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ABSTRACT

Programmable design environments (PDEs) are
computational environments that integrate conceptual
frameworks and system components developed
independently in research efforts on (a) programmable
applications and (b) design environments. The integration
of these two approaches eliminates their individual
weaknesses by simultaneously supporting expressiveness,
assistance, modifiability,” and domain-oriented
descriptions. A sequence of scenarios from the domain of
graphic arts is used to illustrate a pattern of "design—
assessment/evaluation—redesign" in the construction of
applications; in following this sequence, we progress from
separate systems that support programmability, direct
manipulation, construction and argumentation to an
integrated system architecture combining the strengths of
all of these approaches.
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INTRODUCTION

Software applications have in recent years become crucial
and ubiquitous tools for professionals in a variety of
complex domains. Architects, electrical engineers,
- chemists, statisticians, cognitive psychologists, and film
directors (among many cthers) all aow depend for their
- livelihood on the mastery of various collections of
applications. These applications, in order to be at all
useful, must provide domain workers with rich, powerful
functionality; but, in doing so, these systems likewise

increase the cognitive cost of mastering the new
capabilities and resources that they offer [11]. Moreover,
the users of most of these applications soon discover that
"software is not soft": i.e., that the behavior of a given
application cannot be changed or meaningfully extended
without substantial reprogramming. The result is that
most applications offer only a rather illusory and selective
power. new users are not provided with support in
learning and mastering the features of the application,
while experienced users are not given the expressive range
needed to augment, personalize, and rethink those features.

* Over the last few years, we and other researchers have

developed conceptual frameworks and innovative systems
to address this problem. In this paper, we describe the
evolution (driven by the assessment and critical evaluation
of our previous efforts) towards programmable design
environments integrating two software design paradigms
that we have each propounded separately—namely,
integrated domain-oriented design environments [8, 9, 10]
and programmable applications [7). We will illustrate the
evolutionary development of programmable design
environments using an example from the domain of
graphic arts [24].

THE ROAD TO PDES (1): CONCEPTUAL
FRAMEWORKS AND SYSTEM-BUILDING
EFFORTS

Figure 1 on the following page provides an overview of
the historical path towards programmable design
environments (PDEs). The two basic constituents of
PDEs, programmable applications and domain-oriented
integrated design environments, were each themselves the
result of integrating two separate paradigms. The
paradigms serving as ancestors will be briefly discussed,
and their strengths and weaknesses will be illustrated
(especially in the context of the scenarios of the following
section).

Programmable Applications

Programmable applications are systems that combine
direct manipulation interfaces with interactive
programming environments. The direct manipulation
portion [23,17] of the application is designed to help users
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Figure 1: The development history of programmable design environments

explore the basic functionality of the system and, perhaps
more important, to give users the opportunity to employ
their "extra-linguistic" skills of hand-eye coordination.
The programming environment [1, 4, 6, 21] is designed to
provide users with extensibility and expressive range. This
portion of the application is constructed around a domain-
enriched language (which might be a newly-constructed
language, or an application-specific "dialect” of some
existing general-purpose language); the essential design
principle behind this language is that users should be able
to express interesting ideas within the application domain
merely by writing short, simple programs [14].

Figure 2: A SchemePaint picture.

SchemePaint [7] is both a working prototype and
illustration of a programmable application: it is a graphics
application that combines a "Macintosh-style" direct
manipulation interface with a graphics-enriched Scheme
programming environment [6]. The artist employing
SchemePaint can create graphics effects both "by hand"
(using the mouse in drawing mode) and "by code" (that is,
by writing graphical Scheme programs), and can combine
these elements within single drawings. The use of
SchemePaint has shown that artists can create works that
would be near-impossible to achieve either by "pure"
direct manipulation or by "pure” programming alone.
Figure 2 shows an example: here, a butterfly with fractal
wings (drawn by a program) is posed upon a largely hand-
drawn flower.

 Weaknesses of Programmable Applications

While programmable applications overcome the
limitations of stand-alone direct manipulation systems and
end-user programming environments (for a more detailed
analysis see [7]) by providing ease of use and
expressiveness simultaneously, they have their own
characteristic shortcomings. Three of the most prominent
of these are: (1) programmable applications are still not
sufficiently ¢oinain-oriented (i.e., the conceptual gap
between the computational substrate provided and artifacts
constructed is still too large), (2) they provide insufficient
support and feedback to achieve quality artifacts (i.e., the
use of SchemePaint has shown that while gifted artists
can do interesting things with it, this is far from true for
less experienced and talented users), and (3) they do not
support case-based "memories” of great designs (thereby
limiting support for design by modification). These
shortcomings are addressed by other efforts in our joint
research work.



Integrated, Domaln-Oriented Design
Environments

Design environments are systems that integrate the
features of domain-oriented construction kits [13] and
issue-based argumentation systems [2, 19]. The major
strength of domain-oriented construction kits is their
ability to allow the designer to communicate with a set of
abstractions that are meaningful within some domain of
discourse. Their weaknesses are that they provide no
computational support for analyzing, commenting, and
critiquing designs. Issue-based argumentation systems, on
the other hand, allow designers to analyze and record the
issues relevant to a given design domain, but by
themselves they provide no tools for the actual creation of
a new artifact. Moreover, without the presence of an
artifact as the focus of argumentation, they are unable to
contextualize discussion to the design task at hand [9].

Integrated design environments overcome these
limitations. They are based on a design methodology that
integrates construction and argumentation [9] (or, in
Schén's terminology, they support "reflection-in-action"
[22]). This integration is made possible by the presence of
critics [8] that analyze an artifact under construction,
signal breakdown situations, and provide entry points to
the space of relevant argumentation directly relevant to
construction situations.

Weaknesses of Integrated, Domain-Oriented
Design Environments

While design environments have proven to be a powerful
concept in a large number of domains [10], they
themselves are not free of their own problems. Their main
shortcomings reside in (1) their limited expressiveness by
providing inadequate support for design tasks not foreseen
by the creator of the design environment [12, 15], and (2)
while they are strong in supporting the tradition of a
professional design discipline, they fall short in
transcending the limits of envisioned activities [5].

Programmable Design Environments

Having arrived at a point of our "design—
assessment/evaluation—redesign” cycle where we have
designed and identified the strengths and weaknesses of
programmable applications and integrated design
environments, we have articulated a conceptual framework
to integrate these two approaches within programmable
design environments. The goals that we want to achieve
with PDEs are to create computational environments that
are simultaneously expressive, supportive, and adaptable.
The "theory" (i.e., knowledge is tacit, knowledge evolves,
knowledge in the world interacts with knowledge in the
head, etc.) behind PDEs is based on design methodologies
as articulated in [3, 20, 22]. The next section illustrates
- the evolution of our conceptual framework in the context
of a specific scenario.

THE ROAD TO PDES (2): A SERIES OF
PROGRESSIVELY ELABORATED SCENARIOS
To illustrate the utility and expressive range of
programmable design environments (relative to the
various component paradigms described in the previous
section), we consider a sequence of "progressively
elaborated scenarios” drawn from the domain of graphic
arts [24]. Imagine that a professional designer wishes to
graph the number of scholarships awarded in several local

counties by decadel; the following sequence shows how
the same task might be undertaken within a hierarchy of
"application styles" based on the taxonomy of the
previous section. (It should be mentioned that although
this sequence of scenarios is hypothetical—chosen for its
brevity and its usefulness in illustrating all aspects of our
conceptual framework—nonetheless all the strengths and
weaknesses of the various paradigms have been observed
in real use situations.)

Direct Manlipulation

In a "pure” direct manipulation application, the designer
might begin by typing in the values that she wishes to
graph in tabular form, as shown in Figure 3. The column
entries in this case are the number of scholarships awarded
in each of three counties for the decades 1950-1959, 1960-
1969, and so forth; the lone exception to this rule is
represented by the fifth (and final) entry in each column,
which indicates the number of scholarships in the given
county not for an entire decade but for the two years 1990-
1991. '

Senadarships

1 2 3 4
County A County B County T Years
1 50.000 40.000 250007 T1950-1359
2 45.000 38.000 32.000 1960-1969
3 40.000 44.000 32.000 1970-1979
4 44 000 40.000 34000 1580-1989
S 9.000 8.000 5.000 1990-1991
6 :

Figure 3: A table of data entered for the sample project.

Having entered the values in the table, the designer now

selects from among the chart styles provided by the

application. She selects a "line graph" format and proceeds

to plot the (numeric) values of the first three columns

against the (alphabetic) values entered for the horizontal-

axis divisions. Chart labels and keys are added directly by
typing into the appropriate locations; the dimensions of

the chart are adjusted by mouse; and the resulting chart is

shown in Figure 4.

This scenario illustrates several of direct manipuiation's
strengths, as well as some unfortunate weaknesses. On the
positive side, entry of data is relatively straightforward
(the designer need merely enter the items in a table);
likewise, the dimensions and labels of the chart are easily

W

IThis example is modeled after a graph depicted in Tufte
[24], p. 60. :
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Figure 4: A sample graph created via direct manipulation.

specified. On the other hand, there are some interesting
problems—imissed or unconsidered opportunities—Ilurking
just beneath the surface of this scenario. For example, the
dimensions of the chart could only be chosen by eye
(using the mouse to specify the size of the desired chart
rectangle); thus, the designer could not scale the rectangle
size to some value based explicitly on the data itself (e.g.,
the designer could not specify that she wants the vertical
axis to extend only to the maximum of the data points).
Only a limited number of graph types are available; if the
designer decided, for example, that she wished to graph the
scholarship-by-decade values as narrow vertical boxes
ranging from the minimum to the maximum value for the
decade, the option might well not be available to her.
More complicated types of graph—depicting scholarships
against a background of maps of the various counties,
say—would likewise be out of the question. The
mathematical tools available for examining the data would
inevitably be limited in this "pure” direct manipulation
interface (as they are in commercial applications); perhaps
the designer could find the average or standard deviation of
a set of data (by selecting the appropriate data-examination
tools from a menu), but if she then wished to find the
correlation between the number of scholarships awarded
per year in County A and the number for County B, she

might well be unable to do 50.2

Perhaps most important, the resulting graph s itself '

probiematic: because the rfinal inierval on the x-axis
‘represents only two years (as opposed to an entire decade),
the graph appears to depict a recent precipitous decline in
scholarships for all three counties. (Indeed, only a careful
examination of the graph would show that in fact the
number of scholarships awarded has in fact increased on an
average per-year basis for two of the three counties.) The

2The typical (and less-than-optimal) decision for a
professional designer under these circumstances would be
to export the data to an entirely different application geared
toward statistical computation, and perform the desxred
calculations in that separate application.

choice of hatching patterns to distinguish the lines for the
three separate counties is likewise controversial (though
here the issue is less clear-cut); gray shading might be
preferable, as this would avoid the presence of jarring
"Moire effects” in the graph (cf. [24]).

A General-Purpose Programming Environment

As an alternative to the "pure” direct manipulation
scenario of the previous paragraphs, we could instead
provide our designer with a general-purpose programming
environment—for the purposes of illustration, this might
be a Scheme environment [6] (though we note in passing
that the major issues are unaffected by the choice of

language).

In this scenario, the designer might construct for herself a
library of procedures for creating charts and graphs of
various kinds; and the data set of interest would most
likely be provided to the system as a Scheme list (or,
perhaps more plausibly, read in from an external database
or file):

(define *scholarship-data-set~*

(list
'( (County A)

(1950 3) (1951 4) (1952 3) ....)
'{ (County B)

(1950 3} (19851 2) (1952 2) ....)
{etc.}))

In comparison to the direct manipulation scenario, the use
of a programming environment presents major advantages
in expressiveness [7]. If the designer is an accomplished
programmer, she can create virtually any new type of
graph imaginable; she can tailor the graph presentation so
that it depends in some algorithmic fashion on the data set
itself (e.g., having the program automatically label all
outlying data points); and she can write customized
statistical procedures to do sophisticated analysis of her
data.

On the other hand, the advantages of this new scenario are

_predicated upon both the energy and the programming

sophistication of the designer: it is assumed that she will
have (and spend) the time to create a large personalized
library of graphical-design procedures. It should also be
recalled that the direct manipulation system did render a
variety of tasks—such as choosing fonts and (when
desired) "eyeballing” graph dimensions—particularly easy.
Performing all these tasks via programming, while
possible, is tedious.

Moreover, there are some problems with the direct
manipulation scenario that have not been addressed by the
introduction of programming. The same poor graph
produced in Figure 4 might easily be produced by the
designer/programmer as well; after all, the sysiem
provides no supporting tools for making decisions within
the particular domain of graphical design. A programming
language—despite its expressive range—still fails the
designer on a number of important dimensions.



Domain-Oriented Construction Kits

Rather than provide the designer with either a direct-
manipulation tool or a general-purpose programming
environment, we might provide a "graph-construction kit"
for the designer's use [13]. Such a system would have
many of the same features as the direct-manipulation
program—presumably, graphs would still be created by
selection among a palette of predefined types—but in
addition this environment might be augmented by a rich
catalog of sample graphs that could be used as the basis
for the designer's own work. Thus, rather than simply
choose to produce a line graph from her initial data set,
the designer might begin in this environment by browsing
within the catalog for a graph that appears similar to the
kind that she wishes to create, as shown in Figure S.
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Figure 5: A view of an information-display construction
kit. The designer has located a graph (within the catalog)
similar to the one she wishes to construct.

The use of a construction kit with an integrated catalog
alleviates some of the problems of the direct manipulation
system, but fails to solve others. On the one hand, the
catalog does provide illustrations of (presumably)
exemplary work; thus, the designer might derive some
implicit support (or advice) from the graphs included in
the catalog. (For instance, if the line graphs included in
the catalog distinguished between lines via gray shading or
coloring rather than via hatching patterns, the designer
might use these graphs as templates for her own work and
thereby avoid the "Moire-pattern” eifects mentioned
earlier.) On the other hand, the catalog as envisioned here
provides little in the way of explicit design rationale [9];
thus the designer might fail to consider those decisions
that went into the construction of the sample graphs. (For
example, the issue of "non-uniform intervals” on the x-
axis might go unnoticed.) Moreover, the overall lack of
expressiveness and power which caused difficulty in the
direct manipulation environment is still a factor even in
this more elaborate system; the strengths of the
programming environment have not been introduced into
the construction kit,

Argumentation System

Employing a hypermedia-based argumentation system {2,
19] would alleviate some of the difficulties to which we
have alluded thus far. We might imagine the designer
using such a system to explore design rationales for a
variety of graphs; she might, for instance, explore an
argumentation base centering on the proper representation
of line graphs. Issues involving non-uniform axis
intervals would very likely be addressed in this setting,
forestalling errors in the designer's eventual creation.

Using an argumentation system in isolation, however,
enforces an uncomfortable fragmentation in the designer's
work: the implicit expectation is that she will spend a
portion of her time in actual design activity and a
(separate) portion of her time using the argumentation
base to reflect upon design. A more realistic scenario,
based on the work of Schén [22] and Ehn [5], is that
design and reflection are closely interwoven. Though the
features of an argumentation system are plausibly useful,
they are much more compelling when embedded within a
system that supports a more seamless transition between
reflection and action.

Programmable Applications

A programmable application [7] for creating information
displays would be aimed at integrating the characteristics
of direct manipulation and programming environments (as
summarized earlier in this section). Such an application
could conceivably overcome some of the individual flaws

- of those two paradigms: the designer could now specify

many typical characteristics of a graph by hand, but she
could simultaneously write programs that, over time,
would collectively embody an ever-growing personalized
vocabulary of increasingly complex techniques for data
visualization.

While alleviating many of the problems evinced separately
by direct manipulation and programming, a “standard”
programmable application as envisioned here nevertheless
fails the designer in other ways. The advantages provided
by a browsable catalog of examples, or by tools for
representing design rationale (as described in the previous
two subsections) are still missing; and thus the resulting
application, while expressive and powerful, still fails to
support the designer in leaming (either about the domain
or the application itself) and thereby expanding her domain
knowledge or her repertoire of skills within the
application [11].

Integrated Design Environments

- Rather than construct a programmable application, we

could pursue a different route of integration, combining
the features of construction kits and argumentation
systems. The result in this case would be a design
environment for information displays: such an
environment provides an interesting contrast to the
programmable application of the previous section.



Here, the emphasis is on providing a supportive and
learnable environment for the designer. Going beyond the
elements of the construction kit shown in Figure 3, this
environment—modelled after the example of Janus [8, 9,
12] in the domain of kitchen design—will include critics
for the domain of information displays. Among these
could be procedures for (1) monitoring the designer's
creations-in-progress with an eye toward spotting the
overuse of hatching patterns, and (2) querying the designer
about the structure and semantics of her graph and acting
as "agents" in finding appropriate catalog examples to use
as templates. Moreover, this design environment should
include an argumentative hypermedia system. The critics
make use of elements of this system (when a critic
interacts with the user, it can display representations of
arguments that are relevant to the critic's particular
function); similarly, the elements of this hypermedia
system act as indices to relevant catalog examples [9].

Mauch as in the case of programmable applications, the
construction of design environments alleviates some of
the problems described in previous sections while leaving
others untouched. Although the proposed environment is
certainly rich in tools that help the designer leamn and
explore the domain of information displays, the absence of
a programming environment places stringent (if not
immediately felt) limits on her expressive range. These
limits may first become apparent when the designer
attempts some unforeseen task of the type described earlier
in the discussion of programming environments; or she
may find that programmability is desirable in working
with the added subsystems of the design environment
itself (e.g., she may wish to write programs that create
‘new critics or that explore the catalog with powerful
search mechanisms).

Programmable Design Environments

Our succession of scenarios has thus led us to one further
act of integration—between the programmable
applications and the design environments of the previous
two subsections. In Figure 6, we depict a screen-view of a
programmable design environment for information

displays.

Using the application depicted in Figure 6, we may now
pursue the original scenaric (in which cur hypothetical
designer wishes to graph scholarships in several counties
by decade). The designer might begin as she did with the
direct manipulation system (or construction kit): namely,
~ by entering data elements in a table. She now selects a
type of graph to use (here, a line graph) and, as a first cut,
creates a graph much like the one shown earlier in Figure

4. Having created this graph, one of the critics alerts the
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Figure 6: A screen view of a programmable design
environment for graphic arts and information displays.
The environment includes a "graphics-enriched" Scheme
interpreter (top); a construction kit for a variety of
"standard" graph types (middle left); a window for graph
construction (middle right); a browsable catalog linked
to an argumentation component (bottom left); and a
collection of software "critics" for graphic design (which
communicate with the user through messages and
prompts in the window at bottom right).

designer to the possibility that she is overusing hatching
patterns, and suggests the use of gray shading instead (as
shown in Figure 7).

The designer now asks the system to illustrate the critic's
argumentation with a catalog entry similar to the graph
that she has just created. In doing so, the system engages
in a simple dialogue with the designer, asking for some
information about the semantics of the graph she is
creating (whether, e.g., the graph depicts numbers of
discrete objects changing over time). The system finds a
graph (here, a bar chart) with semantics similar to that of
the designer's project, as shown in Figure 8.
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Figure 7: The designer has used the construction kit at
left to create a first draft of a graph (middle right)
similar to the one shown in Figure 4. A critic message
(bottom right) suggests that the newly-created graph
may include an overuse of multiple hatching patterns.

In examining the argumentation surrounding this entry,
the designer notes that the graph's creator took account of
the fact that the time-intervals depicted on the x-axis were
chosen to be constant (thus, decade measures for this
graph were chosen from 1952-1961, 1962-1971, and so
forth). Our designer notes that her own graph employs
variable time-intervals on the x-axis and decides that rather
than adopt the earlier graph-creator's solution, she will
simply alter her graph to show per-year averages for each
of her column entries. She writes simple programs in the
Scheme interpreter (1) to take averages for each entry, and
(2) to display the vertical axis in variable widths, with a
thicker line depicting the range between the maximum and
minimum values of all data plotted. The final graph is
shown in Figure 8. »

In this scenario, the designer was able to make use of a
variety of techniques: (1) creating a first-draft graph via
direct manipulation; (2) responding to critics by exploring
argumentation; (3) obtaining an illustration of the
argumentation with catalog examples; (4) reflecting on her
creation by comparison with decisions made by earlier
graph-designers; and (5) performing creative customization
of her graph with the aid of a domain-enriched

programming language.

Figure 8: The designer asks the system (in the dialogue
at bottom right) to locate a catalog graph similar to her
own (bottom left). Using this graph as a starting
point, she redoes her own graph (middle right), using a
brief Scheme program to take averages of her data (top
window).

ASSESSMENT AND FUTURE WORK

The integration of different paradigms is more than
throwing a number of different things together. In our case
it was driven by several cycles of "design—
assessment/evaluation—redesign”. Assessments of the
earlier paradigms revealed their strengths and weaknesses
and led us to new paradigms retaining the strengths
and addressing the weaknesses at each stage. Beyond
assessing prototypes, our integration efforts were
theoretically founded by taking the conceptual
frameworks of others (e.g., Schén's "reflection-in-
action” [22], Ehn's "languages of doing" [5], Mackay's
“"co-adaptive systems” [18], Henderson/Kyng's "design
in use" [16], etc.) into account by integrating them in our
own emerging conceptual framework. PDEs themselves
are raising many new interesting issues which we
will investigate carefully in the future. They will
be instances of high-functionality systems with their
own problems requiring extensive support for (1)
making them useful and usable, (2) contextualizing
information to the task at hand, and (3) learning on
demand [11].
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