A Second Simulation of the
Gries/Dijkstra Design Process

Robert B. Terwilliger
CU-CS-618-92 October 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

A Second Simulation of the
Gries/Dijkstra Design Process

Robert B. Terwilliger

Department of Computer Science
University of Colorado
Boulder, CO 80309-0430
email: ’terwilli@cs.colorado.edu’

ABSTRACT

We are investigating software design processes using a three
part approach. For a design method of interest, we first per-
form walkthroughs on a number of small problems. Second,
we construct a simulation program which duplicates the
designs produced by the walkthroughs, and third, we a con-
struct a process program that supports human application of
the method. We have been pursuing this program for the for-
mal design process developed by Dijkstra and Gries. This
method takes as input a pre- and post-condition specification
written in predicate logic and through a sequence of steps
transforms it into an algorithm written using guarded com-
mands. In this paper, we describe our second simulation of
the Gries/Dijkstra design process. Specifically, we describe a
number of new cliches, verify their correctness, and give an
example of their use in a design derivation for Kemmerer’s
Library Problem.

1. Introduction

The development of software consumes a
significant portion of our society’s economic resources
[7]. In the traditional, or waterfall lifecycle model, the
design phase defines the overall structure of the system
and the basic methods it will use to perform its func-
tions. This phase is important because design quality
significantly impacts both the performance and main-
tainability of the final system. There are many dif-

ferent techniques for software design [11]; unfor-

tunately, at present is it difficult to either correctly
apply a design technique, determine if it has been
applied properly, or evaluate it for effectiveness.

One approach to gathering information about
development processes is the use of walkthroughs and
inspections [6,10,22,27,40,42]. These techniques
require that a software item or the process used to pro-
duce it be examined and evaluated by a group of
knowledgeable personnel. Even more information can
be gathered through process programming [14-
16,26,32,33]; in other words, when software processes
are described using programming language constructs
and notations. Ultimately, this should allow software
development to become automated, and process execu-
tion to be monitored, evaluated, and tuned for max-
imum efficiency. To a certain extent, process

programming overlaps with previous work on
knowledge-based software engineering
[1,8,9,12,17,19,20,28-31]. An important aspect of
many of these projects is some notion of cliche (ot plan
or schema): a complex knowledge structure represent-
ing a commonly occurring situation.

We are investigating software design processes
using a three part approach [36-39]. For a design
method of interest, we first walkthrough, in other words
band simulate, the process on a number of small prob-
lems. This produces an increased understanding of the
method as well as a suite of example designs. Second,
we produce a program that simulates the design process
discovered during the walkthroughs; ideally, it should
be able to recreate the suite of designs previously pro-
duced. Third, we produce a process program that sup-
ports human application of the method. The result of
the third step is a new, partially automated process that
can then be subjected to another iteration of the entire
three step approach.

From our point of view, formal methods are an
interesting class of specification and development
processes [2,3,18,23-25]. They are precisely defined
and show significant variations, even when applied to
small problems. We have been applying our three step
approach to the formal design process developed by
Dijkstra and Gries [4,5,13]. This method takes a pre-
and post-condition specification written in first-order
predicate logic and incrementally transforms it into a
verified design written using guarded commands.

We have currently completed one iteration of our
three step procedure on the Gries/Dijkstra design pro-
cess [36-39], and we have performed steps one (walk-
through) and two (simulation) for a second time. Our
simulation programs are based on a library of cliches
describing solutions to common programming prob-
lems. Execution consists of a sequence of steps, each
of which applies a pre-verified cliche to the current par-
tial design. Since each cliche only generates correct
transformations, the final design satisfies the original
specification.

In this paper, we describe our second simulation
of the Gries/Dijkstra design process. The architecture

of the current system is identical to that used in the first
iteration [37,38]; however, the two differ in that the
second simulation uses a number of new cliches that
we feel better reflect the process described in [13].
Specifically, an attempt is made to formally describe
the "replace a constant with a variable" method for
constructing an invariant from a post-condition, and the
"decrease then restore" strategy for separating concems
in the construction of a loop body.

In the remainder of this paper, we describe our
second simulation in more detail. In section two we
give some background on the Gries/Dijkstra design
process, and in section three we review our simulation
architecture. In section four we present the new cliches
and verify their correctness, and in section five we
describe how they can be used to generate a design for
a solution to Kemmerer’s Library Problem. Finally, in
section six we summarize and draw some conclusions
from our experience.

2. Gries/Dijkstra Design

Figure 1 shows a pictorial representation of the
design process developed by Dijkstra and Gries
[4,5,13]; our view of the method is based primarily on
[13]. The design derivation process uses stepwise
refinement to transform pre- and post-condition
specifications written in first-order predicate logic into
verified programs written using guarded commands.
At each step, strategies determine how the current par-
tial program is to be elaborated, and proof rules are
used to verify the correctness of the transformation.
Since each step is verified before the next is applied,

Formal
Specifications
Proof Rules
Design
Derivation
Correct
Designs

Figure 1. Gries/Dijkstra Design Process

errors are detected sooner and corrected at lower cost.
The process is in some sense general, but is most appli-
cable to problems in algorithm design.

For example, Kemmerer’s Library problem has
received considerable attention in the software
engineering literature and has been formally specified a
number of times [21,41,43]. The problem is con-
cemed with a small library database that provides both
query and update transactions to library staff and users.
The architectural design for our solution [36] consists
of a single module that encapsulates the database and
provides an entry routine for each transaction. The
state of the module is modeled abstractly using high-
level data types, and the entry routines are specified
using pre- and post-conditions.

For example, consider the "who_has" function,
which returns the set of all users who currently have a
particular book checked out.

function who_has(s:vuser ; b:vbook
) : set (vuser);
pre s.staff ;
post who has =
{u€users:corec(u,b)echecks};

This specification uses the type "corec" and variable
"checks" which are declared as follows.

type corec = record
name : vuser ;
item : vbook ;

and corec ;

var checks : set (corec) ;

A "corec" records the fact that a book is checked out
from the library. It contains both the book and the
patron who borrowed it. "Checks" holds a check out
record for each book currently on loan from the library.

The "who_has" function takes two arguments,
The first is the user performing the transaction, and the
second is the book in question. The pre-condition
states that the transaction is being invoked by a staff
member, while the post-condition states that the return
value is the set of all users who currently have the book
in question checked out.

Using the Gries/Dijkstra method, design might
proceed as follows. First, we notice that our program-
ming language does not contain an operator to compute
a subset based on a selection predicate; therefore, we
use a loop to iterate over the array. We specify this
loop using a predicate called the invariant, which must
be true both before and after each iteration of the loop,
and an integer function called the bound, which is an
upper limit on the number of iterations remaining.

The proof rule for loops has five conditions for
correctness [13]. Three are concerned with partial
correctness:

1) the invariant must be initialized correctly

2) execution of the loop body must maintain the
invariant ‘

3) termination of the loop with the invariant true must
guarantee the post-condition,

and two are used to insure termination:

4) the bound function must be greater than zero while
the loop is running

5) execution of the loop body must decrease the
bound.

In our example, we construct the loop and simultane-
ously verify its correctness using this rule.

First, we develop the invariant by weakening the
post-condition; in other words, the invariant is an easier
to satisfy version of the desired result. There are at
least three ways to weaken the post-condition: delete a
conjunct, replace a constant by a variable, and enlarge
the range of a variable. In this case, we replace the
constant "users" with the variable (expression) "users-
‘usts” to obtain the following invariant.

{inv P:usrscusers A
who_has =
{u€eusers-usrs:
corec (u,b)€echecks}}

The variable "usrs” holds the users still to be
examined. At any point during the loops execution,
"usrs” is a subset of "users” and "who_has" contains
the set of all users already examined who have the
book in question checked out. The invariant is initial-
ized with the simultaneous assignment
"who_has,usrs:={},users"; this satisfies item one
of the proof rule.

We now develop a guard for the loop body. Item
three of the proof rule for loops tells us that the pega-
tion of the guard and the invariant together must imply
the post-condition. Since we created the invariant from
the post-condition by replacing a constant with a vari-
able, the loop guard is just that the variable does not
equal the constant. In our example, the loop should
stop when "users-usrs” is equal to "users”; therefore,
the loop guard is "usrs#{ }", and it satisfies item three.

We now develop a bound function for the loop.
We do this by discovering a property that should be
decreased by each iteration of the loop body and then
formalizing it. In our example, each iteration should
decrease the number of elements in "usrs". We formal-
ize this as "|usrs|". We check that this function
satisfies item four of the proof rule: " |usrs| " is greater
than zero as long as the loop is running. We now have
the following.

{Q: true}
var usrs : set (user) ;
who_has,usrs:={},users ;
{inv P:usrscusers A
who_has =
{u€eusers—usrs:
corec(u,b)€echecks}}
{bnd t: |usrs]}
do usrs#{} — < 8§ > od
{R: who_has =
{u€users:corec(u,b)echecks}}

Item five of the proof rule for loops requires that
the body of the loop decrease the bound function. The
simplest way to accomplish this to remove an element
from "usrs". If we declare a local variable "usr" of type
"user" then we can accomplish this as follows.

choose (usrs,usr) ; usrs:=usrs-usr ;

Item two of the proof rule requires that the body
of the loop maintain the invariant. There are two cases;
therefore, the body contains an if statement. If "usr"
has the book in question checked out ("corec(usr,b) €
checks"), then they must be added to the result set; oth-
erwise, nothings needs to be done. The following alter-
native command serves this purpose.

if corec(usr,b)echecks —
who_has:=who_has+usr ;

[corec(usr,b)gchecks - skip ;

£i

We have now produced the complete design shown in
Figure 2. Since we ensured that all five items of the
appropriate proof rule were satisfied as we constructed
the loop, we have already proven the design correct.
The rest of this example is presented in [36].

As we have described it, the design process con-
sists of a single level: The developer proceeds through
a sequence of relatively independent steps to produce a
final design. While this model is adequate for perform-
ing design walkthroughs, we did not use it in the con-
struction of our simulations.

3. Simulation Architecture

Figure 3 shows a pictorial representation of the
design process implemented in our simulations. It has
two levels. At the lower level, the design derivation
sub-process transforms formal specifications into
correct designs using a library of cliches representing
solutions to common programming problems. On the
upper level, a cliche derivation sub-process uses stra-
tegies and proof rules to construct and verify cliches.
These two sub-processes have significantly different
complexities; cliche derivation is considerably more

{Q: true}
var usrs : set (user) ;
var usr : user H
who_has,usrs:={},users
{inv P:usrsgusers A
who_has =
{u€users-usrs:
corec(u,b)echecks}}
{bnd t: Jusrs|}
do usrs#{} —
choose (usrs,usr) ;
usrs:=usrs-usr ;
if corec(usr,b)&checks —
who_has:=who_has+usr H
[corec(usr,b)é¢checks —
skip ;

~s

£i
od
{R: who_has =
{u€users:
corec(u,b)€echecks}}

Figure 2. Completed Who_Has Design

difficult than cliche application. Therefore, the portion
of the process inside the dashed box is automated and
the rest is performed by a human.

The input to the simulation is a pre- and post-
condition specification for the unit to be constructed, as
well as the library of pre-verified cliches. Each cliche
has an applicability condition, as well as a rule for
transforming specifications into more complete pro-
grams. The simulation applies cliches until a complete
design is produced or no cliches are applicable. The
library of cliches is searched in a fixed order, with the
simplest (least expensive to apply) cliches appearing
first. Application of a cliche may generate sub-
specifications for which a design must be created, and a
simple backtracking scheme allows transformations to
be undone if they do not lead to a complete solution.

Since the correctness of a final design depends
on the correctness of the cliches used in its derivation,
each cliche must be proven to produce only designs
that satisfy the corresponding specification. The
advantage of our two level simulation architecture is
that proofs are performed mostly at "compile" rather
than "run” time. Cliche construction and verification is
quite difficult, but is done only once for each cliche and
performed by a human. On the other hand, cliche
application is reasonably easy and is performed repeat-
edly by the machine.

Formal
Specifications

Design
Derivation

Figure 3. Design Process as Simulated

We have constructed a running system based on
the architecture in Figure 3. The program was
designed using guarded commands and its correctness
rigorously verified [37]. It uses constructs that can be
reasonably implemented in most programming
languages. A prototype implementation has been writ-
ten in Prolog that generates a complete design for
several small examples including Kemmerer’s Library
Problem. The prototype follows the formal design very
closely; in fact, the implementation can be generated
from the design using methods similar to [34,35]. The
implementation is somewhat sketchy, especially the
logic manipulation and theorem proving routines; how-
ever, it does demonstrate that the design is fundamen-
tally correct.

Our simulation engine is quite simple, but ade-
quate for its purpose. The use of a library of cliches
allows the process to be separated into a difficult, pos-
sibly intuitive part performed by humans, and a simple,
mechanistic part performed by a machine. The simpli-
city of the design derivation process implies that the
power the overall process depends on the complexity of
the cliches in its library.

4. Cliches

The number of cliches that can be used in the
design process is literally infinite; for the purposes of
this paper, we will limit ourselves to five. Two of these
were developed for the first simulation [37,38]. The
"simple_assignment” cliche generates (multiple)
assignment statements, and the "simple_if_then_else"
cliche generates two branch if-then-else statements.

Three new cliches will be developed here. The
"simple_replace_constant” cliche replaces a constant in
a post-condition with a variable expression to create a
loop invariant; the "decrease_then_restore” cliche
decomposes a loop body into a statement which
decreases the bound function and another that restores
the invariant; and the "conditional operation” cliche
applies to situations where the body of a loop must
conditionally apply an operation to the iteration ele-
ment.

Figure 4 shows simplified representations of the
"simple_assignment" and "simple_if_then_else"
cliches. The "simple_assignment” cliche states that the
statement "Var,..Vary = Soln,..Solny" is correct with
respect to a pre-condition "Q" and post-condition "R" if
"Q" implies "R" with "Soln,..Solny" substituted for
"Var;..Vary". The "simple_if_then_else" cliche says
that the statement "if B1 — S1 [B2 —» S2 fi" is
correct with respect to a pre-condition "Q" and post-
condition "B1 A E1 V B2 A E2" if: "B1" is the logical

cliche simple_assignment is
{Q} Vari..Vary := Soln;..Solny {R}
if
Q => R[[Var;..Vary / Soln;..Solny]]

end simple assignment ;

cliche simple if then else is
{Q}
if B1 - {Q A Bl} < 81 > {B1 A E1}
0 B2 —» {Q A B2} < 82 > {B2 A E2}
£i
{R: B1 A E1 V B2 A E2}

if
is_negation(B1,B2) ;

end simple if then_else ;

Figure 4. Simple Cliches

negation of "B2"; "S1" is correct with respect to pre-
and post-conditions "Q A B1" and "B1 A E1" respec-
tively; and "S2" is correct with respect to "Q A B2" and
"B2AE2".

Figure 5 shows a simplified representation of the
"simple_replace_constant” cliche. This cliche replaces
a constant in a post-condition with a variable expres-
sion to create a loop invariant. Specifically, the cliche
states that a loop with initialization "S0" and body "S1"
is correct with respect to a pre-condition "Q" and post-
condition "R" if "S0" and "S1" satisfy their
specifications and three additional conditions are met.

First, "C" must a constant in the post-condition.
This is represented as membership in a set-valued func-
tion on the appropriate formula. Second, the tuple
"(C,E,V.Rng)" must be an element of the relation
"mkvariable”, where "V" is a variable, "E" is an
expression in "C" and "V", and "Rng" is a boolean
expression restricting the range of "V". Third, the loop
invariant must be equivalent to "Rng" conjoined with
the result of substituting "E" for "C" in the post-
condition.

For this cliche to be correct, every tuple of the
mkvariable relation must satisfy a certain property.
Specifically, the restrictions on "V" ("Rng"), combined
with the fact that "E" is not equal to "C" must imply
that the difference between the size of "C" and the size
of "E" is greater than or equal to zero.

cliche simple replace_constant is

{Q}

wvar V ;

< 80 > ;

{inv P: Rng AR[[C / E 1]}
{bnd t: |C[-]E]}

do B: E#C —
{Ql: P A B A t=tl}
< 81 > ;
{R1: P A t<tl}
od
{R}
if
C € constants(R) A
(C,E,V,Rng) € mkvariable ;

end simple_replace_constant ;

Figure 5. Simple_Replace_Constant Cliche

Property 1: (C,E,V Rng) € mkvariable =>
RogAExC=>(|C]-]E|)20
We can now argue for the correctness of
"simple_replace_constant” using the proof rules given
in [13].
Theorem 1: {Q} simple_replace_constant {R}
{Q} SO {P} DO {PA—B} {R}
where P: Rng A (R)G, B: ExC
1) {Q} SO {P} by assumption
2) {P} DO {PA—B} bylemmal
3) RogAR)EAE=C=>R
therefore, {Q} simple_replace_constant {R}.

Lemma 1: {P} DO {PA—-B}
where P:Rng AR)SG, B: ExC, t: |C|-|E|,
QL:PABATt=tl, RI:PAttl
1) {PAB} {Q1}S1{R1} {P} bylemma1.1
2) RogAR)GAE=C=>(|C|-|E|)20
Rng AE#C =>(|C|-|E|) 20 by property 1
3) {PAB}tl:=t{Q1}S1 {R1} {t<tl}
by lemma 1.2
therefore {P} DO {PA—B}.
Lemma 1.1: {PAB} {Q1} S1 {R1} {P}
where Ql: PABAt=tl, R1: P At<tl

1) PAB=>PABAt=tl defines tl

2) {Q1}S1{R1} by assumption

3) PAt<tl =>P

therefore {PAB} {Q1} S1 {R1} {P}.
Lemma 1.2: {PAB} tl:=t {Q1} S1 {R1} {t<tl}

where Ql: PAB At=tl, R1:PAt<«tl

1) {PAB} tl:=t {PAB At=tl}

2) {Q1} S1 {R1} by assumption

3 PAt<t] => t<tl

therefore {PAB} tl:=t {Q1} S1 {R1} {t<tl}.

For the purpose of this paper, the proof of
"simple_replace_constant" is now complete; however,
this is only the first of three cliches we must present
and verify.

Continuing, Figure 6 shows the
"decrease_then_restore" cliche. This cliche decom-
poses a loop body into a statement which decreases the
bound function and another that restores the invariant.
Specifically, the cliche states that the two statement
sequence "SO ; S1" is correct with respect to pre-
condition "Q" and post-condition "R" if: "S1" satisfies
its specification; the tuple "(T,V,E,SO,F,D)" is an ele-
ment of the relation "decrease_bnd"; and "S1" does not
modify any of the variables referenced in "T".

Here, "T" is an integer function (the bound func-
tion for the loop), "V" is.a variable (that will be
modified to decrease "T"), "S0" is a statement (that
modifies "V"), "E" is an expression (reflecting the
modifications to "V"), "F" is a formula (reflecting

aliche decrease_then restore is

{Q: P A B A T=tl}
var D ;

< 80 >

{Q1l: P[[V/ E]] AF}
< 81 >

{R1l: P}

{R: P A T<tl}

irf
(T,V,E,S0,F,D) € decrease _bnd A
modify(S1) N use(T) = & ;

end decrease then restore ;

Figure 6. Decrease_Then_Restore Cliche

additional facts concerning the modification), and "D"
is a declaration (of the iteration variable).

For this cliche to be correct, every tuple of the
"decrease_bnd" relation must satisfy three properties.
"S0" must decrease "T"; "F" must be true after "SQ"
completes; and for any formula "W", if "W" is true
before "S0" executes, then "W" with "E" substituted for
"V" must be true after "S0" completes.

Property 2: (T,V.E,S0,F.D) € decrease_bnd =>
1. {T=t1} SO {T<t1}
2. {true} SO {F}
3. {W} SO {W)%}

We can now argue for the correctess of
"decrease_then_restore" using the proof rules given in
[13]. However, to assist in this endeavor we will first
present a fully annotated version of the cliche body.

{Q: P A B A T=tl}
< 80 >
{Q': PI[V
{Ql: P[[V
< 81 >
{R1: P}
{Rf: P A T=t2 A T<tl}
{R: P A T<tl}

A T=t2 A T<tl}

Theorem 2: {Q} decrease_then_restore {R}

{Q} S0 {Q’} {Q1}S1 {R1} {R’} {R}
where R:PAT=2 AT<t]l, R:PAT<tl

1) {Q}S0{Q’} bylemma?2

2) {Q’} {Q1}S1{R1} {R’} bylemma3

3) PAT=t2 AT<tl =>PAT<«tl

therefore, {Q} decrease_then_restore {R}.

Lemma 2: {Q} SO0 {Q’}

where Q: PAB AT=tl,
Q: @) RAFAT=2AT<t]

1) {PABAT=tl} SO {(P)%} by property 2.3
2) {PABAT=tl} SO {F} by property 2.2
3) {PABAT=tl} SO {T=t2} definest2
4) {PABAT=tl} SO {T<tl} by property 2.1
therefore, {Q} SO {Q’}.
Lemma 3: {Q’} {Q1} S1 {R1} {R’}
where Q: @) AFAT=2AT«tl,
R:PAT=2AT«l,
Ql: ®) % AF, R1:P
1) P)YEAFAT=2 AT<tl =>P)LAF
2) {(P)5AF}S1 {P} by assumption
3) {T=t2 AT<«tl} S1 {T=2 AT<tl}
because modify(S1) N use(T) = &
therefore, {Q’} {Q1} S1 {R1} {R’}.
For the purposes of this paper, we will now consider
the proof of "decrease_then_restore" complete and
proceed to the third new cliche developed for this
simulation.

Figure 7 show the "conditional_operation"
cliche. This cliche applies to situations where the body
of a loop must conditionally apply an operation to the
iteration element. Application of this cliche can solve
problems that require the use of a loop with an embed-
ded conditional. In such cases, computation of the

cliche conditional_operation is

{Q: LSETgSet A
Var = Iop(Set-LSET,Cond) A
Lset=LSET-Lvar A Lvare€LSET}
{Q1l: Var=VAR}
< 81 >(Var:inout Rtype) ;
{R1l: (—Cond(Lvar) A Var=VAR V
Cond (Lvar) A Var=Op (VAR,Lvar))}
{R: LsetgSet A
Var = Iop(Set-Lset,Cond)}
if
(Iop(Set,Cond),Op (Var,Lvar))
€ iteration_ops ;

end conditional_operation ;

Figure 6. Conditional_Operation Cliche

desired result involves processing each element of a set
in tum. In the completed design, a local set variable
bolds all the items still to be processed, while a local
scalar holds the item currently under examination.
Each iteration modifies the result depending on whether
the item satisfies a certain property.

The post-condition of the cliche states that the
local set ("Lset") is a subset of the original ("Set™), and
that the result variable ("Var") is equal to the value of
"lop(Set-Lset,Cond)". In other words, that "Var" is
equal to the value of an iteration operator applied to the
difference of the original and local sets and a certain
condition. In the cliche, "Lset" is a set containing all
the items still to be considered, while "Lvar” is the item
currently being processed. The loop iterates over all
the items in "Set", and if the item in question satisfies
"Cond" then "Var" is set to "Op(Var,Lvar)".

For this cliche to be correct, every tuple
"(Iop(Set,Cond),Op(Var,Lvar))" in "iteration_ops"
must satisfy two properties. For each element being
considered, if the condition holds then the new result
can be computed from the old by applying the given
operator. On the other hand, if the condition does not
hold then the new result is identical to the old.

Property 3: (Iop(Set,Cond),Op(Var,Lvar))
€ iteration_ops =>
1) (Lvare Set A Cond(Lvar) =>
Iop(Set,Cond) =
Op(op(Set-Lvar,Cond),Lvar))
2) (Lvare Set A —Cond(Lvar) =>
Top(Set,Cond) = Iop(Set-Lvar,Cond))

We can now argue for the correctness of
"conditional_operation" using the standard proof rules.

Theorem 3: {Q} conditional_operation {R}

{Q} {Q1} S1 {R1} {R}
1) Q => Var=VAR defines VAR
2) {Q1} S1 {R1} by assumption
3) QA Var=VAR => (Q) ¥ir
3) ((Q Vir} S1{Q ¥ir)

because modify(S1) N use((Q) Wp) = @
3) (Q) ¥ g AR1 =>R by Lemma 4
therefore, {Q} conditional_operation {R}.

Lemma 4: (Q) ¥z ARl =>R
where (Q)%r: LSETcSetA
VAR = Iop(Set-LSET,Cond) A
Lset=LSET-Lvar A Lvare LSET
R1:—Cond(Lvar) A Var=VAR V
Cond(Lvar) A Var=Op(VAR,Lvar)

R: LsetcSet A Var = Iop(Set-Lset,Cond)

1) (Q) ¥ g => LSETcSet A
T1:(Lset=L.SET-Lvar A Lvare LSET)
=> LsetcSet

2)(Q ‘(?QR => T2: (VAR =Iop(Set-LSET,Cond))
3)R1=> T3:(—Cond(Lvar) A Var=VAR) V

T4: (Cond(Lvar) A Var=Op(VAR,Lvar))
4) T1 AT2 AT3 => Var = Iop(Set-Lset,Cond)

by property 3.2
5) T1 AT2 AT4 => Var = Iop(Set-Lset,Cond)

by property 3.1
6) LsetcSet A Var=Iop(Set-Lset,Cond) => R
therefore, (Q) ¥ir AR1 =>R

For the purpose of this paper, we will now con-
sider the proof of "conditional_operation" complete,
and with it our descriptions and verifications of the new
cliches developed for our second simulation. Strictly
speaking, we have not "proven" the cliches correct;
however, the arguments presented are rigorous, and
significantly increase our belief in the validity of these
constructs.

Although the cliches presented in this section are
fairly simple, they are still much more complex than
the engine which applies them to create designs from
specifications. In line with our two level process
model, we have attempted to make cliche application
as easy as possible, even at the cost of more effort in
cliche construction. Although our simulation system.is
minimal, it has enough power to duplicate some of the
designs produced by a human.

5. Example Design Derivation

For example, let us reconsider the "who_has"
function presented in section two. We can see that the
"simple_replace_constant” cliche is applicable to the
specification.

{Q: s.staff}

< 8 >(who_has:out set (user));

{R: who_has =
{ueusers:corec(u,b)€checks}}

{Q}

< simple_replace_constant >

{R}

The system selects the constant "users” from the post-
condition, and the relation "mkvariable" produces the
following tuple.

Cc = users

E = users-usrs

v = usrs:set (users)
Rng = usrscusers

Notice that for the present purpose there is no distinc-
tion between a non-modifiable variable and a constant.
Substituting "users-usrs” for "usrs" in the post condi-
tion and conjoining "usrscusers” we obtain the follow-
ing loop invariant.

P: usrsgusers A
who _has =
{u€users~usrs:
corec(u,b)echecks}

Instantiation of the guard yields "users-usrsusers",
which simplifies to "usrs#(}" under the assumption that
"usrs” is a subset of "users", Similarly, the bound func-
tion instantiates to "|users|-|users-usrs|", which
simplifies to "|usrs|". Therefore, application of
"simple_replace_constant” produces the partial design
shown in Figure 8.

Application of the "simple_assignment" cliche to
"S0" produces the following multiple assignment to ini-
tialize the loop.

who_has,usrs := {},users

We can see that the "decrease_then_restore"
cliche is applicable to the specification of the loop
body.

{Q: true}
var usrs : set (user) ;
< 80 >(who_has,usrs:inout set(user)) ;
{inv P:usrscusers A
who_has =
{ueusers-usrs:
corec (u,b)€ checks}}
{bnd t: |usrs]|}
do usrs#{} —
{Ql:usrscusers A
who_has =
{u€users-usrs:
corec(u,b)echecks} A
usrs#{} A |usrs|=tl} :
< 81 >(who_has:inout set (user));
{Rl:usrscusers A
who_has =
{ueusers-usrs:
corec(u,b)echecks} A
jusrs|<tl} ;
od
{R: who_has =
{u€users:corec(u,b)echecks}}

Figure 8. Instantiated Simple_Replace_Constant Cliche

{Q: P A B A T=tl}
< decrease_then _restore >
{R: P A T<tl}

The specification and cliche unify as follows.

)4 = usrsgusers A
who_has =
{ueusers-usrs:
corec (u,b)€checks}
B = usrs#{}
T = |usrs]|

And the relation "decrease_bnd" produces the follow-
ing tuple.

Jusrs|

usrs

USRS

choose (usrs,usr); usrs:=usrs-usr
usrs=USRS-usr A usr€USRS
usr:user

[T

Ol

Therefore, instantiation of the "decrease_then_restore"
cliche produces the following body for the loop.

choose (usrs,usr); usrs:=usrs-usr;
{Q1l:USRSgusers A
who_has =
{u€users~USRS:
corec(u,b)echecks} A
usrs=USRS~-usr A usre€USRS}
< § >(who_has:inout set (user));
{Rl:usrsgusers A
who_has =
{ueusers—-usrs:
corec(u,b)echecks}}

The overall structure of the design is now evident. The
loop iterates over all the users in the library. The vari-
able "usrs" holds the set of all users still to be con-
sidered, while "usr" holds the user currently being
examined.

We can see that the "conditional operation”
cliche is applicable to the remaining specification.

{Q: LSETgSet A
Var = Iop(Set-LSET,Cond) A
Lset=LSET~Lvar A LvareLSET}
< conditional operation >
{R: LsetgSet A
Var = Iop(Set-Lset,Cond)}

The specification and cliche unify as follows.

Lset = usrs

LSET = USRS

Lvar = usr

Set = users

Var = who_has

Cond = corec(u,b)echecks
Iop = "set_of all”

Therefore, instantiation of the "conditional_operation”
cliche produces the following body for the loop.

choose (usrs,usr); usrs:=usrs-usr;
{Ql:who_has=WHO HAS}
< 8 >(who_has:inout set (user));
{Rl:corec(usr,b)echecks A
who_has=WHO_HAS+usr V
corec (usr,b)gchecks A
who_has=WHO_HAS}

The loop body must still be completed before the
design is finished. We can see that the
"simple_if_then_else" cliche is applicable to the
specification.

{Q}
< simple if then_else >
{R: B1 A E1 V B2 A E2}

The specification and cliche unify as follows.

Bl = corec(usr,b)echecks
B2 = corec(usr,b)échecks
El = (who_has=WHO HAS+usr)
E2 = (who_has=WHO_ HAS)

Application of the "simple_if_then_else" generates the
following design for the loop body.

if corec(usr,b)echecks —
{Ql:who_has=WHO_HAS A
corec(usr,b)echecks}
< 81 >(who_has:inout set(user));
{R1: corec(usr,b)echecks A
who_has=WHO_HAS+usr}
I corec(usr,b)gchecks —
(Q2:who_bas=WHO_EAS A
corec(usr,b)échecks}
< 82 >(who_has:inout set (user));
{R2:corec(usr,b)échecks A
who_has=WHO_ HAS}
£i

For each user, the loop body checks if the user
has the book in question checked out. If so, then the
user is added to "who_has", if not then nothing is done.
We can complete the design of the loop body by apply-
ing the "simple_assignment" cliche twice. As a final

flourish, the "optimize" routine transforms the assign-
ment "who_has : =who_has" into "skip" producing the
following.

if corec(usr,b)echecks —
who_has:=who_has+usr ;

I corec(usr,b)échecks — skip ;

£i

Our simulation program has now automatically pro-
duced the hand derived design shown in Figure 2.

6. Summary and Conclusions

We are investigating software design processes
using a three part approach. For a design method of
interest, we first perform walkthroughs on a number of
small problems. Second, we construct a simulation
program which duplicates the designs produced by the
walkthroughs, and third, we a construct a process pro-
gram that supports human application of the method.
We feel that this approach can increase our understand-
ing of software design processes; for example, what
knowledge can be formalized and what activities can
be automated.

We have been applying our three step approach
to the formal design process developed by Dijkstra and
Gries [4,5,13]. This method takes a pre- and post-
condition specification written in first-order predicate
logic and incrementally transforms it into a verified
design written using guarded commands. We have
currently completed one iteration of our three step pro-
cedure on the Gries/Dijkstra design process [36-39],
and we have performed steps one (walkthrough) and
two (simulation) for a second time. Our experience so
far leads us to believe that the cliches underlying the
process are more important than is sometimes stated;
furthermore, we believe that they can be formalized
and automatically applied.

Our simulation of the Gries/Dijkstra method has
two levels. At the lower level, the design derivation
sub-process transforms formal specifications into
correct designs using a library of cliches. On the upper
level, a cliche derivation sub-process uses strategies
and proof rules to construct and verify cliches. The
advantage of our two level architecture is that proofs
are performed mostly at "compile” rather than "run"
time, Cliche construction and verification is quite
difficult, but is done only once for each cliche and per-
formed by a human. On the other hand, cliche applica-
tion is reasonably easy and is performed repeatedly by
the machine.

We have constructed a running system based on
our two level architecture. The program was designed
using guarded commands and its correctness rigorously
verified [37]. A prototype implementation has been
written in Prolog that generates a complete design for
several small examples including Kemmerer’s Library

10

Problem. The implementation is somewhat sketchy,
especially the logic manipulation and theorem proving
routines; however, it does demonstrate that the design
is fundamentally correct. Where a choice was neces-
sary, we have traded off logical power and generality
for simplicity and efficient execution.

In this paper, we have described our second
simulation of the Gries/Dijkstra design process. The
architecture of the current system is identical to that
used in the first simulation [37, 38]; however, the two
differ in that the second simulation uses a number of
new cliches that we feel better reflect the process
described in [13]. Specifically, an attempt was made
(with some success) to formally describe the "replace a
constant with a variable" method for constructing an
invariant from a post-condition, and the "decrease then
restore” strategy for separating concerns in the con-
struction of a loop body.

Construction of these simulations has given us
considerable insight into the Gries/Dijkstra process.
‘We have also constructed a prototype process program
that supports human application of the method [39].
Ideally, we would like it to operate in a standard
environment and interact with other tools; for example,
in the Arcadia framework [32,33]. Finally, although
the Gries/Dijkstra process is quite valuable, it is not
commonly used in industrial settings. We are pleased
with our three part approach to process understanding
and improvement. Eventually, we would like to apply
it to a more widely used technique.

7. References

1. Balzer, R.,, “A 15 Year Perspective on Automatic
Programming’’, IEEE Transactions on Software
Engineering SE-11, 11 (November 1985), 1257-1268.

2. Bjomer, D, “On The Use of Formal Methods in
Software Development”, Proceedings of the 9th
International Conference on Software Engineering,
1987, 17-29.

3. Bloomfield, R. E. and P. K. D. Froome, ‘‘The
Application of Formal Methods to the Assessment of
High Integrity Software’’, JEEE Transactions on
Software Engineering SE-12, 9 (September 1986), 988-
993.

4. Dijkstra, E. W., ““Guarded Commands, Nondeterminacy
and Formal Derivation of Programs’’, Communications
of the ACM 18, 8 (August 1975), 453-457.

5. Dijkstra, E. 'W., A Discipline of Programming, Prentice
Hall, Englewood Cliffs, New Jersey, 1976.

6. Fagan, M. E,, ‘“‘Advances in Software Inspections’,
IEEE Transactions on Software Engineering SE-12, 7
(July 1986), 744-751.

7. Fairley, R., Software Engineering Concepts, McGraw-
Hill, New York, 1985.

8. Feather, M. S, ‘“‘Constructing Specifications by
Combining Parallel Elaborations’’, IEEE Transactions
on Software Engineering 15, 2 (February 1989), 198-
208.

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Fickas, S. F., ‘‘Automating the Transformational
Development of Software’’, IEEE Transactions on
Software Engineering SE-11, 11 (November 1985),
1268-1277.

Freedman, D. P. and G. M. Weinberg, Handbook of
Walkthroughs, Inspections and Technical Reviews,
Little, Brown and Company, Boston, 1982.

Freeman, P. and A. L Wasserman, eds., Tutorial on
Software Design Techniques (fourth edition), IEEE
Computer Society, Silver Spring, MD, 1983.

Goldberg, A. T., ‘‘Knowledge-Based Programming: A
Survey of Program Design and Construction
Techniques™, IEEE Transactions on Software
Engineering SE-12, 7 (July 1986), 752-768.

Gries, D., The Science of Programming, Springer-
Verlag, New York, 1981.

Proceedings of the First International Conference on the
Software Process, IEEE Computer Science Press, Los
Alamitos, CA, October 1991,

Proceedings of the 6th International Software Process
Workshop, IEEE Computer Society Press, Los Alamitos,
CA, October 1990.

Proceedings of the 7th International Software Process

Workshop, IEEE Computer Society Press, Los Alamitos,

- CA, 1991.
17.

Johnson, W. L., ‘‘Deriving Specifications from
Requirements’’, Proceedings of the 10th International
Conference on Software Engineering, April 1988, 428-
438.

Jones, C. B., Systematic Software Development Using
VDM, Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

Kaiser, G. E., P. H. Feiler and S. S. Popovich,
““Intelligent Assistance for Software Development and
Maintenance’’, IEEE Software 5, 3 (May 1988), 40-49.
Kant, E., “Understanding and Auntomating Algorithm
Design”’, IEEE Transactions on Software Engineering
SE-11,11 (November 1985), 1361-1374.

Kemmerer, R. A., ““Testing Formal Specifications to
Detect Design Errors’’, IEEE Transactions on Software
Engineering SE-11, 1 (January 1985), 32-43,

Lewis, C., P. Polson, J. Rieman and C. Wharton,
*“Testing a Walkthrough Methodology for Theory-Based
Design of Walk-Up-And-Use Interfaces”, Proceedings
of the ACM Conference on Computer-Human
Interaction, 1990, 235-242.

Linger, R. C., H. D. Mills and B. L Witt, Structured
Programming: Theory and Practice, Addison-Wesley,
Reading, MA, 1979.

Loeckx, J. and K. Sieber, The Foundations of Program
Verification, John Wiley & Sons, New York, 1984,
Mills, H. D., M. Dyer and R. Linger, ‘‘Cleanroom
Software Engineering”’, IEEE Software 4, 5 (September
1987), 19-25.

Osterweil, L. J., “‘Software Processes Are Software
Too™’, Proceedings of the 9th International Conference
on Software Engineering, 1987, 2-13.

Polson, P., C. Lewis, J. Rieman and C. Wharton,
*‘Cognitive Walkthroughs: A Method for Theory-Based
Evaluation of User Interfaces’’, International Journal of
Man-Machine Studies, in press.

Rich, C. and R. C. Waters, eds., Readings in Artificial
Intelligence and Software Engineering, Morgan

11

29.

31.

32.

33,

35.

36.

37.

38.

39.

41.

42.

43,

Kaufman Publishers, Los Altos, CA, 1986.

Ruebenstein, H. B. and R. C. Waters, ‘“The
Requirements Apprentice: Automated Assistance for
Requirements Acquisition’’, IEEE Transactions on
Software Engineering 17, 3 (March 1991), 226-240.
Smith, D. R., G. B. Kotik and S. J. Westfold, ‘‘Research
on Knowledge-Based Software Environments at Kestrel
Institute”, IEEE Transactions on Software Engineering
SE-11, 11 (November 1985), 1278-1295.

Smith, D. R, “KIDS: a Semiautomatic Program
Development System’’, IEEE Transactions on Software
Engineering 16, 9 (September 1990), 1024-1043,
Sutton, S. M., D. Heimbigner and L. J. Osterweil,
“Language Constructs for Managing Change in
Process-Centered Environments’’, Proceedings of the
4th ACM SIGSOFT Symposium on Software
Development Environments, December 1990, 206-217.
Taylor, R. N., F. C. Belz, L. A. Clarke, L. J. Osterweil,
R. W. Selby, J. C. Wileden, A. Wolf and M. Young,
“Poundations for the Arcadia Environment
Architecture’’, Proceedings of the ACM
SIGSOFTISIGPLAN Software Engineering Symposium
on Practical Software Development Environments, 1988,
1-13.

Terwilliger, R. B. and R. H. Campbell, ‘‘An Early
Report on ENCOMPASS’’, Proceedings of the 10th
International Conference on Software Engineering,
April 1988, 344-354.

Terwilliger, R. B. and R. H. Campbell, ‘‘PLEASE:
Executable Specifications for Incremental Software
Development’’, Journal of Systems and Software 10, 2
(September 1989), 97-112.

Terwilliger, R. B., **A Formal Specification and Verified
Design for Kemmerer's Library Problem”’, Report No.
CU-CS-562-91, Dept. of Computer Science, U. of
Colorado at Boulder, December 1991.

Terwilliger, R. B., ‘‘A Process Program for
Gres/Dijkstra Design’’, Report No. CU-CS-566-91,
Dept. of Computer Science, U. of Colorado at Boulder,
December 1991.

Terwilliger, R. B., ‘‘Simulating the Gries/Dijkstra
Design Process’’, Proceedings of the 7th Knowledge-
Based Software Engineering Conference, September
1992, 144-153.

Terwilliger, R. B., ““Towards Tools to Support the
Gres/Dijkstra Design Process’”, Report No. CU-CS-
594-92, Dept. of Computer Science, U. of Colorado at
Boulder, May 1992.

Weinberg, G. M. and D. P. Freedman, ‘‘Reviews,
Walkthroughs, and Inspections’’, IEEE Transactions on
Software Engineering SE-10, I (January 1984), 68-72.
Wing, J. M., ““A Study of 12 Specifications of the
Library Problem’’, IEEE Software 5, 4 (July 1988), 66-
76.

Yourdon, E. N., Structured Walkthroughs, Yourdon
Press, New York, 1989.

Proceedings of the 4th International Workshop on
Software Specification and Design, April 1987.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

