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Abstract

Because dynamic memory management is an important part of a large class of computer pro-
grams, high-performance algorithms for dynamic memory management have been, and will continue
to be, of considerable interest. We evaluate and compare models of the memory allocation behavior
in actual programs and investigate how these models can be used to explore the performance of mem-
ory management algorithms. These models, if accurate enough, provide an attractive alternative to
algorithm evaluation based on trace-driven simulation using actual traces. We explore a range of
models of increasing complexity including models that have been used by other researchers. Based
on our analysis, we draw three important conclusions. First, a very simple model, which generates a
uniform distribution around the mean of observed values, is often quite accurate. Second, two new
models we propose show greater accuracy than those previously described in the literature. Finally,
none of the models investigated appear adequate for generating an operating system workload.

1 Introduction

In this paper, we propose, evaluate and compare a variety of methods for modeling the allocation
behavior of actual programs. Some of the models we investigate have been used by other researchers
to evaluate dynamic memory management (DMM) algorithms, while other models we investigate are
original with this work. The goal of this paper is to measure the effectiveness of different approaches to
modeling allocation behavior, to propose alternatives to existing models, and to give researchers in the
field an understanding of the accuracy of the models that are available to them.

Although dynamic memory management has always been an important part of a large class of
computer programs, there has been a recent surge of interest in this field as evidenced by the number of
workshops devoted entirely to the subject!. One reason for this increased interest is that object-oriented
design encourages programming with large interconnected dynamic structures and broadens the class of
programs that use dynamic memory allocation. The increasing use of dynamic memory management
brings with it the need to evaluate the performance of new algorithms for memory management and new

systems on which these programs will run. For example, operating system evaluation requires workloads

*This material is based upon work supported by the National Science Foundation under Grants No. CCR-9010624,
CCR-9121269 and CDA-8922510

!Garbage Collection workshops at recent Object-oriented Programming Languages and Systems (OOPSLA) Conferences
and the 1992 International Workshop on Memory Management to name a few.



that take into account the increased use of dynamic memory allocation in user programs. Similarly,
parallel computer systems require the evaluation of different parallel allocation algorithms.

To evaluate the performance of these algorithms and operating systems, several approaches may be
taken including analytic modeling, simulation, and prototype implementation. Of the three, simulation
is the most widely used because it provides precise, complete performance information without the
implementation cost of building a prototype.

Evaluation based on simulation defines an algorithm or system at a high level; performance is mea-
sured by driving the system with a sequence of events representing the external behavior of interest
(i.e., requests for resources or other external events, also called the event trace). Because the algorithm
description is high-level, it is both easy to write and easy to parameterize. Furthermore, because the
simulation is a software model of the system, instrumentation code, such as operation counts and locality
measures, is easy to add and modify.

The event trace that drives a simulation can be obtained in two ways: by extracting the events from
a program as it is executing (actual traces), or by generating events randomly using some probabilistic
model (synthetic traces). Specifically, we are interested in synthetic traces that attempt to reproduce the
behavior of an actual program. System evaluators choosing to do simulation based either on synthetic

or actual traces must consider the following issues?:

e Actual traces are generally more accurate than synthetic traces, which are generated using simpli-
fying assumptions (e.g., exponentially-distributed interarrival times). Accuracy is often considered

the most important benefit of using actual traces.

e Actual traces can be very large (often many megabytes of data). Synthetic traces are generated
probabilistically and based on data that summarizes that actual program behavior (e.g., the mean
object size). The amount of information needed to recreate the trace may vary from a few bytes

to hundreds of kilobytes.

e Actual traces represent exactly one behavior of a program, while synthetic traces may be used to
represent one or more “similar” executions of the same program. The ability to reproduce an exact
trace is beneficial because it allows a completely fair comparison of the systems being simulated
using the trace. The ability to generate similar instances of a program trace is valuable when using
the trace as part of a system workload in which a number of non-identical instances of a particular

program are likely to be executing.

e Actual traces have a finite length, so that they cannot be used to investigate the performance of
systems executing beyond the length of the trace. Because synthetic traces are randomly generated,

a trace of any length can be synthesized.

2Jain presents a nice summary of these issues in “The Art of Computer Systems Performance Analysis” [6].



In summary, actual traces are generally preferred because they are more accurate, but synthetic
traces have significant advantages. In particular, if synthetic traces are shown to accurately model the
behavior of actual programs, they would be preferred to actual traces. In this paper, we investigate the
relative size and accuracy of different synthetic models of program allocation behavior to determine if

such models can be used effectively to evaluate the performance of systems.

1.1 Allocation Traces

One of the most successful uses of trace-driven simulation (TDS) has been in the evaluation of memory
systems. TDS evaluations have been used to evaluate paging algorithms [2, 13], cache designs [15], and
DMM algorithms [12, 14] including garbage collection algorithms [16, 18].

To evaluate and compare the behavior of different DMM algorithms using trace-driven simulation,
programs that allocate dynamic data must be instrumented to collect the trace information. The event
trace resulting from such instrumentation (which we will call the allocation trace) consists of object
allocation events (including object size, unique identifier, and time) and object free events (including
a unique identifier and time). Such an allocation trace represents all the program behavior that is
required to compute the performance costs of sequential dynamic memory management and to compare
the relative costs of two algorithms®.

In this paper, we investigate probabilistic models that attempt to recreate a program’s allocation
trace from some summary of the actual allocation trace. To recreate an allocation trace, each model
must generate samples from probability distributions that model an object’s size (or size class), holding
time (lifetime), and the interarrival time to the next allocation event. The models differ in how they
construct these probability distributions.

The remainder of the paper has the following organization: Section 2 describes other studies of
dynamic memory management and the simulation techniques they use. Section 3 describes the different
synthetic models we consider in this paper while Section 4 describes the techniques and data we use to
compare the models. Finally, Section 5 presents a comparison of the accuracy and size of the different

synthetic models, and Section 6 summarizes our results and suggests future work.

2 Related Work

In this section, we summarize past research evaluating different DMM algorithms based on simulation
studies. Our purpose is to identify what models have been used to generate synthetic traces and show
how they have been used in previous work. The main difference between our work and the related
work is that we are investigating the accuracy of the synthetic models used and not the performance of

particular DMM algorithms.

3 Additional information, such as a trace of all object references, could also be included if the algorithm’s locality of
reference was being considered.



Some DMM algorithm comparisons use synthetic traces that are not based on actual programs
at all. Knuth’s Art of Computer Programming, Volume 1, compares several classic dynamic memory
management algorithms using a simple synthetic model [9]. In the comparison, object lifetime was
chosen as a uniformly distributed value over an arbitrary interval. Knuth also varied the distribution
of object sizes, including two uniform distributions and one weighted distribution. In his experiments,
object interarrival time was assumed to be one time unit.

In a later paper, Korn and Vo [10] make similar simplifying assumptions in performing an extensive
evaluation of eleven different DMM algorithms. Their model, based on Knuth’s, generated sizes and
lifetimes uniformly over an arbitrary interval. Their investigation varied the average size and lifetime of
objects and observed the dependence of algorithm performance on these parameters.

As early as 1971 Margolin [12] pointed out that observed properties of actual programs should be
considered when designing memory management algorithms. His paper describes a thorough performance
evaluation study of free-storage algorithms for a time-shared operating system. His evaluation is based on
TDS using actual traces of block request patterns collected from operating systems as they were used.
The traces were then used to simulate different memory allocation algorithms, and the information
obtained was used to guide the design of an effective algorithm.

Bozman et al conducted a follow-up to the Margolin study in 1984 [3]. While the intent was to
evaluate algorithms for dynamic memory management in an operating system, the approach taken was
to use TDS based on synthetic traces instead of actual traces. Their main reason for using synthetic
traces was the high cost of collecting and storing actual traces. Their synthetic model, based on empirical
data collected from several operating systems, computes a mean holding time and interarrival time for
each distinct object size requested from the system. In an appendix, they present the actual model data
that has been used in subsequent performance evaluation studies by other researchers.

Other studies of dynamic memory management have used various TDS approaches to algorithm
evaluation. In particular, Oldehoeft and Allan [14] evaluate an allocation algorithm enhancement by
employing a number of simulation techniques, including using actual trace data, using a synthetic model
based on Margolin’s data, and using uniformly distributed random data. Brent [5] also evaluates the
performance of a new memory management algorithm using both random uniform distributions and
Bozman’s empirical data.

This related work suggests two important conclusions: first, that synthetic simulation studies are
common, yet the accuracy or validity of a particular approach to synthetic program modeling has never
been examined. The second conclusion is that widely published empirical characterizations of actual
programs that perform dynamic allocation are lacking. The Margolin and Bozman data have both been
used in recent papers, yet there are substantial drawbacks to using this data. The Margolin data is
20 years old, and therefore considerably out-of-date, and both sets of data only present the empirical

behavior of a single, albeit important, program (the operating system). This paper examines the issues



time 1: allocate 3 words returns object-1 (its unique id)
time 2: allocate 3 words returns object-2

time 3: free object-1

time 4: allocate 2 words returns object-3

time 5: allocate 1 word returns object-4

time 6: free object-4

time 7:

time 8: allocate 1 word returns object-5

time 9: allocate 2 words returns object-6

time 10:

time 11: free object-5

time 12: free object-2, free object-3, free object-6

Figure 1: Sample Allocation Trace

raised by the first conclusion. A companion paper attempts to resolve the problem indicated by the

second conclusion [17].

3 Models

In this paper, we are evaluating different models of actual program allocation behavior in terms of the
size and accuracy of the model. This section describes the five models we consider and explains why
they were chosen.

Models for program behavior can be viewed as a continuum from very simple models that contain
little information about the program they are modeling, to complex models that contain much more
information and are supposed to be correspondingly more accurate. In this light, the program allocation
trace can be viewed as the most accurate model in that it contains information about every allocation
and deallocation that occurred in the actual program. Synthetic models abstract this actual behavior
in various ways, reducing the amount of information necessary to reproduce the behavior.

The models chosen represent five points in this continuum of complexity. Two of the models were
chosen because they have been used in previous studies, while the remaining three models represent our
efforts to improve upon these existing models.

As described in the previous section, the goal of any model is to abstract the behavior of the actual
program in three parameters: object size class (SC), object holding time (HT), and object interarrival
time (IAT). Each model defines statistical characterizations of these parameters that attempt to accu-
rately reconstruct the actual program behavior. To better illustrate these models, we will refer to the

allocation trace in Figure 1.



3.1 The Mean-Value Model (MEAN)

This model, which is the simplest, characterizes the behavior of an actual program by computing three
means: the mean object size, holding time, and interarrival time. These three values are then used
to generate random values with a uniform distribution and range from zero to twice the mean. This
model is intentionally very simple, and we originally viewed it as a small but obviously inaccurate model.
Experience has shown that our preconceptions were wrong. Another reason this model was chosen is
that some variant of it has been used in several performance studies of allocation algorithms [9, 10, 14].

Given the sample allocation trace above, this model computes: mean size = 2 words, mean IAT =
1.6 ticks, and mean HT = 4.5 ticks.

An obvious variant of this model is to record the mean and variance of each observed distribution,

and generate samples from three normal distributions* based on these observed values.

3.2 The Actual CDF Model (CDF)

While a mean summarizes a distribution very concisely, it does not accurately model the true distribution
of values in the data. We considered a much more precise model that constructs the actual cumulative
distribution functions (CDF) of the SC, HT, and IAT values from the observed data, and then uses
these functions to generate samples. The actual CDF is constructed by maintaining a histogram of the
number of occurrences of each distinct size, holding time, and interarrival time in the actual program
trace. When the number of distinct values is large, the size of this model may approach the size of the
allocation trace. In practice, however, the size is usually considerably smaller.

Given the sample allocation trace above, this model computes:

00 ife<l
033 ifl<az<2
066 if2<az<3
1.0 ifz>3

size class CDF(x) =

The HT CDF and IAT CDF can be computed similarly. A variant of this model approximates the
actual CDF by using Jain’s piecewise parabolic algorithm [7].

3.3 The Size-class-dependent Model (SizZE)

A natural extension to the mean-value model is to compute average values for holding time and interar-
rival time as a function of the size class of the objects allocated. For example, we can consider all objects

of size 16 bytes as a group, and compute a mean HT and IAT for all the objects in that size class. Thus,

4The reader will observe that normal distributions can generate negative values, when in fact size, IAT, and HT are all
positive-valued. Our solution to this dilemma is to reject negative samples and resample in that case. In practice, such
rejection is not common.



instead of a single mean HT and IAT, this model generates N IAT’s and HT’s where N is the number of
different size classes allocated by the program. In this context, the IAT has a slightly different meaning
than it does for the previous models. In particular, while the mean-value model considers the IAT to
be the time between any two object allocations, this model views the IAT as the time between any two
allocations from the same size class. This model can be viewed as running N independent instances of
the mean-value model, with each instance allocating objects of only one size. We compute the mean
IAT as Bozman et al [3] did: the mean IAT is computed as the total program execution time divided by
the number of objects of a particular size class. Unlike Bozman et al, however, we compute the mean
HT in each size class by directly measuring the object lifetimes.

Given the sample allocation trace, this model would compute 3 means corresponding to objects of

size 1, 2, and 3 words (variances omitted):

size class = 1 word, mean HT = 2, mean IAT = 6 ticks
size class = 2 words, mean HT = 5.5, mean IAT = 6 ticks

size class = 3 words, mean HT = 6, mean IAT = 6 tick

3.4 The Time-dependent Model (TIME)

While the S1ZE model divides the space of values by object size, creating distributions for each size class,
this model divides the space of values using execution time. Specifically, the total execution time of the
actual program is divided into M buckets. For all the objects allocated within a bucket, holding time
and size of each object is recorded. As with the SizE model, the mean IAT in a bucket is determined
by dividing the number of allocations in the bucket by the size of the bucket. This model can be varied
by increasing or decreasing M as desired. For example, if each program cycle is considered a different
bucket, an exact record of all allocations results, reproducing the information in the allocation trace.
On the other hand, if a single bucket is chosen, this model degenerates into a mean-value model. Our
studies assume a value of M of 10,000, which was chosen for two reasons: the space required to store
this number of values was not excessive, and yet the granularity was fine enough to capture some of the
interesting time-dependent behavior of the programs.

Given the sample allocation trace and a value of M = 3, we compute 3 sets of means based on

allocations performed in ticks 1-4, 5-8, and 9-12, respectively (variances omitted):

ticks = 1-4, mean HT = 6.7 ticks, mean IAT = 1.3 ticks, mean size = 2.6 words
ticks = 5—8, mean HT = 2 ticks, mean IAT = 2 ticks, mean size = 1 word

ticks = 9-12, mean HT = 3 ticks, mean IAT = 4 ticks, mean size = 2 words



In one variant of this model, both mean and variance were recorded, and the generated values were
sampled from a normal distribution. In another variant, the variance was ignored and the mean value

was generated without variation.

3.5 The Size Transition Model (TRANS)

This model, the most complex considered, is a refinement of the SizE model described above. In that
model, the allocation behavior of objects of different sizes is assumed to be independent. This model
assumes there is a dependence between successive allocations and captures that dependence in a size
transition matrix. The size transition matrix contains, for each size class X, the number of times size
class Y was allocated immediately after size class X. For example, consider the sample allocation trace

above. The size transition matrix for that example is shown in Table 1.

Current Next Size
Size 1 word | 2 words | 3 words
1 word 1 1 0
2 words 1 0 0
3 words 0 1 1

Table 1: The size transition matrix for the example allocation trace.

This table represents the frequency with which allocations of size X are followed by allocations of
size Y (and therefore represents a conditional probability density of an allocation of size Y following
an allocation of size X). A prime motivation for this model is the empirical observation that certain
transitions in this matrix are very frequent while others are very infrequent, indicating that in actual
programs there is a dependence relation between allocations of different-sized objects (invalidating the
hypothesis of the SizE model). As with the example above, in the actual size transition matrices
generated, we find that a large percentage of the elements are zero, indicating no such transitions
occurred.

The size transition matrix can be generalized to include information both about the holding time
and interarrival time of an object of size Y, given that an object of size X has just been allocated. By
observing each size transition in the actual program, we can compute the mean holding time of objects of
size X given that size Y has just been allocated and likewise the conditional mean value of the interarrival
time.

The size transition table has size O(N?), where N is the number of size classes allocated by the
program. In the programs we have measured, N ranges from 22 to 328. In practice, we have not found
the size of the size transition table to be unacceptable because the matrix is often sparse, and can be

represented using sparse matrix techniques quite efficiently.



Given the sample allocation trace above, the fully defined size transition matrix would contain the

information in Table 2 (variances excluded).

Current Next Size

Size 1 word | 2 words | 3 words
1 word 1, 3,3 1, 3,1 0
2words | 1,1,1 0 0
3 words 0 1,8,2 | 1,10,1

Table 2: The complete size transition matrix for the example allocation trace. Each entry in the table
contains the number of such transitions, the mean holding time of Y given a transition from X, and the
mean interarrival time between the allocation of X and Y.

3.6 Summary

Having described the models investigated in this paper, we now show a taxonomy of possible approaches
to modeling and indicate how our five models fit into that taxonomy. Our initial categorization breaks
the models into those that treat all input data uniformly (homogeneous models) and those that separate
the input data into groups (e.g., by size or time—heterogeneous models). Further subcategories are
lllustrated in Figure 2. The figure shows that the five basic models described cover a significant part of
the taxonomy, although there are notable models we do not consider. Another aspect of the taxonomy
not clearly illustrated is that each of the size, IAT, and HT distributions can be selected independently
of the others. For example, the IAT could be selected with a time-dependent heterogeneous model while
the HT could be selected using a homogeneous model or a heterogeneous size-class-dependent model. In
any event, part of the exploration of the space of models is the attempt to understand what is possible
and to provide some assurance that a significant part of the space is being considered. We leave further

exploration of the space to later research.

4 Comparison Methods

This section describes the methods used to compare the five models presented in the previous section.

4.1 Sample Programs

We used six allocation intensive programs, listed in Table 3 and Table 4, to compare the different program
models. At least two input sets for each program were measured, but the different input sets contributed
little to the final results of our study, and we discuss a single input set for expository simplicity. The
programs were all written in the C programming language.

The execution of each program was traced using AE [11] on a Sun SPARC processor. AE is an efficient

program tracing tool that captures all instruction and data references, as well as special indicators for



All Models

Homogeneous Models Heterogeneous Models
/ Time and Size Dependent
Mean Based CDF Based (unexplored)
Uniform (MEAN) Actual CDF (CDF)
Normal Jain’'s PP CDF

Pareto

Other dependencies
(unexplored)

Time dependent
. 1 Bucket (MEAN)
Size—class Dependent 10,000 Buckets (TIME)
Ncycles (ALLOCATION TRACE)

Dependence Assumed Independence Assumed
(TRANS) 1 Size Class (MEAN)
n < N Size Classes (unexplored)
N Size Classes (SIZE)

Figure 2: Taxonomy of Possible Methods Used to Model Allocation Behavior. The figure illustrates
ways in which the allocation data can be decomposed and indicates how the models we are considering
fit into this taxonomy (indicated by names MEAN, SIZE, TIME, TRANS, CDF, and ALLOCATION
TRACE). Other models we explored include the mean/normal, mean/Pareto, and Jain’s PP CDF (a
piecewise parabolic approximation of the actual CDF). The figure also illustrates what models in the
taxonomy we have yet to explore.

CFRAC Cfrac is a program to factor large integers using the continued fraction method.
The input is a 22-digit number that is the product of two primes.
GS GhostScript, version 2.1, is a publicly available interpreter for the PostScript page-

description language. The input used is the Users Guide to the GNU C++ Libraries
(126 pages). This execution of GhostScript did not run as an interactive application
as it is often used, but instead was executed with the NODISPLAY option that
simply forces the interpretation of the Postscript without displaying the results.

PERL Perl 4.10, is a publicly available report extraction and printing language, commonly
used on UNIX systems. The input used was a perl script that reorganizes the
internet domain names located in the file /etc/hosts.

GAWK Gnu Awk, version 2.11, is a publicly available interpreter for the AWK report and
extraction language. The input script processes a large file containing numeric data,
computing statistics from that file.

CHAM Chameleon is an N-level channel router for multi-level printed circuit boards. The
input file was one of the example inputs provided with the release code (ex4). We
also measured another channel router (YACR), but the results obtained were not
significantly different that those from cHAM.

ESPRESSO | Espresso, version 2.3, is a logic optimization program. The input file was one of the
larger example inputs provided with the release code (cps).

Table 3: General Information about the Test Programs

10



Program | CFRAC | CHAM ESPRESSO GAWK GS PERL

Lines of Code 6,000 7,500 15,500 | 8,500 29,500 | 34,500
Objects Allocated 227,091 | 103,548 186,636 | 32,165 108,550 | 26,390
Max Objects Allocated 1,231 | 103,413 2,059 | 2,447 6,195 483
Bytes Allocated 3,339,166 | 2,927,254 | 14,641,338 | 722,970 | 18,767,795 | 790,801
Max Bytes Allocated 17,395 | 2,711,158 136,966 | 63,834 467,739 | 24,452
Size Classes (SC) 22 22 328 48 177 79
Interarrival Time
Classes (ITC) 911 4,316 13,425 856 3,502 587
Holding Time
Classes (HTC) 12,748 13,169 76,299 | 5,638 15,339 | 5,053
Execution Time
(Millions of Instructions) 66.9 87.1 611.1 17.6 159.2 33.5
Allocation Trace Size 45 21 37 0.6 29 0.5

(Millions of Bytes)

Table 4: Test Program Performance Information. The SC, ITC, and HTC values indicate the number
of distinct size, interarrival times, and holding times respectively in each of the sample programs.

calls to the malloc and free procedures used for memory allocation. These large, complex traces were
distilled to a time-ordered memory allocation trace including omly calls to malloc and free. Each
memory allocation trace event was time-stamped using the number of instructions since the beginning
of the program.

The version of CHAM that we measured does not release much ofits allocated memory by calling free.
For this program, we monitored the data references of the traced program, and artificially deallocated
memory when it was no longer referenced. The free events were inserted in the memory allocation

trace, essentially modeling perfect memory deallocation.

4.2 Comparing The Models

Allocation traces from the test programs were used to construct the information needed for the synthetic
models described in Section 3. The allocation traces are also used as the baseline in our comparison in
Section 5. In that context, we refer to these traces as the “actual execution” of a particular program.
To determine the accuracy of a model, we computed various metrics of the model and compared the
result with value produced by the actual execution. The metrics used for comparison are divided into
two categories. Intrinsic metrics represent absolute measures of a model’s performance when compared
with the actual allocation trace. The total number of bytes allocated by the program is an example of an
intrinsic metric. These metrics indicate how close a model comes to reproducing the allocation behavior
embodied by the allocation trace. While intrinsic metrics indicate whether or not the gross properties
of the models remain close to those of the allocation trace, they do not indicate if the models are useful

for comparisons of storage allocation algorithms, as the models have been used in related work.
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Bytes The total amount of memory allocated, expressed in bytes.

Objects The total number of allocated objects. Each call to malloc returned a new
object.
MaxBytes The maximum or peak amount of memory allocated, expressed in bytes.

MaxObjects | The maximum number of allocated objects.

Table 5: Intrinsic Metrics of Interest

Extrinsic metrics are measures of how the use of a particular model influences the outcome of a
simulation based on the model. For example, if we are interested in measuring the performance of a
“best-fit” DMM algorithm, we can compute its performance using trace-driven simulation based either
on an actual allocation trace or on a synthetic trace. The CPU overhead of the best-fit algorithm is an
example of an extrinsic metric. If the extrinsic metrics of synthetic models are sufficiently accurate, the
model is appropriate for use in a comparison of storage allocation algorithms.

The experimental procedures and the data collected are described below. The data presented in
Section 5 includes 90% confidence intervals from running ten trials for each experiment for each model.
Each trial used a new random number seed for the stochastic models. In most cases, the small number
of trials provided very tight bounds on the mean. We felt that measuring over a small number of trials
was important, because, by its nature, trace-driven simulation is costly to perform and as a result less
amenable to repeated sampling. Thus, a method showing considerable variance may be unsuitable in

many studies.

4.3 Intrinsic Metrics

Table 5 describes the information we collected from each program using the different program models.
Bytes and MaxBytes represent the load a program places on a system. Bytes represents the workload
placed on the DMM algorithm being used for allocation. Many DMM algorithms (such as first-fit and
buddy algorithms) are sensitive to the total amount of allocation that is performed. MaxBytes represents
the memory load that a particular program places on a system in which it is executing. If the models
are being used to generate a heap-intensive program workload for operating system measurement, an
inaccurate measure of MaxBytes will result in an inaccurate workload. The Objects and MaxObjects
metrics are important for list-based memory allocator algorithms, which are sensitive to the number of

objects in the allocation freelist.

4.4 Extrinsic Metrics

The metrics described in the previous section provide a wealth of statistical detail about the artificial
allocation traces and how they differ from the actual trace. However, they do not indicate if the
differences produce significantly different behavior when the synthetic traces are used to evaluate memory

management algorithms.
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BsD Buddy-based algorithm developed by Chris Kingsley, and commonly distributed
with BSD UNIX systems [8].

FIRST | An implementation of Knuth’s first-fit algorithm (Algorithm C with enhancements
suggested by Knuth), written by Mark Moraes.

BEesT The FIrsT algorithm modified for best-fit.

CacHE | The FIRST algorithm with an adaptive cache. A five element list (S;, F;) is used
to cache storage items of frequently occurring sizes. When an item of size B; bytes
is returned via free, we compute S’ = |(B; + R — 1)/ R|, using a rounding factor
R = 32. If S’ matches any of S;, it is chained to the free list Fj; otherwise, the least
recently used cache entry is flushed, and the freed cache entry is used for items of
size S’. Each call to malloc scans the list, preferentially allocating an item from
the free list if applicable. The cache list is always maintained in order of the most
recent access. This allocator is based on ideas suggested in [4] and in [14].

Table 6: Memory Allocators Used for Comparison

CPU The average amount of CPU time spent allocating and deallocating an object.
%MemEff | The memory efficiency of the allocator. This is the mean amount of memory re-
quested by the program model divided by the mean amount of memory requested
by the memory allocator (e.g. by using the sbrk command in Unix). Values close
to one indicate that a memory allocator uses requested memory very efficiently.

Table 7: Extrinsic Metrics of Interest

Thus, we performed a second series of experiments, in which we used each model to drive four
different memory allocation algorithms, listed in Table 6. We chose a set of memory allocators we felt
should expose any program dependent behavior. The BsD allocator takes roughly constant time, but
consumes considerable space because it does not coalesce items. The FIrRsT allocator is sensitive to
allocation order because it coalesces items; coalescing not only reduces memory fragmentation, but also
reduces the size of the freelist, affecting the speed of memory allocation. The BEST allocator is more
sensitive to the size of the freelist because it scans the entire list. The CAcHE allocator is sensitive to
the temporal distribution of allocation sizes. The cumulative effect of searching the small cache, without
repeated references to items of similar size, can be large. Likewise, a program model with artificially
high temporal locality may skew the behavior of the CACHE model.

We compare the different models using the metrics listed in Table 7. CPU is a metric that is
commonly reported by other comparisons of memory allocators. We recorded the CPU time by counting
the number of machine instructions used in the malloc and free subroutines using the QP profiling
tool [1]. %MemEff represents how efficiently a particular allocator uses the memory it has requested
from the operating system. In practice, allocators like BEST will show higher memory efficiency than
BsD, and it is important that evaluations based on synthetic data produce results that agree with the

actual execution.

13



| Model | MEAN CDF SI1ZE TIME TRANS

Worst Case 3 | SC+ITC + HTC | 3 x SC | 3 x 10000 SC + 3 x SC?

Size (Words)

Example Size 3 19,018 531 30,000 4002
(Words) (using sparse array)

Table 8: Comparison of Model Sizes for the s Program

5 Results

In this section, we compare the models described in Section 3 using the metrics described in Section 4.
We begin by examining the size of the different models. Next, we compare the results of the intrinsic
metrics and follow by looking at the extrinsic metrics. We conclude with a discussion of the differences

between model variants.

5.1 Model Size

Table 8 shows the model sizes for the Gs program. The table illustrates the relative size of the different
models considered. The allocation trace size for Gs was 550,000 words. The table illustrates that the
models are smaller than the allocation trace by one to five orders of magnitude. The table also shows
that the CDF model, while being relatively large, is not overwhelmingly so. The size of the TIME model
is based on our choice of dividing the program execution time into 10,000 buckets. The table also
illustrates that a sparse representation of the TRANS model required far less data than the worst case
storage requirements (only 4.2% of worst case space).

In this table and in the subsequent comparison, we present the most accurate variant of each model.
The MEAN variant uses a uniform distribution about the mean; the CDF uses the actual measured CDF’s;
the SiZE model uses the mean HT and IAT in each size class and assumes the data is exponentially
distributed (as the Bozman study did); the TIME model uses the mean size, IAT, and HT in each time
bucket and assumes no variance; and the TRANS model uses the size transition matrix to determine IAT

and HT and assumes the data is normally distributed around the mean.

5.2 Model Accuracy/Intrinsic Metrics

The intrinsic metrics allow us to compare a synthetic allocation trace generated by a model with the
actual allocation trace. Figure 3 and Figure 4 present a comparison of the total bytes and total objects
allocated by each model with the actual number of bytes and objects allocated, respectively. For each
model, ten trials were recorded and a 90% confidence interval was plotted around the mean of the trials.
For each model, the amount of allocation relative to the actual amount is plotted (i.e., a value of 1.0
represents the most accurate model). A value of zero indicates we were unable to run the model because

it consumed too much memory.
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Figure 5: Maximum Generated Bytes By Model Per Program

The figures illustrate that most of the models accurately reproduce the correct total amount of
allocation in the six test programs. In all cases, the observed variance of ten trials of the model is small
relative to the mean. The only model that generates a significantly different amount of allocation is the
TIME model, which performs substantially more allocation than the actual program in several of the
test programs.

This aberrant behavior of TIME can be explained in the following way. Because the TIME model
divides the space of objects into many time buckets, some of the time buckets may contain a small
number of samples (or none at all). Consider, for example, if a time bucket contains many small
frequently allocated objects and few very large infrequently allocated objects. The TIME model averages
this behavior, and as a result, allocates many medium sized objects. The net result is that the TIME
model does not track the total allocation characteristics of the actual program particularly well.

The second set of intrinsic metrics, the maximum bytes and objects allocated by the program models,
are presented in Figure 5 and Figure 6.

Unlike the total metrics, the maximum metrics are less accurately mirrored by the models. While
no model consistently matches the maximum bytes allocated by the actual program, some models are
more consistent than others. As with the total allocation metrics, the TIME model shows the worst
accuracy in matching the maximum program allocations. Otherwise, the MEAN and CDF models appear
to behave similarly, as do the S1zE and TRANS models. Of all the models, the TRANS model appears to
be the most accurate (e.g., in Gs and PERL), although it fails miserably in the cEAM program. These

figures also illustrate that the heterogeneous models, S1ZE and TRANS, tend to exhibit more variance

16



2.0

ey

I

S 15 - <
(&)

< <

2] L OActual

ﬁi LMean

o)

o) O COf - <t

< 1.0 o ASize | © < 7 s | o
% <|Time {%ﬁy K%¥
E’ | \/ Trans

[

© e

g

EOST

3

=

0.0 i 2 % oA

cfrac espresso gs gawk perl cham
Program

Figure 6: Maximum Generated Objects By Model Per Program

than the homogeneous models. In particular, the TRANS model displays a significant amount of variance
in behavior in the ESPRESSO program.

The figures also illustrate some of the characteristics of the test programs. GAwWK and PERL are
relatively well-behaved programs with respect to maximum bytes and objects allocated. In particular,
these programs maintain a relatively constant level of allocation throughout their execution. A more
difficult time-varying behavior to model is indicated by the cFrRAC and Gs applications, in which the
number of allocated objects increased monotonically as the program ran. Finally, the ESPRESSO and
CHAM programs showed a widely varying allocation of objects and bytes, and all models had trouble
accurately estimating the correct maxima for these programs.

In summary, most of the models very effectively emulate the total bytes and objects allocated by
the test programs, while none of the models accurately emulate the maximum allocations for all the
test programs. Because the models have trouble emulating maximum program allocations, using these
models to generate synthetic system loads would not result in accurate loads. The heart of the problem
lies with the inability of the models investigated to accurately track rapid time-varying changes in the
amount of data allocated. The TIME model was our attempt to address this problem, but as the figures

in this section show, that model is not particularly accurate in any case.
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Actual Allocation Time Per Object (Instructions)
Bsp | CAcHE | FIRST BEesT
CFRAC 68.2 84.2 127.7 152.8
CHAM 87.1 151.1 152.4 175.5
ESPRESSO | 74.0 89.2 121.4 432.8
GS 87.5 111.6 | 1957.6 2125.1
GAWK 70.6 87.8 119.9 158.1
PERL 75.0 85.1 119.3 186.3

Table 9: Actual Allocation Times for Four Allocators in Six Programs. The high number of instructions
for the FIRST and BEST allocators in the GS program show that the worst-case performance of these
allocators, which scan a potentially long freelist, can be quite poor.

5.3 Model Accuracy/Extrinsic Metrics

While we have established that none of the models are particularly good for generating operating system
loads, they may still be valuable in evaluating the relative performance of DMM algorithms. In this
section, we investigate the accuracy of the models in predicting the CPU performance and memory
efficiency of four DMM algorithms (described in Section 4).

The CPU performance is well understood for many common DMM algorithms. The four allocators
we use to measure the model accuracy are Bsp, CACHE, FIRST, and BEST (listed in order of increasing
CPU overhead). To better understand the actual CPU performance of these allocators, we present the
average CPU cycles per malloc/free operation for the six test programs in Table 9.

Table 10 indicates the relative errors of the different models in predicting the CPU performance of
the four allocators®.

For each program, Table 10 summarizes the mean error over all allocators for each model, and the
mean error over all models for each allocator. Table 11 summarizes the average of the relative errors over
all programs, both by model and by allocator. From the summary, we see that the average relative error
of the CDF ranks the lowest at slightly less than 18%, while the relative error of the TIME model is over
200%. Surprisingly, the MEAN model, which contains by far the least amount of information, resulted in
a small relative error of only 25%. The relative errors of the SizE and TRANS models are quite similar
(as were the values of intrinsic metrics), and from this we conclude that the added complexity of the
TrANS model does not result in a substantial increase in accuracy over the simple S1ZE model.

In looking at the relative errors per allocator, averaged over all models and programs, we see that
the BsD allocator had a far smaller average relative error than the others. This is explained by the fact
that the BsD algorithm does not search a free list to find a free object and so the execution time is

relatively constant and therefore depends less on the allocation trace. The BEsT allocator, which is very

5The relative error is computed as: RelErr = M For example, if the actual CPU overhead of an

malloc/free operation using the BsD allocator was 70 cycles and the MEAN model predicted the operation would take 75

cycles, the relative error would be 0.071 = %
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CFRAC
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.022 0.000 0.002 0.657 | 0.170
Cor 0.000 | 0.002 0.185 0.302 0.122
S1ZE 0.000 | 0.002 0.014 0.615 0.158
TIME 0.017 | 0.001 0.044 0.404 | 0.116
TRANS 0.000 | 0.002 0.010 0.713 | 0.181
Mean Over Models | 0.008 | 0.001 0.051 0.538
ESPRESSO
BsD CacHE | FirsT | BEsT | Mean Over Allocators
MEAN 0.072 0.070 0.040 0.190 | 0.093
Cor 0.005 0.031 0.008 0.265 0.077
S1ZE 0.212 0.213 0.100 0.299 | 0.206
TIME 0.127 | 0.205 0.031 5.943 1.577
TRANS 0.004 | 0.032 0.004 0.160 | 0.050
Mean Over Models | 0.084 | 0.110 0.037 1.371
GS
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.023 | 0.053 0.814 0.070 | 0.240
Cor 0.018 | 0.033 0.499 0.214 | 0.191
S1ZE 0.010 | 0.081 0.349 0.155 0.149
TIME 0.114 | 0.870 0.859 1.349 | 0.798
TRANS 0.004 | 0.047 0.450 0.272 0.193
Mean Over Models | 0.034 | 0.217 0.594 0.412
GAWK
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.014 | 0.003 0.491 1.137 | 0.411
Cor 0.001 0.003 1.361 0.029 | 0.348
S1ZE 0.001 0.004 0.571 0.138 | 0.179
TIME 0.016 | 0.008 0.028 0.695 0.186
TRANS 0.000 | 0.000 0.302 0.041 0.086
Mean Over Models | 0.006 | 0.004 0.551 0.408
PERL
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.038 | 0.000 0.120 0.651 0.202
Cor 0.000 | 0.000 0.430 0.037 | 0.117
S1ZE 0.001 0.001 0.091 0.211 0.076
TIME 0.015 0.003 0.012 0.642 0.168
TRANS 0.000 | 0.001 0.124 0.191 0.079
Mean Over Models | 0.011 | 0.001 0.155 0.346
CHAM
BsD CacHE | FirsT | BEsT | Mean Over Allocators
MEAN 0.180 | 0.441 0.126 0.866 | 0.403
Cor 0.201 0.438 0.114 0.058 | 0.203
S1ZE 0.192 0.432 0.183 0.765 0.393
TIME 0.168 | 0.327 0.167 7.086 1.937
TRANS 0.184 | 0.424 0.199 1.646 | 0.613
Mean Over Models | 0.185 | 0.413 0.158 2.084

Table 10: Relative Errors in Predicting CPU Performance for Five Synthetic Allocation Models
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Average Relative Error By Model
MEeAN | CpF | Size | TIME | TRANS
0.253 | 0.177 | 0.193 | 0.797 | 0.200

Average Relative Error By Allocator
Bsp | CacHE | FIRST | BEsT
0.055 | 0.124 0.258 | 0.860

Table 11: Summary of Relative Errors in Predicting CPU Performance for Five Synthetic Allocation
Models

sensitive to the specific sizes of requests made, shows a much higher overall relative error. The table also
illustrates that some applications are more difficult to model than others. In particular, CHAM shows
higher relative errors for all models and allocators than the other programs. The combination of the Gs
program and the FIRST allocator also presents problems for models, generating an average 59% error
over all models.

Looking more closely at the tables indicates that no model has a consistently small relative error,
however all four of the CpF, MEAN, SizZE, and TRANS models show a relative error less than 20% more
than two-thirds of the cases. Furthermore, if the BEST allocator is not considered, the average relative
error of the four best models drops to 10-20%. In addition, all five of the models accurately predict the
relative CPU overhead ranking of the four allocators (i.e., BsD being fastest, CACHE second fastest, etc).
In summary, any of the these three models appear to provide relatively good accuracy in predicting the
CPU performance of a range of different DMM allocators.

The other extrinsic metric we measured was the memory efficiency of the four allocators. Again,
the memory efficiency of the allocators under consideration is well understood. That is, the efficiency
is likely to be inversely proportional to the execution time, with the exception of the CACHE allocator,
which offers both high efficiency and low CPU overhead. The actual efficiencies of the four allocators for
the six test programs are presented in Table 12. This table shows that the BsD algorithm consistently
underutilizes the memory, but that the best-fit enhancement increases the memory utilization of the
FirsT allocator only marginally. The CACHE allocator, however, offers both low CPU overhead and
memory efficiency that sometimes outperforms the BEST algorithm.

Table 13 shows the models’ relative errors in predicting the memory efficiency of the different alloca-
tors and Table 14 summarizes the average of the relative errors over all programs, both by model and by
allocator. Here again we see that the TIME model is not accurately predicting the memory efficiencies
of the allocators. In this case, however, the TRANS model also fails to provide an accurate result relative
to the homogeneous MEAN, CDF, and SIZE models. The best model is again the CDF model, with an

average relative error of 22%.
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Actual Memory Efficiency (%)

Bsp | CAcHE | FIRsT | BEST
CFRAC 0.218 0.514 | 0.480 | 0.497
CHAM 0.674 0.708 | 0.708 | 0.708
ESPRESSO | 0.170 0.263 0.301 | 0.314
GS 0.594 0.820 | 0.852 | 0.866
GAWK 0.547 0.731 | 0.702 | 0.702
PERL 0.278 0.706 | 0.626 | 0.626

Table 12: Actual Memory Efficiency for Four Allocators in Six Programs. The low efficiency of
ESPRESSO in all allocators can be attributed to its episodic use of memory, in which large quantities
of memory are allocated and then immediately released.

The memory efficiency metric also shows that some programs are harder to model than others. In
this case, attempting to model ESPRESSO and CHAM results in higher relative errors than the other
applications. This result is understandable, as the memory efficiency of an algorithm is closely related to
the time-varying memory usage of the program. Because the memory usage behavior of these applications
is highly variable, the memory efficiency of the storage allocators is also difficult to correctly model. If
the ESPRESSO and CHAM programs are not included in the average, the average relative error of all of
the models drops significantly. In this case, the CDF model is still the most accurate with a relative
error of 7.7%.

In this table, we fail to see a strong correlation between the relative error of the models and the
allocator used, as we saw in the CPU summary table. Memory efficiency is not as strongly influenced
by choice of allocator as CPU performance is, and therefore the relative errors of the models also tend
not to be as strongly correlated with the allocator used.

In summary, the extrinsic metrics suggest the following conclusions. The most accurate model studied
was the CDF, which, on average, reproduced the CPU performance and memory efficiency of four very
different allocators with 20% relative error. Three other models, MEAN, Si1ZE, and TRANS, were almost
as accurate as the CDF model, with the MEAN model being particularly attractive because it is relatively
accurate using very little data. The TIME model appears to be quite inaccurate both in predicting CPU

performance and memory efficiency.

5.4 Variants of the Models

We have presented data for the most accurate variant of the models studied. In this section, we discuss
the performance of the other variants and suggest why their performance was not as good as the variant

chosen.
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CFRAC
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.246 | 0.047 0.132 0.161 0.147
Cor 0.067 | 0.014 0.090 0.026 | 0.049
S1ZE 0.099 | 0.049 0.227 0.021 0.099
TIME 0.168 | 0.462 0.427 0.446 | 0.376
TRANS 0.157 | 0.234 0.317 0.171 0.220
Mean Over Models | 0.147 | 0.161 0.239 0.165
ESPRESSO
BsD CacHE | FirsT | BEsT | Mean Over Allocators
MEAN 0.338 1.077 0.662 0.740 | 0.704
Cor 0.545 0.745 0.834 0.406 | 0.632
S1ZE 0.745 0.737 0.562 0.694 | 0.685
TIME 0.754 | 0.876 0.808 0.813 | 0.813
TRANS 0.090 | 0.412 0.561 0.203 | 0.316
Mean Over Models | 0.494 | 0.769 0.685 0.571
GS
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.001 0.067 0.133 0.002 0.051
Cor 0.079 | 0.094 0.164 0.032 0.092
S1ZE 0.086 | 0.348 0.403 0.070 | 0.227
TIME 0.465 0.402 0.373 0.381 0.406
TRANS 0.416 | 0.463 0.554 0.418 | 0.463
Mean Over Models | 0.210 | 0.275 0.326 0.181
GAWK
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.135 0.123 0.246 0.131 0.159
Cor 0.039 | 0.063 0.045 0.009 | 0.039
S1ZE 0.049 | 0.093 0.074 0.011 0.057
TIME 0.518 | 0.516 0.495 0.495 0.506
TRANS 0.010 | 0.041 0.032 0.005 0.022
Mean Over Models | 0.150 | 0.167 0.178 0.130
PERL
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
MEAN 0.190 | 0.080 0.221 0.120 | 0.153
Cor 0.246 | 0.209 0.022 0.032 0.127
S1ZE 0.184 | 0.268 0.200 0.077 | 0.182
TIME 0.008 | 0.275 0.140 0.140 | 0.141
TRANS 0.372 0.414 0.416 0.330 | 0.383
Mean Over Models | 0.200 | 0.249 0.200 0.140
CHAM
BsD CacHE | FirsT | BEsT | Mean Over Allocators
MEAN 0.416 | 0.119 0.259 0.166 | 0.240
Cor 0.559 | 0.352 0.360 0.246 | 0.379
S1ZE 0.038 | 0.136 0.097 0.184 | 0.114
TIME 0.144 | 0.089 0.195 0.195 0.156
TRANS 0.505 0.449 0.371 0.352 0.419
Mean Over Models | 0.333 | 0.229 0.256 0.229

Table 13: Relative Errors in Predicting Memory Efficiency for Five Synthetic Allocation Models
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Average Relative Error By Model
MEeAN | CpF | Size | TIME | TRANS
0.242 | 0.220 | 0.227 | 0.399 | 0.304

Average Relative Error By Allocator
Bsp | CacHE | FIRST | BEsT
0.256 | 0.308 0.314 | 0.236

Table 14: Summary Relative Errors in Predicting Memory Efficiency for Five Synthetic Allocation
Models

5.4.1 Variants Using Variance

In considering the MEAN model, other distributions about the mean could be chosen. We measured both
a normal distribution and Pareto distribution, and found that they both result in greater inaccuracy
when considering intrinsic and extrinsic metrics. This decreased accuracy can be explained by the
introduction of variance into the synthetic model. Some of the values sampled, such as holding times,
range over many orders of magnitude. This large range results in a very high variance, which in turn
tends to make the synthetic model less accurate.

The variant of S1ZE used in the comparisons is the same variant used by Bozman et al (although
their computation of the HT was different). We also used a normal distribution to compute the HT in
this model and found that the introduction of variance caused the models to perform less accurately,
just as the normal MEAN model was less accurate. Likewise, the use of variance data for the TIME
model decreased the accuracy of that model. We conclude that the introduction of the variance in these

models results in less accurate models.

5.4.2 Approximations of the CDF

While we considered the actual CDF and found it to be our most accurate model, we also considered
using Jain’s piecewise parabolic algorithm [7] to approximate the actual CDF. We found, however, that
Jain’s algorithm is not particularly appropriate for approximating the CDF’s of the size, HT, and IAT
distributions because it assumes the underlying probability density function is continuous, while the
actual density functions are very discontinuous (i.e., there may be 100,000 objects of size 28 but only 2

objects of size 29). As a result, a model based on an approximate CDF is not particularly accurate.

5.4.3 Other Measures of Time

In the studies presented, we measure time as the number of instructions executed since the start of the
program. We also investigated measuring time not in terms of instructions, but in terms of events. With

this metric, a virtual clock is kept by counting allocate and free events. Holding times and interarrival
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times are measured in terms of this virtual clock. We found that using this measure of time resulted in

no significant differences in the accuracy of the models.

6 Summary

The goal of this research is to explore the size and accuracy of synthetic models of program alloca-
tion behavior. In the past, DMM algorithms have often been evaluated using trace-driven simulation,
sometimes using synthetic traces. However, the accuracy of synthetic allocation traces has never been
carefully investigated.

Allocation traces have two primary uses: first, they can and have been used to test the relative
performance of different dynamic memory management algorithms. Second, they can be used to generate
an operating system workload for OS performance evaluation.

We have proposed and measured the size and accuracy of five synthetic models (with variants). The
CpF model, which uses the actual observed cumulative distributions of size, HT, and TAT, is the most
accurate model. Surprisingly, the MEAN model, using the mean observed values of size, IAT, and HT,
and assuming a uniform distribution, was only slightly less accurate than the CDF model, and required
much less storage.

One of the new models we investigated, TRANS is a more complex version of the previously used SizE
model. Our measurements indicate that both models are sufficiently accurate, but the added complexity
of the TRANS model does not bring with it greatly increased accuracy.

We also observed that the synthetic models are more accurate for predicting CPU performance in
high-performance algorithms such as BspD and CACHE than they are for more costly algorithms such
as BEST. Some of the test programs were more difficult to model, in particular programs in which the
number of bytes allocated varies greatly and rapidly as a function of time (ESPRESSO and CHAM).

Unfortunately, while four of the models were relatively accurate for use in evaluating memory man-
agement algorithms, none of the models was consistently accurate in reproducing the maximum bytes
or objects allocated in the actual programs. Thus, none of the models would be particularly accurate
for generating operating system workloads. We designed the TIME model specifically for this purpose,
but it was sufficiently inaccurate for other reasons that it is altogether inadequate.

We feel that the CDF model provides an excellent basis for comparison of dynamic memory man-
agement algorithms and that the MEAN model is also acceptable, especially if a small model size is
particularly important. On the other hand, none of the models examined is consistently accurate as a
basis for workload generation, and for that purpose, the allocation trace is the only acceptable alterna-

tive.
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6.1 Future Work

A question of great importance in this research is whether a model showing an average 20% relative error
is accurate enough. That is, are allocation traces the only acceptable means available to evaluate DMM
algorithms. We feel strongly that the best models we investigated are sufficient for the following reasons.
First, the models were generally much more accurate (10% and less) for well-behaved programs (such as
PERL) and allocators (such as Bsb and CACHE). Second, the best models always correctly predicted the
rank ordering of the allocators with respect to the CPU performance. The best models also correctly
predicted the memory efficiency rank ordering unless the efficiency of the top allocators was very close
(within a few percent). Thus, the best models would correctly predict which allocator provided the
best CPU performance and memory efficiency, which is exactly what they would be used for. Finally,
synthetic models of allocation have already been used in performance studies. This research quantifies
the accuracy of the models used, and leaves it to the system evaluator to decide if a 20% relative error
is unacceptable.

Clearly, it would be ideal to have a model whose relative error was smaller than 20% over the six
programs and four allocators measured. Currently, the greatest source of inaccuracy lies in modeling
highly irregular programs such as ESPRESSO and CHAM. A more accurate model must capture the
irregularity of these programs to be successful.

This research was originally motivated by our interest in developing scalable, robust and efficient
dynamic memory management algorithms for parallel programs. Observing that there is currently a
lack of large, memory-intensive parallel programs, we sought to understand the limitations of synthetic
models of program allocation. While the research presented here measures sequential programs, in the

future we hope to extend our results into the domain of parallel programs.
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CFRAC
Bsp CACHE FIrsT BEsT Mean Over Allocators
AcTuaL 68.246 | 84.299 127.756 152.886 108.297
MEAN 66.747 | 84.284 127.545 253.289 132.967

Cor 68.227 | 84.145 151.449 199.107 125.732
S1ZE 68.236 | 84.153 126.008 246.909 131.326
TIME 69.397 | 84.373 122.147 214.679 122.649
TRANS 68.237 | 84.160 129.006 261.874 135.819
ESPRESSO
Bsp CACHE FIrsT BEsT Mean Over Allocators

ActuaL | 74.020 | 89.221 121.439 432.840 179.380
MEAN 79.339 | 95.446 126.243 350.699 162.932

Cor 73.620 | 92.005 122.386 318.021 151.508
S1ZE 89.745 108.264 133.543 303.407 158.740
TIME 83.434 | 107.552 125.260 3005.345 | 830.398
TRANS 73.735 | 92.110 120.929 363.648 162.605
GS
Bsp CACHE FIrsT BESsT Mean Over Allocators

AcTuAL | 87.559 | 111.676 | 1957.650 | 2125.159 | 1070.511
MEAN 89.590 | 117.623 | 363.957 2274.490 | 711.415

Cor 89.156 | 107.935 980.652 1670.653 | 712.099
S1ZE 86.678 | 102.684 1273.517 | 1796.410 | 814.822
TIME 97.518 | 208.813 275.275 4992.232 | 1393.459
TRANS 87.169 | 106.432 1077.374 | 2702.649 | 993.406
GAWK
Bsp CACHE FIrsT BEsT Mean Over Allocators

AcTUAL | 70.620 | 87.813 119.987 158.160 109.145
MEAN 71.626 | 88.104 178.924 337.949 169.151

CDF 70.563 | 88.041 283.293 153.574 148.868
S1zZE 70.717 | 88.160 188.526 179.982 131.847
TIME 71.716 | 87.149 116.619 268.043 135.882
TRANS 70.622 | 87.832 156.177 164.632 119.816
PERL
Bsp CACHE FIirsT BEsT Mean Over Allocators

AcTUuAL | 75.078 | 85.134 119.308 186.391 116.478
MEAN 72.251 | 85.122 133.600 307.729 149.676

Cor 75.045 | 85.122 170.620 179.482 127.567
S1zZE 75.140 | 85.244 130.117 225.683 129.046
TIME 73.924 | 85.350 120.723 306.075 146.518
TRANS 75.071 85.210 134.075 222.078 129.108
CHAM
Bsp CACHE FIrsT BEsT Mean Over Allocators

ActuaL | 87.139 | 151.159 | 152.441 175.548 141.572
MEAN 71.472 | 84.468 133.237 327.605 154.196

CDF 69.640 | 84.927 135.006 185.726 118.825
SIZE 70.398 | 85.813 124.599 309.922 147.683
TiME 72.539 | 101.745 | 127.018 1419.524 | 430.206

TRrRANS 71.108 | 87.052 122.154 464.507 186.205

Table 15: CPU Overhead Predicted by Five Synthetic Allocation Models. All values are in instructions.
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CFRAC
Bsp CAcHE | FirsT | BEST | Mean Over Allocators
AcTuaL 0.218 | 0.514 0.480 0.497 | 0.427
MEAN 0.272 0.489 0.417 0.417 | 0.399

CDF 0.204 | 0.521 0.437 0.509 | 0.418

S1ZE 0.197 | 0.488 0.371 0.486 | 0.386

TiME 0.182 | 0.276 0.275 0.275 | 0.252

TRrRANS 0.184 | 0.393 0.328 0.412 | 0.329
ESPRESSO

BsD CacHE | FirsT | BEsT | Mean Over Allocators
AcTuaL 0.170 | 0.263 0.301 0.314 | 0.262
MEAN 0.228 | 0.546 0.500 0.546 | 0.455

CDF 0.077 | 0.067 0.050 0.186 | 0.095

SIZE 0.297 | 0.456 0.470 0.531 | 0.439

TiME 0.042 | 0.033 0.058 0.059 | 0.048

TRrANS 0.155 | 0.154 0.132 0.250 | 0.173
GS

Bsp CAcHE | FirsT | BEST | Mean Over Allocators
AcTUAL 0.594 | 0.820 0.852 0.866 | 0.783
MEAN 0.593 | 0.875 0.738 0.868 | 0.769

Cor 0.547 | 0.897 0.712 0.895 0.763
S1ZE 0.543 | 0.535 0.508 0.806 | 0.598
TIME 0.317 | 0.490 0.534 0.536 | 0.469
TRANS 0.346 | 0.440 0.380 0.504 | 0.418
GAWK
Bsp CAcHE | FirsT | BEST | Mean Over Allocators

AcTuAL | 0.547 | 0.731 0.702 0.702 | 0.671
MEAN 0.473 | 0.641 0.529 0.610 | 0.563

CDF 0.526 | 0.685 0.671 0.696 | 0.645

SIZE 0.520 | 0.664 0.650 0.695 | 0.632

TiME 0.264 | 0.354 0.355 0.355 | 0.332

TRrRANS 0.542 | 0.701 0.679 0.706 | 0.657
PERL

Bsp CAcHE | FirsT | BEST | Mean Over Allocators
AcTuaL 0.278 | 0.706 0.626 0.626 | 0.559
MEAN 0.331 0.650 0.488 0.551 0.505

CDF 0.210 | 0.559 0.612 0.646 | 0.507

S1ZE 0.227 | 0.517 0.501 0.578 | 0.456

TiME 0.276 | 0.512 0.538 0.538 | 0.466

TRrRANS 0.175 | 0.414 0.366 0.419 | 0.343
CHAM

BsD CacHE | FirsT | BEsT | Mean Over Allocators
AcTuaL 0.674 | 0.708 0.708 0.708 | 0.699
MEAN 0.394 | 0.624 0.525 0.590 | 0.533

CDF 0.297 | 0.459 0.453 0.534 | 0.436
SIZE 0.648 | 0.804 0.639 0.838 | 0.732
TiME 0.577 | 0.771 0.846 0.846 | 0.760

TRrANS 0.334 | 0.390 0.445 0.459 | 0.407

Table 16: Memory Efficiency Predicted by Five Synthetic Allocation Models
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