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Abstract

This paper presents an Approximate Mean Value Analysis model of deflection routing in
Shuffle-Loop Networks. In contrast to most previous work on deflection routing, the model
makes no assumptions about traffic patterns, nor does it assume that messages that cannot
be admitted to the network are lost. The technique allows the network to be modeled in its
entirety: all processors, switches, and memory modules, and their steady-state interactions, are
modeled explicitly. The results of the model are found to be in close agreement with the results
of simulation experiments.

1 Introduction

Advances in opto-electronic computing technology have focussed a great deal of attention on the
the design and analysis of opto-electronic processor interconnection networks. Opto-electronic
interconnection networks promise to alleviate memory latency, allowing multiprocessor designs to
scale up to very large numbers of processors.

However, opto-electronic networks have some unusual characteristics. Foremost among these is
that it is infeasible to buffer messages in the optical domain. An alternative to message buffering
is deflection routing (3, 9, 14, 18, 25]. In a deflection routed network, switches attempt to route
each message along the shortest route to its destination. However, if that route is unavailable, the
message is temporarily misrouted. Furthermore, messages trying to enter the network must defer
to messages that are already in the network. These characteristics have led to this technique also
being referred to as “hot potato routing.”

Because deflection routing eliminates the need for switch buffering, investigation of its perfor-
mance is currently receiving widespread attention [4, 6, 7, 8, 11, 12, 19, 21, 26, 30]. The typical
strategy of these analyses is to make uniformity assumptions about the network that allow it to
be decomposed, reducing the problem from studying the entire network to studying only a single
switch. Another assumption that is commonly made is that messages unable to enter the network
when they are generated are dropped (presumably to be regenerated at some later time by some
higher-level protocol).



In this paper we analyze deflection-routed multistage interconnection networks without resorting
to any of the assumptions just mentioned. QOur methodology is to apply Approximate Mean Value
Analysis (AMVA) [20, 22] with the appropriate residence time equation heuristics. To the best of
our knowledge, this technique has not been applied to this problem until now.

We chose to use AMVA for several reasons:

e It allows the network to be modeled in its entirety: all processors, switches, and memory
modules, and their steady-state interactions, are modeled explicitly.

e It allows the specification of non-uniform traffic patterns.
e It has been applied with great success to model buffered interconnection networks [28, 29].

e The approach lends itself well to heuristic approximations, and appears to be very robust in
the presence of such approximations [1, 16, 27].

Because of these factors, the model combines a high degree of realism with a high degree of accuracy.

The remainder of this paper is organized as follows. Section 2 describes our architectural as-
sumptions, the generic AMVA technique, and the specialization of this technique to our model.
This section includes detailed descriptions of all model equations. In Section 3 we present predic-
tions of the model, which are validated via simulation. We also compare the model to a simpler
model in which deflections are not taken into account. Finally, Section 4 presents our conclusions
and a discussion of future directions, of which there are many.

2 The Model

2.1 Architectural Assumptions

The architectures we are considering are clocked, packet-switched multistage interconnection net-
works with no ability to buffer in-transit messages. This is characteristic of opto-electronic net-
works. Routing of messages is accomplished by deflection: if more than one packet entering a switch
on the same clock cycle wishes to exit the switch on the same output port, only one is routed to
that port and the others are misrouted (deflected) to other, possibly less-preferred output ports.
Topology is arbitrary except for a single constraint: since messages are not guaranteed to be routed
along their optimal path, the network must contain a path from every switch to every other switch.
Therefore, there is no concept of separate “forward” and “return” networks, as described in [29].

Examples of such network topologies are meshes, hypercubes, and recirculating shuffle-exchange
networks. The particular network that we will analyze in this paper is the Shufflenet [10], which is
simply any recirculating shuffle-exchange network in which the number of network stages is equal
to the logarithm of the number of switches in each stage (where the base of the logarithm is the
fanin/fanout of the switches). Extension to other topologies is straightforward.

We assume that each switch node contains a processor and a memory module. The (electronic)
buffers associated with each of these elements are infinite in size. Requests from a processor to its
associated memory module do not use the network. Memory access patterns can be arbitrary.

Memory requests/replies are assumed to fit into a single packet, which is not unrealistic if
wavelength division multiplexing is employed. We assume that there is some fixed limit on the
number of requests that any particular processor may have outstanding. This is arguably more



realistic than having processors issue requests at some constant rate from a potentially inexhaustible
supply. Furthermore, it maps nicely onto multi-stream processor architectures.

Processor service times (the time between generation of consecutive memory requests by any
given processor) are geometrically distributed. Memory service times are assumed to be determin-
istic.

In a single clock cycle, a switch can route a different message to every one of its output ports.
These messages may come from input ports, the processor, or the memory module. However, traffic
from input ports, which is in the optical domain, always has priority over traffic generated locally,
which can be buffered in the electronic domain. (Messages from the memory module and the PE
have equal priority.) Locally generated messages always take a free output port if there is one,
rather than waiting for an optimal port. Locally generated messages that are unable to enter the
network immediately wait in a special FIFO buffer called the injection queue.

2.2 Methodology

Inspired by [29], we model the architecture as a multiclass closed queueing network.

Each processor, memory module, switch output port, and injection queue is represented as a
queueing service center. Each request is represented as a customer. The requests generated by the
different processors are assigned to different customers classes (i.e., processor p generates customers
of class p). The topology of the network is represented by the visit counts of the queueing network
model. The queueing network model is solved using Approximate Mean Value Analysis (AMVA).

The significant characteristic of this problem that sets it apart from previous applications of
AMVA is the deflection routing. From a modeling standpoint, deflection routing implies that

1. There is no queueing at the switch output ports.
2. The visit counts to the switch output ports are not known in advance.

At first glance, these conditions seem to imply that it would be impossible to apply AMVA to
this problem, since, first, AMVA is all about queueing, and second, visit counts are an input to the
AMVA algorithm. However, although there is no queueing of messages in the network, there is a
lot of interesting queueing behavior at the memory modules and the injection queues that can be
adequately captured only with a queueing model. The technique works well despite these obstacles,
and is excellent evidence of the robustness of AMVA.

Our strategy for dealing with the first problem is to use a switch response time equation R = 1.
Although this seems absurdly obvious, there are some very non-obvious ramifications of this that
we will discuss in Section 2.8.

Our strategy for dealing with the visit counts is as follows:

1. Calculate visit counts assuming that no deflections occur. In this case, visit counts are
functions of the static branching probabilities (which are derived from the network topology
and the access distribution), and the calculation is fairly straightforward.

2. Solve the system using the AMVA equations given in the next section.

3. Calculate dynamic branching probabilities as functions not only of the static branching prob-
abilities, but also of the utilizations of the switch output ports obtained from the previous
step.



4. Calculate new visit counts based on the dynamic branching probabilities.

5. Repeat steps 2—4 until the per-request response times converge.

2.3 Model inputs

Our model parameterization is very similar to that of Willick and Eager’s model [29].
There are two classes of inputs to the model: the hardware configuration and the workload
characterization. The hardware configuration is given by:

F — the fanin/fanout of the switch modules. Although it would be possible to allow fanin to
differ from fanout, it complicates the notation and will not be considered here.

S — the number of stages in the network.

N — the number of processor/memory/switch modules per network stage. In contrast to the
notation used in [29], the total number of processors in our model is N * §, rather than N.

Note that for the Shufflenet[10], S = logz N, but our technique imposes no restrictions on N or §
except that NV must be power of F.

The network so described contains npe = N % S processing elements, npe memory modules,
npe switches, and nsp = F % npe switch output ports. Each type of queueing center is numbered
consecutively from 0. Switch module s contains processor s, memory s, injection queue s, and
output (input) ports F's...Fs+ F — 1. The output (input) ports within each switch may also be
referred to using switch-relative numbering (0...F — 1) when it is clear to which switch we are
referring.

The workload characterization is given by:

NC — the maximum number of requests a processor may have outstanding before it must block
to await a reply.

S5, — the average processor interrequest time when not blocked, in clock cycles. Interrequest times
are assumed to be geometrically distributed.

S,» — the memory service time, assumed to be deterministic.
P,,, — the probability that a request generated by processor ¢ will have memory module m as its
destination.

Although the AMVA technique allows NC, 5,, and S, to depend on the identity of the processor
that originates the request (and in the case of S,, upon the identity of the destination memory
module as well), we will assume that these quantities are independent of the originating processor
(or destination memory module) for the sake of clarity of notation.

2.4 Model outputs

The following quantities are outputs of the model. Note that in all cases the subscript = refers to
an arbitrary queueing center, which may be a processor, a switch port, a memory module, or an
injection queue. Since our numbering scheme allows different types of queueing centers to have the



same index, we will rely on context to make clear which type of queueing center is being discussed,
rather than create additional notation to distinguish each of these cases. We do, however, adopt
the following subscript conventions: s: switch; p: processor; m: memory module; 7: input port; o:
output port; ¢: injection queue.

R., — the average residence time of a class ¢ customer at center z.

R, — the average total response time of a class ¢ request. R, = >, V.z Rz, where the sum is
taken over all switch outputs, memory modules, and injection queues (but not processor c).

X — the throughput of class ¢ customers at center z.

X, — the system throughput of class ¢ customers.

Q.. — the average number of class ¢ customers at center  (including both queued and in-service
customers).

U., — the average utilization of center z by class ¢ customers.

In addition to these outputs, there are many intermediate results calculated by the algorithm
that are important enough to our discussion to merit their own notation:

Vee — the visit count of class ¢ customers at center z, that is, the average number of visits made
by a class ¢ customer to center z.! Note that for processors, V., = 1 if ¢ = z, and 0 otherwise.
For memory modules, V., = P,,.

Vi — the portion of V, that is attributable to customers arriving on switch(z)’s input port

i € [0..F —1].2 In this context z may be a processor, switch output port, or memory module.

V_z — the portion of V., that is attributable to customers being sourced at switch(z). If z is a
memory module, this means customers coming from the corresponding processor, and vice-

versa.

besio(d) — the probability that a class ¢ customer arriving on switch s’s input port ¢ € [0..F — 1]
will exit switch s on output port o € [0..F — 1], as a function of the customer’s destination d.
(b is intended to be a mnemonic for “branch probability.”) Note that this probability is not
a static property of the network; it depends on the probability of being deflected away from
the customer’s preferred output port, which is an output of the model.

besvo(d) — Similar to above, except that it refers to customers originated at switch s (by either
processor s or memory module s).

!Note that the interpretation given to V., by [29], which is the probability that a class ¢ customer visits center
z, is not correct in this context, since if the service center is a switch output port, deflection routing implies that a
given customer may visit that center more than once.

2For readers familiar with the notation used in [29], note that the quantity that they call p;x;, which is the
probability that a class z customer at switch output port j arrived on switch input port k, can be calculated quite
easily as Vi§/V;;.



A brief explanation of the branch probabilities b is in order at this point. b is clearly a function
of the customer’s current location s and eventual destination d, since these will affect the customer’s
desired route. What is not so clear is why b is a function of the input port i, or on the fact that
the message originated at this switch module. The reason for the former is that the probability of
deflection depends on the traffic coming in on the other input port(s) to switch s. The reason for the
latter is that we assume that messages being injected into the network at a given switch must defer
to all traffic passing through that switch. This is in accordance with real-world implementation
considerations on optical switch fabrics.

2.5 Residence time equations

In this section we develop the residence time equations for a class ¢ customer at each type of queueing
center (in increasing order of complexity): switch output ports, processors, memory modules, and
injection queues.

Before proceeding, we illustrate some of the basic analytical idioms of AMVA, so that they will
not have to be re-explained each time they appear.

2.5.1 MVA basics

A simple exact MVA algorithm is shown in Figure 1. The main body of the algorithm consists of
three steps:

1. Calculate residence times at each queueing center. The residence time of a customer at center
q when there are a total of n customers in the system is the sum of that customer’s service
time plus the service time of all customers already at center ¢ when this customer arrives,
all multiplied by the visit count for this center. By the Mean Value Theorem [13, 24|, under
certain assumptions the arrival-instant queue length at center ¢ in a system with n customers
is equal to the steady-state average queue length in a system with n — 1 customers.

2. Use Little’s Law [17] to calculate system throughput from the residence times.

3. Use Little’s Law to calculate new queue lengths from the system throughput and queue
residence times.

Since R,(n) depends upon Q4(n — 1), the exact strategy builds up to the desired system population
one customer at a time, as indicated by the outer loop in Figure 1.

An advantage to the exact MVA algorithm is that it yields performance results for all pop-
ulations up to and including the one of interest. This advantage becomes a disadvantage when
multiple customer classes are involved, however, since the number of possible customer populations
explodes combinatorially[15]. To overcome this problem, a popular approximation (introduced by
Schweitzer [22]) is to assume that steady-state queue lengths are linear functions of system popula-
tion, so that rather than using Q,(n — 1) to compute R,(n), we instead use the quantity "n;qu(n).
For multiple customer classes, a further assumption that is made is that the arrival-instant queue
lengths of classes other than the class of customer under consideration are unaffected by that cus-
tomer’s absence from the queue. The algorithm (Figure 2) becomes iterative in nature, continuing
until the queue lengths converge. Of course, this technique yields results that are only approximate,
and only for a single population at a time. Note that the dependence of R, @, and X on n has
been dropped from the notation in Figure 2.



forn=1to N do
for each queue ¢ do

Ry(n) = VgSg(1+ Qg(n — 1))

n
X(n)= =————
") = S R
for each queue ¢ do
Qq(n) = X(n)Ry(n)
end
end

Figure 1: The exact MVA algorithm

do
for each queue ¢ do
for each customer class ¢ do

n,—1
ch = ‘fchq (]— + n ch + E qu)

¢ k#c
end
for each customer class ¢ do
Tie
X. =
c Eq ch
end

for each queue ¢ do
for each customer class ¢ do
ch = Xcch
end
end
until convergence

Figure 2: The multi-class approximate MVA algorithm



The residence time equation now consists of three terms: the customer’s own service time, the
service time of queued customers of the same class, and the service times of queued customers of
other classes.

Further extensions to MVA rely almost exclusively on modifications to the residence time equa-
tions. For example, if different classes of customers have different service times at center g, the
residence time equation for a class ¢ customer becomes

ne—1
ch = I/cq ch + chch

+ E SkqQrq (1)

¢ k#c

If service times for certain c, g combinations are not memoryless then Q. is split into two parts:
(Qcqg — Ueq), representing the average number of class ¢ customers that are queued but not in service
at center g, and U, representing the average number of class ¢ customers that are in service at
center g. The service time of each of the former customers is still Sy, but the service time of the
latter is 7.,, the mean residual, or excess, life of the service time distribution for class c at center
¢- In the most general case this yields:

e — 1 _ e — 1 _
Reg = Veg | Scq + Scq(Qeq — ch)n— + Z Skq(Qrq — Ukg) + chchn— + Zrqukq (2)
(+ k;éc ¢ k;éc

Finally, there are two complications introduced by the synchronous nature of the system being
modeled. The first is that, since arrivals can occur only at discrete points in time, the mean
residual service time of an in-service customer is smaller than it would be if arrivals could occur at
continuous points in time. This reduces the residence times relative to a non-synchronous system.
Willick derived the discretized mean residual life for certain special cases in his M.S. thesis [28]; we
derive a formula for the general case in the appendix.

The second complication is that there is a non-zero probability of simultaneous arrivals to
a service center. The standard assumptions on continuous models (which are based on Poisson
processes) essentially rule out this possibility. Thus, it may be necessary to introduce an extra
term into the residence time equations to account for this. This factor tends to increase the
residence times relative to a non-synchronous system, although the net result of the combination
of these two factors is by no means obvious.

Before leaving this topic, we emphasize that each of these modifications is only approximate,
as each one violates one or more assumptions on which the Mean Value Theorem is based. One of
the great strengths of mean value analysis is its robustness, by which we mean the accuracy of the
results produced in the presence of such approximations.

2.5.2 Switch output port residence times

In a network with buffered output ports, the cost of contention for a port is reflected by the queueing
terms in the residence time equation (i.e., all terms other than S., in Equation (2)). This leads to
a per-visit response time that is larger than the service time. In our model, there is no buffering
capacity on the output ports, and hence the per-visit response time must be equal to the service
time; the residence time of a class ¢ customer on output port o is therefore

Rco = ¥Yco (3)



(Note that S., = 1 for all ¢,0.) The analogue to contention in our model is deflection. Analytically,
deflection manifests itself as an increase in the visit counts to the switch output ports, which is
discussed in Section 2.6, and as an increase in the queue lengths at the injection queues, discussed
in Section 2.5.5.

2.5.3 Processor residence times

Residence time equations for processors are the next simplest, since the only class of customer that
visits processor p is class p. Since there is queueing of customers at processors (queued customers
represent “potential future requests” to be made by this processor), the residence time equation
takes on a form that is more typical of AMVA:

NC -1 NC -1
Rpp = 5p + Sp(Qpp - Upp) <W> + (Sp - 1)UppW (4)

Note the following:

e The visit count to a processor is by definition equal to 1.

e The average remaining service time of an in-service customer, despite the fact that service
times have a geometric distribution, is only S, — 1. This is less than expected due to the
discrete nature of the arrival instants.?

If S, = 1, Equation (4) reduces to

NC -1
Ry = 1+ (Qpp - Upp) (W)
NC -1
= 1+ pr(Rpp - 1) <W)
Rpp—1 = ~(Rp—1)

(5)

Note that since v is strictly less than 1, the only solution to this equation is R,, = 1. This seems
counter-intuitive, until one realizes that the only way queueing can occur in such a situation is if
more than one customer arrives in the same clock cycle. Thus, Equation (4) ought to contain a
term to account for the possibility of simultaneous arrivals. This term is

SP VZZP VZ;P NC -1
CeNt R (g PR x T 6
2 vap Vo) TP NC (6)

Here we have used the technique of [29]. % is the probability that a class p customer visiting

processor p came from source 7 € {0,...,F — 1} U {x}.* Likewise, 1 — % is the probability that

3See the appendix for a formal derivation. To gain some insight into this expression, note the following. If
Sp = 1, then clearly an arriving customer will never be delayed by a customer already in service, since that customer
would necessarily be leaving at the end of the same clock cycle in which the arriving customer arrived. At the other
extreme, if S}, is very large, then arrivals “appear” to be continuous to the customer in service, and so the effect of
the discretization of arrival times on that customer’s expected remaining service time is negligible.

4VP*P is the number of visits to processor p by customers returning from memory module p, which is simply Ppy.



a class p customer visiting processor p did not come from source 3. pr% is the steady-state
probability of some other class p customer arriving at processor p, as observed by the current
class p customer. Thus, the expression inside the square brackets is the conditional expectation of
the number of other customers arriving at processor p, given that they did not arrive on input 3.
The sum unconditions this expression with respect to the source (z) of the class p customer under
consideration. Finally, the factor of 1/2 accounts for the random resolution of such conflicts by the
switch logic.

The results presented in Section 3 were obtained by including this term in Rp,; however, the
magnitude of this correction is negligible for realistically large network sizes with uniform memory
access patterns. For small NC, it is clearly unlikely for two class p customers to arrive at any switch
simultaneously; for large NC, the network becomes very busy, and the fact that each network link
can hold at most a single customer implies that there are on average only F' customers of each class
anywhere in the network. In such a situation, most customers are buffered either at the processors,
the memories, or are waiting to enter the network. Which of these scenarios is most likely depends,
of course, on the relative service times of the processors and memories.

2.5.4 Memory module residence times

Residence time equations for memory modules are more complicated than those for processors
in two respects. First, all customer classes can potentially visit a memory module. The second
complication is a consequence of the first: it is no longer acceptable to ignore the possibility of
simultaneous arrivals. This leads to the following expression:

NC -1
R = Ve Sm |1+ (Qcm — Ucm)W + Z(ka - Ukm)

k#c
S, —1 NC -1
2 NC =
S Vi Vi NC -1 Vi
rm cm 1— cm Xcm 1— km Xm 7
+2; Vo ( ch) NC +,§( Vkm) k (M

The terms of this equation have interpretations identical to those in the previous section, with the
proviso that we must now include customers of other classes in each term. One additional difference

is that, since service times are deterministic, 7.,, = %

2.5.5 Injection queue residence times

Because of the fact that there is no queueing allowed on switch output ports, customers that wish
to enter the network at a switch (whether generated by the processor or the memory module) must
defer to all traffic that is passing through that switch. Such customers wait at a special queueing
center at that switch called the injection queue.

In reality, the injection queue is a pure queueing center. That is, it has no server of its own:
the customer at the head of the injection queue waits for a free cycle at one of the output ports.
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Because of this unusual characteristic, the injection queue is very difficult to model accurately. (See
Sections 2.8 and 3.)

Our strategy for modeling this phenomenon is to pretend that the injection queue has a server,
and set the average service time at this server is equal to the average time spent waiting for a free
output port, which we can calculate from the utilizations of those output ports. This is similar
to the so-called shadow server technique for modeling the delays experienced by a low-priority
customer at a non-preemptive priority-scheduled FIFO server [15].

For any class ¢ and output port o, let uz, be defined at follows:

Vi\ NC -1 v
o=U,o|[1-=2)— = Upo [1 — =2 8
" (1-32) “¥e > o (1-52) ®)

Uz is the utilization of output port o by customers that do not originate at (i.e., pass through)
switch |o/F|, as seen by a customer of class c¢. Assuming that the ug are independent,® the
probability of a class ¢ customer at the head of injection queue ¢ being unable to leave the queue
in any given clock cycle is

Fq+F—-1
fcq = H Ugo (9)
o=Fgq
If we model the clock cycles a class ¢ customer spends at the head of the injection queue as a
sequence of Bernoulli trials with probability of failure f.,, then the number of such such clock
cycles has a negative binomial distribution. The mean shadow service time for a class ¢ customer

is thus f
Seg = —2— (10)
“ 1- fcq
Note that service times at the injection queue are class dependent, and that the service time
distribution is memoryless (under the assumption of discretized arrival instants).
The visit count at the injection queue is

) 1-P, ifc=g
ch_{ P, ife#gq (11)

This follows immediately from the following facts: (a) the only visits to injection queue ¢ by class ¢
are requests from processor ¢ to some memory module other than c,® (b) the only visits to injection
queue ¢ # ¢ by class ¢ are replies from memory module ¢ to processor c.

The term representing simultaneous arrivals depends on whether or not ¢ = ¢. If ¢ = ¢ then
the customer under consideration originated from processor ¢. In this case, the only possible
simultaneous arrival must come from the local memory module, which implies that the class of
said arrival is different from c. On the other hand, if ¢ # ¢ then the customer under consideration
originated from memory module ¢. In this case, the only possible simultaneous arrival must come
from the local processor, which implies that the class of said arrival is equal to ¢. Using these
observations, we can write down an expression for the expected service time of all simultaneous
arrivals:

D SkgXng ifc=gq
'¢cq = k#c . (12)
Sq9Xqq ifc#q

®N.b.: this assumption may be substantially inaccurate.
6This is because traffic between a processor and its local memory does not utilize the network.
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This quantity will, of course, be multiplied by 1/2 to reflect the random ordering of these arrivals
in the queue.

Given V., Scq, ¥cq, and the fact that 7., = S, the residence time equation for a class ¢
customer at injection queue ¢ can now be written as:

NC -1

1
ch = 1fcq ch + chchW + Z Skqqu + §¢cq (13)
k#c

The astute reader might have noticed that since the clock cycle during which the departing
customer is using the output port is counted in the output port residence time equation, rather
than in the injection queue residence time equation, the lower bound on the shadow service time is
0. Thus, the model theoretically allows arbitrarily many customers to leave the queue on the same
clock cycle, which is clearly an architectural impossibility. It would seem that the potential loss
of accuracy caused by ignoring this feature is small. The reasoning: unless the network is heavily
loaded, the probability of there being more than one customer in the injection queue at any time
is very small. On the other hand, if the network is heavily loaded, then the probability that the
shadow service time is 0 is very small, and thus the probability of more than one customer being
able to leave the queue on the same cycle is “very small.” Although this reasoning may seem quite
plausible, there are in fact cases in which it breaks down rather badly; we discuss this further in
Section 3.

2.6 Visit count computation

After each evaluation of the model using AMVA, new visit counts are calculated based on perfor-
mance metrics just obtained. This section describes our method for accomplishing this.

The hardest part, conceptually speaking, in the calculation of visit counts is the computation
of the branching probabilities b.sio(d) and besso(d). Given these probabilities, visit counts can be
computed by solving several sparse systems of linear equations whose non-zero coefficients are the
branching probabilities.

The branching probabilities depend on the probability of encountering a conflicting customer
from another source at each output port; these latter probabilities are in turn estimated from
performance metrics of the previous AMVA iteration. However, the branching probabilities also
depend on the the topology of the network (i.e., the fanin/fanout of the switches, whether or not
there is a concept of a preferred path to a given destination, and whether or not there is more than
one such path) and the contention-resolution logic of the switches. For this reason, it is impossible
to write down a general expression for the branching probabilities as a function of the conflict
probabilities. We illustrate the computations by assuming a shuffle-loop network with a switch
fanin/fanout F = 2.

We first describe the computation of bes.o(d), the probability that a class ¢ customer being
injected at switch s, bound for switch d, will depart on output port o. Since this customer must
defer to all traffic through switch s, the probability of being unable to use output port o on any
given clock cycle is ug,, the total utilization of that output port by customers passing through the
switch, as seen by an arriving customer of class ¢ (Equation (8)).

One of the interesting things about the shuffle-loop topology is the fact that if the length of
the shortest path from a given source to a given destination is less than logz IV, then that path is
unique. A consequence of this is that the message has only one choice among the output ports at

12



each switch in order to remain on this path; we call such an output port the preferred output port.
On the other hand, if the shortest path is longer than logz N, then there are no preferred output
ports until the message has traveled far enough to reduce the distance to logz N. The existence of
a preferred output port for a given class at a given switch is a static property of the network.
Thus there are two cases in computing the branching probabilities, depending on whether or
not a customer at switch s bound for switch d has a preferred output port or not. Consider the
former case, and suppose the preferred output port is p, and call the other output port o. Then

bcs* d = (1 —uep)
D = T (14)
beseo(d) = Touune

The first expression is simply the conditional probability that the preferred output port is not
busy, given that it is not the case that both output ports are busy. The second expression is the
conditional probability that the preferred output port is busy but the other output port is not,
given that they are not both busy.

In case there is no preferred output, the branching probabilities become

(o)) (wn ()4 E(1 - (<))
Perald) = () oo b =) (15)
bcs*l(d) = A =

1—wug(c)ui(c)

(Note that we have labeled the ports simply as 0 and 1 in this case because neither port is preferred.)
Each of these expressions reflect that the given port is not busy, and that either (a) the other port
is busy, or (b) the other port is not, in which case the customer chooses each port with probability
1/2.

We next describe the computation of b.,;,(d), the probability that a customer arriving on input
port ¢ will depart on output port o. In this case we need to estimate from the AMVA outputs the
probability that a customer from the other input port j wishes to use each of the possible output
ports.

A simple (and incorrect) way to estimate this probability is by analogy with the b.s.0: simply
compute the utilization of each output port by customers from input port j. The reason that this
is incorrect is very subtle: the utilizations do not represent the probability that a customer actually
wanted to use a given output port, only that the customer ended up doing so (in the previous
AMVA iteration).”

A better estimate is to base the conflict probability for output port o on the throughput of
input port j and the probability that a customer from j “wants” to take output port o. The
latter probability is difficult to compute, but we can estimate it from V0., the (static) visit counts
from an identical network without deflections. (The V0 are computed at the very beginning of the
model evaluation as inputs to the first AMVA iteration, so no extra effort is required.) Then the
probability that a class ¢ customer arriving on input port 7 # j “sees” a customer from input port
J trying to use output port o, which we will call ¢;,, is

Ep Vlgp VO‘Iio
. J
ij Ep VOkp

Y, Vi Vo, NC-1

tejo = X ] :

+ D X[k][j] (16)
k#c

"Note that this was not a concern in the case of b.s«o because it was assumed that a customer being injected into
the network cannot affect the routing of customers passing through the switch.
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All summations are over all outputs ports p at this switch. The first quotient in each term, based on
the visit counts from the previous AMVA iteration, is the probability that a customer arriving on
input port j actually passes through the switch (rather than sinking there). The second quotient,
based on the static visit counts, is the probability that said customer chooses output port o from
the choices available to it.®

The t.;, can be used to compute the branching probabilities as follows: for the asymmetric case
(preferred output p and other output port o),

besip(d) = 1_% (17)
bcsio(d) = teip

and for the symmetric case (no preferred output port, ports labeled simply 0 and 1),

bcsiO(d) = tcjl + %(1 - thO - tcjl)
bcsil(d) = tch + %(1 - thO - tcjl)

(18)

With the dynamic branching probabilities in hand, the visit count for class ¢ customers that are
bound for destination d at output port o of switch s can be computed from the following nsp X nsp
system of linear equations:

0 ifs=d
_ Ez bcszo(d)tfcz(d) —I_ bcs*o(d)Pcd if S =2¢ # d
Ve,Fsto(d) = 3 besio(d)Vei(d) 4 besso(d)Pes if s #c=d (19)
Ei bcsio(d)Ifci(d) otherwise

In all cases o takes on the values 0,...F — 1, and in the last three cases the summation is over all
input ports to switch s.

The first formula corresponds to the case in which the output port is at the destination switch.
Since we are restricting our attention to traffic that is bound for this switch, the output port visit
counts in this case clearly are 0.

The next three formulas all contain an identical linear combination of the visit counts at the
input ports of switch s (which are, of course, the same as the visit counts at the output ports of
the switches that feed switch s). The coefficient of V,;(d) is just the probability that a message
coming in on port ¢ will be routed to output 0. In “most” cases this is the entire right-hand side of
the equation. However, for two special sub-cases there is an additional constant term.

In the first of these special sub-cases (s = ¢ # d), the switch under consideration is the source
of all class ¢ requests. Therefore, the switch is adding a total of P.; to the visit counts of its
output ports, where the allocation of these customers is determined by the branching probabilities
of injected messages.

In the second of these special sub-cases (s # ¢ = d), the destination node is the home node for
class c. In this case, the traffic being analyzed consists of replies to processor ¢. Thus, each switch
s # d is adding a total of P,, to the visit counts of its output ports.

Once the visit counts as a function of destination d have been computed, the total visit counts
for each output port follow simply by summing over d. To obtain the partial visit counts, sum over

8 Unfortunately, in the statically routed network there may be some ports j that a customer of class k never visits,

causing the denominator of this quotient to be 0. In such cases we substitute the quotient <% —
cp
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the individual terms in Equation (19). For example, in the case s = ¢ # d,

I/ci,Fs—|—o = Ed bcsio(d)ni(d)

cTFs-l—o = Ed bcs*o(d)Pcd (20)

The other cases are analogous.

The total visit counts for the memory modules, as well as the partial visit counts from the local
processor, never change. To obtain the partial visit counts to memory module m from any input 2
of switch m,

;i )0 ife=m
o @

A similar technique can be used to obtain the partial visit counts to the processors (cf. Equation 6).
This completes the visit count calculations.

Solving for the visit counts is the most computationally expensive step in the entire model.
This is because we must solve a nsp x nsp linear system for each (class, destination) pair. The
time complexity of the visit count calculation is thus O(npe?nsp®) = O((INS)°F3). Because of this,
a customized Gaussian elimination algorithm was created to exploit the special structure of the
sparse coefficient matrix. The complexity of this algorithm is O((N F)3) rather than O((N SF)3),
reducing the total complexity to O(N°S2F3). Nevertheless, this step is obviously still the chief
limitation on the size of the network that can be analyzed with this model. Approximations that
will result in a reduction of this complexity are the subject of ongoing research; see Section 4.

2.7 Initialization

Initialization of AMVA variables is done only once, before the first AMVA computation. For subse-
quent outer iterations of the model, the last values obtained from the previous AMVA computation
are used as the initial values for the next AMVA computation.

Proper initialization is important since some of the response time equations depend not only
on queue lengths but also on throughputs and utilizations. Failure to initialize these variables in a
consistent manner was found to lead to negative response times in some instances.

Our framework for a consistent initialization assumes that the memory modules are the bottle-
neck servers. (For realistic systems, this is probably not too far from the truth.) Thus we initialize
memory queue lengths as though all customers were queued at the memories: for each customer
class ¢ and memory module m, Q.,, «— P.,NC.

A consequence of the memories being bottlenecks is that initial system throughput for class ¢
is limited to X, = 1/Sp,. Initial throughputs for memory modules are thus X, «— P;;/Smm-
Since we do not know output port visit counts, we assume that initial output port throughputs are
Xeo — 1/nsp-1/Smm.-

Similarly, assuming that there is no queueing anywhere except the memory modules implies that
response time at any processor p will be approximately Spc. This implies that for any processor p
we must initialize Q, «— Spe/Smm.>

Initialization of injection queue measures is not critical, as response time for an injection queue
depends mainly on the utilizations of its output ports.

®Note that this results in total queue lengths for each class initially adding up to slightly more than NC; this has
not been found to be a problem.
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2.8 Convergence

Due to the nature of several of the approximations used in the model, it is often the case that the
throughput for a customer class will exceed one, which is, of course, impossible. The two main
causes of this are:

e the assumption that response time at a switch output port is exactly one, and

e the reduction in time spent waiting for an in-service customer because of the synchronous
nature of arrivals.

When a class throughput exceeds one, most or all switch output port throughputs will also
exceed one. This is a serious problem, since it may lead to negative shadow service times at the
injection queues (refer to Equations (8-10)). Failure to address this problem results in a catastrophic
breakdown of the model.

We address this problem in the following way. After calculation of the switch output port
throughputs, if any of them exceeds one then we scale down all of them by a factor that is equal to
the maximum such throughput. This results in a new set of switch output port throughputs whose
maximum is exactly one.'?

Obviously, in order to reduce throughput we must increase response times somewhere. We

choose the injection queues, for two reasons:

e The injection queue is the feature of the architecture that is supposed to provide the buffering
capacity that the network is lacking.

e Since injection queue service times are not fixed, but are actually functions of other model
variables, we reason that the “lion’s share” of the inaccuracy must be in the injection queue
response times. In fact, comparison with simulation results confirmed this hypothesis.

Therefore, the technique we propose is to scale up the injection queue response times enough to
bring the maximum switch port throughput down to one.

Let X > 1 be the maximum switch output port throughput. We wish to obtain new per-class
throughputs X! = XC/X. Let P., M., S., and I, be, respectively, the total of all processor, memory
module, switch port, and injection queue response times for an arbitrary class ¢, and let T, be their
sum. Then X! = X./X implies that

P+ M.+ 5.+ 1 X(Po+ M.+ 5. +1.)
I = L+(X-1)(P.+M.+5.+1.)
I' = I+ (X -1)T,
Therefore, for each class ¢ and injection queue g, we multiply the injection queue residence time
R, by the following scale factor: ~
(X - 1)T.
Y Req

Empirical evidence (Section 3) suggests that this works quite well.

Qg =1+ (22)

1A switch output port throughput exactly equal to one does not pose a problem, because of the factor of N]\(;'C_.l

in Equation 8.
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At this point one might question the utility of the injection queue response time equations
(Equations 8-13)! After all, it seems that we must “reverse engineer” the injection queue response
times using the method outlined in this section. However, in any model evaluation for which the
output port throughputs do not exceed one, this method is inapplicable. In such cases, the injection
queue response time equations work quite well.

Despite these efforts (or perhaps because of them), in some cases the model will not converge to
a unique set of values, but will oscillate back and forth between two sets of closely-spaced values.
Typically this happens only in cases in which the switch output ports are almost but not quite
saturated, and then only rarely. Such cases will be discussed further in the next section.

3 Results

In this section we present data to validate the model. All results in this section, unless noted
otherwise, pertain to a Shufflenet topology with 3 stages of 8 processors each.  Every processor
references each memory with equal probability.

Unless explicitly stated otherwise, the following conventions should be assumed for each of the
plots presented here: the solid curves were generated by the model developed in this paper; the
dashed curves were generated by a simulation; and the dotted curves were generated by a model of
an identical topology network with infinite output buffers at each switch output port (and hence no
deflections).!! All simulations results are the average of three simulation runs; each run was 36,000
clock cycles in length, with the first 4,000 clock cycles deleted from the performance measures.

Figures 3 and 4 show the average total response time and total network throughput, respectively,
for a network with 5, = 1 and various values of S,,. Although S, = 5,, = 1 is not very realistic,
it represents a “stress case” for the model, since it causes very high utilization of the network,
and hence deflections play a major role in performance. As the figures show, the model is quite
accurate, and is a dramatic improvement over not modeling deflections at all.

These figures also demonstrate that §,,, within the range shown here, has no effect on perfor-
mance for NC > 4. This shows that at larger customer populations, the network itself becomes
the bottleneck. Note that we did obtain results for larger customer populations (up to 24 as of this
writing), but these are not shown because (a) the graphs are almost perfectly linear outside of the
range shown, and (b) expanding the graphs would obscure the detailed behavior of the model at
the lower customer populations.

Figures 5 shows the average injection queue response time. Agreement with the simulation
results is excellent, especially when one considers all of the approximations made in the injection
queue response time equation.

Figure 6 shows the average memory module response time. There is some disagreement here
between the model and the simulation at §,, = 4.

Figure 7 shows the average response time at the processors. We have shown the line R,, = 1
for visual reference. Note that processor response time never gets much larger than 1, which
corroborates the reasoning of Section 2.5.3. Had we not included the term (6) in the response time
equation, the error (relative to the simulation) would have been no greater than about 6%.

1The no-deflection model is a straightforward adaptation of the model of [29] to the Shufflenet topology. It was
separately validated by another simulation, the results of which are not shown here.

17



Response Time

Throughput

8x3 Shufflenet, Sp=1

70 T T T T T
Sm=4 =
| Sm=4 = |
60 - gm=2 o
Sm=2 —+—
50 | SM=2 -+ .
Sm=2
Sm=l -
40 | Sm=1 < -
Sm=1 -
30 r .
20 r .
10 | & .
O 1 1 1 1 1
1 2 4 8 12
NC

Figure 3: Average per-request total response time, 5, = 1.
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Figure 4: Average total network throughput, S, = 1.
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Figure 5: Average injection queue response time, S, = 1.
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Figure 7: Average processor response time, S, = 1.

Figure 8 shows the average output port utilization. Although this metric is quite challenging
to estimate accurately (the model predicts utilizations of exactly 1 at higher populations due to
scaling) the agreement is quite good.

Figure 9 shows average total response times for S, = 2 and §,, = 2,4, 8. Note that the curve
for S,, = 8 has split off from the other two. Examination of Figure 10 immediately shows why:
at this point the memory modules become the bottleneck. Figures 11 and 12 corroborate this.
Since injection queue times are essentially 0 and output port utilizations are well below 1, the no
deflection model works as well as the deflection model in this case.

Figure 13 shows total response times for even larger values of S, and S5,,. As these values
increase, the network itself becomes less of a bottleneck, and as a result the no-deflection model
comes into better agreement with the deflection model. At §, = 10, 5,, > 10, which is not shown
here, both models are in virtually perfect agreement with the simulation results.

In some rare cases the model does not converge to a unique value, but rather oscillates between
two closely-spaced values. This oscillation seems to be centered around the injection queue response
times. Figure 14 shows the magnitude of these oscillations for all cases in which they were observed
(a total of 3 cases out of 84 parameter settings). What these parameter settings all have in
common is that the resulting port utilizations are approaching, but have not reached, their limiting
values. This suggests that this phenomenon probably is caused by the throughput scaling technique
discussed in Section 2.8.

Another limitation of the model is that it severely underestimates the response time of the
injection queue associated with a “hot” memory module. The most probable cause of this discrep-
ancy is that most of the traffic visiting the hot switch is bound for the hot memory module; very
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21



8x3 Shufflenet, Sp=2
90 T T T T

70

50

S bEb

30

Memory Module Resp. Time

20

Figure 10: Average memory module response time, S5, = 2.

8x3 Shufflenet, Sp=2

25 F Sm=2 —~—
Sm=2 o
® Sm=4 ——
E 0 Sm=d -
= Sm=8 —=—
& Sm=8 © -
x L
s 15
o
2
o
c 10 -
9
8
IS
o ——
1 2 4 8 12
NC

Figure 11: Average injection queue response time, S, = 2.
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8x3 Shufflenet, various parameter settings
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Figure 14: Injection queue response time convergence anomalies.

little traffic passes through this switch without stopping. Hence, uz, (the output port utilization
due to in-flight messages) is very low. Thus, the model predicts small S, and small injection queue
response times. In reality, however, the high throughput of the injection queue raises 5, since a
message about to leave the injection queue for a particular output port o must wait an additional
cycle if another message just left the injection queue for 0. The model does not take this possibility
into account. In fact, the model theoretically allows an arbitrarily large number of messages to
leave the injection queue on the same clock cycle, since there is a non-zero probability that S, = 0.

For this reason, we do not feel the model is suitable for non-uniform memory access patterns
in its present state of development. Enhancements to overcome this limitation are currently being
studied.

4 Conclusions and Future Directions

The primary goal and contribution of this research has been to extend the scope of Approximate
Mean Value Analysis to systems in which customer routing is dynamically determined as the model
is evaluated. We have applied this technique to the problem of modeling deflection routing in
bufferless multistage interconnection networks with uniform memory access patterns. The accuracy
of the results is very encouraging.

At the same time, we also are providing the modeling community with further examples of the
techniques for analyzing synchronous systems that were introduced in [29].
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A secondary goal of this research, which is not yet fully realized, is the accurate modeling of
pure blocking centers (the injection queue in our model) whose response time is a function of the
state of some set of downstream centers (the switch output ports). While the initial efforts are
encouraging, much work remains to be done to make this technique more robust. In particular,
it appears to be quite challenging to impose an arbitrary, fixed limit on the number of customers
that can simultaneously depart from such a server. We are currently experimenting with a number
of alternatives in this direction.

An important limitation of the current technique is its computational complexity. For small-
to medium-size problems (up to 64 node networks) it is faster than or competitive with careful
simulation. However, since the dominant term in its complexity is N°, it is unsuitable for problems
larger than this. There are many promising avenues of exploration that we intend to pursue
to improve this situation. For one, it might be possible to reduce the number of linear system
solutions in the visit count computations by aggregating visit counts by customer class or location.
Although this would compromise accuracy, the degree to which it would do so is unknown. As
another possibility, it might be more efficient to use a simple, fast simulation to find the visit
counts, alternating with the AMVA calculation. This is an example of hybrid modeling [5, 23].
Finally, it might not be necessary to solve the linear systems at all: an alternative approach would
be to iterate the set of Equations (19) once during each AMVA iteration. The effect of this technique
on accuracy and on the rate of convergence needs to be studied.

We are quite optimistic about the prospects for improving the efficiency of the technique, and
we do not see the current inefficiency as a major shortcoming. We view the current technique as
a necessary precursor to a more efficient technique, a sort of “existence proof” that AMVA can
be applied at all to the architecture described here (at least when cost is no object). After all,
the AMVA technique itself is a prime example of a second-generation technique that alleviated the
serious computational obstacles of its predecessor, MVA, but this does not diminish the important
contribution of MVA itself.

There are several variations of the current architectural model to which we would like to extend
the technique. Among these are:

e Pipelining on network links. In an optical network that spans a city, a campus, or even a
single building, the length of a fiber link and the speed of message switching are such that
several messages can be in transit at the same time on a single fiber, in a pipelined fashion.
Thus, there is significant buffering capacity available in the fibers themselves. This is an
important real-world consideration that we would like to incorporate into the model.

e Alternative switch routing logic. We can envision many possible alternatives. For example,
messages might be injected at switch inputs rather than switch outputs. A priority assign-
ment could be imposed to favor messages coming from the memory modules over messages
from the processors. Messages in the injection queue might not enter the network until an
optimal output port became available. We can even imagine an ultra-fast network that does
completely random routing, relying on purely probabilistic guarantees of message delivery.

e Alternative injection queue assumptions. There might be one injection queues per output
port, with no opportunity to move between them after the initial choice had been made.
There might be a synchronization delay when messages transit from the electronic to the
optical domain (and vice-versa).
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An obvious omission from the list just given is the handling of multi-packet requests. Unlike
purely electronic networks, the bandwith of a fiber link is so high that individual packets can
be extremely large; one such technique for accomplishing this is wavelength division multiplexing.
Furthermore, it is not clear that an optical network could route multi-packet requests any differently
than single packet requests even if it wanted to, since the deflection routing discipline completely
dashes any hope of keeping related packets traveling together.
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Figure 15: Graphical depiction of residual life.

A Derivation of Mean Residual Life of a Discrete Random Vari-
able

The derivation in this section is a modification of a derivation of Bertsekas and Gallager [2] for the
mean residual life of a continuous random variable.

Let X = {z1,22,...} be a discrete renewal process with renewal points {¢1,2,...}, and let r(¢)
be the residual life of X at time ¢:

ift € {t1,t9,...}

0
r(t) = { e, —(t—t;) ift; <t <t =

A graphical depiction of 7(t) is shown in Figure 15. Note that we define r(¢) to be 0 at all renewal
points.’? Also note that although r(t) is defined for all real ¢, we assume that it can be observed
only at discrete points in time, as indicated on the t-axis.

From this diagram, it is straightforward to calculate the mean residual lifetime of X as the
average height of 7(t) at all of the discrete points on the ¢-axis. Let N(¢) be the number of renewals
up to time £. Then:

1 T N(T) z;
P fmgd ) —11520%2;
- lm—(Z)Z<>1m—(E)¥
- () (i & 57 - e 25
_ % (24)

The formulas for 7 in Equations (4,7,13) follow immediately.

12This corresponds to our notion that a customer arriving at the end of a clock cycle in which another customer is
departing does not “see” the departing customer at all.
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