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Abstract

This study reports on a collaboration between astrophysicists and computer scien-
tists, in which the visualization needs of the physicists have been researched. A
focus on user-centered design while building a visualization system uncovered
shortcomings present in most current visualization systems. These shortcomings
relate to the integration of visualization tools into the complexity of the existing
data analysis environment. The relationship between data, scientific interpretation
intent, and visual representation was closely observed in the case of a multi-spec-
tral data set. Observations on preferences and future needs for new visualization
tools are reported.
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1. Introduction

This study reports on astrophysical data visualization as performed at the
University of Colorado. While it is not an attempt to capture general visualization
needs of astrophysicists, it concentrated on the needs of one specific group of sci-
entists. Between Fall of 1989 and summer of 1992, graduate and undergraduate
students of the Department of Computer Science worked together with me and the
scientists at the Center for Astrophysics and Space Astronomy (CASA) to better
understand the physicists’ needs for data visualization.

2. The Scientific Environment

CASA hosts about fifteen scientists and about the same number of graduate stu-
dents. Their scientific interests are on stars, interstellar matter, galaxies, star and
planetary system formation and cosmology. The data they base their assumptions
on consist mainly of images, spectra and point source catalogs. Much of their data
analysis deals with two dimensional, even gridded images (e.g. the IRAS! Skyflux
images). These data sets are described as a function z = f(x,y), where z denotes the
emission at the spatial location (x,y) at a specific wavelength or wavelength range.
The observation of changes in the emission depending on the wavelength is a clue
to many scientific discoveries.

A typical research scenario at CASA consists of subsequent

« retrieval of data promising for the specific research,
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* preprocessing to remove noise and correct instrumental effects,
 numerical calculations, often in the form of statistical analysis,
« visual and interactive data processing.

Available software at CASA concentrated on the first three steps (retrieval, prepro-
cessing and quantitative analysis). Interaction and qualitative analysis through vi-
sual browsing was to be added with our help. The new tools were collected under
the name STAR (Scientific Toolkit for Astrophysical Research).

The computing environment consists of a conglomerate of workstations (SUN
Sparcstations, DECstations and V AXstations) of relatively low computational
power. Most of the software used for retrieval and preprocessing of data items has
been developed by CASA's scientists, students and staff. Public domain software
covers most of the numerical and visual analysis modules. Due to the various char-
acteristics of space and ground sensor data from different wavelength ranges (such
as radio, infrared, visible or x-ray), different software packages are being used to
work with different sensor data. Input and output data streams are not fully stan-
dardized, reflecting the lack of standard data formats, and resulting in “islands” of
software systems (Nadeau et al., 1991). Each software package has its own
strengths and weaknesses in its ability to preprocess, analyze and visualize astro-
nomical data of specific characteristics.

The scientists have varying degrees of computer expertise. Some spend more time
on developing computer programs as opposed to analyzing the results, whereas
some scientists spend hardly any time at the computer at all. Our interaction was
stronger with the first type of scientists, because they were willing to experiment
and saw direct gain for their own research in working with us.

3. The integration of visualization tools into the scientists’ envi-
ronment

During the first two years the goals of the study were mainly driven by the scien-
tists themselves. To ensure the understanding of their needs, a user-centered ap-
proach to any design/development of user interface and tools was taken. A study
performed by Mickus-Miceli (Mickus, 1990) describes the efforts of using cogni-
tive design techniques to solicit feedback from the scientists at every step through-
out the development of STAR.
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The scientists’ first desire was to integrate any newly developed software with the
existing software. Additionally any new software should allow direct interaction
with the tools (point-and-click). As the existing software was not integrated in any
way, we developed a new user interface that would allow to integrate existing
software and additionally the new tools. The new user interface is pictured in
Figurel. Most of the new software tools appear under the menu “Visualization”.
Software packages accessible as routines from STAR’s development platform
(IDL?) are also called by clicking on the menus or buttons. “Foreign” (non-IDL
based) software packages are activated by clicking at the corresponding square but-
tons to the right of the user interface. Data format conversions between different
formats the various packages favor, is performed by functions under the menu
“Data I/O”. This integrated approach was to have an influence on data visualiza-
tion: by being able to combine data sets from various sensors, merging of data sets
through visual means becomes feasible.

A more elaborate description of the integrated software design is given by Mickus-
Miceli and Domik (1991) and Domik and Mickus-Miceli (1992).

In this first stage, the visualization tools demanded by the scientists were simple,
interactive tools, ranging from visual user interfaces to color transformations (see
Figure 2 and 3). The attempt to create and visually explore data cubes from multi-
spectral data (z = f(x,y,A), with an additional dimension expressing wavelength)
failed, because there was no availability of sufficient multi-spectral data and there-
fore the needs and interest of the scientists was not given at that time.

4. Complex Visualization Demands

Recently Prof. John Bally joined CASA. His research involves scientific interpre-
tation of data cubes as described above; he is familiar with the representation of
spatial-spectral data (data containing spatial as well as spectral dimensions) and
was interested in the development of tools to interact with his data. In order to
present the scientist with expressive and effective visual representations, we stud-
ied the nature of his data as well as his scientific interpretation intents.

The role of data visualization is to stimulate mental processes different from quan-
titative data analysis. Visual data analysis offers an overview of data characteristics
through browsing, often leading to an intuitive understanding of data characteris-
tics and their relationships by sacrificing accuracy in interpreting the data values.
Because the human visual system emphasizes spatial relationships, up to three data
characteristics can be represented in a natural, intuitive way in form of spatial di-
mensions. Data visualization is an indirect way of interpreting data: instead of
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being interpreted from its natural, usually quantitative characteristics, it is first en-
coded into a pictorial representation. The encoding process bears the danger of cre-
ating artifacts and therefore missing the correct interpretation: e.g. abrupt color
changes may mislead by pointing to discontinuities in a data set or subjective as-
sessments of patterns may lead to misinterpretations.

A visual representation of data values should take into account the data characteris-
tics as well as the interpretation intent, as suggested by (Mackinlay, 1986;
Wehrend and Lewis, 1990; Robertson, 1990). De Ferrari (1991) adds the influence
of other visualization specifications, such as user imposed restrictions, besides the
interpretation intent.

In the case of visualizing the astrophysical data cubes, we used a simple mapping
model as shown in Figure 4 to map numbers into pictures and map the pictures into
a valid scientific interpretation (Domik, 1991).

Data Char- Interpreta-
acteristics tion Intent

encoding |

Visual
Represen-
tation

Scientific
Interpreta-
tion

Figure 4: Going from numbers to pictures to a valid scientific interpretation of the
numbers.



4.1 Data Characteristics

The data is collected by a 7 m telescope dish owned by ATT Bell Labs. It operates
at a frequency between 20 to 40 Mhz, corresponding to a wavelength of 1.3 cm to
.7 cm. The collected data is in form of 2-d image tiles for each measured frequen-
cy. Processing of the collected raw data values from the heterodyne receiver results
in even gridded data values defined in three dimensions (spatial, spatial, frequen-
cy). The data values correspond to a count of carbon monoxide molecules at that

specific spatial location and frequency. Data values range between -32000 and
+32000.

4.2 Interpretation Intent

Carbon monoxide is used to trace molecular clouds. Molecular clouds are the ma-
terial from which new stars and planets are formed. It is important to understand
the changes of the molecular cloud in space as well as in frequency: Is the cloud
expanding? Collapsing? In what direction is it moving?

4.3 Encoding numbers into pictures

It is important to express essential data characteristics in the resulting visual repre-
sentations. In the case of the astrophysical data cubes, such essential characteristics
are spatial location as well as frequency and the data value itself. Leaving both spa-
tial dimensions in their natural form and mapping frequency into a third spatial di-
mension created an even gridded cube with the data values expressed as voxels.
This geometric representation will be referred to as “data cube” throughout this

paper.

However, the various slices of spatial data values could also collapse into one sin-
gle slice, where spatial dimensions are represented in their natural form, but vari-
ous data values along one frequency dimension appear clustered together. This
geometric representation will be called “collapsed slices”.

It is also important to represent the data is an effective way, so that the decoding
process from pictures to scientific interpretation is quick and accurate. The follow-
ing visual representations were chosen and discussed with John Bally:

a) Iso surfaces:

Data values of a certain threshold were connected to create iso surfaces. This is a
well known rendering technique of the data cube representation. In this representa-
tion, the overall shape of the data can be observed as well as isolated volumes (see



Figure 5). Understanding the overall distribution of the carbon monoxide in the
given spatial-spectral dimensions is important in order to understand the detailed
quantitative information. The iso surface representation can be enhanced by using
several transparent iso surfaces, and by adding individual slices through the data
cube.

b) Translucent representation:

Rays penetrate the data cube from a chosen point-of-view and accumulate values
of opacity assigned to the data values. This representation inflicts a translucent
characteristics on the molecular clouds, very much like the visual form of real
clouds. It allows to look into the cloud as opposed to observe the surface only.
Because the scientist felt a natural understanding of this representation, it was fa-
vored as compared to any other representation.

Figure 6 shows a translucent rendering of the cube by looking at the data from the
side: one spatial dimension increases to the right, the frequency increases from bot-
tom up. The rapid changes of the data values in the mid-frequencies show special
characteristics of carbon monoxide at these frequencies. Figure 7 shows the same
data cube using the same representation looking from top down onto the cube.

¢) Data slicer:

To monitor the change of one data value in relation to its neighbor values, a data
slicer was used. Even though a data slicer can only monitor the neighbors sur-
rounding a certain data value inside a plane, flexibility in placing the slices inside
the cube can monitor various changes. Figure 8 shows four slices cutting through
the cube parallel to the x/y plane, enhancing the understanding of the movement of
the cloud through frequency.

d llapsed data slices:

To collapse all (or a subset of) data slices along the frequency dimension into one
single two dimensional image, one must be careful to maintain all information of
all three dimensions. By using principles of Gestalt theory (Gordon, 1989), all data
values along one frequency dimension are mapped into one complex “glyph” or
“icon”. In order to be seen as belonging to the same Gestalt, the set of data values
along one frequency dimension is mapped into one figure that can be distinguished
from its neighbors. The difference of one figure from its neighbor relates to the
spectral characteristics of carbon monoxide and can be interpreted accordingly.

The resulting image can also be seen as one entity, therefore allowing interpreta-
tion of the overall distribution and change of carbon monoxide in the data cube.
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Visual representations of collapsed data slices leave it up to the human visual sys-
tem to decide if the focus is on large-scale or small-scale structures.

Figure 9 shows a representation using color to indicate the various carbon monox-
ide counts of nine consecutive slices of a subset of the original data values; the spa-
tial location inside each red square is used to indicate the various spectral respons-
es. Figure 10 encodes five slices into five characteristics of a cube: width, height,
depth, color and view point.

Figure 5: Isosy
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‘igure 8: Data slicer (viewing §
our slices parallel to x/y plane)

Figure 9: Nine slices of a
subset of the data cube (20 x
20 x 9 voxels) are visually
correlated. Each red square
contains 9 colored slices
relating (from right to left) to
the spectral responses at that
spatial location. Low values
are blue and cyan, medium
values are green and yellow,
and higher values are red and
magenta.
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Figure 10: Five slices of a subset of the data cube (20 x 20 x 5voxels) are encoded
into five characteristics of a cube: width, height, depth, color and point-of-view.
Data of the first three slices was scaled down to a range beween 0 and 20 to
indicate width, height and depth. The fourth slice is mapped into a range between
0 and 255 to show color; the last slice contains a range of values between 0 and
360 and indicates the point-of-view. It is interesting to observe an animated
version of this representation by visually correlating each five consecutive slices
in the data set of 100 slices: growth and rotation relate to changes in the spectral
response from slice to slice.
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4.4 Reaction of the scientist

The reaction of John Bally to the representations was very positive. However, the
representations fell short of his hopes in various ways:

a) The speed of the workstations do not allow real time animations of iso surfaces
or translucent representations. This hampers the understanding of the third dimen-
sion and greatly limits interpretation. However, we can make up by storing an ap-
propriate set of pictures to create a movie that allows the scientist a 3-d experience.
But this will hamper the direct interaction with the data.

b) On some tools, the user interfaces were not adequate to allow the scientist a di-
rect manipulation of the data. Without “the tool in his hands” to explore the cube,
John Bally feels that he cannot give us an adequate feedback of its use.

c) As soon as a tool was useful enough to enable John Bally to identify interesting
features on the pictures, he wanted to perform computations on the corresponding
data values (e.g. integrate data values in the neighborhood; compare the median
value of one subset with the median value of another data cube subset). It is not
hard for a programmer to apply computations to single data values or a collection
of such data values; however, the tools in their current status did not allow an easy
handling of such manipulations.

The understanding derived from the work with John Bally points towards a strong
need for interaction with the data, direct manipulation of the representations, and
much more iteration between the encoding and decoding process than presented in
Figure 4.

5. Conclusions

We have found that there is need to sacrifice generality and concentrate on specific
needs of individual scientific groups in order to better understand the potential of
scientific visualization. This means spending sufficient time in the environment of
scientists to follow various steps in the data analysis process that lead to the need
for data visualization. In our case, cognitive techniques were helpful in soliciting
feedback from scientists. Obstacles that hamper the use of visualization often lie
before the rendering process that is part of a visualization system, e.g. in accessing
special data formats and in the use of a complex conglomerate of software packag-
es to fulfill various aspects of data analysis. Other visualization researchers collab-
orating closely with scientists have pointed out similar problems (e.g. Treinish,
1989 and 1990).
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New methodologies are only of interest to a scientist if the need to use them exists.
New methods that may have a strong potential for future applications are not at-
tractive enough to spend time with. In the case where the need existed to explore
multi-dimensional data sets, the scientist was interested in experimenting with new
means of visual representations, however, was still mainly attracted to visual repre-
sentations that seemed “natural”. Scientists need to go beyond looking at pictures
representing their data: they need to interact with the picture, relate screen posi-
tions back to original data values, and perform computations on these numbers.
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