1987), pp. s139-s154.

G. GoLuB, Some modified matriz eigenvalue problems, SIAM Review, 15 (1973), pp. 318-
34.

G. GoruB AND W. KAHAN, Calculating the singular values and pseudo-inverse of a ma-
triz, J. SIAM Numer. Anal., Ser. B, Vol. 2 (1965), pp. 205-224.

22

[13] G. GoLuB aND C. REINSCH, Singular value decomposition and least squares solutions, in
Handbook for Automatic Computation: Linear Algebra, Springer Verlag, 1971, pp. 134-
151.

[14] 1. IPSEN AND E. JESSUP, Solving the symmetric tridiagonal eigenvalue problem on the
hypercube, SIAM J. Sci. Stat. Comput., Vol. 11, No. 2, (1990), pp. 203-229.

(15] E. JEssuP, Parallel Solution of the Symmetric Tridiagonal Eigenproblem, PhD thesis, Dept
of Computer Science, Yale University, 1989.

[16] E. JEssurP AND I. IPSEN, Improving the accuracy of inverse iteration, SIAM J. Sci. Stat.
Comput., 13 (1992), pp. 550-571.

[17] E. JESSUP AND D. SORENSEN, A parallel algorithm for computing the singular value

decomposition of a matriz, Technical Report ANL/MCS-TM-102, Argonne National Lab-
oratory, 1987.

(18] B. SmiTH, J. BoOYLE, J. DONGARRA, B. GArRBOwW, Y. IKEBE, V. KLEMA, AND
C. MOLER, Matriz Eigensystem Routines-FISPACK Guide, Lecture Notes in Computer
Science, Vol. 6, 2nd edition, Springer-Verlag, 1976. ‘

[19] D. SORENSEN AND J. DONGARRA, SCHEDULE: Tools for developing and analyzing par-
allel Fortran programs, in The Characteristics of Parallel Algorithms, D. G. L.H. Jamieson
and R. Douglass, eds., MIT Press, 1987.

[20] D. SORENSEN AND P. TANG, On the orthogonality of eigenvectors computed by divide and
conguer techniques, STAM J. Numer. Anal., 28 (1991), pp. 1752-1775.

[21] J. WILKINSON, The Algebraic Figenvalue Problem, Clarendon Press, Oxford, 1965.

23

