Data Flow Equations
for
Explicitly Parallel Programs

Dirk Grunwald and Harini Srinivasan
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

CU-CS-605-92 July 1992

&

University of Colorado at Boulder

Technical Report CU-CS-605-92
Department of Computer Science
Campus Box 430
University of Colorado

Boulder, Colorado 80309

Copyright © 1992 by
Dirk Grunwald and Harini Srinivasan
Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, CO - 80309

Data Flow Equations for Explicitly Parallel Programs

Dirk Grunwald*and Harini Srinivasan
Department of Computer Science
University of Colorado at Boulder

Campus Box 430
Boulder, CO - 80309

July 1992

Abstract

We have extended the standard monotone dataflow system for the reaching definitions prob-
lem to accommodate explicitly parallel programs; this information is used in many standard
optimization problems. This paper considers the parallel sections construct, both with and
without explicit synchronization; a future paper considers the parallel do construct. Although
work has been done on analyzing parallel programs to detect data races, little work has been
done on optimizing such programs; the equations in this paper should form the basis for exten-
sive work on optimization.

1 Introduction

In this paper, we describe a data flow framework [1] for computing the reaching definition infor-
mation in parallel programs with a view of being able to optimize such programs. It is desirable
to be able to perform classical code optimization on parallel programs for two main reasons: first,
parallel programming and the use of explicitly parallel constructs is becoming common in scientific
and numerical programs. Second, we are interested in being able to achieve good execution rates
of such programs on high performance architectures. Though extensive work has been done on
analyzing parallel programs for potential races [6, 4, 2], little work has been done on analyzing
parallel programs with an aim of being able to perform code optimizations. Midkiff and Padua [7]
point out the difficulties in optimizing explicitly parallel programs. Our work focuses on developing
an intermediate representation for optimizing parallel programs.

Reaching definition information, i.e., the set of definitions reaching each use of a variable in
a program is vital for various code optimizations; some of them include constant propagation,

induction variable analysis, common subexpression elimination, dead code elimination etc. Most

*This work was supported in part by the National Science Foundation under NSF Grant CCR-9010624.

(1) j=0 (1) j=0
(1) k=1 (1) k=1
(2) loop (2) loop
(3) if (condition) then (3) Parallel Sections
(4) i=j+1 (4) Section A
else (4) i=j+1
(5) k=5 (5) Section B
(6) endif (5) k=5
(6) 1=k + 4 (6) End Parallel Sections
(7 endloop (6) =k + 4
) endloop
(a) Sequential Program (b) Parallel Program

Figure 1: Example sequential and parallel programs.

commercial compilers use the bit vector intermediate representation, and we feel the extensions
presented in this paper can be easily incorporated in compilers to analyze explicitly parallel pro-
grams.

In our work we consider the parallel extensions to FORTRAN as specified by the Parallel
Computing Forum [9], which is the basis of the ANSI committee X3H5 standardization effort. As
mentioned earlier, the performance of parallel programs on existing and future high performance
architectures depends to a great extent on the ability to perform aggressive code optimizations,
particularly scalar optimizations across parallel constructs. Most of the existing compilers for
parallel programs do not perform scalar optimizations across parallel constructs. Instead, they
restrict optimizations to specific sequential sections of code in the parallel program.

Consider the sequential and parallel programs in Figure 1; these two programs have very similar
control flow structures. The variable ‘j’ in 1(a) is not an induction variable, because the if ..
then may not be executed for each iteration of the loop. However, in the parallel program, ‘j’ is
an induction variable since both branches of the Parallel Sections statement always execute for
all iterations of the loop, but this could not be automatically detected without adequate dataflow
information. Detecting such induction variables is useful for strength reduction, data dependence
analysis and other optimizations. Likewise, dataflow information would show that the variable ‘k’
has the value 5 at the end of the parallel construct during each iteration.

In section 2, we explain data flow analysis and explain how the reaching definition information
is computed in sequential programs. Section 3 describes the parallel constructs and the semantics

of the parallel constructs considered in this paper. In Section 4, we describe data structures

Figure 2: Control Flow Graph for the sequential program in Figure 1.

to represent such constructs. Section 5 extends the data flow equations for computing reaching
definition information in sequential programs, to handle parallel constructs and in Section 6 we

extend these equations to handle synchronization in the form of post/wait statements.

2 Global Data Flow Analysis

The problem of global data flow analysis can be explained as follows [8]: given the control flow
structure, we must discern the nature of the data flow (which definitions of program quantities
can affect which uses) within the program. Data flow problems are often posed as a system of
equations based on the Control Flow Graph of the program. A Control Flow Graph, CFG, of a
program is a directed graph, (V, E,Vy), where V is the set of vertices representing basic blocks
in the program, E is the set of edges representing flow of control in the program and Vj is the
unique node representing the entry into the program. We say a node P is the predecessor of node
Q if there is an edge in the CFG from P to Q. For each vertex in the CFG, we define some basic
attributes, which can be defined unambiguously from an analysis of the program. Then we define
inherited and synthesized attributes in a set of data flow equations, and solve these equations.
This section discusses the data flow equations to solve the reaching definitions problem in
sequential programs [1]. The reaching definition problem is to find the set of definitions of a variable
‘v’ that can reach a particular use of ‘v’. This is also referred to as the ud-chaining problem in the

literature. In the later sections of the paper, we explain how these equations can be extended to

Exit

J1s k1, Ja, ks
J1, k1, Ja, ks

Node | Gen Kill In Out
Entry | {} | {} {} {}

(1) | Jus k1 | Ja, ks {1} J1, k1

(2) {} {} J1, k1 J1, k1

(3) {} {} J1, k1 1, k1

(4) Ja 3l J1, k1 Ja, k1

(5) ks ky J1, k1 1, ks

(6) le {} J1s k1, Jas ks | ley J1, K1y Ja, ks

(7) {} {} J1, k1 1, k1
Exit {} {} J1, k1 J1, k1
Entry | {} | {} {} {}

(1) | Jus k1 | Ja, ks {1} J1, k1

(2) {} {} J1s k1, Jas ks | ley J1, k1, Ja, ks

(3) {} {} | e d15 K1y Jas ks | ley J1, K1y Jas ks

(4) Ja 3l ley j1s K1y Jas ks | ley Ja, k1, ks

(5) ks ki | ley g1, b1y Jas ks | e,y 1, Jay ks

(6) le {} J1s k1, Jas ks | ley J1, K1y Ja, ks

(7)

ley j1s k1, Jay ks
le, j1, k1, Ja, ks

Table 1: Table showing two iterations of the data flow equations to solve the reaching definitions

problem for the sequential program in Figure 1(a).

solve the reaching definitions problem across parallel constructs and synchronization constructs in

explicitly parallel programs.

2.1

We say a definition of a variable ‘v’ reaches a point p in the program if there is a path in the CFG
from that definition to p, such that no other definitions of ‘v’ appear on the path. To determine
the definitions that can reach a given point in a program, we first assign a distinct number to
each definition. Our problem is to be able to find for each node n of the CFG, In(n), the set of

Reaching Definitions

definitions that reach the beginning of n.

Formally, a definition d of a variable name ‘v’ reaches a node n if there is a path ny,ng,...,ng,n

in the flow graph such that

1. dis within nq,

2. d is not subsequently killed in n; (i.e., ‘v’ is not redefined) and

3. dis not killed in any of nj, ..., ng.

One way of calculating In(n) is to determine all generated definitions and then to propagate
each definition from the point of generation to n. An easy way of doing this is to solve the following

set of 2N simultaneous equations for a CFG of N nodes:

Out(n) (In(n) — Kill(n)) U Gen(n)]
In(n) = U Out(p).

p € pred(n)

Out(n) is similar to In(n) but pertains to the point immediately after the end of the basic block.
Kill(n) is the set of definitions outside of n that define variables that also have definitions within n
and Gen(n) is the set of definitions generated within n that reach the end of n. We are interested in
the smallest solution possible for In, which is why we start with In as the empty set for all n. The
algorithm that computes the In sets starts with this initial approximation and iterates through the
above set of equations until a fixpoint is reached. This particular set of equations and the iterative
algorithm form a monotone dataflow system. In such a system, the order of traversal of the CFG
only affects the convergence rate of the different sets to their fixpoint. It has been proven that
a depth first traversal of the CFG helps reduce the number of iterations to five in most practical
cases [1].

The CFG for the sequential program in Figure 1 is given in Figure 2. Variable ‘j’ is defined at
nodes (1) and (4); call these j; and j, respectively. The reaching definitions for the use of ‘j’ at
node (6) are j; and js. The In, Out, Kill and Gen sets for the different nodes are given in Table 1.
This table shows two iterations of the data flow equations; the third iteration is the same as the
second, indicating that a fixpoint has been reached.

This example illustrates how the In and Owut sets are computed for sequential programs, given
the Gen and Kill sets. In the following sections, we derive an analogous procedure for explicitly

parallel programs.

3 Parallel Constructs

In this paper, we only consider the Parallel Sections construct [9]. The Parallel Sections
construct is used to specify parallel execution of explicitly identified sections of code. Each section of
code is interpreted as a parallel thread, and must be data independent except where an appropriate
synchronization mechanism is used. The Parallel Sections construct can also be nested, appear
in the body of a loop and so on.

We consider synchronization between threads in the form of event synchronization, described by

a binary event variable. Operations are available to indicate that an event has occurred (post), to

(Entry) event(ev)

(Entry) X =2

(Entry) y=25

(1) loop

(2) Parallel Sections

(3) Section A

(3) if (condition) then

(4) x=1

(4) post(ev)
else

(5) x=8

(5) post(ev)

(6) endif

(6) z=yx%x7

(7 Section B

(7 Parallel Sections

(8) Section B1

(8) wait(ev)

(8) x=x*32

(9) Section B2

(9) z=1y*54

(10) End Parallel Sections

(11) End Parallel Sections

(11) y=x%z

(12) endloop

Figure 3: Parallel Program with Parallel Sections and event synchronization

ensure that an event has occurred (wait), and to indicate that an event has not occurred (clear).
In our work, we only consider post and wait statements.

When a post statement is executed, the appropriate shared variables are made consistent and
the value of the event is set to “posted”, no matter what its value was previously. When a wait
statement is executed, the appropriate shared variables are made consistent and the thread waits
for the event to be marked “posted”.

An example parallel program with Parallel Sections construct and event synchronization is
shown in Figure 3. Section & and B execute in parallel. Within section B, there is a nested Parallel
Sections construct where sections Bl and B2 can execute in parallel. The event variable ‘ev’ will
be posted in one of the branches of the if-construct, depending on the value of ‘condition’. The
execution of Section B1 can not proceed until at least one of the post occurs. Note that the
Parallel Sections is inside a loop. This example is purely illustrative; in particular, the event
variable ‘ev’ is not cleared between iterations of the loop, and thus, this example would not execute
properly. We refer to this example in §6, to show the interaction of loops and synchronization
variables. Note that this is a sequential loop; analysis of parallel loops is a topic of future papers.

The language standard does not define the memory consistency model for the target archi-
tecture. Rather, it allows a range of implementations including copy-in/copy-out semantics. We
assume copy-in/copy-out semantics in the compiler, because it provides more opportunity for op-
timization. For example, within a single thread, we are free to load copies of variable values into
registers or propagate subexpressions and the like, disregarding the actions of other threads. This
does not imply that we implement a pure copy-in/copy-out program. Rather, we use this as one
model of memory consistency because it is convenient for compiler optimizations and allowed by
the language standard. Correct programs should obey copy-in/copy-out semantics as well as other
memory consistency models allowed by the language standard.

At a fork point, i.e., a Parallel Sections statement, every branch of the fork (each thread)
gets its own copy of the shared variables. Each thread modifies its own local copy and at the
join point, i.e., the End Parallel Sections statement, the copies from the different threads are
merged with the global values. In the presence of post/wait synchronization, the thread that waits
for an event to occur updates its copy with the values from all the threads posting that event.
Multiple copies of a variable may potentially reach a wait statement, either because of multiple
posts executed by different threads or because of one or more posts (executed by different threads)
and the waiting thread defines that variable prior to the the wait statement. Some decision has
to be made at run time as to which value will reach the wait statement. However, at the compiler

level, we allow more than one value to reach that point and the presence of multiple values at

such wait statements indicates potential anomalies.!Similarly at a join node, multiple values for a

variable reaching that node indicates a potential anomaly in the Parallel Sections construct.

4 Parallel Flow Graph

In this section, we describe the Parallel Flow Graph[12], a data structure used to represent control
flow, parallelism and synchronization in explicitly parallel programs. The Parallel Flow Graph
(PFQ) is similar to the Synchronized Control Flow Graph [4] and the Program Execution Graph [2].
A PFG is basically a directed graph with nodes representing extended basic blocks in the program
and edges representing either sequential control flow, parallel control flow or synchronization. An
extended basic block is a basic block that may have at most one wait statement at the start of the
basic block and at most one post or branch statement at the end of the basic block. A sequential
control flow edge represents sequential flow of control within sequential parts of the program. A
parallel control flow edge represents parallel control flow, as at fork and join points in the program.
Finally, a synchronization edge is an edge from a post statement to a corresponding wait statement.

The PFG for the parallel program in Figure 3 is shown in Figure 4. Nodes (2) and (7) rep-
resent fork nodes and nodes (11) and (10) are the respective join nodes. Sequential, parallel and

synchronization edges are identified in this figure as indicated.

5 Data Flow Equations for Parallel Sections

In Section 2, we reviewed the data flow equations from [1] to compute the reaching definition
information at any point in a sequential program. In this Section, we extend these equations to
handle the Parallel Sections construct. The extensions are based on the following fundamental
concepts:

e At parallel branch points, such as fork nodes, all the branches execute; in the case of sequential
branch points, e.g., if-statements, only one of the branches will be executed.

e A value defined at a point prior to a parallel construct does not reach the corresponding
parallel merge point if it is always killed in at least one of the branches. In contrast, for
sequential branches, the value would need to be always killed along every branch.

e The compiler must assume that a conditionally defined value in a parallel section may reach
the parallel merge point. These definitions do not kill the definitions prior to the Parallel
Sections statement. In actuality, only one definition reaches the merge point, but determin-
ing the actual reaching definition is undecidable. Thus, the compiler must be conservative
and assume that both definitions reach.

!Note that multiple values reaching a wait statement do not necessarily mean there are anomalous updates; for
example, the post statements may have been conditionally executed.

O Sequential Flow Edge

----- > Parallel Flow Edge
e Synchronization Edge

Figure 4: Parallel Flow Graph for the example parallel program.

(1) a=0
(1) b=1
(2) if (condition) then
(3) a=a+1
(3) b=17
else
(4) b=5
(4) endif
(5) c=axb

(A) Example Sequential Program

(1) a=0

(1) b=1

(2) Parallel Sections

(3) Section A

(3) a=a+1

(3) b=17

(4) Section B

(4) b=5

(4) End Parallel Sections
(5) c=axbhb

(B) Example Parallel Program

Figure 5: Example sequential and parallel programs.

B W W wN = ==

e R N N N S

N—

= © 00 =~ & & O

AAAAAAAAA,_\,_\,_\,_\,_\,_\,_\,_\,_\
(S}

=
[=]
~—

a=20
b=1
c=2
Parallel Sections
Section A
a=a-+1
b=7
Section B
Parallel Sections
Section B1
b=5
Section B2
if (P) then
c=6
endif

End Parallel Sections
End Parallel Sections
d=axb+c

Figure 6: Example parallel program to illustrate data flow equations.

10

These concepts are illustrated by the sequential and parallel programs in Figure 5 and by the
program in Figure 6 on page 10. The values of the variable ‘a’ reaching the sequential and parallel
merge points (i.e., the endif and End Parallel Sections statement respectively) in Figure 5 are
different. In the case of the sequential program, the values of the variable ‘a’ reaching the endif
statement is either the value defined before the if test or the value defined in the then-part of
the if-construct. However, at the parallel merge point, the only reaching value of ‘a’ is the value
defined in Section A. In Figure 6, the variable ‘c’ is defined conditionally in Section B. Therefore,
this value and the value of ‘c’ defined prior to the outer Parallel Sections construct reach the
parallel merge points. The sequential data flow equations (Section 2) will not be able to handle such
cases. The new data flow equations for parallel programs must still be able to say that the values
of ‘b’ in Figure 5 reaching the join node are either from Section A or Section B. As mentioned
earlier, more than one value of a variable reaching a parallel merge point indicates a potential
anomaly in the program.

To handle the above situation, we introduce two new sets to the data flow framework of Section
2: the ACCKillin and ACCKillout sets. These sets accumulate definitions that occur outside a
parallel construct and that are killed along specific parallel branches in the parallel construct. The
ACCK:llin set at a node is the set propagated by its predecessors and A CCKillout set at the node is
its ACCKillin set updated by the definitions killed in this node, excluding the definitions generated
in this node, i.e., its Kill set minus the Gen set. In our first example (Figure 5), the accumulated
kill set at the end of Section A is the value of ‘a’ defined prior to the parallel construct because
the definition of ‘a’ inside Section A will always kill the previous definition.

Parallel sections can be nested, but the information represented by the ACCKillout set pertains
to a single parallel block. For example, in Figure 5, the A CCKillin set at the entry to the parallel
program is empty. At node (1), the ACCKillout set includes ‘a3’ since it is in its Kill set. However,
if we propagate this set via Section B, that does not define ‘a’, to the parallel merge node, the
ACCK:ll set at this node will contain this definition. However, ‘a3’ always reaches the parallel merge
point and should not be in the ACCK:ll set of any of its parallel predecessors. Therefore, we clear
ACCKi:llout at fork nodes and use this empty set in computing the accumulated kill sets inside the
corresponding parallel block. We must also preserve the current value across internal nested parallel
blocks because a join node must have access to the ACCKillout set from the corresponding fork
node. Thus, fork nodes store the ACCKzllout, computed from its Gen and K:ll sets in another set,
ForkKill, and a ‘technical edge’ between corresponding fork and join nodes makes this information
available to the join node. At join nodes, the In set will exclude definitions from the A CCKillout

sets of all the parallel predecessors of this node.

11

We propagate the ACCKi;ll sets by computing the ACCK:llin set at a merge node as the union
of the ACCK:llout sets of its parallel predecessors and the intersection of the ACCKillout sets of
its sequential predecessors.

In sequential programs, we define Kill(n) to be the set of all the definitions of variables outside n
for those variables defined in n; these are the definitions that will be overridden when the variable is
defined in node n. This is appropriate for sequential programs or a single thread of control because
assignments can not occur in parallel.

By comparison, in the case of parallel programs, where we can have multiple simultaneous
threads of execution, we distinguish between the Kill set and the ParallelKill set. The Kill set for
node n contains all killed definitions from nodes that can not execute at the same time as node
n. Similarly, the ParallelKill for n contains all definitions from nodes that can execute at the
same time. For example, in Figure 5(B), the Kill set of section B contains the definition ‘b;’ (the
definition of b from node 1), while the ParallelKill set contains the definition ‘bs’.

We would expect both definitions ‘b3’ and ‘bs’, but not ‘b;’, to reach the join node (node 5).
Definition ‘b;’ should not reach because there are assignments to ‘b’ that are guaranteed to occur
later in the execution order. Both ‘b3’ and ‘b,’ should reach the join node because the compiler can
not assume a particular execution order or memory semantics. Indeed, this indicates a potential
data anomaly or race condition in this particular program. We segregate the kill sets into Kill and
ParallelKill sets to distinguish between these cases. ParallelKill(n) can be computed by traversing
the PFG and including those definitions d; of variables ‘v’ such that ‘v’ has a definition in n and d;
occurs in a node that can execute in parallel with n. This can be done by traversing the parallel
flow edges and the sequential flow edges in all Sections that have the same fork node and join
node as the Section 5,, corresponding to n but not 5, itself. Thus, as in the sequential dataflow
problem, Kill and ParallelKill can be computed directly and need not be computed using an
iterative algorithm.

The ACCK;:ll sets accumulate information about definitions that are killed within a sequential
thread, and we include the Kill sets in the ACCK:llin and ACCKillout sets. We do not include the
ParallelKill set, because that set represents information about other threads where the temporal
ordering of definitions is undefined. When computing the Out set for each node, we must consider
all killed definitions, i.e. the union of the Kill and ParallelKill sets.

The data flow equations for the reaching definitions problem in programs that have the Parallel
Sections construct is given in Figure 7. In those equations, par_pred refers to the set of parallel
flow predecessors of the node; seq_pred refers to the set of sequential flow predecessors of the node
and pred refers to the set of all predecessors (both parallel and sequential flow predecessors) of the
node. The reaching definition information,i.e., the In set at each node, is defined by the fixpoint

of the equations in Figure 7.

12

Out(n) = In(n)— Kill(n) — ParallelKill(n) U Gen(n)

In(n) = U Out(p) — U ACCKillout(p)
p € pred(n) p € par_pred(n)
0 (n is a fork node)
. B (ACCKillin(n) + Kill(n)) — Gen(n) (n» is a join node, with corre-
ACCKillout(n) = +(ForkKill(f) — Out(n)) sponding fork node f)

(ACCK:illin(n) + Kill(n)) — Gen(n) (otherwise)

ACCKillin(n) = U ACCKillout(p) + N ACCKillout(p)
p € par_pred(n) p € seq_pred(n)

(ACCKillin(n) + Kill(n)) — Gen(n) (n is a fork node)

ForkKill(n) = {@ (otherwise)

Figure 7: Dataflow Equations for Programs with Parallel Sections

For the parallel program given in Figure 6, the In, Out, Gen, Kill, ParallelKill and the accu-
mulated kill sets are given in Figure 8. The system of equations converges on the second iteration.
The figure shows the first iteration (which is the same as the second). Note that ACCKillout(10)
contains b;. This indicates that b, is killed by one or more of the parallel branches — in this case,
it is killed by both sections & and B (via Section B1). By comparison, even though ‘c’ is defined
in node 7, the definition is conditional on ‘P’, and thus ¢; does not appear in ACCKillout(10). The
set Out(10) contains definitions b3 and b5, indicating a potential anomaly. In the case of ‘b’, this
is an actual anomaly.

In the next section, we extend these data flow equations to consider event synchronization

between parallel Sections.

6 Including the effect of Synchronization

We extend the data flow equations in the previous section to consider event synchronization by
using the preserved sets formulation given in [3]. Synchronization using post/wait occurs between
different threads that execute in parallel. Synchronization edges carry data flow information, i.e.,
they propagate values of variables from the thread that posted the event to the thread that is

waiting for the event to be posted. According to [9], it must be possible to execute each post before

13

| Node | Gen | Kill | ParKill |
1 {ala bla Cl} {0’37 b37 b57 C7}
2
3 {as, b3} {a1, 01} {os}
4
o {bs} {61} {bs}
6
7 {cr) {c)
8
9
10 {dlg}
| Node | In Out | ACCKillln | AccKillOut | ForkKill |
1 {0’17 bla Cl} {0’3’ b37 b57 C7}
2 {a’labl’cl} {a’lablacl} {(13,1)3, b5,C7} {a3,b3,b5,67}
3 {a1,b1,¢1} {as, b3, c1} {a1,b1}
4 {a1,b1,¢1} {a1,b1,c1}
5 {a1,b1,¢1} {a1, b5, c1} {61}
6 {a1,b1,¢1} {a1,b1,c1}
7 {a1,b1,¢1} {a1, b1, e} {ei}
8 {al,b1,61,67} {al,b1,61,67}
9 {a15b57clac7} {a15b57clac7} {bl} {bl}
10 {as, b3, b5, c1,¢7} | {as, b3, bs, 1, €7, dao} {a1,b1} {a1, b1}

Figure 8: Data Flow Sets for one iteration on the parallel program in Figure 7.

14

its corresponding wait for a parallel program to be deadlock free and correct. If the post statement
at a node n, always executes before the corresponding wait node, n,,%, then n,, will have to update
its reaching definitions information with that from the Out set of the node corresponding to the
post. Apart from updating the reaching definitions information, i.e., the In set at the wait node,
Ny, We also want to be able update its accumulated kill sets, e.g., if n,, defines a variable, then all
definitions of that variable reaching n,, via synchronization edges from post nodes, n,, that always
execute before n,,, must be included in the ACCKillin set of n,. This is important because the
definitions propagated by such synchronization edges are killed by the corresponding definition in
Ty

If there is a synchronization edge from n, to n,, we can not say that n, always executes
before n,,. It is possible that there are multiple posts of the same event variable and multiple
waits for the same event variable. It is also possible that these multiple posts and waits are
executed conditionally. Thus, a synchronization edge does not always imply an execution order.
We are, however, interested in the potential execution order for computing the reaching definition
information. Preserved sets, as defined in [3] give precisely the set of nodes that execute before a

given node, defined as follows:

Definition 1 A node n; € Preserved(n;) if and only if for all parallel executions z, if n; and n;

are both ezxecuted, n; is completed before n; is begun.

However, Callahan and Subhlok [3] have shown that computing this information is Co-NP Hard
and have given a data flow framework to compute a conservative approximation to the Preserved
sets. The approximate Preserved sets are computed as the least fixpoint of a set of data flow
equations over the Parallel Flow Graph. The Preserved set for a block is defined as a function of
its control flow (parallel and sequential) and synchronization predecessors.

Clearly, by using the Preserved set formulation, we can determine at a wait node n,, if a post
node, n,, always completes execution before n,, begins, i.e., if n, € Preserved(n,). We use a new
data flow set, called the SynchPass set, that propagates definitions via synchronization edges.

If n, executes before n,, we propagate the definitions from n, to n,, (and thus all nodes that
execute after n, in the same thread), because we know those definitions must have occurred before
the synchronization occurred. Any definitions that occur in node n, (and nodes subsequently
executed by that thread) will kill the previous definitions in the thread executing n,. These
definitions will also kill any definitions that occur before n, executes in the thread corresponding to
np, but not necessarily those definitions occurring after n, executed in that thread (e.g., because

the thread executing n, may have already completed execution, as it does not wait for the wait

2We say a wait node starts executing when the wait statement is successful and the code following the wait in
this node starts execution

15

Figure 9: Synchronization Example

statement to occur). This means that the join node must realize that the definitions in n,, occur
after the definitions passed in from n,; this is the role of the ACCK:II sets.

For example, consider the Parallel Sections in the PFG shown in Figure 9. The fork node
defines a value for ‘x’. This value reaches the predecessor of the wait node and the post node. The
definition in the fork node is in the ACCKillout set for the post node, indicating that some branch
of the Parallel Section has killed that value. However, only the value from the wait node should
reach the join node, because that definition must occur after the assignment in the post node and
the fork node. We get the execution ordering information from the Preserved set. The value of ‘Y’
following the post node is not specified by the language definition. One could argue that ‘Y’ should
have the value ‘3’; however, we have chosen to assume copy-in/copy-out semantics, and would thus
believe that ‘Y’ has the value ‘2’ — ideally, an error message would be issued concerning this data
race. For this example, the data flow formulation for Preserved sets given in [3] will be able to
determine the Preserved sets of the wait node accurately. However, since this data flow formulation
is conservative, we may not be always able to compute the ezact Preserved sets for any node. This
would result in a conservative approximation to the reaching definitions information in our data
flow framework. For example, in the absence of the Preserved sets information in figure 9, we would
derive the Out set of the join node to contain the definitions from both the post and the wait node.

This is a conservative, yet correct, approximation to the reaching definition information at the join

16

node. In the worst case, the effect of synchronization is lost at parallel merge points, i.e., in the
absence of any Preserved set information our data flow equations would compute multiple reaching
definitions at respective parallel merge nodes. This simply reduces the opportunity or effectiveness
of some optimizations.

Therefore, at wait nodes, we update the SynchPass set with the Out set from the correspond-
ing synchronization predecessors in the Preserved set of this node, indicating that the definitions
from those predecessors have occurred. In order to propagate the SynchPass information to other
nodes after a wait node, we want to consider the union of the SynchPass from all the parallel
predecessors (since all these predecessors always execute) and the intersection of the SynchPass
from the sequential predecessors (since only one of them executes).

We update the ACCKillin set of each node with the definitions of variables that are propagated
by synchronization edges (i.e. SynchPass). We only consider the definitions of SynchPass also
defined in this node. To do this, we use the set OtherDefs(n), or the definitions in the program
outside of n that define variables that also have definitions within n.

The data flow equations taking into account Parallel Sections constructs with event syn-
chronization is given in Figure 10. In this figure, synch_pred refers to synchronization predecessor.

Figures 11 and 12 show the data flow sets for the first two iterations for the parallel program
in Figure 3; the fix point is reached in the third iteration. The Preserved set of node (8) (the wait
node) is the set {Entry, 1, 2, 3, 4, 5, 7}, since each of these nodes always completes execution
before node (8), if they execute at all. The reaching definition information in this figure has been
computed using the Preserved set information. The definitions, ‘x4’ and ‘x5’ will not reach the join
node, (11), because the definition ‘xs’ always executes after ‘x,’ and ‘x5’. It is this information on
execution order that we borrowed from the Preserved set formulation. Also, the ACCKillout set
of (11) includes ‘x4’ and ‘x5’. This information was propagated to node (8) by the synchronization
edges since (4) and (5) were in the Preserved set of (8). The definitions ‘z¢’ and ‘zg’ reach the
merge node (11); this is an indication of a potential anomaly in the program since the two definitions
occur in distinct parallel branches, i.e., threads that can execute in parallel. The importance of the
ParallelKill set is seen in the Out set of nodes (6) and (9). Even though the corresponding In sets
have both definitions of ‘z’, only the definition in that node should be in its Out set. The reason
the In set of (6) and (9) both have ‘zg’ and ‘zg’ is because of the loop around the parallel block.
Since we exclude the ParallelKill set from the Out set, we are able to compute the correct Out
sets; for example, the Out set of (6) does not contain ‘zg’ since this definition is in its ParallelKill

set.

17

U Out(p) (if n is a wait node)
p € synch_pred A p € Preserved(n)
U SynchPass(p) + ﬂ SynchPass(p) (otherwise)
p € par_pred P € seq pred

SynchPass(n) =

— Kill(n) — ParallelKill(n)UGen(n))—

Out(n) = OtherDefs(n)ﬂSynchPass()

p € pred(n p € par_pred(n) p € synch_pred(n)

0 (n is a fork node)
(ACCKillin(n) + Kill(n)) — Gen(n) (n is a join node, with corre-
+ (ForkKill(f) — Out(n)) sponding fork node f)
(ACCKillin(n) + Kill(n)) — Gen(n) (otherwise)

ACCKillout(n) =

U ACCKillout(p) + (| ACCKillout(p)

P € par_pred(n) p € seq_pred(n)
+ (OtherDefs(n)NSynchPass(n))

ACCKillin(n) =

In(n) = { U out(p)— |J ACCKillout(p) - N ACCKillout(p)

ForkKill(n) =

(otherwise)

{ (ACCKillin(n) + Kill(n)) — Gen(n) (n is a fork node)

Figure 10: Dataflow Equations for Programs with Parallel Sections and Event Synchronization

18

| Node | Gen | Kill | ParKill |
Entry | {zo,y0} | {24, 25,28, y11}
1
2
3
4 {z4} {20, z5} {zs}
5 {zs} {20, 24} {zs}
6 {ze} {zo}
7
8 {zs} {zo} {24, 25}
9 {20} {z6}
10
11 {y} {yo}
12
Node | In \ Out | ACCKillln | AccKillOut [ForkKill |
Entry {zo, Yo} {z4,z5, 28,911}
1 {Z0, Y0} {zo, Yo}
2 {Zo,¥0} {zo, Yo}
3 {Z0, Y0} {zo, Yo}
4 {Zo, Y0} {z4, Y0} {Zo, 5}
5 {Zo, 0} {zs5, 90} {zo, 24}
6 {z4, 25,90} | {24, 25,90, 26} {zo} {zo}
7 {Zo, 0} {zo, Yo}
8 {Z4, 25,90} {zs, Yo} {z4, 25} {Zo, T4, T5}
9 {Z0, Y0} {Z0, Y0, 20}
10 {zs, Y0, 20} {zs, Y0, 20} {zo, 24,25} {Zo, 24, 5}
11 {zs, Yo, 26, 20} | {8, Y11, %6, 20} | {20, 4,25, Y0} | {Z0, 24, 25, Yo}
12 {Zo, Y0} {zo, Yo}

Figure 11: Data Flow Sets for the program in Figure 4 : Iteration 1.

19

Node | In Out | ACCKillln | AccKillOut | ForkKill |
Entry {Z0, %0} {Z4, T5, 28,911}

1 {zo0, %8, Yo, Y11, %6, 20} | {Z0, Z8, Yo, Y11, %6, 20} {Z4, 25} {z4, 25}

2 {zo0, %8, Yo, Y11, %6, 20} | {0, T8, Yo, Y11, %6, 29} {z4, 25} {z4, 25}
3 {Z0, Z8, Yo, Y11, %6, 29} {Z0, T8, Yo, Y11, %6 29}

4 {Z0, T8, Yo, Y11, %6, 29} {24, Y0, Y11, %6, 20} {Zo, 5}

5 {Z0, Z8, Yo, Y11, %6, 29} {25, Y0, Y11, 26, 20} {zo, 24}

6 {Z4, 5, Yo, Y11, %6, 20} {z4, 25, Yo, Y11, %6} {zo} {zo}

7 {Z0, Zs, Yo, Y11, 26, 29} {Zo, Z8, Yo, Y11, 26, 29}

8 {Z4, 5, T3, Yo, Y11, Z6, 20} {zs, Yo, Y11, 26, 20} {Z4, 25} {Zo, 24, T5}

9 {Z0, Zs, Yo, Y11, 26, 29} {zo, Zs, Yo, Y11, 20}

10 {zs, Yo, Y11, 26, 20} {zs, Y0, ¥11, 26, 20} {zo, 24, 5} {zo, 24, T5}

11 {28, Yo, Y11, 26, 20} {28, Y11, 26, 20} {20, 24, 5,90} | {20, 24, 25,70}

12 {zo0, %8, Y0, Y11, %6, 20} | {0, Z8, Yo, Y11, %6, 29} {Z4, 25} {z4, 25}

Figure 12: Data Flow Sets for the program in Figure 4 : Iteration 2.

7 Conclusion & Future Work

We have presented data flow equations to compute the reaching definition information at any point
in an explicitly parallel program with event synchronization. Data flow equations for computing
reaching definitions information in sequential programs have been well understood and used in
many current day compilers for the optimization of such programs. We believe that the data flow
framework that we have presented in this paper can be used to perform rigorous scalar optimization
on parallel programs and thus help achieve better execution rates of such programs on existing high
performance architectures. This information will particularly benefit distributed shared memory
systems, because optimizations using the dataflow information will reduce the amount of commu-
nication between processors.

This work has considered the Parallel Sections construct and event synchronization. We
have implemented these algorithms in a dataflow tool; we hope to eventually implement them in
an actual compiler such as SIGMA. In the future, we propose to extend the data flow equations to
handle Parallel Do, another parallel construct specified by PCF FORTRAN. We anticipate the
use of some technology from data dependence analysis to analyze these constructs.

Earlier work [14, 11, 13, 12] has looked at translating explicitly parallel programs to their Static
Single Assignment intermediate representation [5], a more efficient dataflow representation. We

hope to extend these results on post/wait synchronization to that representation as well.

20

References

[1]

2]

[10]

[11]

[12]

[13]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading, MA, 1986.

Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race conditions in a
parallel program. In Proc. 3rd International Conference on Supercomputing, pages 175-185,
June 1989.

D. Callahan and J. Subhlok. Static Analysis of low-level synchronization. In Proc. of the ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging, pages 100-111,
Madison, WA, May 1988.

David Callahan, Ken Kennedy, and Jaspal Subhlok. Analysis of event synchronization in a
parallel programming tool. In Second ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming [10], pages 21-30.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph. ACM
Trans. on Programming Languages and Systems, 13(4):451-490, October 1991.

Anne Dinning and Edith Schonberg. An empirical comparison of monitoring algorithms for
access anomaly detection. In Second ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming [10], pages 1-10.

Samuel P. Midkiff and David A. Padua. Issues in the optimization of parallel programs. In
David Padua, editor, Proc. 1990 International Conf. on Parallel Processing, volume I, pages
105-113, St. Charles, IL, August 1990. Penn State Press.

Steven S. Muchnick and Neil D. Jones. Program Flow Analysis: Theory and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1981.

Parallel Computing Forum. PCF Parallel FORTRAN Extensions. FORTRAN Forum, 10(3),
September 1991. (special issue).

Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Seat-
tle, Washington, March 1990. ACM Press.

Harini Srinivasan. Analyzing programs with explicit parallelism. M.S. thesis 91-TH-006, Ore-
gon Graduate Institute of Science and Technology, Dept. of Computer Science and Engineering,
July 1991.

Harini Srinivasan and Dirk Grunwald. An Efficient Construction of Parallel Static Single As-
signment Form for Structured Parallel Programs. Technical Report CU-CS-564-91, University
of Colorado at Boulder., December 1991.

Harini Srinivasan and Michael Wolfe. Analyzing programs with explicit parallelism. In Utpal
Banerjee, David Gelernter, Alexandru Nicolau, and David A. Padua, editors, Languages and
Compilers for Parallel Computing, pages 405-419. Springer- Verlag, 1992.

21

[14] Michael Wolfe and Harini Srinivasan. Data structures for optimizing programs with explicit
parallelism. In H. P. Zima, editor, Parallel Computation: First International ACPC Con-
ference, volume 591 of Lecture Notes in Computer Science, pages 139-156. Springer- Verlag,

Berlin, 1992.

22

