A Monotone Data Flow System for
Analyzing Explicitly Parallel Programs

Dirk Grunwald and Harini Srinivasan

CU-CS-614-92 October 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

A Monotone Data Flow System
for
Analyzing Explicitly Parallel Programs

Dirk Grunwald and Harini Srinivasan
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

CU-CS-614-92 October 1992

&

University of Colorado at Boulder
Technical Report CU-CS-614-92

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Copyright © 1992 by
Dirk Grunwald and Harini Srinivasan
Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, CO - 80309

A Monotone Data Flow System for Analyzing Explicitly Parallel
Programs

Dirk Grunwald and Harini Srinivasan*
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

October 1992

Abstract

Reaching definitions information is vital for various code optimization algorithms. The
problem of computing the reaching definitions information in sequential programs using a
Monotone Data Flow System is well defined and understood. In this paper, we present Data
Flow Equations to compute the reaching definitions information in explicitly parallel pro-
grams with post/wait synchronization. We also show that these equations form a Monotone
Data Flow System.

1 Introduction

In [5], we have presented data flow equations to compute the reaching definitions information in
explicitly parallel programs. In this paper, we prove that this data flow framework is a monotone
data flow system (MDFS) using the definition of a MDFS as given by Kam and Ullman [6]. We
first review the reaching definitions problem and the associated data flow system for sequential
programs (section 2) and review the proof that it is an MDFS in §3. Similar proof techniques
are used to prove that the data flow system in [5] is monotone. Before proving the monotonicity
of the data flow system, we present the data flow equations in sections 4 and 5, followed by the
actual proofs in section 6.

In the rest of this section, we point out the difference between analyzing sequential programs

and parallel programs for the reaching definitions information.

*This work was supported in part by the National Science Foundation under NSF Grant CCR-9010624 and
by an IBM Graduate Fellowship.

1.1 Reaching Definition Information in Sequential and Parallel Programs

Reaching definition information is the set of definitions reaching each use of a variable in a
program. It is vital for various code optimizations; some of them include constant propagation,
induction variable analysis, common subexpression elimination and dead code elimination.

In our work we consider the parallel extensions to FORTRAN as specified by the Parallel
Compﬁting Forum [8], which is the basis of the ANSI committee X3H5 standardization effort.
The performance of parallel programs on existing and future high performance architectures
depends to a great extent on the ability to perform aggressive code optimizations, including
scalar optimizations across parallel constructs. Most of the existing compilers for parallel pro-
grams do not perform scalar optimizations across parallel constructs. Instead, they restrict
optimizations to specific sequential sections of code in the parallel program.

Consider the sequential and parallel programs in Figure 1; these two programs have very
similar control flow structures. The variable ‘j’ in 1(a) is not an induction variable, because
the if .. then may not be executed for each iteration of the loop. However, in the parallel
program, ‘j’ ¢s an induction variable since both branches of the Parallel Sections statement
always execute for all iterations of the loop, but this could not be automatically detected
without adequate dataflow information. Detecting such induction variables is useful for strength
reduction, data dependence analysis and other optimizations. Likewise, dataflow information
would show that the variable ‘k’ has the value 5 at the end of the parallel construct during each

iteration.

2 Global Data Flow Analysis

The problem of global data flow analysis can be explained as follows [7]: given the control flow
structure, we must discern the nature of the data flow (which definitions of program quantities
can affect which uses) within the program. Data flow problems are often posed as a system of
equations based on the Control Flow Graph of the program. A Control Flow Graph, CFG, of a
program is a directed graph, (V, E, V;), where V is the set of vertices representing basic blocks
in the program, F is the set of edges representing flow of control in the program and V; is the
unique node representing the entry into the program. We say a node P is the predecessor of

node Q@ if there is an edge in the CFG from P to Q. For each vertex in the CFG, we define

(1
(1)
(2)
(3
(4)

(5)
(6)
(6)
(7

j=20
k=1
loop
if (condition) then
i=3+1
else
k =5
endif
1=k 4 4
endloop

(a) Sequential Program

(1)
(1)
(2)
(3)
(4)
(9
(5)
(5)
(6)
(6)
"

j=0
k=1
loop
Parallel Sections
Section A
i=3+1
Section B
k=25

End Parallel Sections

1=k + 4
endloop

(b) Parallel Program

Figure 1: Example sequential and parallel programs.

<D
W
O,
(5)

®

Figure 2: Control Flow Graph for the sequential program in Figure 1.

some basic attributes, which can be defined unambiguously from an analysis of the program.
Then we define inherited and synthesized attributes in a set of data flow equations, and solve
these equations.

This section discusses the data flow equations to solve the reaching definitions problem in
sequential programs [1]. The reaching definition problem is to find the set of definitions of a
variable ‘v’ that can reach a particular use of ‘v’. This is also referred to as the ud-chaining
problem in the literature. In the later sections of the paper, we explain how these equations
can be extended to solve the reaching definitions problem across parallel constructs in explicitly

parallel programs.

2.1 Reaching Definitions

We say a definition of a variable ‘v’ reaches a point p in the program if there is a path in
the CFG from that definition to p, such that no other definitions of ‘v’ appear on the path. To
determine the definitions that can reach a given point in a program, we first assign a distinct
label to each definition. Our problem is to be able to find for each node n of the CFG, In (n),
the set of definitions that reach the beginning of n.

Formally, a definition d of a variable name ‘v’ reaches a node nif there is a path ny,ng,...,ng,n

in the flow graph such that

1. d is within nq,
2. d is not subsequently killed in n; (i.e., ‘v’ is not redefined) and

3. d is not killed in any of na,...,ng.

One way of calculating In (n) is to determine all generated definitions and then to propagate
each definition from the point of generation to n. An easy way of doing this is to solve the

following set of 2N simultaneous equations for a CFG of N nodes:

il

Out(n) (In(n) — Kill(n))U Gen(n)

In(n) = U Out(p).

p € pred(n)

Node | Gen | Kill In Out
Entry | {} | {} {} {}

(1) | J1s k1 | Ja5 ks {1} 1, k1

2 | {} | {} g1, k1 J1, k1

(3) {} {} Ju ka J1, k1

(4) Ja 71 J1, k1 Jas k1

(5) ks ks J1s k1 J1, ks

6) | I | {} | dukudeks | le ik de ks

M | | {} Ji J1, k1
Exit | {} {} J1, k1 J1, k1
Entry | {} | {} {} {}

(1) J1s k1 | 4, ks {} J1, k1

(2) {} {} 15 k1, Jas ks | ley J1y k1, Jas ks

(3) {} {} |l J1s kay Jas ks | les J1, K1y Ja ks

(4) Ja J1 | ley J1s b1y Jas ks | lsy Jay k1, ks

(5) ks ki | ley J1s k1y Jas ks | ey J15 Jas ks

(6) lg {} 31> k1, Ja, ks | ley 1, ks Jas ks

(7) {} {} 1y k1y Jay ks | ley J1y k1, Jas ks
Exit | {} {} 1y k1, Jas ks | ley J1s 1y Jas ks

Table 1: Table showing two iterations of the data flow equations to solve the reaching defini-

tions problem for the sequential program in Figure 1(a).

Out (n) is similar to In (n) but pertains to the point immediately after the end of the
basic block. Kill (n) is the set of definitions outside of n that define variables that also have
definitions within n and Gen (n) is the set of definitions generated within n that reach the
end of n. We are interested in the smallest solution possible for In , which is why we start
with In as the empty set for all n. The algorithm that computes the In sets starts with this
initial approximation and iterates through the above set of equations until a fixpoint is reached.
This particular set of equations and the iterative algorithm form a monotone dataflow system.
In such a system, the order of traversal of the CFG only affects the convergence rate of the
different sets to their fixpoint. It has been proven that a depth first traversal of the CFG helps
reduce the number of iterations to five in most practical cases [1].

The CFG for the sequential program in Figure 1 is given in Figure 2. Variable ¢j’ is defined
at nodes (1) and (4); call these j; and js respectively. The reaching definitions for the use of
‘j’ at node (6) are 7; and js. The In, Out, Kill and Gen sets for the different nodes are given
in Table 1. This table shows two iterations of the data flow equations; the third iteration is the
same as the second, indicating that a fixpoint has been reached.

This example illustrates how the In and Out sets are computed for sequential programs,
given the Gen and Kill sets. In the next section we prove that the data flow framework for

the reaching definitions problem presented in this section forms an MDFS.

3 Monotone Data Flow Framework
Definition 1 A Monotone data flow analysis framework is a triple D = (L, N, F), where

1. L 15 a bounded semilattice with meet A.

2. F is a monotone function space associated with L.
Definition 2 Definition 2: Given a bounded semilattice L, a set of functions F on L is said
to be a monotone function space associated with L if the following conditions are satisfied:
M1. Each f € F satisfies the monotonicity condition,

Ve,y € L,Vf € Fye <y = f(z) < f(y)

M2. There ezxists an identity function e in F, such that

Ve € Lye(z) =2

M3. F is closed under function composition, i.e., f,g € F = fg € F, where
Vz € L, fg(z) = f(9(=))

M. For each z € L, there exists an f € F such that ¢ = f(L).

In the rest of this section, we show that the data flow framework to solve the reaching
definitions problem in sequential programs (given in section 2) is a monotone data flow system.
The DFS for this problem is RDEF = (L, N, F), where L is a lattice whose elements are in the
power set of the set of definitions in the program (a definition can be represented as the pair, (
variable, flow graph node)). The meet operator on this lattice is set intersection and < is set

inclusion. The function space F consists of functions of the form:
fi(z) = (2 — Kill;) + Gen;

where, Kill; and Gen; are the Kill set and Gen set for a specific node in the Control Flow
Graph of the program. This function is referred to as a transfer function, where the variable z

corresponds to the In set of our data flow equations and f;(z) corresponds to the Out set.
Theorem 1 RDEF = (L,A, F) is a monotone data flow system.

Proof. Clearly, L is a semi-lattice with L equal to the empty set and T equal to the set of
all definitions in the program. To prove that F' is a monotone function space, we prove that

each of the four conditions given in Definition 2 are satisfied by F.

Proof of M1: Ve,y € L, if 2 < y then, 2 C y. Since Kill and Gen are constants for a given
function, (z — Kill) + Gen is a subset of (y — Kill) + Gen, i.e., f(z) C f(y). D

Proof of M2: There is an identity function e, such that, e(z) = z for all z € L, defined as

follows:
e(z) = (¢ — Kill) + Gen

where, Kill = Gen' =0 O

Proof of M3: Using bit vector notation, each transfer function has essentially two character-
istics, the Pres set (i.e. the complement of the Kill set) and the Gen set. Given all the
2™ possible sets (n is the number of bits or definitions), we have 2™ x 2™ possible transfer
functions, one for each combination of Pres and Gen sets. Each basic block must use one
of these transfer functions. The composition of any two transfer functions f; and f; in F

gives us:

fi(fi(=)) = (fi(=) N Geni) U Pres;

i.e., fi(f;(z)) = (2 N (Pres; N Pres;)) U (Gen; U (Pres; N Gen;))

So, if Gen;; = (Gen; U (Pres; N Gen;)) and Pres;; = Pres; N Pres;, then, we have,
fi(f;(2)) = (& N Pres;;) U Geny; = f; fi(=z)

Since F' contains all possible transfer functions, f;f; € F. O

Proof of M4: For any given 2 € L, we can always find a transfer function f € F such that
f(y) = z,Vy € L. This is possible if we choose Gen = 2 and Pres = §. O

Since L is a semi-lattice with a meet operator and F is a monotone function space, RDEF
= (L,N, F) is a monotone data flow system.
sl y

0.

4 Parallel Constructs and the Parallel Flow Graph

In this paper, we only consider the Parallel Sections construct [8]. The Parallel Sections
construct is used to specify parallel execution of explicitly identified sections of code. Each
section of code is interpreted as a parallel thread, and must be data independent except where
an appropriate synchronization mechanism is used. The Parallel Sections construct can
also be nested, appear in the body of a loop and so on.

We consider synchronization between threads in the form of event synchronization, described
by a binary event variable. Operations are available to indicate that an event has occurred
(post), to ensure that an event has occurred (wait), and to indicate that an event has not
occurred (clear). In our work, we only consider post and wait statements.

When a post statement is executed, the appropriate shared variables are made consistent

and the value of the event is set to “posted”, no matter what its value was previously. When

(Entry) event(ev)
(Entry) x = 2
(Entry) y =5

(1) loop
(2) Parallel Sections
(3) Section A
(3) if (condition) then
(4) x =17
(4 post(ev)
else
(5) x = 8
(5) post(ev)
(6) endif
(6) z =y %7
n Section B
) Parallel Sections
(8) Section B1
(8) \ wait(ev)
(8) x = x * 32
(9) Section B2
(9) z =y * b4
(10) End Parallel Sections
(11) End Parallel Sections
(11) y=x %z
(12) endloop

Figure 3: Parallel Program with Parallel Sections and event synchronization

a wait statement is executed, the appropriate shared variables are made consistent and the
thread waits for the event to be marked “posted”.

An example parallel program with Parallel Sectiomns construct and event synchronization
is shown in Figure 3. Section A and B execute in parallel. Within section B, there is a nested
Parallel Sections construct where sections B1 and B2 can execute in parallel. The event
variable ‘ev’ will be posted in one of the branches of the if-construct, depending on the value
of ‘condition’. The execution of Section B1 can not proceed until at least one of the post
occurs. Note that the Parallel Sections is inside a loop. This example is purely illustrative;
in particular, the event variable ‘ev’ is not cleared between iterations of the loop, and thus, this
example would not execute properly. We refer to this example in §6, to show the interaction
of loops and synchronization variables. Note that this is a sequential loop; analysis of(parallel
loops is a topic of future papers.

The language standard does not define the memory consistency model for the target archi-
tecture. Rather, it allows a range of implementations including copy-in/copy-out semantics.
We assume copy-in/copy-out semantics in the compiler, because it provides more opportunity
for optimization. For example, within a single thread, we are free to load copies of variable
values into registers or propagate subexpressions and the like, disregarding the actions of other
threads. This does not imply that we implement a pure copy-in/copy-out program. Rather,
we use this as one model of memory consistency because it is convenient for compiler optimiza-
tions and allowed by the language standard. Correct programs should obey copy-in/copy-out
semantics as well as other memory consistency models allowed by the language standard.

At a fork point, i.e., a Parallel Sections statement, every branch of the fork (each thread)
gets its own copy of the shared variables. Each thread modifies its own local copy and at the
join point, i.e., the End Parallel Sections statement, the copies from the different threads
are merged with the global values. In the presence of post/wait synchronization, the thread
that waits for an event to occur updates its copy with the values from all the threads posting
that event. Multiple copies of a variable may potentially reach a wait statement, either because
of multiple posts executed by different threads or because of one or more posts (executed by
different threads) and the waiting thread defines that variable prior to the the wait statement.
Some decision has to be made at run time as to which value will reach the wait statement.

However, at the compiler level, we allow more than one value to reach that point and the

10

— Sequential Flow Edge
- Parallel Flow Edge
Synchronization Bdge

Figure 4: Parallel Flow Graph for the example parallel program.

presence of multiple values at such wait statements indicates potential anomalies.!Similarly at
a join node, multiple values for a variable reaching that node indicates a potential anomaly in

the Parallel Sections construct.

4.1 Parallel Flow Graph

In this section, we describe the Parallel Flow Graph, a data structure used to represent control
flow, paralleﬁém and synchronization in explicitly parallel programs. The Parallel Flow Graph
(PFG) is similar to the Synchronized Control Flow Graph [4] and the Program Execution
Graph [2]. A PFG is basically a directed graph with nodes representing extended basic blocks

in the program and edges representing either sequential control flow, parallel control flow or

!Note that multiple values reaching a wait statement do not necessarily mean there are anomalous updates;

for example, the post statements may have been conditionally executed.

11

synchronizétion. An ezxtended basic block is a basic block that may have at most one wait
statement at the start of the basic block and at most one post or branch statement at the end
of the basic block. A sequential control flow edge represents sequential flow of control within
sequential parts of the program. A parallel control flow edge represents parallel control flow, as
at fork and join points in the program. Finally, a synchronization edge is an edge from a post
statement to a corresponding wait statement.

The PFG for the parallel program in Figure 3 is shown in Figure 4. Nodes (2) and (7)
represent fork nodes and nodes (11) and (10) are the respective join nodes. Sequential, parallel

and synchronization edges are identified in this figure as indicated.

5 Data Flow Equations for Parallel Sections

In Section 2, we reviewed the data flow equations from [1] to compute the reaching definition
information at any point in a sequential program. In this Section, we extend these equations
to handle the Parallel Sections construct. The extensions are based on the following fun-

damental concepts:

e At parallel branch points, such as fork nodes, all the branches execute; in the case of
sequential branch points, e.g., if-statements, only one of the branches will be executed.

o A value defined at a point prior to a parallel construct does not reach the corresponding
parallel merge point if it is always killed in at least one of the branches. In contrast, for
sequential branches, the value would need to be always killed along every branch.

¢ The compiler must assume that a conditionally defined value in a parallel section may
reach the parallel merge point. These definitions do not kill the definitions prior to the
Parallel Sections statement. In actuality, only one definition reaches the merge point,
but determining the actual reaching definition is undecidable. Thus, the compiler must
be conservative and assume that both definitions reach.

These concepts are illustrated by the sequential and parallel programs in Figure 5 and by
the program in Figure 6 on page 13. The values of the variable ‘a’ reaching the sequential and
parallel merge points (i.e., the endif and End Parallel Sections statement respectively) in
Figure 5 are different. In the case of the sequential program, the values of the variable ‘a’
reaching the endif statement is either the value defined before the if test or the value defined
in the then-part of the if-construct. However, at the parallel merge point, the only reaching

value of ‘a’ is the value defined in Section A.In Figure 6, the variable ‘c’ is defined conditionally

12

(1)a=0 (1) a=0

)b =1 Wob=1
(2) if (condition) then (2) Parallel Sectioms
(3) a=a+4+ 1 (3) Section A
(3 b=7 (3) a=a-+ 1
else 3 b=17
(4) b=25 (4) Section B
(4) endif (4) b=25
() c =ax*b (4) End Parallel Sections

() c = axb

(A) Example Sequential Program (B) Example Parallel Program

Figure 5: Example sequential and parallel programs.

(1) a=20
(1) b =1
(1) c = 2

(2) Parallel Sectioms
(3) Section 4

(3) a=—a-+4+1

(3) b=17

(4) Section B

(4) Parallel Sections
(5) Section B1

(5) b=256

(6) Section B2

(6) if (P) then
&P c =6

(8) endif

(9 End Parallel Sections

(10) End Parallel Sections
(10) d=axb + ¢

Figure 6: Example parallel program to illustrate data flow equations.

13

in Section B. Therefore, this value and the value of ‘c’ defined prior to the outer Parallel
Sections construct reach the parallel merge points. The sequential data flow equations (Section
2) will not be able to handle such cases. The new data flow equations for parallel programs
must still be able to say that the values of ‘b’ in Figure 5 reaching the join node are either from
Section A or Section B. As mentioned earlier, more than one value of a variable reaching a
parallel merge point indicates a potential anomaly in the program.

We introduce two new sets to the the ACCKilliﬁ and ACCKillout sets data flow framework
of Section 2. These sets accumulate definitions that occur outside a parallel construct and that
are killed along specific parallel branches in the parallel construct. The ACCKillin set at a
node is the set propagated by its predecessors and ACCKillout set at the node is its ACCKillin
set updated by the definitions killed in this node, excluding the definitions generated in this
node, i.e., its Kill set minus the Gen set. In our first example (Figure 5), the accumulated kill
set at the end of Section A is the value of ‘a’ defined prior to the parallel construct because
the definition of ‘a’ inside Section A will always kill the previous definition.

Parallel sections can be nested, but the information represented by the ACCKillout set
pertains to a single parallel block. For example, in Figure 5, the ACCKillin set at the entry
to the parallel program is empty. At node (1), the ACCKillout set includes ‘ag’ since it is in
its Kill set. However, if we propagate this set via Section B, that does not define ‘a’, to the
parallel merge node, the ACCKill set at this node will contain this definition. However, ‘a3’
always reaches the parallel merge point and should not be in the ACCK:ll set of any of its
pafallel predecessors. Therefore, we clear ACCKillout at fork nodes and use this empty set
in computing the accumulated kill sets inside the corresponding parallel block. We must also
preserve the current value across internal nested parallel blocks because a join node must have
access to the ACCKillout set from the corresponding fork node. Thus, fork nodes store the
ACCKillout , computed from its Gen and Kill sets in another set, ForkKill , and a ‘technical
edge’ between corresponding fork and join nodes makes this information available to the join
node. At join nodes, the In set will exclude definitions from the ACCKillout sets of all the
parallel predecessors of this node.

We propagate the ACCKill sets by computing the ACCKillin set at a merge node as the
union of the A CCKillout sets of its parallel predecessors and the intersecfion of the ACCKillout

sets of its sequential predecessors.

14

In sequential programs, we define Kill (n) to be the set of all the definitions of variables
outside n for those variables defined in n; these are the definitions that will be overridden when
the variable is defined in node n. This is appropriate for sequential programs or a single thread
of control because assignments can not occur in parallel.

By comparison, in the case of parallel programs, where we can have multiple simultaneous
threads of execution, we distinguish between the Kill set and the ParallelKill set. The Kill set
for node n contains all killed definitions from nodes that can not execute at the same time as
node n. Similarly, the ParallelKill for n contains all definitions from nodes that can execute at
the same time. For example, in Figure 5(B), the Kill set of section B contains the definition
‘by’ (the definition of b from node 1), while the ParallelKill set contains the definition ‘b3’.

We would expect both definitions ‘bz’ and ‘by’, but not ‘by’, to reach the join node (node
5). Definition ‘b;’ should not reach because there are assignments to ‘b’ that are guaranteed
to occur later in the execution order. Both ‘b3’ and ‘bs’ should reach the join node because
the compiler can not assume a particular execution order or memory semantics. Indeed, this
indicates a potential data anomaly or race condition in this particular program. We segregaté
the kill sets into Kill and ParallelKill sets to distinguish between these cases. ParallelKill (n)
can be computed by traversing the PFG and including those definitions d; of variables ‘v’ such
that ‘v’ has a definition in n and d; occurs in a node that can execute in parallel with n. This
can be done by traversing the parallel flow edges and the sequential flow edges in all Sections
that have the same fork node and join node as the Section S, corresponding to n but not S,
itself. Thus, as in the sequential data flow problem, Kill and ParallelKill can be computed
directly and need not be computed using an iterative algorithm.

The ACCKill sets accumulate information about definitions that are killed within a sequen-
tial thread, and we include the Kill sets in the ACCKillin and ACCKillout sets. We do not
include the ParallelKill set because that set represents information about other threads where
the temporal ordering of definitions is undefined. When computing the Out set for each node,
we must consider all killed definitions, i.e. the union of the Kill and ParallelKill sets.

The data flow equations for the reaching definitions problem in programs that have the
Parallel Sections construct is given in Figure 7. In those equations, par_pred refers to the set
of parallel flow predecessors of the node; seq_pred refers to the set of sequential flow predecessors

of the node and pred refers to the set of all predecessors (both parallel and sequential flow

15

Out(n) = In(n)— Kill(n) — ParallelKill(n) U Gen(n)

In(n) = U Out(p) — U ACCKillout(p)
p € pred(n) P € par_pred(n)
' 0 (n is a fork node)
ACCKilli Kill -G n is a join node, with corre-
ACCKillout(n) = { ilin(n) + Kill(n)) ~ Gen(n) (s a] ’
\ +(ForkKill(f) — Out(n)) sponding fork node f)
| (ACCKillin(n) + Kill(n)) — Gen(n) (otherwise)

ACCKillin(n) = U ACCKillout(p) + N ACCKillout(p)
P € par_pred(n) p € seq_pred(n)

(ACCKillin(n) + Kill(n)) — Gen(n) (n is a fork node)

0 (otherwise)

Il

ForkKill(n)

Figure 7: Dataflow Equations for Programs with Parallel Sections

16

Node Gen Kill ParKill
1 {a1,b1,¢1} | {as, b3, bs,cr}
2
3 {as, bs} {a1,b1} {bs}
4
5 {bs} {b1} {bs}
6 ,
7 {er} {e1}
8
9
10 {d10}
Node In Out ACCKillln AccKillOut ForkKill
1 {a1,b1,c1} {as, b3, bs, c7}
2 {ai,b1,¢1} {ay,b1,c1} {as, b3, bs, c7} {as, b3, bs,c7}
3 {a1,b1,¢1} {as, b3, c1} {a1,b1}
4 {ai,b1,¢1} {a1,b1,¢1}
5 {ai,b1,¢1} {ay,bs,¢1} {b:1}
6 {a1,b1,¢1} {a1,b1,c1}
7 {a1,b1,c1} {ai1,by,c7} {e1}
8 {a1,b1,¢1,¢7} {a1,b1,c1,¢7}
9 {ay, b5, c1,¢7} {a1, b5, c1,c7} {b1} {b:1}
10 {as, b3, bs, c1,¢7} | {as, b3, b5, c1,¢7,d10} {a1,b1} {a1,b:1}

17

Figure 8: Data Flow Sets for one iteration on the parallel program in Figure 7.

predecessors) of the node. The reaching definition information, i.e., the In set at each node, is
defined by the fixpoint of the equations in Figure 7.

For the parallel program given in Figure 6, the In, Out , Gen , Kill , ParallelKill and the
accumulated kill sets are given in Figure 8. The system of equations converges on the second
iteration. The figure shows the first iteration (which is the same as the second). Note that
ACCKillout (10) contains b;. This indicates that by is killed by one or more of the parallel
branches — in this case, it is killed by both sections 4 and B (via Section B1). By comparison,
even though ‘c’ is defined in node 7, the definition is conditional on ‘P’, and thus ¢; does
not appear in ACCKillout (10). The set Out (10) contains definitions b3 and bs, indicating a
potential anomaly. In the case of ‘b’, this is an actual anomaly.

In the rest of this section, we define the above data flow analysis framework (PRDEF)
formally and prove that this framework forms a monotone data flow system, an important

criteria for the system to reach a fix point.

5.1 Proof showing that PRDEF is an MDFS

The data flow analysis framework for computing the reaching definitions information in parallel -
programs with the Parallel Sections construct, PRDEF is defined as the triple (L, A, F),
where, L is lattice whose elements are in the power set of the set of definitions in the program, A
ié the meet operator, in our case, set intersection and F is a function space consisting of transfer

functions in the data flow framework, i.e., F consists of functions of the following forms:

F1:
fo(2) = (z — Kill(v) — ParallelKill(v)) + Gen(v)
F2:
l(z) = (z + Kill(v)) — Gen(v)
F3:
hy(z) = (2 + Kill(fork(v))) — Gen(fork(v))
F5:

mv(m) = lv(m)-}r (hv(y) - fv(z))

18

where, fork(v) refers to the fork node corresponding to the parallel block in which this node
appears. Clearly, we can relate each of the above equations to the equations in Figure 7. f,
corresponds to the Out set and the argument # to this function is the corresponding In set. [,
corresponds to the ACCKillout set when the nodé v is neither a fork node nor a join node. h,
corresponds to the ForkKill set and finally, m, corresponds to the ACCKillout set when the
node v is a join node. In the equation for m,, we have different arguments for functions h, and
fv since they are both different transfer functions and need not take z as their argument when
¢ is the argument to m,. The argument y corresponds to the ACCKillin set of fork(v) and z
corresponds to In set of v. Therefore, the function m, can be written as the projection of the
first of the function p,, where p, is a function whose domain and range is a set of triples of
definitions (the 7 set). The lattice associated with the function space P (consisting of functions

of the form p,) has elements from the power set of 7. p, is defined as follows:

Po((2,9,2)) = ((lo(2) + (hu(¥) = fu(2)))s Pu(y)s ful 2))

Clearly, m,(z) is the first element of p,({z,y, z)). In the rest of the paper, we refer to L as
the lattice whose elements are from the power set of the set of definitions in the program and
Ly as the lattice whose elements are from the power set of 7. The theorems that follow prove

that each of the function spaces mentioned above are monotone.

Theorem 2 The function space F1 associated with the lattice L is a monotone function space.

Proof: Each f € F1 is of the form:

fo(z)=(2—-a)+yg

To prove that F1 is a monotone function space, we will prove each of the properties listed in

Definition 2.

M1: For any z,y € L such that, z C y, it is clear that (z — a) C (y — a). Therefore,
((z—a)+9) C((y—a)+g)or, fu(z) C fuly). O

M2: There is an identity function, e(z) = (z — a) + ¢ such that a = g = 0 that satisfies the

property, e(z) = 2. O

19

M3: To prove that F1 is closed under composition, consider functions f; and f, in the function

space F1. Let,

fi(z) = (z — a1) + g1 and fo(z) = (z - a3) + ga.
In bit vector notation,

fi(z) = (zAT@7) Vg1 and fo(z) = (z AG@2) V g2
Therefore, the composition of f; and f; is

fi(f2(2)) = (2 A@3) V g3 where,

s=ai NGz and g3 = (g2 AT7) V g1). O

M4: For every ¢ € L, we can always find a function f € F1 such that, ¢ = f,(L). Such an f

has the following definition:

fo(y) =(yA@)Vyg), wherea=0,and g = z. O

Theorem 3 The function space F2 assoctated with the lattice L is a monotone function space.

Proof: The proof of this theorem is similar to the proof of theorem 2. Functions in F2 are

of the form:

Lz)=(z+k)—¢g

We proceed by proving each of the properties in Definition 2:

M1: For every z,y € L, such that C y, it is clear that ((z + k) —g) C ((y + k) — ¢g) and
hence, Il,(z) C l,(y). O

M2: The identity function, e(2) = (¢ + k) — g that satisfies the property, e(z) = z can be
derived by choosing k =g = 0. O

M3: Let I1,1l, € F2, such that

li(z) = (2 + k1) — g1 and l(z) = (z + k2) — ¢o, L.,

li{(z) = (2 V k1) ATT and Iy(2) = (2 V k2) A G-

20

Therefore, l1(l3(2)) = (¢ V k3) A g5 = I3(z), where,
k3 = k]_ V kz a,nd'g§ = (ﬁv kl) A?{.

Hence, F2 is closed under function composition. O

M4: For any given z, we can always choose a function [€ F2, such that, I,(y) = (y V k) A T,

where k = 2 and § = z. Therfore, ¢ = [,(y) and, in particular, z = [,(L). O

Theorem 4 The function space F3 associated with the lattice L is a monotone function space.

Proof : Functions in F3 are of the form:
hy(z) = (z + Kill(fork(v))) — Gen(fork(v))

ie., hy(2) = (& + kf) — gf. Since h, is similar to I,, except for the constants in the two

functions, the proof of this theorem is identical to the proof of theorem 3. O

Theorem 5 The function space F5 assoctated with the lattice Ly is a monotone function space.

Proof: Recall the definition of a function in the function space, F'5:

Po((z, 9, 2)) = ((lo(2) + (ho(y) — fo(2))), hu(¥)s Fu(2))

where, I,(z) = (z + c1) — 2,
ho(y) = (y + €3) — 4,

fo(2) = (z — ¢5) + 86,

ho(y) = ((y +¢T) — c8),

and fy,(2) = ((z — ¢9) + c10).

We now prove the four properties for monotonicity of the function space, Fb5:

M1: Consider some a,b € L1 such that a < b.
ie., a = (21,91,21) and b = (23,¥3,22) and 21 C 22, y1 C y2 and 2z; C 25.

We know from theorems 2, 3 and 4 that I,(21) C l,(22), ho(¥1) C hy(y2) and f,(2z1) C
fv(ZZ)’

21

Ma2:

Ma3:

Therefore, (I,(21) + (ho(y1) — fu(21))) € (lu(22) + (ho(y2) — fu(22)))
The proof that hy(y1) C hw(y2) and fu(z1) C fu(z2) are similar to the proofs of M1 in

theorems 3 and 2 respectively.
Hence, p,(a) < p,(b). O

The identity function e associated with L, that satisfies the property, e((z,y,z)) =

(2,y, z) is the following:

eo((2, 9, 2)) = ((lo(2) + (ho(y) — fo(2)), Bu(9), fu(2))

where, I,(z) = (¢ + c1) — ¢2, such that, c1 = ¢2 = §,
hy(y) = (y + ¢3) — c4, such that, ¢3 = 0 and ¢4 = y.
fo(2) = (z — ¢5) + ¢6, such that, ¢5 = z and ¢6 = 0,
hw(y) = (y + ¢7) — ¢8, such that, ¢7 = ¢8 = 0, and,
fu(2) = (2 — ¢9) + 10, such that, ¢9 = ¢10 = (.

Therefore, e,({z,y, z)) = (z,y, z).

Let py, py € F5 such that,

p1(<2}, Y, Z) = <(ll(m) v (hl(y) A f1(Z)), oy s fz1>

where hy, = ((yV c7') Ac8')) and f,, = ((zA ¢9') V €10') and,

pa((2,9,2) = ((la(2) V (ha(y) A F2(2)); sy £z,)
where B, = ((yV 7") Ac8")) and fu, = ((zAc9") Vv c10").

Therefore, the composition, p;(p2({(z,y, z)) is defined as

((a(2) V (ha(y) A f3(2)))s Puwg (9)s fus (2))

where, Ig(2) = (z Vcl1)Ac2; el = cl' Vel and €2 = (e2'V e1”) A c2"),

ha(y) A fa(2) = (B (y) A £'(2)) V (A" () A F7(2)); Where
R (y) = ha(y) A ha(huy (9)); £ (2) = f2(2) V i Fur ()5
R () = ha(y) V k(b (9)); £ (2) = 2" V (R(Z)V fi(fur (2))s

Py (y) = ((y V cT) A cB)); ¢7 = ¢T' V7" and e8 = (8" v eT") A c8™).

and f,,(z) = ((2A c9) V c10); ¢d = 9’ A c9” and ¢10 = (c10” A c9') V c10'). O

22

M4: For any given a = (21,¥%1,21) € L1, we can always find a function p, € F5 such that,
a = py(L).

Simply make the following substitutions in the functions p,,
Po({(2, 9, 2)) = {(l(2) + (ho(y) — fo(2))), hu(y), fu(2))

where, I,(z) = (z + c1) — ¢2; ¢l = 3 = 23,
ho(y) = (y+e3) —cdse3 =0,cd =y,

fo(2) = (2 — ¢5) + ¢6; c5 = 2,c6 = 0,

hw(y) = ((y + ¢7) — ¢8); €7 = y1,¢8 = y;, and
fu(2) = ((z — 9) + ¢10); c9 = 0,¢10 = 2.

O

Corollary 1 The function space F4 is a monotone function space associated with the lattice
L. Note that each function in F4{ can be defined as the projection of the first element of a

corresponding function in F5.
Theorem 6 PRDEF is a monotone data flow system.

Proof: Clearly the lattice, L is a semilattice defined on elements in the power set of the
set of definitions in the program with meet operator as set intersection and L = §. From
the theorems 2, 3, 4 and corollary 1, we know that the function spaces F1, F2, F3 and F4
are monotone. Therefore, the function space F in PRDEF is monotone. Hence, the theorem

follows by definition of an MDFS. O

6 Including the effect of Synchronization

We extend the data flow equations in the previous section to consider event synchronization
by using the preserved sets formulation given in [3]. Synchronization using post/wait occurs
between different threads that execute in parallel. Synchronization edges carry data flow infor-
mation, i.e., they propagate values of variables from the thread that posted the event to the

thread that is waiting for the event to be posted. According to [8], it must be possible to execute

23

each post before its corresponding wait for a parallel program to be deadlock free and correct.
If the post statement at a node n, always executes before the corresponding wait node, n,2,
then n,, will have to update its reaching definitions information with that from the Out set of
the node corresponding to the post. Apart from updating the reaching definitions information,
i.e., the In set at the wait node, n,,, we also want to be able update its accumulated kill sets,
e.g., if n,, defines a variable, then all definitions of that variable reaching n,, via synchronization
edges from post nodes, n,, that always execute before n,,, must be included in the A CCKillin
set of n,,. This is important because the definitions propagated by such synchronization edges
are killed by the corresponding definition in n,,.

If there is a synchronization edge from n, to n,, we can not say that n, always executes
before n,,. It is possible that there are multiple posts of the same event variable and multiple
waits for the same event variable. It is also possible that these multiple posts and waits are
executed conditionally. Thus, a synchronization edge does not always imply an execution
order. We are, however, interested in the potential execution order for computing the reaching
definition information. Preserved sets, as defined in [3] give precisely the set of nodes that

execute before a given node, defined as follows:

Definition 3 A node n; € Preserved(n;) if and only if for all parallel executions z, if n; and

n; are both ezecuted, n; is completed before n; is begun.

However, Callahan and Subhlok [3] have shown that computing this information is Co-NP
Hard and have given a data flow framework to compute a conservative approximation to the
Preserved sets. The approximate Preserved sets are computed as the least fixpoint of a set of
data flow equations over the Parallel Flow Graph. The Preserved set for a block is defined as
a function of its control flow (parallel and sequential) and synchronization predecessors.

Clearly, by using the Preserved set formulation, we can determine at a wait node n,, if a
post node, n,, always completes execution before n,, begins, i.e., if n, € Preserved(n,,). We use
a new data flow set, called the SynchPass set, that propagates definitions via synchronization
edges.

If n, executes before n,,, we propagate the definitions from n, to n, (and thus all nodes

that execute after n,, in the same thread), because we know those definitions must have oc-

?We say a wait node starts executing when the wait statement is successful and the code following the wait

in this node starts execution

24

.
.
Ly

Figure 9: Synchronization Example

curred before the synchronization occurred. Any definitions that occur in node Ny (and nodes
subsequently executed by that thread) will kill the previous definitions in the thread executing
Ny. These definitions will also kill any definitions that occur before n, executes in the thread
corresponding to n,, but not necessarily those definitions occurring after n, executed in that
thread (e.g., because the thread executing n, may have already completed execution, as it does
not wait for the wait statement to occur). This means that the join node must realize that the
definitions in n,, occur after the definitions passed in from n,; this is the role of the ACCK:ill
sets.

For example, consider the Parallel Sections in the PFG shown in Figure 9. The fork
node defines a value for ‘x’. This value reaches the predecessor of the wait node and the post
node. The definition in the fork node is in the ACCKillout set for the post node, indicating
that some branch of the Parallel Section has killed that value. However, only the value
from the wait node should reach the join node, because that definition must occur after the
assignment in the post node and the fork node. We get the execution ordering information

from the Preserved set. The value of ‘Y’ following the post node is not specified by the language

25

U Out(p) (if » is a wait node)
SynchPass(n) = p € synch_pred A p € Preserved(n)

U SynchPass(p) + ﬂ SynchPass(p) (otherwise)
p € par_pred P € seq.pred

(In(n) — Kill(n) — ParallelKill(n)UGen(n))—

Out(n) =
(OtherDefs(n)NSynchPass(n))
In(n) = U out(p)— |J ACCKillout(p) - N ACCKillout(p)
p € pred(n) p € par_pred(n) , p € synch_pred(n)

0 (n is a fork node)

ACCK:lli Kill -G n is a join node, with corre-

ACCKillow(n) = 4\ illin(n) + Kill(n)) = Gen(n) (n1s 2] ’
+ (ForkKill(f) — Out(n)) sponding fork node f)
(ACCKillin(n) + Kill(n)) — Gen(n) (otherwise)
U ACCKillout(p) + (| ACCKillout(p)
ACCKillin(n) = p € par_pred(n) P € seq_pred(n)
+ (OtherDefs(n)NSynchPass(n))
ForkKill(n) = (ACCKillin(n) + Kill(n)) — Gen(n) (n is a fork node)

0 (otherwise)

Figure 10: Dataflow Equations for Programs with Parallel Sections and Event Synchronization

26

Node Gen Kill ParKill

Entry | {20, %0} | {z4, 25,28, y11}

1

2

3

4 {z4} {zo, 25} {zs}

5 {zs} {20, 24} {zs}

6 {ze} {20}

7

8 {zs} {zo} {z4, 25}

9 {2} {26}

10

11 {y11} {50}

12 |
Node In Out ACCKillln AccKillOut ForkKill
Entry {20, y0} {24, 5, 28, Y11}
1 {z0, %0} {zo, 90}
2 {zo, 90} {20, y0}
3 {zo, %0} {z0, Yo}
4 {20, y0} {z4, 90} {20, 25}
5 {20, y0} {zs, 90} {zo, 24}
6 {z4, 25,90} {z4, 25, Y0, 26} {=o} {zo}
7 {0, 0} {=0, %0}
8 {z4, 25, Y0} {28, v0} {24, 25} {20, z4, 25}
9 | {z0, %0} {20, 0, 20}
10 {zs, Yo, 20} {zs, yo, 20} {20, 24, 25} {20, 24,25}
11 {zs: 0, 26, 20} | {28,911, 26, 20} | {20, 24, 25,90} | {@0, 24,25, %0}
12 {zo,y0} {zo,y0}

Figure 11: Data Flow Sets for the program in Figure 4 : Iteration 1.

27

Node In Out ACCKillln AccKillOut ForkKill
Entry {z0,y0} {24, 25, 28,Y11}

1 {20, 28, Y0, Y11, 26, 29} {20, 28, Yo, Y11, 26, 20} {z4,25} {z4, 25}

2 {0, 28, Yo, Y11, 26, 20} {z0, %8, Yo, Y11, Z65 20} {z4,25} {za, 25}
3 {20, 28, %0, ¥11, 26, 20} | {@0, %8, Yo, Y11, 26, 20}

4 {zo, 8, Yo, Y11, 26, 29} {z4, Y0, Y11, 26, 20} {zo, 25}

5 {z0, Z8, Y0, Y11, 26, 29} {25, Y0, ¥11, %6, 20} {zo, 24}

6 {24, 25, Y0, Y11, 26, 20} {z4, 25, Y0, Y11, 26 } {zo} {zo}

7 {0, 28, Yo, Y11, %6, 20} {20, %8, Y0, Y11, 26, 20}

8 {24, 25,28, Y0, Y11, 265 20} {28, Yo, Y11, 26, 20} {za, 25} {0, 24,25}

9 {z0, 28, Yo, Y11, 26, 20} {zo, 28, Yo, Y11, 20}

10 {28, Y0, Y11, %6, 20} {28, Yo, Y11, 26, 20 } {20, 24, 25} {20, 24, 25}

11 {28, Y0, Y11, %6, 29} {28, y11, 26, 29} {0, 24,25, 50} | {20, 24, 25,0}

12 {zo, 28, Y0, Y11, 26, 20} | {20, 28, Y0, Y11, %6, 20} {24, 25} {z4, 25}

Figure 12: Data Flow Sets for the program in Figure 4 : Iteration 2.

28

definition. One could argue that ‘Y’ should have the value ‘3’; however, we have chosen to
assume copy-in/copy-out semantics, and would thus believe that ‘Y’ has the value ‘2’ — ideally,
an error message would be issued concerning this data race. For this example, the data flow
formulation for Preserved sets given in [3] will be able to determine the Preserved sets of the
wait node accurately. However, since this data flow formulation is conservative, we may not
be always able to compute the ezact Preserved sets for any node. This would result in a
conservative approximation to the reaching definitions information in our data flow framework.
For example, in the absence of the Preserved sets information in figure 9, we would derive the
Out set of the join node to contain the definitions from both the post and the wait node. This
is a conservative, yet correct, approximation to the reaching definition information at the join
node. In the worst case, the effect of synchronization is lost at parallel merge points, i.e., in
the absence of any Preserved set information our data flow equations would compute multiple
reaching definitions at respective parallel merge nodes. This simply reduces the opportunity or
effectiveness of some optimizations.

Therefore, at wait nodes, we update the SynchPass set with the Out set from the cor-
responding synchronization predecessors in the Preserved set of this node, indicating that the
definitions from those predecessors have occurred. In order to propagate the SynchPass infor-
mation to other nodes after a wait node, we want to consider the union of the SynchPass from
all the pafallel predecessors (since all these predecessors always execute) and the intersection
of the SynchPass from the sequential predecessors (since only one of them executes).

We update the A CCKillin set of each node with the definitions of variables that are propa-
gated by synchronization edges (i.e. SynchPass). We only consider the definitions of SynchPass
also defined in this node. To do this, we use the set OtherDefs (n), or the definitions in the
program outside of n that define variables that also have definitions within n.

The data flow equations taking into account Parallel Sections constructs with event
synchronization is given in Figure 10. In this figure, synch_pred refers to synchronization pre-
decessor.

Figures 11 and 12 show the data flow sets for the first two iterations for the parallel program
in Figure 3; the fix point is reached in the third iteration. The Preserved set of node (8) (the
wait node) is the set {Entry, 1, 2, 3, 4, 5, 7}, since each of these nodes always completes

execution before node (8), if they execute at all. The reaching definition information in this

29

ﬁgﬁre has been computed using the Preserved set information. The definitions, ‘x4’ and ‘x5’
will not reach the join node, (11), because the definition ‘xg’ always executes after ‘x4’ and ‘xs’.
It is this information on execution order that we borrowed from the Preserved set formulation.
Also, the ACCKillout set of (11) includes ‘x4’ and ‘x5’. This information was propagated to
node (8) by the synchronization edges since (4) and (5) were in the Preserved set of (8). The
definitions ‘z¢’ and ‘zg’ reach the merge node (11); this is an indication of a potential anomaly
in the program since the two definitions occur in distinct parallel branches, i.e., threads that can
execute in parallel. The importance of the ParallelKill set is seen in the Out set of nodes (6)
and (9). Even though the corresponding In sets have both definitions of ‘z’, only the definition
in that node should be in its Out set. The reason the In set of (6) and (9) both have ‘z¢’
and ‘zg’ is because of the loop around the parallel block. Since we exclude the ParallelKill set
from the Out set, we are able to compute the correct Out sets; for example, the Out set of

(6) does not contain ‘zg’ since this definition is in its ParallelKill set.
Theorem 7 The Data Flow System described in Figure 10 is an MDFS.

Proof: The computation of SynchPass set is similar to that of the In set, i.e., SynchPass is
a synthesized attribute in the data flow system. The only transfer function that gets modified
as a result of the SynchPass set is the transfer function for the Out set. We can represent this

transfer function in terms of a function, ¢,, whose domain and range is a set of definition pairs:

%z, y)) = (((z —a+g) - (dny),(eny) + f()

where a = Kill (v) + ParallelKill (v) and

g = Gen (v), d = OtherDefs (v) and

constants e and f can be chosen to be any constant set for purposes of the proof.

The required function is then the projection of the first element of the result of ¢,((z,y)).
The detailed proof is similar to that in theorem 5 and is not repeated here. The proof would
proceed by showing that the function space Fy, where ¢, € F,, is monotone, followed by
implying that the projection of the first of all the ¢,’s in F; also forms a monotone function
space.

O

30

7 Conclusion

We have presented data flow equations from [5] to compute the reaching definition information
at any point in an explicitly parallel program. Data flow equations for computing reaching
definitions information in sequential programs have been well understood and used in many
current day compilers for the optimization of such programs. We believe that the data flow
framework that we have presented in this paper can be used to perform rigorous scalar opti-
mization on parallel programs and thus help achieve better execution rates of such programs on
existing high performance architectures. This information will particularly benefit distributed
shared memory systems, because optimizations using the data flow information will reduce the
amount of communication between processors.

We have also presented proofs showing that the data flow framework to compute the reaching
definitions information in explicitly parallel programs is a monotone data flow system. We have
considered parallel programs with post/wait synchronization. The Preserved set formulation
would be different for other synchronization constructs. However, we do not anticipate the

data flow framework presented in this paper to change for other synchronization constructs.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, 1986.

[2] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race conditions in a
parallel program. In Proc. 3rd International Conference on Supercomputing, pages 175-185,
June 1989.

(3] D. Callahan and J. Subhlok. Static Analysis of low-level synchronization. In Proc. of
the ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages
100-111, Madison, WA, May 1988.

[4] David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization in
a parallel programming tool. In Second ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 21-30, Seattle, Washington, March 1990. ACM
Press.

[5] Dirk Grunwald and Harini Srinivasan. Data Flow Equations for Explicitly Parallel Pro-
grams. Technical Report CU-CS-605-92, University of Colorado at Boulder., July 1991.

[6] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7(3):305-317, 1977.

31

[7] Steven S. Muchnick and Neil D. Jones. Program Flow Analysis: Theory and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[8] Parallel Computing Forum. PCF Parallel FORTRAN Extensions. FORTRAN Forum, 10(3),
September 1991. (special issue).

32

