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Abstract

This document is intended to introduce students to the Connection Machine
(CM-2). Basic concepts of the architecture and of programming in CM Fortran
are described. In addition, the particular characteristics of the machine located
at the National Center for Atmospheric Research (NCAR) in Boulder, CO are
given and are used in some examples.
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1 Overview

The CM-2' Connection Machine? is an SIMD (Single-Instruction, Multiple-Data)
supercomputer that is manufactured by Thinking Machines Corporation (TMC).
Data parallel programming is the natural paradigm for this machine, allowing each
processor to handle one data element or set of data elements.

The initial concept of the machine was explained in a Ph.D. dissertation by
W. Daniel Hillis [Hillis 85]. The first such commercial computer, called the CM-
1*, was manufactured in 1986. It contained up to 65,536 or 64K processors which
could execute the same instruction concurrently. As shown in Fig. 1, sixteen one-bit
processors, each allocated 4K bits of memory, were on one chip of the machine. These
chips were arranged in a hypercube pattern. Thus, the machine was available in units
of 2¢ processors, where d = 12 through 16.

One of the original purposes of the computer was artificial intelligence; the even-
tual goal was a "thinking machine.” Each processor was only a one-bit processor. The

*This work has been supported by the National Science Foundation under an Educational
Infrastructure grant, CDA-9017953. It has been done by the HPSC Group, Department of Computer
Science, University of Colorado, Boulder, CO 80309. Please direct comments or queries to Lloyd
Fosdick at this address or e-mail 11loyd@cs.colorado.edu.

1CM-2 is a trademark of Thinking Machines Corporation.

2The Connection Machine is a registered trademark of Thinking Machines Corporation.

8CM-1 is a trademark of Thinking Machines Corporation.



CEnOOBOOBOOCODOOONOOOOONGOORODCC0DNOOO00DENNNDCONOON00DO0000RADARGD

N0 O0O0CGO0CDNOOOO0NOOOOOOOCOGOOONODOOONOOONONCONODRNOO0N0OAOAONQAGODRBRA

0NooO0O0O00000000000O0GO0OCON0O0000000G0C6OO0N0O0000G000000GT

SofHork

Memory

B B BB

ol

B B B G

B B B E

Router

Memory

NOeOECUNBENNOODOOODODODONNOROONGOGCDBOOAOOGODAOBOEEBGNO0O0OGAAORO00CR0AAAA

900U DHNODBONAEDAORNONONNOODOOOODOODNODOSOODDONDENOODOOODDDDODOO0NDDORD

0B 0EEONOBODONAODDOODDOUNDODNDEODNODGODBNUNONNNODNOGURIROBO000QO0DGODD

OO EODNBOOCOCONOGCOONOCNNOOODCE0ODOOONOO0C0RDRNERENOGOQ0080ANERCRARRG0DS

0O00OoODDpNDGoOO0O0NDDOBONDODODDODODDNNONDN0OODNNNENODNONNONODNOONGD0O0G0DTD

1ps are

t processors. Memory ch

i

16 one-b

ains

t

.

ip con

Each CM-1/CM-2 ch
associated with each CM-1/CM-2 chip.

Figure 1



idea was to provide one processor per pixel for image processing, one processor per
transistor for VLSI simulation, or one processor per concept for semantic networks.

The first high-level language implemented for the machine was *Lisp*, a parallel
extension of Lisp. In fact, the design of portions of the *Lisp language are discussed
in the Hillis dissertation.

However, as the first version of this supercomputer came onto the market, TMC
discovered that there was also significant interest (and money) for supercomputers
that could be used for numerical and scientific computing. Hence, a faster version
of the machine came out in 1987, called the CM-2; this was the first of the CM-200
series of computers. It included floating-point hardware, a faster clock, and increased
the memory to 64K bits per processor. These models emphasised the use of data
parallel programming. Both C* and CM Fortran® were available on this machine, in
addition to *Lisp.

A more recent machine, announced in November 1991, is the CM-5. This is an
MIMD machine which embodies many of the earlier Connection Machine concepts
with more powerful processors, routing techniques, and 1/0.

The following sections will refer to the CM-2. For further information, see the
Connection Machine CM-200 Series Technical Summary [TMC 91d], Parallel Super-
computing in SIMD Architectures [Hord 90], Chapter 7, or Computer Architecture:
Case Studies [Baron & Higbie 92|, Chapter 18.

1.1 Characteristics

A Connection Machine (CM") may be considered as being in two main parts; these
are depicted in Fig. 2. The parallel processing unit (PPU) is the SIMD portion of the
machine and contains up to 64K single-bit processors; this part is the CM itself. The
front end (FE) of the machine acts as a controller or host for the PPU and provides
access to the rest of the world.

The FE is usually a small computer; this may be a UNIX® or a Symbolics® Lisp
workstation or a VAX!®, A CM may have up to four FE’s; these do not need to all be
the same type of machine. Programs are compiled, stored, and executed serially on
the FE; any parallel operations in the program are recognized and pipelined to the

**Lisp is a trademark of Thinking Machines Corporation.

5C*is a registered trademark of Thinking Machines Corporation.
8CM Fortran is a trademark of Thinking Machines Corporation.
"CM is a trademark of Thinking Machines Corporation.

8UNIX is a trademark of AT&T Bell Laboratories.

9Symbolics is trademark of Symbolics, Inc.

10VAX is a trademark of Digital Equipment Corporation.
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Figure 2: The two main parts of a Connection Machine System.

PPU for execution there, with the serial execution filling the pipeline and continuing
until a response is needed back from the PPU. Thus, CM programs have the familiar
sequential control flow and do not require additional synchronization primitives, as
do other multiprocessors.

Depending on the configuration of the machine, each one-bit, PPU processor has
64K, 256K, or 1024K bits of memory, an arithmetic-logic unit (ALU), four one-bit
registers, and interfaces for two forms of communication and [/O. These processors
all work in parallel on simple instructions. In fact, the PPU can be thought of
as a large, synchronized drill team while the FE is the sargent who yells out the
commands. For instance, all the PPU processors fetch something from their individual
memories to their ALU’s at one command; they all add something to that at the next
command; and they all store their individual results into their own memories at the
next command.

The language, Paris'* (PARallel Instruction Set), is used to express the parallel
operations that are to be run on the PPU. All *Lisp, CM Fortran, or C* parallel
commands are compiled into Paris instructions. Such operations include parallel

11 Paris is a trademark of Thinking Machines Corporation.
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arithmetic operations (both floating-point and fixed), vector summation (and other
reduction operations), sorting, and matrix multiplication.

An alternate run-time system exists for machines with 64-bit FPA’s. This is called
the Slicewise model and provides a different viewpoint of the CM than the Paris
model. This can be used only for CM Fortran programs to obtain higher efficiency.

The PPU may be broken up into two or four sections as shown in Fig. 3. Each
section has its own sequencer and can be used as a sub-PPU by itself or be grouped
with other sections. The Nexus switch provides the pathway between a given FE and
its current section(s) of the PPU.

A sequencer receives Paris instructions from the FE and breaks them down into
a sequence of low-level instructions which can be handled by the one-bit processors.
When that is done, the sequencer broadcasts these instructions to all the processors
in its section. Each processor then executes the instructions in parallel with the other
processors. When the execution of low-level instructions is completed, control is
returned to the FE. Used independently, each section sets up its own grid layout
for computation and communication for each array; if the sections are grouped
together, one grid per array is laid over all the processors. These grids may be
altered dynamically during the execution of the program.

Flt-Pt and Flt-Pt
Memory Memory Execution
Interface Unit
FP
ECC ECC
P B BH [F] PH PR B [F
PH PH BH @] PH PH PH [P
PH PH PH [P] PH PH B
PH BH PH Pl PH FPH EBH B
Router Router

Figure 4: A pair of CM chips communicate with a single FPA.



Virtual processors are another feature of the CM. If the number of elements for
the data of a given program is larger than the number of processors, the machine will
act as if there were enough processors, providing virtual processors by assigning the
data elements across the PPU in as efficient a manner as possible. In other words,
each physical processor may act as one or more virtual processors.

Floating-point accelerators are optional and come in two types: 32-bit or 64-bit.
A 32-bit FPA interprets the bits from two chips of sixteen one-bit processors as a
single floating-point number, allowing single-precision arithmetic computations. A
64-bit FPA also works with the contents of the processors contained on two chips,
and provides double-precision arithmetic. For this reason, the processor chips are
grouped in pairs, with a floating-point and memory interface attached to each pair,
as shown in Fig. 4; it is common to think of each pair of chips as being equivalent
to a floating-point processor. The FPA’s speed up the processing of floating-point
computations on the CM by more than a factor of twenty.

The Paris model of computation assigns full 32-bit or 64-bit words to the memory
of each processor. These are passed to the FPA bit by bit, when needed. The
Slicewise model spreads a 32-bit or 64-bit word over all the 32 processors on the
two chips connected to a single FPA. When the FPA needs one of these words, each
processor can send its portion concurrently with the other processors. Hence, the
amount of time spent passing data to and from the FPA is much smaller for the
Slicewise model.

Data may be read and written serially through the FE to the PPU, but this is far
from efficient. An optional input/output system allows peak rates up to 320 Mbytes
per second for transfers of data between the PPU processors and the I/O system
buffers in parallel. One solution for speeding up peripherals is to attach multiple
devices (i.e., disks) to the CM I/O system in parallel. Each device is connected to a
separate CMIO bus and may transfer data in parallel with the other devices. Thus,
every 64 bits of data (the bandwidth of the bus) is transferred to a different device;
this is called file or disk striping. Alternatively, these 1/O buffers may attach to
DataVaults'? which contain 5 to 60 Gbytes of data per vault. A maximum of eight
data vaults can be on a given system, each transferring data at a peak rate of 40
Mbytes per second or an average rate of 20 Mbytes per second.

Another peripheral available through the I/O system is a graphical display for
output generated by the PPU; this uses the CM framebuffer which can handle up to
one Gbyte per second of data. This high-resolution graphical display is a 19” color
monitor. The framebuffer for the display attaches directly to the CM backplane, as
if it were an I/O controller, and holds actual raster image data. Alternatively, the

2DataVault is a trademark of Thinking Machines Corporation.



Figure 5: Part of a hypercube network.

image can be displayed on a chosen X-window'®. The size of the window determines
the number of pixels; each PPU processor generates data for one pixel. Either 8-bit
. mode or 24-bit mode can be used.

In addition to the serial communication available between the FE and the PPU,
the PPU processors may communicate with each other in different ways. The general
form of communication is via the router which is present on each chip of sixteen
processors. This allows each processor to communicate with any other processor on
the PPU and is based on a hypercube network, as shown in Fig. 5. The router also
contains the logic to handle virtual processors.

However at times, the data needs to be considered as elements on a mesh or grid
spread across the PPU; this second and faster method of communication is called
NEWS (North-East- West-South) and allows each processor to communicate easily
with its nearest neighbors on that mesh. However, it is limited to nearest neighbor
communications and cannot be used for broadcasting information to all the processors.
An example of a two-dimensional NEWS grid is shown in Fig. 6. While the CM-1
only allowed a fixed, two-dimensional grid, the CM-2 permits NEWS grids with up to
31 dimensions. Each chip on the PPU has an interface to the NEWS grid; processors
that have data elements which will be used by or provided by their neighbors store
pointers to those neighbors. When two or more sections of the PPU are being used
independently, each section may have its own NEWS grid setup. When the sections

13X-Window System is a trademark of M.I.T.
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Figure 6: A two-dimensional NEWS grid.
are all ganged together; there is a single NEWS grid across the sections for each array
or parallel structure.

Communication of processors on the same chip is called local or on-chip com-

munication. Clearly, this is faster than the two methods of off-chip communication
discussed above.

1.2 Performance

A full CM-2 with 64K processors and double-precision FPA’s can perform arithmetic
operations at the following speeds, under the Paris model of execution!*:

Operation Single-Precision
(Paris Model) MFlops
Fl. Pt. Addition 4,000
F1. Pt. Multiplication 4,000
Fl. Pt. Division 1,500
Dot Product 10,000
4K x4K Matrix Mult 3,500

The speed of memory reads and writes between each processor and its memory is
greater than or equal to 5 Mbits/second. Each processor has 64K to 1024K bits or
8K to 128K bytes of memory and a full machine has 64K processors providing a total
memory of 512 Mbytes to 8 Gbytes. Hence, given the minimum memory access speed

4These figures were taken from the Connection Machine Model CM-2 Technical Summary
[TMC 88], pp. 59-60.



of a single processor above, the CM-2 can perform memory read/writes at about 300
Gbytes/second.

Other performance tests were done at the University of Colorado using the CM-2
at the National Center for Atmospheric Research (NCAR). This machine is just one-
eighth the size of a full CM-2 (having merely 8192 processors) and only contains single-
precision FPA’s; it also uses the Paris model of execution. Standard CM Fortran
routines were used exclusively for these tests. The results are summarized in the
following table:

Operation Single-Precision
(Paris Model) MFlops

F1. Pt. Addition 180

F1. Pt. Multiplication 200

Fl. Pt. Division 70

Dot Product 56
Cosine 65
Exponential 60
Square Root 83

10



2 Programming for the CM-2

2.1 Organization of the CM-2

When programming for the CM, it is best to think of the machine in two parts, as
shown in Fig. 2:

1. the front end which handles all the scalar operations, and

2. the mesh of 2¢ (12 < d < 16) processors which executes all parallel operations.

For usual scientific computing applications, the front end (FE) is simply a sequen-
tial UNIX computer or workstation'®. This is the machine to which the user logs in,
the machine which compiles programs for the CM, and the machine which controls
the execution of programs on the CM. All program variables which are used only in
a sequential or scalar fashion are stored on the front end. The parallel processing
unit (PPU), with its SIMD architecture, handles all parallel or array operations, each
processor taking care of one piece in unison with the other processors.

Since the editing and compiling of programs are done on the FE, programming on
the CM is much like programming on any UNIX machine. In fact, if a program does
not use the CM parallel constructs, it will execute entirely on the FE, completely
ignoring the PPU.

2.2 Compiling and Executing Programs on the CM-2

In addition to the usual UNIX commands, there are a few special commands relating
to the operation of the PPU of the CM. An explanation of a few of these follow:

e cmf - this command produces compiled, executable code for both C and Fortran
programs on the CM. The options for this command are much the same as
for the UNIX £77 command; for instance, -0 is used for optimization and -o
pname places the executable code in the file pname instead of a.out. There are
additional flags as well; for example, -1ist will produce a program listing in
the file named pname.lis.

Normal C program files have the file extension, .c, and Fortran, .f. To use the
CM programming language extensions, C and Fortran program files should end
with .peac and .fcm, respectively. The cmf compiler is able to recognize the
programming language to be compiled from the file extension.

15Some installations use Symbolics Lisp machines as the FE to the CM.
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% cmusers

CM Seqs Size Front end I/F User Idle Command
CAPP-CM —_—— = capitol 0 (nobody)
CAPP-CM —-— - lizard 0 (nobody)

cm2 with 64K memory, 32-bit floating point
framebuffer on sequencer 0 (seq 0 is free)

CMIOC on sequencer 0 (seq 0 is free)

2 free seqs on CAPP-CM -- 0 1 -- totalling 8K procs

No processes waiting for an interface or sequencer(s)
% cmfinger

CM Seqs Size Front end I/F User Idle Command
CAPP-CM 0-1 8K capitol 0 jadoe Oh OOm '"starlisp"
CAPP-CM —-—= == lizard 0 {nobody)

cm2 with 64K memory, 32-bit floating point
framebuffer on sequencer 0

CMIOC on sequencer 0O

no free sequencers on CAPP-CM

No processes waiting for an interface or sequencer(s)
% cmfinger lizard

CM Seqs Size Front end I/F User Idle Command
CAPP-CM 0-1 8K capitol 0 jadoe Oh OOm "starlisp"
CAPP-CM —_—— lizard 0 (nobody)

cm2 with 64K memory, 32-bit floating point
framebuffer on sequencer 0

CMIOC on sequencer 0O

no free sequencers on CAPP-CM

lo processes waiting for an interface or sequencer(s)
% cmfinger CAPP-CM

CM Seqs Size Front end I/F User Idle Command
CAPP-CM 0-1 8K capitol 0 jadoe Oh 00m "starlisp"
CAPP-CM ——— —— lizard 0 (nobody)

cm2 with 64K memory, 32-bit floating point
framebuffer on sequencer 0

CMIOC on sequencer 0

no free sequencers on CAPP-CHM

1 process waiting:
schauble [14471] waiting since 1:18:42 PM; wants i/f 0 ucc(s) 0 or 1.
hoool

Figure 7: Sample responses for CM commands cmusers and cmfinger.

12




The target language of the cmf compiler is the assembly language of the FE
extended by Paris or Slicewise commands. All serial or scalar operations will
be compiled to run on the FE, while all parallel or array operations'® will be
translated into Paris commands to run on the PPU. All scalar or serial data will
be stored on the FE and all parallel data (for instance, arrays) will be placed
on the PPU.

e cmattach - this command connects your executable file to the PPU of the CM,
allocates which CM processors are to be used, then executes the program and,
finally, releases the processors. It can be thought of as being equivalent to the
sequence of three Intel iPSC'7/2 commands: getcube, execute a program, and
relcube.

There are a few options on this command. Some common ones are shown in
the following statement:

cmattach -w -p 8k pname > pname.out

In this example, pname is the name of the executable file and pname.out is the
output file. The -w flag tells the CM to wait until the needed processors are
available; otherwise, if the CM PPU was already occupied, the command would
not be executed. The -p 8k portion of the command tells the CM how many
processors are desired; this could also have been expressed as -p 8192.

When used without an executable file name,

cmattach

this command starts a subshell with all the resources of the PPU attached. The
user can then work interactively.

e cmusers — this command provides a list of the users currently using the CM,
as shown in Fig. 7. Not only are the names of the users given, but also other
information about the machine itself, such as, the size, the type of FPU on the
machine (if any), the memory per PPU processor, the number of sequencers
(including the number of available sequencers), the number and id of processes

waiting for the PPU (if any), and the names of the FE’s and the PPU.

o cmfinger — this command is also shown in Fig. 7 and returns the same infor-
mation as the command, cmusers. However, the information can be restricted
to a particular machine name by using that name as the optional argument to
the command.

16Section 2.3 will discuss parallel CM Fortran operations on the CM-2 in more detail.
17iPSC is a registered trademark of Intel Corporation.
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For more information on these and other commands, consult the man pages on the

FE.

2.3 CM Fortran

The version of Fortran used on the CM is called CM Fortran. It is based on Fortran-
77 and extended by parallel constructs, most of which are contained in a subset of
Fortran-90. The control flow of a CM Fortran program is handled by the FE, as are
all Fortran-77 statements. All Fortran-90 statements are executed on the PPU.

The following subsections will introduce a few elements of CM Fortran to get you
started. For further reference, see the CM manuals: [TMC 91a], [TMC 91b], and
[TMC 91c].

2.3.1 Arrays

CM Fortran arrays may be considered as data-parallel objects. In fact, the only CM
Fortran variables which may be stored on the PPU are those arrays which are used
in parallel operations; all scalars and all arrays not involved with parallel operations

are stored on the FE of the CM.

The properties of an array are rank'® and shape. The rank of an array is the
number of its dimensions; e.g., the array declared as S(5,10) has rank 2. The shape
of an array is its dimensions; so the shape of S(5,10) is 5 x 10. Two arrays with
the same shape are said to be conformable. Most parallel operations require that the
arrays involved be conformable.

Once an array has been declared, the use of the name of the array by itself (not
subscripted) denotes the entire array, with all its elements. Such usage implies a
parallel operation is to be applied to the array. For instance, the statement

S =0.0

will set all the elements of S to zero in parallel on the PPU.

Subsections of an array can be specified by triples. The general form of a triple is
firstvalue : lastvalue : increment'®

For example, if S is declared as above, then S(1:5:2,1:10) refers to the odd rows of
S. The triple, 1:5:2, specifies that rows 1, 1 + 2 = 3, and 3 + 2 = 5 are to be used;

18In this context, rank has a different meaning than its customary mathematical definition.
19This differs from the triple form used by Matlab: firstvalue : increment : lastvalue.
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the triple, 1:10, has an implied increment of 1 and so specifies all ten columns. This
second triple, 1:10, could have been replaced by a single colon, as in S(1:5:2,:), to
imply that all the columns be used for the chosen rows.

As in Fortran-77, CM Fortran arrays may be declared by DIMENSION, COMMON, or
type statements. They may also be declared using array attribute statements. For
example, assuming the array S is a real array, it could have been defined by the
following array attribute statement:

REAL, ARRAY(5,10) :: S, T

This simply says that both S and T are real arrays with 5 rows and 10 columns. Notice
the comma after the type indicator, REAL; this is how the array attribute statement
is recognized by the compiler. The double colon, ::, is also a requirement; it must
be placed between the array definition and the array names. You should recall that
blank spaces in Fortran are traditionally ignored; hence, any number of spaces can
be added to this statement (even between the colons) or deleted from the statement
and it will still compile correctly.

Array constructors can be used to initialize the elements of an array in parallel.
For instance, if Z has been declared by the statement

REAL, ARRAY(N) :: Z
then the statement
Z = REAL(C [1:N] )

will assign 1.0 to Z(1), 2.0 to ’Z(2), and REAL(N) to Z(N). Array constructors can
also be included in array attribute statements, by adding a DATA parameter to the
statement; thus, the following has the effect of defining and initializing Z at once:

REAL, ARRAY(N), DATA :: Z = [1:N]

This is an eflicient way of assigning initial values to an array, as it is effectively done
at load time. A limitation on the array comnstructor is that is can only be used for
one-dimensional arrays.

2.3.2 Homes

All program variables in CM Fortran programs are assigned a home. This is simply
where the variable is stored. Since scalar variables can only be on the FE, that is

15



ARRAYS

Offset Size Type Block/Class Home Name
0 2048 REAL4 local CM A
2048 2048 REAL4 local CM B
4096 2048 REAL4 local CM C

Figure 8: ARRAYS Section of a CM Fortran Listing.

their home. However, arrays may be stored on the FE or on the PPU, depending on
whether or not they are used in parallel operations. If they are used in both serial
and parallel operations, they will be stored on the PPU and copied to and from the
FE for the serial operations. The exception to the rules above is for arrays of type
CHARACTER; these are always stored on the FE.

To see where homes have been assigned for your variables, check the last part of
your program listing. The two sections, VARIABLES and ARRAYS, provide the name,
type, and size of the scalar variables and the arrays used in your program. The ARRAYS
section also lists the Home for each array. Under this heading, the term CM refers to
the PPU and FE to the FE. It is wise to double check this part of the program listing
to make sure the arrays have been assigned as expected. A portion of a sample listing
showing the ARRAYS section is given in Fig. 8.

Homes for variables in every program unit are assigned individually. That is, the
array Z in SUBROUTINE MYSUB may not be assigned the same home as Z in FUNCTION
MYFTN. Each program module is treated as a unit.

Homes of actual and dummy arguments must match. If you pass an array to a
function or argument, the dummy array argument must have the same home as the
incoming array parameter. Otherwise, unpredictable results are possible. There are
a number of ways to force arrays to be assigned homes on the PPU:

o Declare the array in COMMON, as all COMMON arrays are placed on the PPU;

e Put parallel operations in every program module for the appropriate arrays
(even if they do nothing useful);

o Use the LAYOUT compiler directive:
CMF$ LAYOUT Z(:NEWS).

With :NEWS as an argument, Z MUST be in the PPU. (Other possible arguments
are :SERIAL and :SEND. More on the LAYOUT compiler directive will be found
in Section 2.4.1.)

16



Figure 9: Subsection of array M(12,12).

2.3.3 More Fortran-90 Extensions

Most of the parallel array facilities of Fortran-90 are part of CM Fortran. This includes
the treatment of arrays. As mentioned in Section 2.3.1, the ability to work with all
the elements of an array or subsections of an array in parallel is provided; however,

all of the arrays involved in this type of parallel expression must be parallel arrays
with homes on the PPU.

Array Sections: Using the name of an array implies using the entire array in parallel.
For instance, the statement

Y = Zx%2

will cause Y(1) to be set to the value of Z(1)**2, Y(2) to Z(2)**2, etc. This also
works for assignment statements; the statement

Y=-1.0

means that all the elements of Y will be set to —1.0.

Subsections of arrays can be used in assignment statements as well. In the
following statement

¥Y(1:10) = Z(11:20)

17



the first ten elements of Y are set to the second ten elements of Z. Such statements
execute in parallel.

An example of a subsection of a two-dimensional array is shown in Fig. 9. Here
the array, M has been declared as

REAL M(12,12)
and the 3 X 6 subsection is defined by
M(4:6,5:10)

Alternate DO Loops: Additional control constructs exist in CM Fortran; these are
similar to those in Fortran-90. The first of these are alternate forms of DO loops, as
demonstrated below:

N = 4096

DOWHILE (N .GT. 0)
Z(1:W) = ...
N =N/2

ENDDO

KK = 1

DO (N) TIMES
KK = KK * K

ENDDO

The first of these loops assigns values to the first N elements of the array Z, for N
equal to decreasing powers of two. The second loop terminates when KK is equal to
KY, where N is a non-negative integer. This form of the DO loop is useful when the loop
index is not needed within the body of the loop. Note that the DO WHILE construct is
a legal Fortran-90 construct; the second form of the DO loop, DO (N) TIMES, is not.

WHERE Statements: The WHERE statements provide a means for working with a
subset of a full array, still as a parallel operation:

WHERE (Z .GT. 0.0) Y = SQRT(Z)

Here, all processors actually compute Y = SQRT(Z). However, only those processors
with a value for Z greater than zero will store the result. Notice that the intrinsic
function, SQRT, is used on the entire array. If we wished to set the other (negative
and zero) elements to zero at the same time, this operation could be programmed as
in the following statements:

18



WHERE (Z .GT. 0.0)
Y = SQRT(Z)
ELSEWHERE
Y = 0.0
ENDWHERE

In this set of statements, the elements of Y are set to zero when the corresponding
element of Z is not greater than zero. Note that this construct acts in two steps.
First, all the processors compute Y = SQRT(Z), but only the values for elements of Y
corresponding to non-zero elements of Z are stored. Then, all the processors compute
Y = 0, but only the values corresponding to zero elements of Z are stored. In other
words, the construct appears similar to the IF..THEN. .ELSE. .ENDIF statement, but
behaves a little differently.

FORALL Statements: First, please note that the FORALL construct is not a part
of Fortran-90; but such statements are very convenient for the CM-2.

The FORALL statements, as in
FORALL (I=1:N) Y(I) = I

can only contain one assignment. This statement is equivalent to the following DO
loop:

p0I=1,N
Y(I) = I
ENDDO

Notice that there is a colon between the start and stop values of the FORALL index;
this is in a triple format much like the subscripts discussed earlier. An increment may
be used as well, after another colon, as the third element of the triple.

The FORALL statements may execute on either the FE or the PPU, depending
on the home of the involved arrays and the nature of the operations. An expression
which contains arrays on both units, some of which are on the FE and some of which
are on the PPU, will be executed on the FE. A FORALL statement with dependencies
that cannot be resolved will also execute on the FE, instead of the PPU.

More than one index can be used within the FORALL statement; for instance,
consider the following:

FORALL (I=1:N, J=1:N) S(1,J) =1
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which sets all the elements of the Ith row of S to I.

Often individual elements of an array need to be initialized to specific values. If
the home of the array is on the PPU, it is best to try to use a FORALL statement for
this purpose. For instance, the statement

S(6,1) = s(6,2) + S(6,3)

will be executed on the FE, since it is essentially a scalar operation. However, if we
rewrite this statement as a FORALL statement,

FORALL (I=6:6, J=1:1) S(I1,J) = S(I,J+1) + S(I,J+2)

it will be executed on the PPU. In effect, the sum of S(I,J+1) and S(I,J+2), for
each I, and J will be computed by all the elements in the array, but only the processor
containing the element in the first column of the sixth row of S will store this value
into its array element.

2.3.4 CM Built-In Functions

The CM Fortran intrinsic functions are, for the most part, the same as the intrinsic
functions described for Fortran-90. Some of these are described below.

To aid in the explanation of some of the CM built-in functions, assume the
following arrays have the values given below:

Es
Il

o

S N

2 45
S

c:[l 2 3 -4 5 —6]

Intrinsic Functions: The usual Fortran intrinsic functions are available in CM
Fortran. Moreover, most of them can be used in a parallel fashion. For instance, if A
has been declared as above, then

MOD(4,5)
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will return a matrix of the same type and shape as A, containing the values of the
elements of A mod(5):

MOD(4,5) =

[ B
o N

Similarly, the SQRT function can handle a whole array at once.

1.000 1.414
SQRT(A) = | 1.732 2.000
2.236  2.449

Masks: Masks are logical arrays created by performing a relational operation on all
the elements of a given array. Both the mask and the original array have the same
shape. Consider the following examples.

T T
AGTO={T T
T T
F F T
B.EQ.5 = [ FFT }

C.LT.O::[F T F T F T]

Special Functions: In addition to the normal Fortran intrinsic functions, CM
Fortran provides several special functions to aid in the parallel operation of the
machine.

For use in examples of the functions described below, assume the following: ARRAY
is the name of any array of type real, integer, or logical; DIM is an integer denoting
which particular dimension of the array (if any) the function is to be applied to; MASK
is a logical array with the same shape as ARRAY telling which particular elements the
function is to use; V, V1 and V2 are singly-dimensioned arrays or vectors; M1 and
M2 are two-dimensional arrays or matrices; and SHIFT is an integer or integer array
describing the shift to be made. For some of the following functions, DIM and MASK
may be used as keyword parameters.

Reduction Operations: The following functions perform commonly used reduction
operations:
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e SUM (ARRAY [, DIM] [, MASK]): This function computes the sum of all the

elements of ARRAY, according to the values of DIM and MASK. (Note: in the last
example, MASK is used as a keyword parameter, since the second parameter,
DIM, is missing.)

SUM(A) =21

SUM(B, 1) =[5, 12, 10]
SUM(B, 2) =[ 11, 16]
SUM(C, MASK=C.GT.0) =29

PRODUCT (ARRAY [, DIM] [, MASK]): This function computes the product of
all the elements of ARRAY, according to the values of DIM and MASK. (Note: in the
last example, MASK is used as a keyword parameter, since the second parameter,
DIM, is missing.)

PRODUCT (A) = 720
PRODUCT(B, 1) =6, 32, 25
PRODUCT(B, 2) = [ 40, 120]

PRODUCT(C, MASK=C.GT.0) =15

DOTPRODUCT (Vi, V2): This function computes the dot product of the two
vectors or one-dimensional arrays, V1 and V2.

DOTPRODUCT(A(1,:),B(:,2)) =20
DOTPRODUCT(A(:,1),B(2,:)) 52
DOTPRODUCT(C,C) =91

I

MAXVAL (ARRAY [, DIM] [, MASK]): This function finds the maximum value
of all the elements of ARRAY, according to the values of DIM and MASK.

MAXVAL(A) =6
MAXVAL(B(:,1)) =3
MAXVAL(C) =5

MAXVAL(C,1,C.LT.0) = -2

MINVAL (ARRAY [, DIM] [, MASK]): This function finds the minimum value
of all the elements of ARRAY, according to the values of DIM and MASK.

MINVAL(A) =1
MINVAL(B(:,1)) =2
MINVAL(C) = -6

MINVAL(C,1,C.GT.0) =1
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e MAXLOC (ARRAY [, MASK]): This function returns an integer value or integer

array which represents subscripts of the maximum values of all the elements of
ARRAY, according to the values of MASK. If more than one such location exists,
which subscript is returned is non-deterministic.

MAXLOC(A) = [3 2]
MAXLOC(B(:,3)) = 1 (could also be 2)
MAXLOC(C) =5 '
MAXLOC(C,C.LT.0) 2

MINLOC (ARRAY [, MASK]): This function returns an integer value or integer
array which represents subscripts of the minimum values of all the elements of
ARRAY, according to the values of MASK. If more than one such location exists,
which subscript is returned is non-deterministic.

MINLOC(A) =[11]
MINLOC(B(:,3)) = 1 (could also be 2)
MINLOC(C) =6
MINLOC(C,C.GT.0) =1

COUNT (MASK [, DIM]): This function returns the number of elements for
which the MASK held true.

I

COUNT(A.GT.0)
COUNT(A.GT.0,1)
COUNT(B.EQ.5)
COUNT(C.LE.O)

l
W N o
&

ANY (MASK [, DIM]): This function returns True if the MASK held true for any
of the elements.

ANY(A.GT.0) =T
ANY(A.GT.0,1) = [T T]
ANY(B.EQ.5) =T
ANY(C.LE.0) =T

ALL (MASK [, DIM]): This function returns True if the MASK held true for all
of the elements.

ALL(4.GT.0) =T
ALL(4.GT.0,1) = [T T]
ALL(B.EQ.5) =F
ALL(C.LE.0) =F
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Functions for matrices:

e TRANSPOSE (M1): This function returns the transpose of the matrix or two-

dimensional array, M1.

TRANSPOSE(A)

o MATMUL (M1, M2): This function returns the result of the matrix multiplication
of M1 by M2. (Note that the expression, M1*M2, does not perform matrix
multiplication. Instead, it produces element-by-element multiplication; that

|

1 3 5
2 4 6

is, for all 4,5 (M1 x M2);; = M1,; « M2;;.)

MATMUL(A,B) =

MATMUL(B, A)

|

e DIAGONAL (ARRAY [, FILL]): This function creates a diagonal matrix from the
vector ARRAY. The elements of the vector are placed on the diagonal and the
value of FILL (if any) is placed in the other elements of the matrix. If there is

8 20 15
18 44 35
28 68 55

39 50
52 68

|

no FILL value, the value of 0 (or .FALSE., if logical) is used.

DIAGONAL(C) =

r
(o=l e R Bl =

99
99
99
99
99

DIAGONAL(C,99.0) =

Other useful functions:
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e RANK (ARRAY): This function returns the rank of the given scalar or ARRAY.

RANK(100) =0
RANK(A) =2
RANK(B) =2
RANK(C) =1

e DSHAPE (ARRAY): This function return

DSHAPE(-1)

DSHAPE(C)
DSHAPE(A)
DSHAPE(B)

e REPLICATE (ARRAY, DIM, NCOPIES):

s the shape of the given scalar or ARRAY.

]

32
23

I

]
]

This function adds NCOPIES of the ARRAY

[
6
[
[

along the given DIMension. The resultant array has the same rank as the original

ARRAY, but the shape in greater in the

REPLICATE(A, 1,2)

REPLICATE(4, 2, 3)

REPLICATE(A, 1, 0)
REPLICATE(C, 1, 2)

il

e SPREAD (ARRAY, DIM, NCOPIES): Thi

given DIMENSION.

DN O RN

T
O W = O W o

et
™o

[ SR SUR
D =N
w
S >
QNH
(=2

[
[

s function makes NCOPIES of the ARRAY

]
1-23-45-61-23-45-6

along DIM. The resultant array has rank one greater than that of the original

ARRAY. This can also be used to make

SPREAD(-1, 1, 6)
SPREAD(-1, 1, 0)

SPREAD(4, 1, 2)

25

a vector from a scalar.

=[-1-1-1-1-1-1]
=[]

T
O W Ot W




1 2][3 4][5 6
SPREAD(A,2,3) = 1 2|3 4|5 6
1 2|3 4|5 6
1 -2 3 -4 5 —6
SPREAD(C,1,2) = | | o 5 _, . _e

111

-2 -2 -2

3 3 3

SPREAD(C,2,3) = | '\ | |

5 5 5

| -6 -6 —6 |

e PACK (ARRAY, MASK [, V]): This function gathers elements from the ARRAY,
under the control of the MASK. If the vector, V, is specified, the result is placed
on top of the values already there.

PACK(B, B.GT.4) (855 ]
PACK(A, A.GT.3, C) =[546-45-6]
PACK(A, A.GT.0, C) =[135246]

Il

e UNPACK (V, MASK, ARRAY): This function scatters elements from the vector, V,
under the control of the MASK, into the ARRAY.

UNPACK(C, C.LT.0, [6[0.0]]) =[010-203]
UNPACK(C, C.LT.0, [6[-1.011) [-11-1-2-13]
UNPACK(C, C.GT.O0, C) [1-2-2-43-6]

i

e CSHIFT (ARRAY, DIM, SHIFT): This function does a Circular SHIFT on ARRAY,
returning a result which has the same type and shape as ARRAY.

CSHIFT(C, 1, 1) =[-23-45-61]
CSHIFT(C, 1, -1) =[-61-23-45]
CSHIFT(C, 1, 2) [3-45-61-2]
CSHIFT(C, 1, -3) =[-45-61-23]
5 6
CSHIFT(4,1,2) = | 1 2
3 4
2 1
CSHIFT(4,2,-1) = | 4 3
6 5
1 4
CSHIFT(A,1,[0,1]) = [ 3 6
5 2
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e EOSHIFT (ARRAY, DIM, SHIFT [, BOUNDARY]): This function does an End-
Off SHIFT on ARRAY, returning a result which has the same type and shape
as ARRAY. The value of BOUNDARY (if any) is used to fill up the spaces made by
shifting away from the edges; otherwise, zero (or .FALSE. ) is used.

EOSHIFT(C, 1, 1) =[-23-45-60]
EOSHIFT(C, 1, -1) =[01-23-45]
EOSHIFT(C, 1, 3, 9.0) =[-45-6999]
0 1
EOSHIFT(A,2,—-1) = | 0 3
05
0 2
EOSHIFT(A,1,[-1,0]) = | 1 4
3 6
5 6
EOSHIFT(A,1,2,99.0) = | 99 99
99 99
5 6
EOSHIFT(A,1,2,REAL([1:2])) = | 1 2
12

There are many additional intrinsic functions which can be used to manipulate
arrays in parallel, such as, RESHAPE and PROJECT. Refer to the CM Fortran Reference
Manual [TMC 91b] for more information on these and other functions. A reference
book on Fortran-90, such as the Fortran 90 Handbook [Adams et al. 92] or the
Programmers Guide to Fortran 90 [Brainerd et al. 90], may be helpful as well.

2.4 Compiler Directives

The compiler directives in CM Fortran are used in two ways. The first is to specify
the location of the elements of arrays with respect to each other. The second is to
specify the use and homes of arrays in the common blocks of the program.

All the CM Fortran compiler directives begin with the characters, CMF$; they will
appear as comment lines to other Fortran compilers. The continuation of such lines,
if needed, differs from the normal Fortran statement continuation; since the compiler
directives look like comments, an ampersand, &, needs to be placed on the end of the
line which is to be continued, instead of the continuation character in column six,

There are three compiler directives in CM Fortran:
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CMF$ LAYOUT args
CMF$ ALIGN args
CMF$ COMMON args

We will briefly discuss the use and purpose of each here.

2.4.1 LAYOUT

In this section and the next, a reference to a processor will mean a virtual processor. If
an array has more elements than the number of physical processors, each processor will
act as a virtual processor to more than one element. The ordering of the assignment
of elements to virtual processors depends on the layout or ordering chosen for the
given dimension of the array.

In the normal or default allocation of arrays on the PPU, each element will be
placed on a single processor. When there are more elements than processors, each
element is mapped to a virtual processor. The intent is to allow each processor to
have its own piece of the action. Such a mapping for the array, V(0:N), is shown in
Fig. 10.

PO Pl 7)2 PS Pal 775
® ® ® ® ® *— -
Vo Vi V2 Vs Va Vs

Figure 10: Normal layout for the array, V(0:N).

However, there are algorithms where it is more efficient to allow each processor to
have a set of elements of a given array, as those elements will be used together in the
- same computation. For instance, in the case of arrays of two or more dimensions, it
may be best to have all the elements of one of the dimensions be placed on the same
processor. For instance, suppose the array, Q, is declared by the following DIMENSION
statement

DIMENSION Q(3,0:N)

Further, suppose that
Qs; = F(Qui,Q2:)

Then it might be desirable to have all three elements of each column of the array on
the same processor. This type of layout is shown in Fig. 11. The compiler directive
which assigns this layout is
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Po Py P, Ps P, Ps
@ " @ 4 @ @—
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 Q1,5
Q2,0 Q2,1 Q2,2 Q2,3 Q2,4 Q2,5
Q3,0 Q3,1 Q3,2 Q3,3 Qs,4 Q3,5

Figure 11: Layout for the array, Q(:SERIAL, :NEWS).

CMF$ LAYOUT Q(:SERIAL,:NEWS)

Here the term, SERIAL, means that the elements on the array in this dimension should
all be on the same processor. The term, NEWS, implies that the elements of the second
dimension (each column) should be spread across the processors in an order to allow
efficient communication between nearest neighbors.

The general format of this directive is
CMF$ LAYOUT ARRAY(weightl:orderl, weight2:order2, ..., weightN:orderN)

This specifies an order and a weight to that order for each dimension of the given
ARRAY. The order is as defined above; the weight is any constant expression that
indicates the importance of that ordering for the given dimension in relation to the
other dimensional orders. If the weight is missing, it is assumed to be 1; if the order
is missing, it is assumed to be NEWS. The sample statement above,

CMF$ LAYOUT Q(:SERIAL,:NEWS)

provides no weights. Weights have no meaning for serial ordering since the elements
in that dimension should all be on the same processor.

There are three different types of orders. As mentioned in the last paragraph, the
SERIAL order tells that compiler that all elements of the given dimension should be
arranged sequentially on the same processor.

The NEWS order is the default ordering; it specifies that elements of the given
dimension of the array should be stored on processors in such a way as to provide
quick nearest neighbor communication. This is most often used in grid computations,
where each element of the array needs to be updated using the values of its neighboring
elements, as in the following two-dimensional expression:

Xij = F(Xij, Xicrg, Xigaj, Xijo1, Xij41)

This two-dimensional form of a grid is shown in Fig. 12. So, the default layout
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Figure 12: A two-dimensional NEWS grid.

Po Py P, Ps Pa Ps
@ @ @ L @ o—
Q1,0 Q1,1 Q1,2 Q13 Q1,4 Q15
Q2,0 Q2,1 Q2,2 Q23 Q2,4 Q2,5

Q3,0 Q3,1 Qs,2 Q33 Q3.4 Q3,5
Vo Vi Va Vs Va Vs

Figure 13: Layout for the arrays, Q(:SERIAL, :NEWS) and V(:NEWS).

CMF$ LAYOUT X(1.0:NEWS,1.0:NEWS)
would be best for this computation. Were the layout defined as
CMF$ LAYOUT X(1000:NEWS,1:NEWS)

the compiler will assume that elements along the first axis of the array will commu-
nicate far more often than those of the second axis. Thus, it may assign elements of
the first array on the same chip, if possible, to make the communication local.

The last ordering, SEND, arranges the elements of the array so that each element
can be quickly communicated to any other element in the array. This means they are
laid out on the underlying hypercube of the CM. This ordering is best if there will be
communication of local processors which are not also nearest neighbors. An example
of this is an FFT computation.

It is assumed that arrays declared in the same DIMENSION statement should have
their first elements assigned to the same processor. Hence, if the arrays, @ and V,
have been declared together, as in the statement
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DIMENSION Q(3,0:N), V(0:N)

and Q has the same LAYOUT directive as above, then the elements of both arrays will
be assigned to the processors in a manner similar to that shown in Fig. 13.

2.4.2 ALIGN

P P Ps Py Ps

® L @ ® *— -
Si1 S21 Sz, Sa Ss,1
T T T3 T, Ts

(a) Default alignment: S(N,N) and T(N).

Py P, Ps Pn Prni1 Pryo
S11 Sa1 S3.1 Sna S1,2 S22
T

Ty

(b) CMF$ ALIGN S(1,I),T(I).

Pr Pr+1 Pri2 Pr+n Prinv+1 Prenie
. _.__. ‘ '_ . ‘ “ee
Ss3.3 Sas Ss,3 S3.4 Saa Ss.4

T, ’ T, ’

(c) CMF$ ALIGN S(4,I+2),T(I).
Figure 14: Alignments of arrays S and T.

The ALIGN compiler directive is used to align the elements of two arrays with each
other. For example, suppose the following arrays are declared:

DIMENSION S(N,N), T(N)

By default, the elements of the arrays would be laid out so that S(1,1) and T(1) are
on the same processor, $(2,1) and T(2) would be on the next processor, etc. This
is the ordering shown in Fig. 14(a). However, it might be desirable to have T(2) on
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the same processor as S(1,2), as shown in Fig. 14(b). This can be accomplished by
the following ALIGN statement.

CMF$ ALIGN S(i,I), T(I)
Similarly, the statement
CMF$ ALIGN S(4,I+2), T(I)

would produce a layout as shown in Fig. 14(c).

2.4.3 COMMON

The COMMON compiler directive is used to define a default home for the arrays in a
given common block. The three possible forms of this directive are as follows:

CMF$ COMMON [, CMONLY] /blkname/
CMF$ COMMON FEONLY /blkname/
CMF$ COMMON INITIALIZE /blkname/

The first form of the directive tells the compiler to put the arrays contained in the
given common block, blkname, on the PPU. The term, CMONLY, is optional and is
used for clarity.

The middle or second form of the directive informs the compiler that the arrays
should be placed on the FE. Otherwise, the normal default for arrays in COMMON blocks
would be on the PPU.

The third and final form of the directive also instructs the compiler to make the
PPU be the home of the arrays in the common block, blkname. But in addition,
it allocates space on the FE for the common block as well to allow for the static
initialization of the arrays. Such arrays may be initialized by DATA statements.
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3 Using the CM-2 at NCAR

The CM-2 located at the National Center for Atmospheric Research (NCAR) in
Boulder, Colorado belongs to the Center of Applied Parallel Processing (CAPP) of
the University of Colorado. It has 8K processors, single-precision floating-point pro-
cessors, and two sequencers which break up the 8K processors into two sections of 4K

processors. One of the front ends of this machine is a VAX named capitol.ucar.edu
with an IP-address of 128.117.64.8.

To log into this machine, type the following command:
rlogin capitol.ucar.edu

The CM will respond by asking for your password.

You will now be logged into the front end of the CM. This is a VAX running
ULTRIX?°. Here you may edit, compile, and store programs and data. However, this
front end computer must take care of all the other CM users as well as the execution
of the serial portions of any running CM programs. Please try to use this resource
sparingly.

Data and program files can be created on your home machine and copied over to
the CM using ftp or rcp (with an appropriate .rhosts file). Similarly, output files
and program listings can be copied back to your home machine for further processing
or debugging.

The two main CM commands you will be using on capitol are cmf and cmattach.
The full pathnames for these and other commands on capitol are as follows:

/usr/local/bin/cmf
/usr/local/bin/cmattach
/usr/local/bin/cmusers
/usr/local/bin/cmfinger

Be sure that this directory is in your path or that you have aliases with the correct
pathnames for these commands.

A library of graphical routines is also available; it is called the Generic Display
Interface. Using these routines, one can display the dynamic output of the PPU on
the CM graphical display or remotely, using an X-window. To include these routines,
add the options, -lcmsr and -1X11, to your cmf command to get access to both the
CMSR and X11 libraries. You will also need to add the statement

20ULTRIX is a trademark of Digital Equipment Corporation.
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INCLUDE ’/USR/INCLUDE/CM/DISPLAY-CMF.H’

at the top of the program which uses such routines. For more information, see the
CM Graphics Programming manual [TMC 89].
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