A Computational Medium
for Supporting
Interpretation in Design

Gerry Stahl

CU-CS-598-92 Revised August 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

A COMPUTATIONAL MEDIUM
FOR SUPPORTING
INTERPRETATION IN DESIGN

Gerry Stahl
CU-CS-598-92
June 1992
rev. 8-5-92

Submitted to: Journal of Architecture and Planning Research
For the special issue on: "Computational Representations of Knowledge"
Edited by: Mark Gross

For publication in: June, 1993

Department of Computer Science
University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309-0430 USA

phone: (303) 444-2792
email: gerry@cs.Colorado.edu

A COMPUTATIONAL MEDIUM FOR SUPPORTING
INTERPRETATION IN DESIGN

by Gerry Stahl

Abstract

Theorists of design methodology have described facets of design and problem solving that call for
computer support. However, their assessments conflict in fundamental ways with the techniques
of artificial intelligence. For instance, pivotal writings about design by Alexander, Rittel and
Schoen argue that representations of a problem must grow out of the designers' engaged
intuitions, through deliberations among opposing views, and as a result of interactions with the
concrete design situations. Artificial intelligence, however, traditionally plays upon the
computational power of a priori formal representations. This creates a troubled tension between
human interpretation and computer representation.

Heidegger's hermeneutic philosophy of interpretation provides a framework for analyzing aspects
of the design process that have been systematically overlooked by rationalist approaches to
computerization. It suggests ways in which the interpretive processes at the heart of creative
designing can be supported by software. However, the construction of representation systems
must be a part of the design process, under human control.

Hermes 1s a computer system developed to support design of lunar habitats. This research
prototype features a special language for defining terms, conditions, critics, and queries to display
design information from the interpretive perspectives of human users. Hierarchies of interpretive
contexts facilitate the sharing of these perspectives. All textual, graphical, and other information
is integrated and inter-related by a form of hypermedia incorporating these language and context
mechanisms. This provides a computationally active medium for expressing, storing,
communicating and critiquing design interpretations and representations.

The message of Hermes is that computers can support human creativity in design rather than
automating or rigidifying the design process. To do this, a new approach to software is needed
that heeds the deeper principles of design methodology and the nature of human interpretation.

A COMPUTATIONAL MEDIUM FOR SUPPORTING
INTERPRETATION IN DESIGN

Table of Contents
Introduction: the Problem with Computational Representations of Knowledge 1
I. Design Methodology from the Perspective of Computer Support................ccoooeon 3
Alexander: balancing computation with human intuition 3
Rittel: tackling wicked problems through argumentation............................ 4
Schoen: dialogues of discovery and creation..................oocoooiiiiiiin, 6
The hermeneutics Of deSiZN.............cocviiiiiiii e, 8
II. Adapting Artificial Intelligence t0 DESIZN.crvorveoreoeeeeeeeeeeeeeeeeeee e 11
Simon: defending the traditional approach.................cccooooin, 11
From expert systems t0 CritiqUING.ccoovviiiioiiiiiiiiiiie e, 12
Design environments for cooperative problem solving............................. 13
Lunar habitat design: an exploratory domaino.coooiiiiieninnn 15
III. Hermes: a Computational Mediumcoooiiiiiiiiii e 19
A scenario using Hermes....................coooooiiiiiioniiiiee e, 19
Interpretation in design: defining the representation.......................c......... 23

The mechanisms of Hermes: overcoming the limits of representation

through the power of representation....................coociiviiiiioiiiiii e 25
Shareable, programmable hypermedia....................ccocooeiiiiiiiiin, 29
Conclusion: Evolving Interpretations for Design...................c.ccoooiiiiiiiii, 34
ACKNOWIEAGMENTSo 37

R O IICES ..o e 37

A COMPUTATIONAL MEDIUM FOR SUPPORTING
INTERPRETATION IN DESIGN

Introduction: the Problem with Computational Representations of
Knowledge

Implicit in the special issue theme, Computational Representations of Knowledge, lies a
question. How can knowledge of activities like architecture and planning be represented in
computer systems so that these systems can compute solutions to design problems? Attempts
within Al (artificial intelligence, the discipline of computer science concerned with such matters)
to attack this question straight on have failed. Expert systems, for instance, have tried to
represent the knowledge of domain experts in systems of propositional rules and then to compute
solutions via logical inference, but the results have been disappointing. (Winograd and Flores,
1986)

Perhaps previous attempts to computerize design failed because they operated within the
framework of a rationalist philosophy which is inappropriate for design. That philosophy makes
assumptions about computation, representation and knowledge which have proven very
successful in the development of the natural sciences. However, when creating computer
applications for domains of design it may be necessary for Al to develop a new paradigm based
more on a philosophy of the (verstehende or "hermeneutic") human sciences. (Suchman, 1987)
Such an approach might recognize that designers do not explicitly represent most of their
knowledge in a propositional form (Polanyi, 1962), that personal interpretations play a more
central role than objective knowledge (Dreyfus, 1972), and that the computer may be better suited
to augmenting the deliberations of human decision-making than to computing solutions
autonomously (Engelbart, 1963).

This paper explores the possibility and desirability of such an alternative by way of an
interpretive reflection upon the traditions in which it is situated: design methodology and artificial
intelligence. Within design, it tries (in Section I) to uncover the thread of an argument that
defines the limits of technical rationality for this field. In doing so, it focuses on insights of
Alexander, Rittel and Schoen. These three writers have all been concerned with the problem of
how to use computers in design work, although they may at times have been disillusioned by the
difficulties to such an extent that they sometimes felt computers were counterproductive for
designing (e.g., Alexander, 1971). Perhaps computer technology was simply not adequate to the
task in the past, or perhaps it was necessary for the rationalist approach to be carried forth and to
fail before another option could be seriously explored.

Computer Support for Interpretation in Design

At any rate, there are now signs within the Al field itself of a movement in the new direction.
These are followed (in Section II) through a shift from expert systems to computer critiquing
systems, and from these to design environments. The need for an alternative to the traditional
approach becomes particularly pronounced as certain kinds of domains are increasingly being
addressed. The expert system paradigm assumes that domain knowledge can be codified, and
expert systems have been most successful in fields which are well understood in terms of
established theory. However, for "exploratory" tasks which are now seeking computer support --
like lunar habitat design -- designing is more a matter of making up the rules and definitions than
following existing formulae; here the established Al methods are clearly inadequate.

The research underlying this paper was initiated in response to the concerns of a design firm
that contracts with NASA for projects related to missions to the moon. They sought help in
developing computer tools for managing the burdensome volume of information that had to be
kept in mind during their design work. The first stage in the participatory design project of
developing useful software was to understand their current practices. (Ehn, 1988) This was
accomplished by videotaping a series of sessions in which a lunar habitat was designed. Analysis
of these tapes showed that what was taking place was not simply the satisfaction of multiple
constraints, which could be modelled by objective rules, but above all the inferpretation of
criteria, priorities and terminology. This empirical finding coincided well with theoretical
considerations from the critique of Al, and established the direction of research.

The title of this paper suggests an alternative to the traditional implications of Computational
Representations of Knowledge that emerged through the research. It replaces the emphasis on
objective, propositional knowledge with one on designers' creative interpretations. It suggests
that computer systems should provide a medium of external memory for designers -- an electronic
extension of writing or sketching paper -- rather than trying to compute solutions. It supports
designers, rather than replacing the human element. A model of this alternative paradigm of Al is
presented (in Section II) in the form of Hermes, the prototype software system developed to
support design of lunar habitats. Hermes features a disclosure language for designers to define
ways of revealing relevant information and communicating design ideas. It also provides a system
for organizing interpretive contexts, so that multiple personal perspectives on design artifacts can
be elaborated and shared. The language and context mechanisms are integrated in an extended
form of hypermedia, to form a computationally powerful medium of external memory for
designers to create, explore, communicate and store their concepts and plans.

Hermes exemplifies a new departure for AI, one founded on an analysis of human
interpretation rather than on the logic of formalizable propositional knowledge. It respects the
irreducible power of the human mind to understand meaning and to explicate understanding.
Therefore, it strives to provide computational media which can augment human interpretation,
rather than providing Computational Representations of Knowledge. The message of Hermes is
that computers can support human creativity in design, instead of automating or rigidifying the
design process. This paper tries to show how the approach of Hermes heeds the deeper principles
of design methodology and the nature of human interpretation in order to provide computational
power to enhance design without restricting personal innovation.

page 2

Gerry Stahl

I. Design Methodology from the Perspective of Computer Support

Alexander: balancing computation with human intuition

Deliberation on the question of whether and how computers should be used to support the
work of designers has raged for several decades now. The issues go to the heart of what design is
and should be. In his now classic Notes on the Synthesis of Form, Christopher Alexander
reviewed the history and even the prehistory of design in order to argue that the field reached a
second watershed in the mid-twentieth century. The profession of design had originally emerged
when society started to produce new needs and innovative perspectives too rapidly to allow forms
to be developed through "unselfconscious" activities of slowly evolving traditions. Now, the
momentum of change has reached a second qualitatively new stage:

Today more and more design problems are reaching insoluble levels of complexity. This is true not only of
moon bases, factories, and radio receivers, whose complexity is internal, but even of villages and teakettles.

In spite of their superficial simplicity, even these problems have a background of needs and activities which is
becoming too complex to grasp intuitively. (Alexander, 1964, p.3)

The management of complexity must become a primary concern of the field of design. The level
of complexity that Alexander had in mind is characterized by the fact that it exceeds the ability of
the unaided individual human mind to handle it effectively. Various methodologies can help to
decompose complexity, and this is where the mathematical structures, diagrams or patterns that
Alexander proposed come in. They provide the representational or computational basis today for
computerization.

Alexander saw a major advantage of the systematic use of these structures in what he referred
to as a "loss of innocence". When design first became a profession with rules that could be stated
in language and taught, there was, according to Alexander's account, a first such loss of
innocence. More recently, when Bauhaus designers recognized that one could design for
mechanized production, another accommodation was made with changing times. The use of
systematic methodologies to help manage complexity would, Alexander claimed, entail an
analogous acceptance of the limitations of the individual designer's intuitive powers. This would
bring with it a significant opportunity for progress of the profession. When the design process is
formulated in terms of abstract structures it becomes much more readily subject to public criticism
than when it is concealed in the mysteries of the lonesome genius' artistry, just as the earlier
formulation of previously unselfconscious design into explicit plans, articulated processes and
stated justifications laid the basis for a science of design which could be refined through on-going
debate. Loss of innocence entails the removal of an outmoded barrier to the kind of public critical
reflection required for a profession.

But Alexander did not see the issue one-sidedly. Recognizing the power of both formal
representations and non-formalizable tacit knowledge, he did not propose that design methods
substitute for the practice of design or for the designer's practical intuitions. Rather, he
recognized that intuition and rationalism were equally necessary, and argued for a proper balance:
"Enormous resistance to the idea of systematic processes of design is coming from people who

page 3

Computer Support for Interpretation in Design

recognize correctly the importance of intuition, but then make a fetish of it which excludes the
possibility of asking reasonable questions." (p. 9) Alexander felt that the fetishism of intuition as
some kind of inalienable artistic freedom of the designer functioned as a flimsy screen to hide the
individual designer's incapacity to deal with the complexity of contemporary design problems. As
a consequence of the designer ignoring these limitations, the unresolved issues of complexity get
passed down to engineers who have been trained to work out details rather than to grasp complex
organization synthetically; the product that results tends to be a monument to the personal idiom
of the creator rather than an artifact with a good fit to its function.

The questions posed by Alexander three decades ago for design methodology generally still
confront the particular task of figuring out how best to use computers to support designing.
Consider his first example above, that of designing a moon base. Clearly, this is an
overwhelmingly complex task. One needs to take into account technical information about
supporting humans in outer space, including issues that may not have previously been thought of
and investigated (such as the practicality of using lunar rocks as building materials). One must
also consider the mission goals of the base, both stated and implicit. Then there are social and
psychological issues concerning the interactions among groups of people who are confined in an
alien environment for a prolonged period of time. All of these factors interact with the more
common issues of designing a habitat for working, eating, socializing, and sleeping -- resulting in
a design problem of considerable complexity. While computers may be necessary to manage this
complexity, the tacit knowledge of human designers must also be brought to bear with their
intuitions about what it would be like to live together in a lunar habitat.

Rittel: tackling wicked problems through argumentation

When Horst Rittel declared in his Dilemmas in a General Theory of Planning that "planning
problems are inherently wicked," (Rittel & Webber, 1972, p.10) he thereby spelled out that
characteristic of planning and design tasks that has subsequently become the central source of
perplexity in trying to imagine a computer system that can effectively support the challenging
aspects of design. For, computer programs have traditionally been devised in accordance with the
classical example of "tame" science and engineering problems -- precisely the paradigm that Rittel
argued is not applicable to the problems of open societal systems with which planners and
designers are generally concerned. This assumes that a problem can first of all be formulated as
an exhaustive set of specifications. Then, based on such a problem statement, possible solutions
can be evaluated to see which are optimal solutions to the problem. Computer programs based on
this paradigm must represent in advance the space of problems and solutions for a well-defined
type of design problem in an explicit, comprehensive, and non-controversial (objective) manner.

Rittel claimed that the wicked problems of planning could not be thoroughly understood in the
first place until one had already started to explore directions for solutions. Suppose, for instance,
that you are asked to plan a mission to the moon for four astronauts for a period of 45 days.
According to NASA, the purpose has been specified as: to explore long-term stays for crews of
international backgrounds and mixed gender and to conduct some scientific research and some
site work to prepare for future moon bases. In thinking about the design of the lunar habitat for
this mission, you might begin to discuss the importance of privacy issues with other people on

page 4

Gerry Stahl

your design team. You might feel that not only was some physical privacy needed for cultural
reasons, but psychologically there would be a need to structure a careful mix of public and
private spaces and opportunities. These privacy issues might become paramount to your design
even though they had not been included in the original problem statement. In this way, the set of
issues to be investigated and concerns to be balanced would emerge and evolve as the planning
process took place.

In opposition to the then dominant methods of operations research which tried to compute
optimal solutions from static and well-defined ("tame") problem statements, Rittel called for a
model of planning as "an argumentative process in the course of which an image of the problem
and of the solution emerges gradually among the participants, as a product of incessant judgment,
subjected to critical argument." (p. 13) The language used in real, significant planning processes
is itself the result of discussion and debate among various parties, each of whom uses subjective
judgments to criticize hidden assumptions and to reconstrue implicit meanings of terms. No one
view of the problem or its solution has a necessary priority. The framing of problems and the
judging of solutions arise through critique, deliberation and reinterpretation, not by inference from
an objective viewpoint. For Rittel, people's perspectives on problems are necessarily based on
subjective conditions such as their individual value systems and political commitments or their
personal roles vis a vis the proposed solutions:

For wicked planning problems, there are no true or false answers. Normally, many parties are equally

equipped, interested, and/or entitled to judge the solutions, although none has the power to set formal

decision rules to determine correctness. Their judgments are likely to differ widely to accord with their group
or personal interests, their special value-sets, and their ideological predilections. (p. 15)

Consider again the concept of privacy in the lunar habitat. A design team might start from the
idea of visual privacy. Through discussion of the implications of life in this confined space, they
might want to include protection from the noise of flushing toilets and snoring neighbors. But
then the team member concerned with medical contingencies might introduce a notion of privacy
for an injured astronaut who needs to recuperate. Psychologists, sociologists, engineers and other
members of the design team would each come to the common task with different perspectives.
Given a methodology which builds on the strengths of design as an argumentative group process,
these differences can contribute to a robust solution that takes into account a variety of competing
and interacting insights, not all of which could have been anticipated in advance.

Computer support for planning and design processes as Rittel conceived of them must allow
team members to articulate their individual views and judgments, to communicate these to each
other, and to forge shared perspectives. It must support deliberation or argumentation. Rittel
himself made some initial attempts to define computerized issue-based information systems,
leading to recent systems like gIBIS (Conklin, et al, 1988) and Mikroplis (McCall, 1989).
Somehow, the dimensions of the design problem must be allowed to emerge and change as
different perspectives are brought to bear, as initial approaches are subjected to critique, and as
solutions gradually emerge. Computer systems may be useful for storing, organizing and
communicating complex networks of argumentation -- as long as they do not stifle innovation by
imposing fixed representations of the ideas they capture or limiting diversity of interpretive
viewpoints.

page 5

Computer Support for Interpretation in Design

Schoen: dialogues of discovery and creation

Alexander and Rittel have suggested the importance of the individual designer's intuitions and
of public processes of deliberation for the development of good design. This is at least implicitly
a rejection of the model of technical rationality based on the methodology of the natural sciences.
Donald Schoen made this rejection even more explicit in his influential study of the design
profession, The Reflective Practitioner (1983). Here he argued that much design knowledge is
tacit, rather than being rule-based. He viewed the design process as a dialogue-like interaction
between the designer and the design situation, in which the designer makes moves and then
perceives the consequences of these design decisions in the design situation (e.g., in a sketch).
The designer manages the complexity that would be overwhelming if all the constraints and
possibilities were formulated as explicit symbolic rules by using professionally-trained skills of
visual perception, graphical sketching and vicarious simulation. Note that these skills by-pass the
process of analyzing everything into primitive elements and laying it out in words and
propositions.

Schoen recently took up the question of computer support for design in a paper with the
descriptive title, Designing as Reflective Conversation with the Materials of a Design Situation.
In this article he argued for a necessarily limited role for computers in design because one of the
most important things that designers do is to create the design situation itself. Not only is this
something that computers cannot do by themselves, but it also precludes computer programmers
from pre-defining a generic design situation for the computer, prior to the involvement of the
designer with the task.

Before trying to discuss potential computer roles, Schoen takes time to review several
experiments supporting his thesis that designers construct the design situation. In one experiment,
several experienced architects are shown a 14-sided, dimensioned polygon with door locations
indicated, and asked to design a library with that shape as its footprint. One architect saw the
figure in terms of simple end entrances and complex middle entrances; another saw it as three
pods surrounding a middle; a third saw two Ls back to back. Clara, another subject, discovered a
five foot displacement in the layout which complicated the spatial relationships considerably for
her. (See Figure 1.) Schoen concludes from these and other studies that designers construct the
problem by seeing the situation as defined in a certain way:

In one sense, the 5 ft displacement that Clara noticed is there to be discovered. However, not everyone who
tried the library exercise discovered it. Clara did. She noticed it, named it, and made a thing that became
critically important for her further designing. In this sense, her treatment of the library exercise shows her
not only discovering but constructing the reality of a design situation. For designers share with all human
beings an ability to construct, via perception, appreciation, language and active manipulation, the worlds in
which they function. . . . Every procedure, and every problem formulation, depends on such an ontology: a
construction of the totality of things and relationships that the designer takes as the reality of the world in
which he or she designs. (Schoen, 1992, p.9)

page 6

Gerry Stahl

/

' dlsplac;:ement. |

Figure 1. Four interpretations of the library.

Other experiments showed that designers also construct the materials, site, and relationships
(or prototypes) in a similar way to how Clara constructed the crucial patterns of the project. In
this sense, then, there is no given design problem which is explicitly and exhaustively defined
before the designer comes to it. Correspondingly, there can be no well-defined problem space for
the designer (or for some automated version of the designer) to search through methodically.
Rather, the designer's subjective, personal or intuitive appreciations shape the problem by
constructing its patterns, materials and relationships. The design project is solved by the designer
experimenting with tentative moves within the constructed design situation and discovering the
consequences of those moves.

Schoen argues that a computer program cannot on its own construct a design situation the
way an architect does, picking out, naming, and focusing upon critical patterns, materials and
relationships. To the extent that the role of a designer includes applying intuitive, perceptual and
linguistic skills to view the situation creatively and to converse with it reflectively, a computer
cannot do what a human designer does. Assuming that Schoen is correct that these skills are
necessary for real design, a computer can also not accomplish the design task using alternative
methods to those used by humans, because computer programs as we know them are ultimately

page 7

Computer Support for Interpretation in Design

based on predefined representations of fixed and strictly delimited ontologies. Computer
programs for design are therefore limited to solving problems in well-defined microworlds in
which the framing of problems is trivial, or else to working with human designers to augment their
tacit skills and to allow them to define the perspectives and concepts in terms of which tasks are
to be undertaken.

The hermeneutics of design

Adrian Snodgrass and Richard Coyne of the Faculty of Architecture in Sydney have begun to
articulate a new philosophical basis for Al in design by suggesting that design is hermeneutical.
(For a similar move from the Al community, see Winograd & Flores, 1986) "Hermeneutics" is
the study of interpretation, and today refers primarily to the philosophy of Martin Heidegger and
its explication by Hans-Georg Gadamer. Snodgrass and Coyne argue that design is a human
science in contrast to a natural science, and therefore must be founded on human understanding
rather than on objective method. This has profound implications for the attempt to provide
computer support for design, as well as for the more general attempt to comprehend the design
process.

The ideas of hermeneutic philosophy provide a conceptual framework for further explicating
Alexander's ideas about intuition and public critique, Rittel's views on wicked problems and the
need for deliberative processes involving personal interests, and Schoen's analysis of tacit
knowledge and the designer's dialogue with the constructed design situation. As a human science,
design is based in human understanding gained through processes of interpretation (Alexander's
intuition), rather than being based in knowledge, that is, in propositions and explicit rules. In
fields like design, claims are not proven by appeal to objective facts and rigorous methods, but by
reference to further interpretations (Rittel's argumentative process). A given claim reflects a
certain interpretation of the design situation, a certain way of seeing it or constructing it (as
Schoen would say).

It is always legitimate to question a design move and to demand some justification. But the
justification will always be from the perspective of an interpretation, which can be questioned
further. There are no axiomatic starting or stopping positions, such as those sought by the
rationalist tradition. No claims form a priori foundations for arguments which cannot themselves
be questioned; the chain of justifications based on interpretations ends only when one concedes
that the argument is plausible or convincing from the perspective that one has been persuaded to
adopt. This means the AI dream of providing well-defined representations for problem
statements, rigorous algorithms for problem solving, and expert criteria for solution evaluation is
misguided. Instead, ways should be found for computers to help people devise, share and debate
innovative interpretations. But Al theory is based on formal logical reasoning (Nilsson, 1980) and
provides little insight into subjective interpretation.

In philosophical terms, the problem with most Al systems is that they assume that a single
interpretive framework can, at least in theory, be formulated that will be adequate for all
representations within a given domain. This position can be traced back to Kant. In his Critique
of Pure Reason (1787), Kant argued that the human mind imposes a set of elements or categories

page 8

Gerry Stahl

on sense data in order to understand the external world. These elements or categories of space,
time, quantity, quality, etc. that Kant derived were claimed to be universal a priori.

However, the universality of our interpretive framework was soon criticized by Hegel, who
argued that reason evolved through history. In the Phenomenology of Mind (Hegel, 1807), for
instance, Hegel laid out the logical stages of reason's development in terms of a review of human
history. Marx, in turn, tied this idealist history to the social development of production relations
in Capital (Marx, 1867), while Freud related it to the individual's formative history of inter-
personal relationships (Freud, 1952).

Finally, Heidegger generalized these historical perspectives by saying that we always
understand from within the situation in which we find ourselves already thrown as a result of our
past. But he also added a second important dimension to this critique of Kant. Our interpretive
perspective, he argued, is not simply a matter of categories that can be made explicit and stated in
propositions. More fundamentally, it is a matter of understanding what it means to be a person
and what it means for other things to be encountered in the world (Heidegger, 1927; see also
Dreyfus, 1985). It is only in terms of this ontological preunderstanding -- which can be seen in
the intentionality of our actions, in our grasp of linguistic meaning, in bodily adeptness, and in our
interpersonal skills -- that we can in the first place make things explicit and formulate
propositional knowledge.

So Heidegger's hermeneutic critique of Kantian rationalism has two central implications for
the design of software to augment human cognition. First, it must not impose a conceptual
framework or representation of domain ontology as though a universal set of categories could be
formulated prior to experience with the particular problems in the domain. Second, computers
can never take on the entire interpretive task because they can only manipulate explicit symbols,
whereas interpretation requires a preunderstanding consisting of tacit background understandings
which cannot be represented in formal rules or propositions because they form the very
precondition for propositional knowledge.

Heidegger's thought offers a sustained critique of the rationalist tradition underlying Al, and
proposes a philosophy oriented on the nature of human interpretation. (Stahl, 1975) According
to Heidegger, interpretation takes place on the basis of three dimensions of preliminary
understanding:

* Pre-owning: we already have a wealth of tacit, culturally acquired skills and practices that
we bring with us as historical beings, and which makes us who we are.
* Fore-sight: we see our situation in terms of a conceptual framework and language in terms
of which things can be disclosed to us.
* Pre-conception: we have a tentative expectation or anticipation of what it is that we ar
about to interpret. ”
Heidegger's analysis of preunderstanding incorporates within a consistent philosophic
conceptualization many of the ideas important to Alexander, Rittel and Schoen: tacit (non-
propositional) skills, linguistic problem framing, and discovery through construction.

Most of the time we form interpretations without being aware of this three-fold background of
preunderstanding. That is why the interpretive process of design often seems so mysterious and

page 9

Computer Support for Interpretation in Design

intuitive. As we are forced to justify or reflect critically upon the assumptions of our interpretive
stance, we gradually make more and more of the underlying background explicit. We can be
prompted to do this by what Schoen calls "breakdowns" in the design process. For instance, we
make a move in our design sketch and then we see that a problem occurs as a result. Perhaps
seeing the problem brings to our attention a certain need or constraint of the project that has been
violated and that we were not formerly aware of. Breakdowns of relationships in our situation are
a common way in which our circumstances are explicitly disclosed to us. Dialogue with other
team members is another way in which implicit assumptions are brought to light, in explaining and
arguing for ones own views in order to bridge the gap to someone else's perspective. Critical self-
reflection while engaged in a design task is yet another way:
The process of design is thus a disclosure, in two senses. Firstly, it is a disclosing of the
artifact that is being designed; and secondly, and simultaneously, it is an unfolding of self-
understanding, since it reveals one's preunderstandings. It uncovers the preconceptions
that are constitutive of the design outcome, and at the same time brings to light the
prejudices that are constitutive of what we are. (Snodgrass & Coyne, 1990, p. 15)

This conception of design as a dialogue which discloses involves a very different notion of
critique from that in philosophy of science. The model is one of persuasion, not of hypothesis
testing. One is always already in an interpretive context. From within this context, one then
understands new arguments, claims, and interpretations. Being in an interpretive context is not
like tentatively accepting a propositional conjecture that one may later flatly refute as false based
on some discovered objective facts (Popper, 1965). It is more like having a perspective through
which one can first of all understand arguments and facts, and thereby modify ones own
framework or paradigm (Kuhn, 1962).

The notion of language operative here is also in contrast to that of the natural sciences and Al:
"On the one hand there is the model of formalized language, the language of primary units that are
combined according to the rules of logic to form meaningful structures; and on the other hand
there is the metaphor of the language of conversation, which is the language of interpretation.”
(Snodgrass & Coyne, 1990, p. 16) This presents a serious problem for any attempt to provide
computer support for design. Computers speak the formalized language, while designing requires
the language of conversation. Computer programs consist quite precisely of algorithms encoded
in a formal language, data structured as primary units, and operations performed in accordance
with the rules of logic.

Snodgrass and Coyne have shown that design can be comprehended as a hermeneutic or
interpretive endeavor. This view is consistent with the tradition of design methodology presented
in the preceding pages. Like Alexander, Rittel and Schoen, Snodgrass and Coyne see their
analysis as being relevant to Al, but when they try to spell out practical recommendation they end
with vague generalities (See Coyne & Snodgrass, 1991). Hermes, on the other hand, is a working
model of hermeneutic software design. However, before discussing how Hermes embodies the
principles of hermeneutics in its specific features and implementation, it will be useful to indicate a
trend within recent developments of Al that can be taken as converging with the suggestions from
design methodology and preparing the path taken by Hermes.

page 10

Gerry Stahl

II. Adapting Artificial Intelligence to Design

Simon: defending the traditional approach

Most work in the mainstream of Al can be characterized as an attempt to create computer
programs to solve problems by using formalized language, primary units and the rules of logic.
(Winston, 1981) In an article on The Structure of Ill-structured Problems, Herbert Simon, a
major proponent of this tradition, tried to defend its approach against the argument presented
above that the Al style of representing problems is inadequate given the "wicked" nature of most
interesting design tasks. Simon's counter-argument revolves around the example of a chess
playing program. He claims that the problem for such a program shifts from move to move as the
features of the board (attacks, opportunities, strengths) change. So even chess is a wicked
problem. Yet, a computer can play chess using traditional Al techniques. Therefore Simon
claims there is no reason to think that wicked problems cannot be solved by these techniques.

But Simon has confounded two layers of representational analysis. Chess is a well-defined
domain with explicit, unambiguous rules. In no sense does a chess program reinterpret the rules
as the game proceeds. The representation of game states and therefore the universe of possible
chess moves is fixed for all games. The fact that characteristics of the board's state and its
evaluation change has no consequences for how one represents states or rules in chess. This is
essentially different from how ones perspective on moves in social planning and complex design
tasks has fundamental implications for how one frames problems and judges solutions.

At the end of his article, Simon provides a glimpse of the real issue. If a computer program
needs to acquire external information about the problem situation, then it must force that
information into its fixed representational framework. Simon admits that this is a weakness, but
concludes that it is really for the best:

[The process of acquiring external information] is an aid [to the process of understanding that information]
because it fits the new information to formats and structures that are already available, and adapts it to
processes for manipulating those structures. It is a limitation, because it tends to mold all new information to
the paradigms that are already available. The problem-solver never perceives the Ding an sich, but only the
external stimulus filtered through its own preconceptions. . . . The world perceived is better structured than
the raw world outside. (Simon, 1973, p. 163)

The reference here to the Kantian "thing-in-itself" signals Simon's outmoded philosophic position,
which ignores the need for representation to be mediated by what is represented. The whole point
of Rittel's analysis of wicked problems was that there is no adequate set of formats and structures
already available before one acquires information about a situation. Rather, an argumentative
process is needed to respond to the flow of information in ways which transform the paradigms
that were already available. Schoen's reflective conversation with the materials of a design
situation makes no sense if the materials have been fit to a mute format. Although Heidegger
would agree that the world is perceived through existing preconceptions, he would not agree that
this is a "better" structure if the tentative original expectations are not allowed to respond and be
transformed by the world they disclose.

page 11

Computer Support for Interpretation in Design

Perhaps Simon realized that planners and designers need to take approaches that are
qualitatively different from the methods of traditional Al, but he could not imagine how to extend
computer technology to support those activities. In a lecture on Social Planning, he later recited
a series of anecdotes that illustrated how complex planning processes hinge in large part on not
assuming a fixed representation of the problem, but letting it evolve with the solution. For
instance, in establishing the Marshall Plan after World War II the people involved in setting it up
proposed six different and largely contradictory conceptions for its role. Simon underscores the
observation that different conceptualizations of the problem would imply various ways of
organizing the agency, and consequently quite different programs emphasizing different results.
He concludes that "what was needed was not so much a 'correct' conceptualization as one that
could be understood by all the participants and that would facilitate action rather than paralyze it."
(Simon, 1981, p. 166) What he recognized to be needed, in other words, was a process of
deliberation among the participants to reach a common understanding, not some formally rigorous
representation framework. Here, Simon proposed a series of methodological approaches to
issues of social planning, but these were strikingly less formal than the tools he had proposed for
well-structured domains. Significantly, he did not discuss the possible implementation of Al
programs that might be able to support these methods of social planning.

From expert systems to critiquing

It seems clear that planning and design problems cannot be solved by means of automated
methods without the active involvement of humans. Whether one thinks of Alexander's references
to intuition, Rittel's insistence on the role of personal interests, Schoen's emphasis on tacit
knowledge, or Snodgrass and Coyne's focus on interpretation, one finds the essence of designing
in skills that are distinctively human. These skills are to be contrasted with the modus operandi of
computer programs. During the past decade, Al research has begun to explore ways of
supporting human expertise with computer systems that preserve a central role for people. A step
in this direction can be seen in the shift from autonomous expert system programs to "expert
critiquing systems."

In his survey of expert critiquing systems, Barry Silverman defines the term "critic" as a
computer program that critiques human-generated solutions. Thus, rather than the program
coming up on its own with a solution by following a set of rules that have been gleaned from
domain experts, a critic program responds to a solution proposed by a human user of the
program. Take, for instance, an expert system such as Simon discussed for playing chess. It
would operate by accepting as input a board position and responding with an optimal move. A
chess critic, by comparison, would allow a human user to make a move in response to the board
position and would then critique that move. The critic might say that the proposed move violated
the rules of chess, or that it put the player in some danger, or that it missed the opportunity for
some better move. Most often, the critic would probably be silent and let the human continue to
play uninterrupted. The idea of using critics is to allow human intuition to guide the solution
process -- recognizing the appropriate role of the human -- while at the same time bringing to bear
the computer's ability to recall facts, rules and constraints which the person might easily have
forgotten.

page 12

Gerry Stahl

As Silverman's presentation makes clear, expert critiquing systems of his style are a straight-
forward modification of expert systems. They require the same ability of the computer to solve
the problem, but merely delay the announcement of the computer's solution until the user has had
a chance to try: ‘

The conversion from an expert system to a critiquing process primarily involved adding a differential
analyzer that would: suppress the expert system's diagnosis until after the user had also input his or her own
diagnosis (the machine would request that input), compare its diagnosis to that of the human user, and
determine if the human deviated significantly enough from the machine's ("optimal") diagnosis and plan, to
warrant interrupting the human to explain the problem it had uncovered. (Silverman, 1992, p. 111)

This approach can be effective in simple, well-defined domains which can be captured in a number
of explicit rules or look-up tables. Spelling checkers for word processors can be viewed as a
particularly successful example. Perhaps the best application is intelligent tutoring programs,
where the user is not likely to be aware of all the rules of a domain which can be formulated in
expert system rule bases. Most Al systems are really only "intelligent" compared to novices who
are learning the basic rules, not to domain experts whose skills far exceed the realm of rules.

As the name suggests, critics can represent a first step in a paradigm shift toward the model of
critiquing as a dialogue process. Consider the analogy to the human critic in a design studio,
where a student does some work and then the critic responds based on principles that may have
been violated or alternatives that were overlooked. In line with this analogy, Silverman claims
critiquing should be a two-way, interactive, communicating, view-sharing process.
Unfortunately, when one looks at the implementation details he proposes, this dialogue reduces at
best to a limited user model in terms of which the program's explanatory output is adjusted to the
represented skill level of the user. In other words, the program somehow classifies the user
(perhaps by asking the user to select a skill level) and then prints out the text that had been
programmed as an explanation for the current "user deviation" for that level user. This is scarcely
an argumentative process in Rittel's sense or a dialogue in the hermeneutic sense.

In fact, much of the work Silverman presents is still very much in the rationalist tradition. In
his approach, critic systems require that the domain be well-defined in terms of the following
criteria: explicit rules can be specified for each type of wrong answer; the rules for assessing user
solutions are objective; only one or two possible correct solutions exist for each task; and
subtasks can be critiqued independently of each other. Silverman's own contribution to the theory
of the critic approach is to emphasize the importance of clarity (a watchword of rationalism since
Descartes). The first thing that critics should do in his opinion is to eliminate ambiguity.
"Ambiguous statements which have more than one meaning cannot be clearly confirmed
logically," he warns, "nor can they be completely disproven empirically. They may be true
according to some interpretations." (p. 107) Although Silverman's critics have introduced people
back into the problem solving loop, they have not opened the loop wide enough to permit true
dialogue among competing and ambiguous interpretations.

Design environments for cooperative problem solving

In his survey of critic mechanisms, Silverman contrasts pure expert critic systems with the
approach of "Colorado critics", which are "embedded in other, high-function, complex

page 13

Computer Support for Interpretation in Design

environments" and which are part of research on "a comprehension-centered theory of human-
computer interaction." (p. 112) These embedded critics represent a different attitude toward the
whole relationship of computer system to user and toward the objectivity of expert knowledge.
Where Silverman's expert critiquing systems were "differential critics" capable of arriving at their
own solutions and then evaluating a user's solution based on its differences, embedded critics are
"analytic critics" which analyze a user-generated solution in terms of a particular rule or feature.
These critics are conceived as part of a "cooperative problem solving" system in which human and
computer work together to iteratively generate, critique and refine a solution.

The Colorado critics are embedded within "design environments" like Janus (Fischer et al,
1993). Janus is a knowledge-based system to support the layout of kitchen floorplans.
Knowledge about kitchen design is encoded in the various components of Janus' multi-faceted
architecture (see Figure 2): A palette of kitchen appliances provides a graphical construction kit
of parts for visually representing a layout. Sets of critics embody rules of thumb about the
placement of these appliances, such as that the stove should be near but not next to the
refrigerator. A specification checklist prioritizes client concerns, like whether the kitchen should
be child-proof. An issue-base contains discussions of rationale for kitchen design, including
deliberation related to the critic rules. There is also a catalog of past kitchen designs, which can
be used as starting points for new designs or illustrations of abstract rules.

endguser)\

modification

graphic
construction

 /artial
specification

Figure 2. The multi-faceted architecture of Janus. The major components of the system are shown in
ellipses; they each use a different data representation. Other components are used to bridge between
these representations. Designers alternate between problem framing (altering the partial specification)
and problem solving (altering the graphic construction).

argumentation
illustrator

the
human
designer(s)

argumentation

Phidias is a related design environment for kitchen design (McCall, et al, 1990). It differs
from Janus in developing the construction kit more fully in the direction of a CAD system, so that
a designer can develop 2-D and eventually 3-D drawings rather than simply arranging fixed icons.

page 14

Gerry Stahl

It also elaborates the issue-base into a more flexible Issue-Based Information System
incorporating a primitive query language for navigating through the rationale hypertext. In place
of Janus' critics, Phidias has triggers. These provide advice on selection and placement of
appliances in advance, rather than critiquing user placements of appliances which violate rules of
good design.

Both Janus and Phidias are based on the design methodology of Alexander, Rittel and Schoen.
More meaningfully than Silverman, they put people in charge of the designing, so that human
intuitions, interests and skills can come into play fully. Rittel's focus on argumentation is
implemented in the issue-bases of these systems. Their integration of graphical construction with
this textual deliberation is seen by the developers of Janus and Phidias as a way of
operationalizing Schoen's theory of reflection-in-action or breakdown-and-repair, in which
designers construct, observe, reflect, and respond.

Despite the progress that systems like Janus represent in meeting the needs of designers, they
still fall short of supporting interpretation. Consider the forms of knowledge in such a system.
The paradigm is still that the programmer who built the system obtains pieces of knowledge from
books and domain experts, and enters it all in the system. Users benefit from being guided by the
knowledgeable system. When designers want to, they can also explore the rationale for critic
rules and defined characteristics of the standard appliances. But the bulk of the knowledge exists
independently of the personal concerns of the user or the specifics of the task at hand. Recently,
an "end-user modification" component has been created for Janus. (Fischer & Girgensohn, 1990)
This allows users to add new appliances (e.g., when microwaves become popular they can be
added to the palette) and to modify existing definitions and critic rules. However, this is not
intended as a mechanism for continual redesigning of components under alternative
interpretations; nor does it support multiple simultaneous definitions for different users or
different interpretations.

The reliance on standardized components and relatively non-controversial rules of thumb in
Janus may work in the realm of kitchen design because this domain is, in fact, well-defined and
well-understood. At least if one limits ones concerns to the layout of appliances, there is a rather
limited list of primitives (stove, sink, cabinet, etc.). They come in standard sizes and raise few
issues for the designer. By ignoring issues of aesthetics, sociability and architectural interactions
with the rest of the building, Janus is free to concentrate on rules that are independent of the
interpretive perspectives of designers or their clients. For instance, the implemented critics have
to do with distances between appliances, the size of the work triangle, the placement of the sink
under a window, or the separation of the stove from the refrigerator. The approach of the
Colorado critics may need to be extended for domains which are less well understood.

Lunar habitat design: an exploratory domain
Lunar habitat design is not a task for which one could expect to interview an expert and come
up with a set of formal rules and elements to define a comprehensive system of knowledge.

Workers in this field are attempting to explore a new domain and to begin to map out the
potential problem space. A goal of researchers is to sketch in parametric curves that would

page 15

Computer Support for Interpretation in Design

indicate how designs have to change depending on such parameters as number of astronauts,
length of mission duration, or payload delivery capacity. (Cf, e.g., Design Edge, 1990; Moore,
et.al., 1991; Kazmierski, et al, 1992) But even the most important parameters remain undefined
and open to interpretation and debate. For instance, few NASA guidelines cover privacy issues,
even though this is an important concern of thoughtful designers and a topic for vigorous political
debate and even power struggles within NASA. (Compton, et al, 1983) Privacy is a matter of
human intuition (to use Alexander's term) and subjective interpretation which resists being
operationalized in the objective rules of traditional expert system approaches.

In the lunar habitat design sessions studied for the current research, privacy issues were in fact
the first real concerns to surface. They structured how the designers constructed their task.
Related questions of social interaction dominated questions of physical layout, indicating that
social planning was necessarily a significant aspect of the designing. When the geopolitics (or
solar system politics) of NASA's goals are reflected in the deliberations, the result is truly a
wicked problem in Rittel's full sense. It is not just that more study is needed to formulate
objective rules for the field, but that decisions necessarily involve tacit understanding of inter-
personal behavior and non-propositional recognition of political interests.

For relatively unexplored domains such as lunar habitat design, efforts at designing do not
seek optimal solutions within a known problem space, but begin to mark out a solution space in
the first place -- as Schoen says, to construct the reality of the design situation. The most
important role of computer support for such domains may be to capture the ideas that are being
generated. Terms and critics which are formulated on the spot during this design exploration
process are expressions of what a designer may want to pay attention to. So, for instance, the
important criterion for critics is not the rigor of their computations in the sense of some rationalist
engineering ideal but their ability to convey the designer's interpretive intent. The computer
system as a whole should not primarily be an autonomous equation solver, but a powerful medium
of external memory to empower people's creativity. An appropriate software environment for this
domain would be one designed to capture new and evolving knowledge, rather than one which
simply manipulates predefined knowledge representations and systems of production rules.

A high-tech design goes through many stages of development, involving different design
teams. Architects, designers, a variety of engineers, and administrators all work on the designs
from their own viewpoints. Successful designs are sent to other contractors around the country
for detailing, mock-up, testing and construction. At each stage, the design is modified, based on
people's understanding of the design and its rationale. If a creative design concept is to survive
this argumentative process -- with tight cost, weight and volume constraints at every stage --
strong rationale must be communicated; a schematic diagram or a pretty picture will not suffice.
In fact, a typical product of lunar habitat design consists of a small booklet predominated by
textual explanations of rationale, not just detailed drawings. The important role that rationale
plays in this extended design process should motivate designers to document their reasoning and
interpretation more than they would in a domain like kitchen design.

Because designers lack personal experience living in lunar habitats, knowledge embodied in
previous related designs (including Skylab, the Shuttle, Space Station Freedom, previous trips to
the moon) is invaluable. Old designs are re-used extensively. To the degree that design rationale

page 16

Gerry Stahl

of the old designs has been captured and augmented by subsequent experience, it is vitally
important. Consequently, it is likely that design rationale will increasingly become an integral part
of design. This should add tremendous power for practitioners who take it seriously and those
who use computer tools that support rationale capture. Such a development represents a
significant break with the tradition of CAD programs, which are purely graphical and embody
very little semantics. However, it has impressive precedence in other fields like science,
mathematics and philosophy, where written theories, proofs and arguments have been refined
through processes of public critique and have grown into extensive bases of shared knowledge
and accumulated commentary impossible in non-literate cultures.

The need for computer support of lunar habitat design was originally suggested by the sheer
volume (complexity) of knowledge required -- far more than people could maintain in their heads
or even locate easily in manuals. There are voluminous sets of NASA regulations for all Man-In-
Space designs, ergonomic standards, and specific project contractual obligations which must be
adhered to by designs. But the complexity of lunar habitat design is not just a matter of the
volume of information. Requirements, components and rationale all have to be reinterpreted
within the Gestalt of the evolving design. This is an application realm in which, for instance, most
physical components require some degree of customization. Because of gravitational or
volumetric considerations, one cannot simply select a stock sink or bed from a catalog, Even
pumps and fans must be re-thought. Furthermore, there are many design interactions among
components that are placed close together -- partially because space is at a premium and also
because things must work together to form a coherent environment for habitation. This means
that design of a given part is very much situated in its context, in terms of neighboring
components (e.g., sound buffers), design concerns (privacy), and projected usage issues (traffic
flow). The computer representation of the design must function as the unique world in which
representations of all the components and their relationships are appropriately situated so that
design can take place effectively. One wants to start from existing components, but one then
needs to be able to modify them freely to account for differences in the lunar setting. So
representing standard parts with schematic icons or fixed items from a palette is inadequate.

Elements of lunar habitats should be similar to familiar products to facilitate manufacture and
to give astronauts a sense of being at home, but they must also be different to meet the severe
constraints of their context. This means that models and rules of thumb must be searched for in
many other domains (houses, submarines, Antarctic labs) and then applied to the lunar setting.
Hermeneutic theory teaches that application is not a mechanical process; it must be done by the
creative and synthetic minds of humans, with computer systems merely presenting the relevant
elements. Even the determination of what might be relevant must involve the human designer, for
this is also very much a matter of interpretation based on a deep understanding of the semantics
involved.

To support the subtlety of communication between the computer system and its users, the
users should be able to develop a language that operationalizes their evolving interpretations in
ways which can be used by the software. At the same time, the development of a language for
interpretation can provide a basis for shared understanding among groups of designers, even if
they are not working together at the same time or place. For instance, a designer who is
considering an old design for adaptation into a new project can learn about the old design through

page 17

Computer Support for Interpretation in Design

the language which was developed with it -- including the formulations of critics specific to that
design. Providing some support for collaborative work among groups is particularly important in
this domain because of the way each successful design must undergo the scrutiny of many teams.
Generally, the only communication between these teams is the design document itself. To further
mutual understanding, it is desirable that the design include effective documentation of the
interpretive stance behind the rationale.

Lunar habitat design is not a task for one person sitting at a computer. It proceeds through
the work of teams of teams, each viewing the common product through their own perspective.
The essential communication is not that between a human and a computer (the model underlying
Janus and Phidias), but among the design teams. What a computer system like Hermes can do is
to provide an electronic medium to support this communication. It can do that by facilitating the
development of a shared language of design interpretation and by providing a mechanism for the
creation and sharing of interpreted designs defined using that language.

page 18

Gerry Stahl

III. Hermes: a Computational Medium

A scenario using Hermes

Hermes is a prototype software system crafted to support the work of designers engaged in
tasks like lunar habitat design. It is intended to support human interpretation by keeping control
over all aspects of the design process in the hands of the system users and providing ways for
them to articulate, share, visualize and store their interpretive perspectives of the emerging design.
It is also conceived as a response to the requirement of design methodology that the
representations in terms of which a design is interpreted emerge out of the design process itself.

The following scenario of Hermes in use is meant to give an initial feel for what it is like to
design and to construct interpretations of designs using Hermes. Emphasis is placed on some of
the variety of ways in which Hermes users can define and modify the computational
representations of the design knowledge they create or discover. For practical reasons, the
scenario is kept simple. Some of the procedures and underlying mechanisms will be described
more fully in subsequent pages.

The task for the scenario is to design a lunar habitat for the mission which has already been
described. A design team consisting of Adam, Betty and Chan has just met to discuss a
preliminary sketch by Adam. They have focused on the issue of privacy and agreed that for many
reasons it is problematic that Adam's design has a common area opening up into the sleep area
and the hygiene area. Betty agreed to define and document the problem more precisely using
Hermes' language. Then she will pass the problem on to Chan, who is to propose a possible
solution prior to the next group meeting.

For the sketch he had prepared before the meeting, Adam had defined a work context for
himself in Hermes and within it had created a lunar habitat drawing consisting of three component
areas: a sleep area containing four bunks along the walls; a common area consisting of galley and
wardroom subcomponents; a hygiene area containing a shower and a WC. (See Figure 3.) Adam
selected the bunks, galley, wardroom, shower and WC from a palette of components from
previous lunar design projects. He added his three habitat areas to the palette and added his
overall habitation drawing to the catalog of designs. While his ideas were fresh in his mind, he
entered his rationale for the design, expanding the design rationale associated with the
components that he had copied into his work context.

page 19

Computer Support for Interpretation in Design

g s Xt
¢ the, 451G, considerale K i
R
operation
@ Navigate outgoing Il .
O Navigate in-coming | $90-Fatfgrete
O Edit the text g A o
O Author of Annatate = .
O Caneel e :

Outgaing Links

d Issuc_tres with thelr deflberation of node Issue
Hi[1ssue 6.6.2.4

RORUGRRIERY < oyton lewis context
U/t should be the 2iz of the bunka?

What should e the access to ihe bunke?
What chould be the rtangomen of the
bunks?
i The bunks eheuld be lined slang the outer
Predicates walla,
Thiz srrargeent provides sssy access
ssue_uee from the centrot corrldor,
subissue_tree Thia srrangement keeps the centrab

one viall; ol 1.
This anangemaent provides edvacy by
piscing sizaping heads apart,

Figure 3. The Hermes screen while Betty is working. She has the drawing that Adam prepared. The
predicate dialog box shows a predicate she has defined in the Hermes language, using a type selected
Jfrom the list of types. The critique window shows the result of evaluating her new critic. [N.b.. this
figure must be revised to match the caption and text.]

Adam has created a graphic representation of a design. Sometimes this kind of drawing
appears to be the primary product of the design process. However, if one videotapes designers at
work and has them verbalize, then one discovers that the drawings are but shorthand reminders
(external memories) of extensive consideration of issues and refinement of terms. In traditional
(non-computer-based) settings, much of this is communicated through gestures, abbreviated
utterances and informal comments -- little of it is captured explicitly in documents. Hermes
captures these elements of design interpretation in formats that allow the computer to provide
powerful computational supports which never before existed. This transcendence of traditional
means (Ehn, 1988) comes at the cost of making series of explicit definitions, as can be seen in
Betty's role in the scenario. (Betty's series of definitions are described below and are summarized
in Figure 4.)

Betty defines a new work context for herself which inherits Adam's context, so she will have
access to Adam's work (design, palette, rationale, etc.) and will be able to modify her version of
his work without affecting the original version in his context. She selects his design from the
catalog and decides to start by defining privacy values for the three component areas of the
habitat. First she defines a relationship named privacy values by adding this phrase to the list of
relationships already defined in Hermes. She then assigns numeric privacy values to Adam's three
components by sliding her mouse along a scale and linking the value selected to its corresponding
component in the lunar habitat design. Using this definition of privacy values, Betty can now
define public areas as components which have privacy values which are less than 3 and
private areas as components which have privacy values which are more than 7. She does
this using the Hermes interface for defining predicates in the language.

page 20

Gerry Stahl

Next Betty wants to add a specification concerning privacy to the list of partial specifications
for the design. She defines a new issue (which she names the privacy specification) in the
design rationale: "Is privacy important?" She accepts this new issue in the issue-base (assigning
it an answer of true) and adds it to the list of specifications. She also defines two phrases in the
Hermes language: if privacy is important (her name for the conditional phrase which she creates:
if there are answers of the privacy specification which are true) and the privacy
message (her name for the message she writes: "The public areas are not separated from
the private areas"). Now she is ready to use these phrases to define the critic which will
analyze the drawing in terms of the privacy values of its components. Privacy critic is defined by
Betty as a query in the Hermes language: Display the privacy message, if private areas are
near public areas, if privacy is important. When this critic fires, the query will evaluate the
answer to the privacy specification to see if privacy is important. Then it will check that there
is at least a minimal distance between each private area in the drawing and each public area. If
these conditions are true, then the privacy message will be displayed on the computer screen.

Betty adds the
privacy critic to the
list of critics and

relationship: privacy values
predicate: public areas = components which have privacy values which are less than 3.

has the lunar predicate: private areas = components which have privacy values which are more than 7.
habitat ~ drawing
critiqued by them.
She reads the answer node: = true.

privacy message conditional phrase: is privacy is important = if there are answers of the privacy specification
which appears and which are true.

decides it is not

issue node: the privacy specification = "Is privacy imporiant ?"

textnode: the privacy message = "The public areas are not separated from the private

very informative. areas."

So she modifies the critic query: privacy critic = Display the privacy message, Iif private areas are near public
critic to display areas, if privacy Is important.

rationale in

addition to the Figure 4. A series of terms that Betty defines, culminating in the privacy critic.

message. She adds

some answers to

the privacy specification issue and several arguments to these answers. Then she defines a
computation named debate: answers with their arguments. Now when it is evaluated the
critic displays the privacy message followed by the debate of the privacy specification, as shown in
Figure 3. Betty is happy at this point. She feels this gives an operational definition of privacy
which can be used to test variations on lunar habitat designs.

Chan takes over Betty's work by inheriting her context in his. He sees the critic message and
realizes that the sleep and common areas must be separated. He has an idea. He rotates the
bunks into a pinwheel arrangement. That frees up space to insert storage cabinets and a doorway
to isolate the sleep area in terms of sound and light from the common area. Chan adds his
thoughts on privacy to the issue-base that Betty began. To cause the whole extended discussion

page 21

Computer Support for Interpretation in Design

to show up, he modifies debate to be issues and answers and arguments with their
debate.

Now Chan tests his design and the critic still fires. He decides to separate the hygiene area
from the common area by building a five inch wall between them. The wall can hold the plumbing
and water reserves for the shower and WC, so those rooms can be made five inches narrower. A
door is placed in the wall, providing a private dressing room. The wall can also contain
equipment for dust control, so that astronauts entering the habitat through the air lock at that end
of the habitat can refresh themselves in privacy before entering the common area, and moon dust
they brought in will be caught more effectively. (Chan's work is shown in Figure 5.)

e contod
Controls _Qptions_ Window

e
The sirep compsrtments sve nonsisadord

v The layout of the sleep compsments ia
] avigate out-going Ui} nat modutar ins exgansinn. 0 Vi -

B| O Navigate in-coming I = Flan view of layout
B O Edit the text o iansanne. "IN N

il O Author o - . -
i O caneel
g

Outgoing Li

issue_tree with their deliberation of node issue
6.6.2.4

mike eisenberg context

§ Predicates

This arcanyeimes! sligw r
aeparatien of publi and private spaces,
The pinwhieet dece il bave te extend eve,

e golley-wardioom sca,
wevesued theougl the

Figure 5. The Hermes screen while Chan is working. The context control shows how he defined his new
context to inherit from Betty and from other contexts. The drawing has been revised by Chan in response
fo the critique shown in Figure 3. In the query window, Chan has tested his new definition of "debate".
The navigate dialog allows him to browse through the rationale in the query window. The result of the
critic with the revised drawing shows that no problems were found. [N.b.: this figure must be revised to
match the caption and text.]

Chan's revised design meets Betty's critic tests. His rationale has been entered for others to
review before the meeting and to amend at the meeting. Meanwhile, anyone can set up a work
context which inherits Chan's and try out variations on his design, perhaps modifying some of the
definitions that Betty made or altering the graphical components.

Interpretation in design: defining the representation

A closer look at what took place in the preceding scenario will show how designers can define
their interpretations in Hermes, how these are represented in the computer system, and how

page 22

Gerry Stahl

Hermes can use this information computationally. The design team in the scenario interprets their
task as one of providing both public and private space in the habitat. In order to distinguish
public spaces from private ones, Adam interprets his concept of the habitat layout as consisting of
three functional areas: a private sleep section, a public common space, and a private hygiene
component. Adam sketches in these areas using Hermes' graphical editor.

Betty's task is to explicate the design group's tacit understanding of privacy, which is based on
their comprehension of the semantics of the English word, their personal experiences of having
wanted to be alone, and their knowledge of various architectural examples of private spaces. She
needs to reinterpret this concept in a way which can be used by the computer computationally.
She decides to do this by defining it as a numeric value from 1 to 9 which can be associated with a
graphical component. Objects with privacy values close to 9 will be considered private; those
near the other end of the scale public. One might well wonder what the number 9 has to do with
the meaning of "privacy". The point is that human judgment is still needed to make the
connection between a graphic component and its privacy value. But once this judgment has been
made and embodied in the assignment of a value, the computer system can use the value in its
manipulations. This approach does not exclude the possibility that in some cases it may be
possible to formulate an algorithm for the computer to assign privacy values directly, based
perhaps on the topology of room layouts. But such an algorithm is not necessarily available, and
would at any rate require a human judgment to accept its calculation as equivalent to the meaning
of privacy.

Betty develops her ideas in Hermes, a computer-based design environment which has no built-
in knowledge related to privacy. Instead, it provides a language in which new concepts like
privacy can be defined and referred to. The language is integrated throughout Hermes, so that it
can apply to the graphic drawings or to navigation through the issue-base of rationale, and can be
used in any function within the software system. The language provides for the definition of
several kinds of phrases, which can be built up from simple relationships like "privacy value" to
form arbitrarily complex clauses. Betty's central task is to define a critic in the Hermes language
which will check the privacy values of graphical components in the habitat drawing and will
display a message if a component with a low privacy value is near a component with a high
privacy value.

To build her critic, Betty first needs to define a number of phrases: a term for public areas, a
term for private areas, a message for the critic to display, and a clause to check what components
are near what components. (See Figure 4.) In addition, Betty wants to add a condition to the
specification for the habitat stating that privacy is a concern. She will make her new critic
conditional upon this specification being accepted in the design, so the critic will only be active in
designs where privacy is an issue. These are the steps Betty goes through in her part of the
scenario.

To give a feel for the use of the Hermes language, the construction of her first phrase -- the
predicate for public areas: components which have privacy values which are less than 3
-- will be described in some detail. First, Betty indicates that she wants to define a new predicate.
A form appears on the computer screen asking her to name the predicate and select its format.
She types in the name, "public areas". Of the dozen alternative syntactical formats listed, Betty

page 23

Computer Support for Interpretation in Design

chooses the one that says Relationship which Filter. This means her predicate will consist of
two subclauses, a Relationship and a Filter, joined by the word "which". Hermes presents a list
of all defined Relationships and Betty selects "components”. Then Hermes presents a list of
formats for Filters. Betty selects the syntax: have Relationship which Filter. This time, for
Relationship, she selects "privacy values" and for Filter, "are less than Number." Finally,
for Number she enters "3". Hermes displays the desired clause, consisting of the selected terms
joined together in the nested syntactical forms. (Figure 6 shows the internal structure of this
phrase.)

public areas

Predicate node

components which

ave (privacy values) which /are less that
. Tmber
RETEBhShIp

Relatianship

Fredicate object

Figure 6. The syntax of Betty's predicate "public areas”. It is a nested structure defined by syntax
options of the Hermes language, simple relationships (link types defined by Adam or Betty) and system
primitives (like the number 3).

The process just described makes much more sense when conducted on the computer than
when read as a narrative. Nevertheless, even in the user-friendly Hermes system it is not a trivial
undertaking for people to construct critics and their constituent clauses. It is assumed that Betty
would have received some training in the language and would have gradually learned how to use
it through seeing examples of existing clauses, trying to modify them, and experimenting with
simple exercises. The Hermes language is, after all, a powerful programming language, and Betty
is a professional who is willing to invest considerable cognitive effort in learning to use valuable
tools of her trade. On the other hand, the Hermes language avoids many of the considerations
which make most computer languages hard for non-programmers to understand. Also, when
thoughtfully constructed, clauses in the language sound English-like, which helps people to
remember what they do.

A key feature of the language is that virtually all the vocabulary -- except for the syntactic
sugar which makes it stick together: words like which, have, are -- is defined by users. Thus,
phrases tend to consist mostly of words that are commonly used by workers in the domain. This
is part of what it means in Hermes for users to create the computer representation that they will
be using. Just as Adam creates the graphical representation of his habitat design, including its

page 24

Gerry Stahl

break-down into three major subcomponents, Betty creates the phrases in terms of which her
team will interpret the design and the computer will analyze it.

The mechanisms of Hermes: overcoming the limits of representation through the
power of representation

The key to understanding how Hermes works is to appreciate its hypermedia structure. The
term hypermedia means nothing more than that nodes which can have contents of various kinds
are linked together in a network by /inks. For instance, Betty has created a new node named the
privacy specification. It is of type issue and has the following text for its content: "Is privacy
important?" In figure 7, nodes are represented by ellipses (which can contain a name) and links
are represented by arrows (which may be labelled with a type). Note that the content of a node is
separate from the node itself in Hermes, and the two parts are connected by links the same way
that different nodes may be connected. A link of type answer goes from the issue node to an
unnamed node whose content is the true/false value true.

content "Is privacy

Important?"'

7 privacy
. Specification

specification list

text object

pecification

partial
member

specification
for habitat

answer

content

true/false object

Figure 7. Part of the hypermedia network. A link of type "answer” connects an issue node fo its answer
node. Links of type "content” connect these nodes to their contents. A named partial specification list is
maintained by linking a node with the name to nodes for each of its members.

These nodes and the links joining them are part of the hypermedia network that includes all
the data in Hermes. In this sense, Hermes is a database management system that stores, organizes
and retrieves multimedia data: text, numbers, true/false conditionals, line drawings, scanned
images, phrases in the Hermes language, data lists. It could be extended to include sounds, video
clips and animation sequences as well. Each medium has procedural methods associated with it.
For instance, each medium has its own display method, so that text objects are displayed as lines

page 25

Computer Support for Interpretation in Design

of characters in certain fonts and sizes, which wrap to the next line when they reach the right
margin, numbers are displayed in certain decimal formats; drawings are displayed graphically.
The structure of the hypermedia in Hermes, which (as will be discussed in the next subsection)
incorporates the Hermes language and the context mechanism, determines the power of the
database system. The Hermes language acts as a database query language to retrieve information
by navigating through the hypermedia links, collecting nodes whose contents are to be displayed.
The interpretive contexts provide a means for organizing the data into different views and
versions.

The graphics system in Hermes is based on the hypermedia structure. The habitat that Adam
defined, for instance, has as its content the three component areas. These have as their content
various other drawings which Adam choose from a palette of stored graphics. In Hermes,
graphics can be composed of arbitrarily complex networks of subcomponents linked together,
ultimately formed out of simple rectangles and other polygons. Because the language is part of
the hypermedia structure, graphics can be composed using predicates and queries as well as direct
links. Thus, the content of a graphic object can be dependent upon some computation or upon
what is currently present in the database. Of course, the context mechanism applies to the
graphics as well, so that the habitat drawing is displayed differently in Adam's and Chan's
contexts. As explained below, contexts provide a powerful mechanism for virtual copying, so that
multiple copies of a given graphic can be stored efficiently and still be modified individually.

The fact that all data is integrated in the hypermedia network allows many system functions to
be implemented simply. For instance, the palette, catalog, list of active critics, and specification
forms -- which each require a complex software component in the multifaceted architecture of
Janus -- can be defined as sets of links from particular nodes. In Figure 7, a node named partial
specification for habitat is linked to an issue node named the privacy specification. It could
be linked to numerous other issues as well. This linkage defines a design specification. Any use
of specifications can access the first of these nodes and then browse through its links. Moreover,
there can be more than one specification list defined at a time, distinguished by their names, and
the contents of the specification lists can be different in different interpretive contexts. Similarly,
palettes of component drawings, catalogs of habitat drawings, and lists of relevant critics can be
defined and maintained by designers to meet their needs. Simple supports for managing these lists
are provided in the Hermes user interface. Hypermedia also provides a natural implementation for
the triggering of argumentation on selection of palette items and their placement, which requires a
special mechanism in Phidias: in Hermes this can be accomplished by users defining and
navigating standard links from graphical objects to text entries in the issue-base. The hypermedia
structure of Hermes is the basis for an integrated software architecture which not only simplifies
the programming of additional functionality, but facilitates functional extensibility by individual
and group users.

The integrating data structure for Hermes is, in several ways, unique even for hypermedia:

(1) The content of a node is separated from the named node and connected to it by a link.
This separation is useful for implementing the context mechanism and other forms of
inheritance.

(2) The granularity of text and graphical nodes is finer than in most hypermedia systems.
This allows reformatting of views of data based on interpretive perspectives.

page 26

Gerry Stahl

(3) The nodes and links are part of a larger object-oriented system of data types, including
the elements of the language and nodes of the various media. This allows the definition of
inter-dependencies among these various kinds of objects.

(4) The links contain computational information concerning the contexts in which the nodes
they connect are to be displayed. They also store knowledge about the position and
attributes of graphical nodes that they are linked to.

(5) The language is embedded in the nodes of the hypermedia. This means that predicates,
conditional clauses, and queries in the language can be used to determine the content of
nodes and links.

(1) The separation of nodes from their content was already illustrated in Figure 7. An
advantage of this is that a single named object (a node) can have multiple contents, for instance in
different interpretive contexts or under different conditions. The mechanisms for this will be
discussed in the following paragraphs. This provides a balance of flexibility (in contents) and
consistency (in names). For instance, different designers might word the privacy specification
issue differently or provide different contents for its answer. However, for everyone using the
issue-base, there would be an issue called "the privacy specification" and an answer to it. So
the conditional phrase which Betty defined -- if there are answers of the privacy
specification which are true -- would be a meaningful, well-defined condition when evaluated
in any context with any combination of answer contents.

Similarly, the independence of named nodes from their content is useful for defining
inheritance hierarchies of nodes. Suppose you wanted to distinguish three related types of
answers: general answers, short answers, and cryptic answers, where all cryptic answers
are also considered short answers and all short answers are also considered general answers.
Then, a condition that specified, if there are short answers ..., would have to check for short
and cryptic answers but not general ones. Hermes implements the definition of this form of
inheritance with links from a node containing the name of one type to a node containing the name
of the type it inherits from. When evaluating a phrase that contains a type name, Hermes can
check the inherits from links going in and out of the node with that type name. As will be seen in
Figure 8, a type like debate can have different contents in different contexts -- for instance, those
defined by Betty and Chan -- but always have the same node-to-node link structure. Thus, if
debate were part of an inheritance hierarchy of types, the inheritance links could be defined
independently of the defining contents. Of course, if one wants to redefine the inheritance in
different contexts, that can also be done just as the annotation link discussed in paragraph (4)
below is redefined. But even so, the context dependencies of the content definitions and those of
the inheritance structure are in general independent.

The interpretive contexts (also referred to as work contexts, perspectives, versions or virtual
copying contexts) form an inheritance network. For example, Chan's context inherits Betty's,
which inherits Adam's. This means that when Chan is working in his context anything defined in
Betty's context will be defined the same in his context, unless he has deleted or modified that
definition. Similarly, anything defined in Adam's context will be defined the same in Chan's
context, unless either he or Betty has deleted or modified it. To implement this in Hermes means
that whenever something like the debate type is evaluated in Chan's context, the computer may
need to check for its definition in all contexts that Chan's context inherits from. The hierarchy of

page 27

Computer Support for Interpretation in Design

these inherited contexts is maintained as a link structure in the hypermedia, just like the forms of
inheritance discussed above. The only difference is that navigation through the context network is
highly optimized and ignores the currently active context. Because contexts are defined within
the hypermedia, few special mechanisms are required to handle them. Also, they can be easily
linked to other information, such as free-form annotations, their creation date or security
passwords.

(2) Because Hermes needs to display information in accordance with interpretations that are
not pre-defined but are defined by the user, all displays must be computed dynamically. This is
done with queries as opposed to the page-based approach of most hypertext systems. In a system
like HyperCard, a presentation of design rationale might contain a page full of issues. Embedded
with an issue would be a button for its justification. Clicking on that button would bring up
another page of text presenting the justification. Similarly, in Janus a page of design rationale
would contain highlighted terms; clicking on one of them would display information about that
term, allowing one to browse through pages of related textual information. In Hermes, however,
the justification must be recomputed based on the current interpretation. This is done by
executing a query based on the information desired (e.g., justifications of an answer to a certain
issue) and based on the definition of the current interpretive context. The results of the query are
then displayed, in place of a pre-formatted page. This approach was adopted from the Phidias
design environment, which featured a primitive query language for allowing the user to structure
the textual displays. (McCall, 1989) The fact that in this approach design rationale is generally
stored at the granularity of sentences rather than pages means that it can be modified by changing
or adding short sentences, or by modifying the definition of the query, as Chan did in the Hermes
scenario.

(3) In Hermes, the hypermedia is inseparable from the Hermes disclosure language. Hermes
is implemented as an object-oriented system, built around a system of approximately one hundred
object classes that define the language options, the various media and the hypermedia elements.
Many of these classes are defined in terms of each other. For instance, there are three classes of
nodes: simple nodes, conditional nodes and virtual structures. Simple nodes can have contents
(which can be instances of any of the hundred classes of objects) and can be labelled with a user-
defined kind. Conditional nodes have, in addition, a true/false clause. If their condition is true,
conditional nodes have their normal content just like simple nodes; if it is false, they behave as if
they had no content. Virtual structures are like simple nodes except that in place of their content
they have a query to be evaluated. Their effective content is the result of the query. The query is,
of course, an object defined in the language. The true/false clause is a media object. True/false
clauses can have primitive boolean values of true or false, or they can be computed from more
complex options which, for instance, compare two numeric values or check if there are members
of a set of nodes which satisfy a filter condition. In the last possibility mentioned, the true/false
clause would be defined in terms of a subject clause of the language (which selects the set of
nodes) and a filter clause (which performs one of a variety of tests on each of the selected nodes).

There are conditional links in Hermes, just as there are conditional nodes. These are links
which can only be traversed if the condition evaluates to true. There is also a link analogue of
virtual structures. This is the use of predicates, clauses in the Hermes language which define
complex relationships or link types. For instance, if link types answers and arguments are

page 28

Gerry Stahl

already defined, then Betty's definition of debate as answers with their arguments defines a
predicate. If there is an issue in the hypermedia issue-base which has answer links to nodes
which in turn have argument links to other nodes, then evaluating debate of that issue will
produce a list of the answer nodes, with sublists of their argument nodes. In this way, a predicate
defines a virtual link computation, linking the original issue node with a set of other nodes to
which it may or may not have been directly linked.

There are many other examples of language, media and hypertext classes which are defined in
terms of each other. The integration of the language with the hypermedia will be discussed
further in the following subsection. This integration gives Hermes its flexibility and power. In
particular, the fact that mechanisms like type inheritance and conditional nodes are part of the
hypermedia database and that the contents of this data is definable and modifiable by the system
users gives designers who use Hermes the ability to develop and control sophisticated design
representations. By treating all design knowledge as interpretations stored in a shareable,
programmable hypermedia rather than as predefined representations, Hermes overcomes the
central problem of computational representations of knowledge by allowing then to evolve with
the design solution. In a sense, Hermes provides a rich system for representing design
representations, so that designers can design their own representations of problems as they
explore interesting solutions. In this way, Hermes uses the power of computational
representations to overcome the limitations of a priori knowledge representations.

Shareable, programmable hypermedia

(4) In the scenario, Chan redefines Betty's "debate" predicate to be issues and answers
and arguments with their debate. To evaluate this predicate applied to an issue node, the
system will make a list of all nodes connected to the original isSsue by issue, answer, and
argument links. Then it will form sublists of their debate. But debate is once again
(recursively) defined as this predicate, so the system will collect the nodes connected to each node
in the first list by issue, answer, and argument links. If the issue-base has a rich network of
nodes connected by these links, this process will continue for some time, building up a list with
sublists, with sublists, etc. until it reaches the ends of the tree of links of these types. (If there are
cycles in the network, the system makes sure it does not go around the links repeatedly but
eventually completes its computation.) An arbitrarily large tree of nodes will be displayed as the
debate of the original issue.

The context mechanism which allows Chan to redefine Betty's predicate is implemented in the
hypermedia links. Figure 8 illustrates the node for the debate predicate with content links to its
two definitions. These links are labelled with information about which contexts they are
associated with. When the system is in Betty's interpretive context, the top link will be navigated
to provide Betty's definition of the predicate. This link was labelled "Betty" when it was created
because the context named Betty was active then. When Chan redefined debate, the Chan
context was active, so the link to his definition of debate was labelled "Chan". If the system has
to evaluate the debate predicate while Chan's context is active, it will navigate the second link
marked Chan. However, Chan's context inherits from Betty's, so the system will also navigate a
link labelled Betty. To avoid this confusion and to clarify that Chan's new definition is a

page 29

Computer Support for Interpretation in Design

redefinition of Betty's, the system must also re-label the first link to explicitly exclude its being
navigated within Chan's context. This is shown in the Figure, with the first content link now being
labelled Betty, but not Chan. The basic mechanism for contexts is fundamentally like that of
conditional links, with minor variations to handle deletions, modifications and other special cases.

answers
with their
ArgUINents

predicate node predicate object

issues
and answers

- ‘m_ and arguments
annotation
\Chan

_\ content debate needs
oy TLATL to be a complex

Figure 8. Chan has modified the content of the node named "debate” and annotated it with a brief
explanation. The links between nodes and from nodes to their content are labelled with context
information. The content of debate is one thing in Betty's context, or in any context that inherits Betty's
context except in Chan's context or in any context that inherits Chan's context. It is the new content in
Chan's and his descendents' contexts. The annotation only appears in Chan's and his descendents’
contexts.

The context mechanism can be used in a variety of ways in Hermes. This paper has stressed
its use in establishing personal and group interpretive perspectives. By defining a work context, a
designer or design group can organize their definitions of graphics, rationale, specifications,
critics, catalogs, palettes, triggers, predicates, filter clauses, virtual structures and queries. A set
of these identified by the context in which their definitions are active can constitute, in effect, an
interpretation of a design task by determining the graphical elements, the critical perspectives, the
display views, the argumentative slant and the terminological framework. Inheritance of these
contexts allows individuals to adopt and then modify the interpretations of other designers, of
their design team and of projects in the past which were created in Hermes. This makes the
hypermedia system highly shareable by its users.

The inheritance of interpretations also permits the creation of version hierarchies. A designer
can develop whole networks of versions of tentative, alternative designs for a given project.
Rather than consisting primarily of graphical sketches, as traditionally produced by designers,
these versions would include textual rationale, interpretive critics, and so on. Versioning is a

page 30

Gerry Stahl

feature that most hypermedia systems lack (Halasz, 1988), but that is clearly important for
database management as well as for exploratory design.

The inheritance of contexts of design rationale was an original motivation for the Hermes
project. NASA has volumes of design guidelines for manned space missions, including a general
volume and one for space stations in particular. Ideally, it would be desirable to take the general
volume and make a version specific for low gravity (e.g., moon and Mars), a more specific one
for lunar habitats, and possibly a series of even more specific guidelines for particular types of
lunar missions. Context inheritance provides a means of producing and maintaining these multiple
versions consistently. Each version would inherit from the next more general one and would
modify only what is not appropriate in the more specific context. Furthermore, individual design
teams could annotate their own versions of the manuals when they wanted to add corporate or
personal guidelines or to present reasoned arguments for exceptions to the official version. This
would show that they consulted the manuals and would document why they may have justifiably
deviated from the guidelines in specific instances.

A major advantage of this mechanism is that the information that is common to multiple
versions is only stored in the hypermedia once. There are not multiple copies to fill computer disk
space or to cause problems or inconsistency as the general rules evolve. The Hermes contexts
implement a hypermedia approach to "virtual copying" or "copy-on-write" techniques that have
long been used in CAD graphics and operating systems like the Mach system for NeXT
computers (Fitzgerald and Rashid, 1986). By storing copying information in the links which
already exist, Hermes avoids the additional mechanisms which cause considerable complication in
other systems, while sharing their substantial gains in efficiency. In addition to identifying an
item's context, the links store its display attributes and spatial transformations. For a text item,
these attributes include its font and color. For a graphical element, scaling, rotations, and
translations are computed as the links are traversed to display composite graphics.

A CAD-like use of contexts in Hermes is for storing multiple copies of a graphical palette
item. Suppose that there are ten chairs in a lunar habitat design, all of the same style. Then there
would be a single node for the chair in the database and ten links from the node for the habitat to
that chair node. Each link would contain a different context identifier, as well as coordinate
transformations for the placement and orientation of the corresponding chair instance. The
context identifiers would be created automatically when the chairs were placed into the habitat;
these contexts would not be named, so they would not show up on lists of contexts and be
confusing to users. If the designer wanted to alter a given chair's design (its height, color,
support, etc.), then just that changed part of the one chair would be copied and modified in its
context, adding minimally to the usage of storage but allowing the flexibility that is excluded from
other graphics systems that try to achieve this saving (Foley, et al, 1990, p. 342).

(5) The Hermes disclosure language is embedded in the nodes of the hypermedia, much as the
contexts are located in the links. As already noted, a node can have as its content a query, which
evaluates to a virtual structure, and a node or a link can be conditional upon a true/false clause.
This means that the display of that node -- whether it is part of a graphic drawing or a piece of
design rationale -- will be determined by the content of the hypermedia database at the time the
display is computed. The evaluation of the queries or conditionals may in turn require the

page 31

Computer Support for Interpretation in Design

evaluation of strings of other queries or conditionals or predicates, which may be modified by
various users over time in different contexts, just as Chan revised the definition of debate, the
graphic that was tested by the critic and the text that was displayed by the critic query. This
makes the hypermedia very programmable by the end-user.

Some of the other benefits of storing language definitions in the hypermedia have been
mentioned in passing: First, it allows definitions of clauses to be modified by context. Second,
users can attach rationale directly to these definitions, to document the reasoning behind the
particular definition. Third, terms can be included in inheritance hierarchies. Fourth, the
definitions can be displayed by users through the normal browsing interface. Fifth, the language
can be used in the definition of virtual structures. Finally, the language is thoroughly integrated
with the rest of the Hermes system. These are important advantages for a system to support
interpretation.

Everyday language is the ultimate medium for interpretation. Our ability to use language is
what allows us to disclose things as certain kinds of things, and thereby to comprehend them.
This is what Gadamer has in mind when he claims that "being, which can be understood, is
language" (Gadamer, 1960). As Schoen noted, it is in the reflective conversation with the
materials of the design situation that the artifact and the designer are both disclosed as what or
who they are. This happens in the process of explication in which what was tacitly anticipated
becomes expressed in language.

A primary stage of language use is naming. Accordingly, the Hermes system allows all
objects in the design environment to be named by its user. Graphical objects in a drawing, textual
statements in the rationale, critics, etc. can all be named if desired. This enables the user to refer
to them in other statements, such as critics and queries, and to access annotations attached to
them.

Perhaps the next most basic use of language is for categorization For instance, statements in
the Hermes issue-base (or any other objects in the system) can be categorized with a type when
they are created. The links connecting them are also given a type. Thus, an answer might be
related to an argument via a justification relationship. Then one can request a display of all the
argument statements that are related by justification links to answer statements of a given
issue statement with the query, Display all justifications of answers which are arguments.
Queries like this are fundamental to the ability of Hermes to support interpretation. Of course,
the types themselves are created by users as are all terms and constructs of the language, for the
point is to allow designers to design their own representations.

Only certain features and structures of the Hermes disclosure language have been described
here. For instance, computations can also be defined by users in the language. A calculation of
total private space in a lunar habitat could be expressed using a predicate for privacy, some
measurements of graphical objects in the drawing, and arithmetic operations. Complex critics
using such computations could be built up modularly from component definitions of predicates,
filtering clauses, etc. The calculation of total private space would be named and referred to in the
critic, which might check that the result of that computation was at least a certain amount per
astronaut. A query could also request that all private spaces in the drawing be displayed, or

page 32

Gerry Stahl

highlighted, or shown in red. (Cf Stahl, 1991, for a fuller discussion of the language.) The
language could be further expanded in many ways to implement new functions or to enhance its
usability. The point for now is its core role in providing a shareable, programmable medium for
supporting interpretation in design.

page 33

Computer Support for Interpretation in Design

Conclusion: Evolving Interpretations for Design

Modern scientific knowledge was rendered practical by the medium of written language.
(Donald, 1991; Norman, 1993) Writing provided an external memory for people, overcoming the
limitations of human memory, especially short-term working memory. It let them put down their
ideas where they and other people could view them, criticize them, and refine them. It facilitated
the communication of ideas and the evolution of shared perspectives. The Hermes design
environment -- named after the wing-footed Greek messenger god credited with discovering both
spoken and written language -- aims to extend the medium of external memory from static paper
to a highly computational medium. The idea is to allow designers to represent their project
concepts, graphical forms, design rationale, and interpretive perspectives in a system which can
dynamically make use of these representations to produce displays which disclose new views of
the design situation for people to react to. The vision is that as Hermes is used by design teams
working on related projects its store of design concepts, rationale and interpretive devises will
grow into a significant computational medium for designing.

Traditional Al always sought clever representation schemes which allowed an automated
system to solve the problems of well-known and narrowly-defined domains. The perspective on
design methodology presented in Section I of this paper argues for a more flexible representation
style which empowers the intuitive skills of humans rather than trying to replace them with
algorithmic computations. Heidegger's analysis of interpretation based on pre-owning of tacit
practices, fore-sight in terms of our own conceptual framework, and pre-conceptions which
tentatively anticipate what is to be discovered provided a philosophic structure encompassing
central notions of a tradition in design methodology: Alexander's intuition, Rittel's deliberation
from personal viewpoints and Schoen's creation of the design situation.

In Section I, the idea of critiquing systems instead of autonomous expert systems suggested a
user-centered approach in which designers could make design moves and be informed of the
consequences. Design environments like Janus and Phidias took this idea significantly further,
putting the user even more in control, and providing a coordinated system of multiple
computational supports for the designing process. But even these systems imposed certain
representational constraints that seemed overly restrictive for exploratory domains like lunar
habitat design. The shareable, programmable hypermedia of Hermes, described in Section III,
allows designers to design their own representational systems for interpreting, framing, and
solving problems. By so doing, Hermes tries to support creativity in design, rather than to
automate or rigidify the design process.

It may seem that too great a burden is put on the designers by requiring them to construct
their own representation schemes and even their own language. Where expert systems had tried
to relieve people of the entire problem-solving task, design environments attempted to reach a
balance in which domain knowledge was already embedded in the system in ways which could
support designers in trying out various design concepts or layouts. The approach of Hermes does
in fact adopt this idea of embedding knowledge in the system so that designers do not have to

page 34

Gerry Stahl

define all the types, predicates, critics, queries and design rationale from scratch. A "seed" of
example definitions and a basic issue-base are provided by the Hermes development team. But,
for an exploratory domain like space-based architecture, this seed should be seen as sample
building blocks for personal interpretations, rather than representations of accepted knowledge. It
is like our proficiency in English and our experience with previous design work: when being
creative we must think through new arguments, coin original terms, and sketch innovative images
-- but always on the basis of our past insights, vocabulary, and visions.

The Hermes system does not claim to incorporate extensive knowledge of its domain in the
sense of an expert system's elaborate set of universally-valid production rules or an expert
critiquing system's battery of objective critics. Rather, it provides an environment in which people
can view evolving designs from perspectives which are important to them. According to
hermeneutic theory, interpretation is more fundamental then knowledge because explicit,
propositional knowledge is always the result of interpretive explication. For this reason, the seed
in Hermes is conceived of as a form of background history. Just as in normal thought we always
interpret based on past experiences and interpretive traditions which we initially accept
uncritically, so in Hermes we design using a seed whose every aspect is subject to critique and
modification. Over time, this seed evolves, the way human traditions do.

A knowledge-based system like Janus would typically be seeded with information that
purports to capture at least parts of an objective theory of the domain. For instance, it might
contain an issue-base which contains the primary issues of design in the domain along with the
standard options for resolving the issues, a palette of the basic primitive components, and a
catalog of prototypical solutions. By contrast, the interpretation-based seed of Hermes provides
tools for building interpretive perspectives of domain artifacts; it includes issues, palette items and
artifacts that have been constructed under different interpretations in past design projects.
Specifically, the Hermes seed consists of information from a series of lunar habitat design sessions
that were captured on videotape during preliminary research on the domain, and then modeled in
the Hermes system. Additional examples were added from published designs of lunar habitats.
Then, an issue-base was constructed to provide a structure to the complex of inter-related
rationale issues.

Because lunar habitat design is an exploratory domain, there is no such thing as a
comprehensive theory or objective view of the field. Case studies from particular interpretive
perspectives provide the only base on which new design efforts can be built. Although it is often
possible to systematize the information that has haphazardly accumulated in a seed through use,
the result of this kind of "re-seeding" can make no claim to objectivity or comprehensiveness.
The act of reorganizing itself proceeds under a certain interpretation or mixture of interpretations
of the field, and interesting future designs will focus on new approaches and concerns that were
not previously thought of.

Having created a prototype software system that allows designers to fashion their own
representational schemes as part of their design work, the next step is to have design teams use
Hermes intensively in practice. This will continue the participatory design approach (Ehn, 1988)
of computer scientists and domain practitioners working together on the software development.
The attempt to use the system will raise new issues and suggest new features to increase the

page 35

Computer Support for Interpretation in Design

usability of Hermes. At the same time, it will provide important experience with the evolution of
the seed. In particular, it should reveal ideas for making the disclosure language easier to use and
for managing the growing network of interpretive contexts.

From a theoretical perspective, Hermes-in-use can provide a laboratory for the investigation
of the interpretive process itself. The content of contexts created as designs go through versions
can serve as archeological sites documenting efforts at design as interpretation. Beyond the forms
of interpretation already supported by Hermes, new forms could be studied, and support for them
implemented. Consider three natural forms that interpretation takes in our daily life and work:

* Stream of consciousness narratives we recite to ourselves that integrate and make sense of
our goals, actions, interpretations, criticisms, reflections.
Conversations we have with other people and on-going argumentations or discussions,
which provide contexts in terms of which individual words, statements, and images are
understood and out of which innovations come to us.
Expansions of our personal set of beliefs or our worldview, which forms yet another
horizon in which interpretation takes place.

*

The hypermedia structure of Hermes provides a convenient medium for capturing these forms
of interpretation and making them available in the process of design. The structure of personal
interpretive contexts could be used to keep different people's personal thoughts and beliefs
separate, while shared contexts can be used for dialogues, in which many statements are shared
but can be interpreted differently and related to different background beliefs. Linked together like
a semantic network, argumentation could function computationally as a context for interpreting
embedded statements. Operationalizing the hermeneutic dimensions of understanding would
create a primitive computer model of interpretation, a contemporary version of the ancient
Delphic god. It would broaden the implications of Hermes from a tool for lunar habitat layout to
a more encompassing computational medium for supporting interpretation in design.

page 36

Gerry Stahl

Acknowledgments

The perspective on design methodology and the approach to computer support for design presented here grew
out of the research of Ray McCall of the School of Environmental Design, Gerhard Fischer of the Department
of Computer Science, and other members of the Human-Computer Communication group at the University of
Colorado at Boulder. The hermeneutic approach stems from the author's participation in Hans-Georg
Gadamer's seminars at the University of Heidelberg during 1967/68.

Johnson Engineering (JE) of Boulder contributed generously the time and expertise of Vice President John
Ciciora and Designer Mike Pogue. They provided the primary source of information about lunar habitat
design, its needs and its methods.

The research in providing computer support for the task of lunar habitat design was supported in part by
grants from the Colorado Advanced Software Institute (CASI) for 1990-91, 1991-92 and 1992-93 in
collaboration with IBM and JE. CASI is sponsored in part by the Colorado Advanced Technology Institute
(CATI), an agency of the State of Colorado. CATI promotes advanced technology education and research at
universities in Colorado for the purpose of economic development.

References

Alexander C (1964) Notes on the Synthesis of Form. Cambridge: Harvard University Press.

Alexander C (1971) The State of the Art in Design Methods. In Cross N (1984) Developments in Design
Methodology. New York: Wiley.

Compton WD, Benson CD (1983) Living and Working in Space: A History of Skylab. Washington, DC: NASA.

Conklin J, Begeman M (1988) gIBIS: A Hypertext Tool for Exploratory Policy Discussion. Proceedings of the
Conference on Computer Supported Cooperative Work. New York: ACM. 140.

Coyne R, Snodgrass A (1991) What is the Philosophical Basis of Al in Design? Working paper. Faculty of
Architecture, University of Sydney.

Design Edge (1990) Initial Lunar Habitat Construction Shack. Design control specification. Houston, TX.

Donald M (1991) Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition.
Cambridge: Harvard University Press.

Dreyfus H (1972) What Computers Cannot Do. New York: Harper and Row.

Dreyfus H (1985) Holism and Hermeneutics. In Hollinger R (Ed.) (1985) Hermeneutics and Praxis. Notre
Dame, IN: University of Notre Dame Press.

Ehn P (1988) Work-Oriented Design of Computer Artifacts. Stockholm: Arbetslivscentrum.

page 37

Computer Support for Interpretation in Design

Engelbart, D (1963) A Conceptual Framework for the Augmentation of Man's Intellect. In Howerton, P (Ed.)
(1963) Vistas of Information Handling. (Vol. 1). Washington, DC: Spartan Books. Reprinted in Greif 1
(Ed.) (1988) Computer-Supported Cooperative Work. San Mateo, CA: Morgan Kaufmann.,

Fischer G, Girgensohn A (1990) End-User Modifiability in Design Environments. Human Factors in
COMPUTING Systems, CHI '90 Conference Proceedings (Seattle, WA). New York: ACM.

Fischer G, Nakakoji K, Ostwald J, Stahl, G, Sumner T (1993) Embedding Critics in Design Environments. 7he
Knowledge Engineering Review, Special Issue on Expert Critiquing. Forthcoming.

Fitzgerald F, Rashid R (1986) The Integration of Virtual Memory Management and Interprocess Communication
in Accent. ACM Transactions on Computer Systems, Vol 4, No 2 (May), 147.

Foley J, van Dam A, Feiner S, Hughes J (1990) Computer Graphics: Principles and Practice. Reading, MA:
Addison-Wesley.

Freud S (1952) A General Introduction to Psychoanalysis. New York: Washington Square Press.

Gadamer H-G (1960) Wahrheit und Methode. Tuebingen: Mohr. Translation: Gadamer H-G (1988) Truth and
Method. New York: Crossroad.

Halasz F (1988) Reflections on Notecards: Seven Issues for the Next Generation of Hypermedia Systems.
Communications of the ACM. Vol. 31, No. 7.

Hegel GWF (1807) Phaenomenologie des Geistes. Translation: Hegel GWF (1967) Phenomenology of Mind.
New York: Harper & Row.

Heidegger M (1927) Sein und Zeit. Tuebingen: Niemeyer. Translation: Heidegger M (1962) Being and Time.
New York: Harper & Row.

Kant I (1787) Kritik der reinen Vernunfi. Translation: Kant I (1929) Critique of Pure Reason. New York: St.
Martin's Press.

Kazmierski M, Spangler D (1992) Lunatechs II: A Kit of Parts for Lunar Habitat Design. Unpublished project
report, College of Environmental Design, University of Colorado at Boulder.

Kuhn T (1962) The Structure of Scientific Revolutions. Chicago: University of Chicago Press.

Marx K (1967) Das Kapital. Hamburg: Meissner. Translation: Marx K (1977) Capital. New York: Vintage.

MecCall R (1989) Mikroplis: A Hypertext System for Design. Design Studies, 10 (4), 228.

McCall R, Bennett P, d'Oronzio P, Ostwald J, Shipman F, Wallace N (1990) Phidias: A PHI-based Design
Environment Integrating CAD Graphics into Dynamic Hypertext. Proceedings of the European Conference
on Hypertext (ECHT '90).

Moore GT, Fieber JP, Moths JH, Paruleski KI. (1991) Genesis Advanced Lunar Outpost II: A Progress Report. In
Blackledge RC Redficld CL Seida SB (Eds.), Space -- A Call for Action: Proceedings of the Tenth Annual
International Space Development Conference. San Diego, CA: Univelt, 55.

Nilsson N (1980) Principles of Artificial Intelligence. Palo ALSO: Morgan Kaufmann.

Norman D (1993) Things That Make Us Smart. Reading, MA: Addison-Wesley. In preparation.

page 38

Gerry Stahl

Polanyi M (1962) Personal Knowledge. London: Routledge & Kegan Paul.
Popper K (1965) Conjectures and Refutations. New York: Harper & Row.

Rittel H, Webber M (1972) Dilemmas in a General Theory of Planning. Working Paper No. 194, University of
California at Berkeley.

Schoen D (1983) The Reflective Practitioner. New York: Basic Books.

Schoen D (1992) Designing as Reflective Conversation with the Materials of a Design Situation. Knowledge-
Based Systems, 5, 3.

Silverman B (1992) Survey of Expert Critiquing Systems: Practical an Theoretical Frontiers. Communications of
the ACM, 35, 4, 106.

Simon H (1973) The Structure of Ili-structured Problems. Arfificial Intelligence, 4, 181.
Simon H (1981) The Sciences of the Artz'fzcial; Cambridge: MIT Press.

Snodgrass A, Coyne R (1990) Is Designing Hermeneutical? Working paper. Faculty of Architecture, University
of Sydney.

Stahl G (1975) Marxian Hermeneutics and Heideggerian Social Theory: Interpreting and Transforming Our
World. Unpublished Ph.D. dissertation. Northwestern University.

Stahl G (1991) A Hypermedia Inference Language as an Alternative to Rule-Based Expert Systems. Technical
Report CU-CS-557-91. Computer Science Department, University of Colorado at Boulder. Abridged version
in /7S Expert Systems '92. Forthcoming.

Suchman L (1987) Plans and Situated Actions: the Problem of Human Machine Communication. Cambridge:
Cambridge University Press.

Winograd T, Flores F (1986) Understanding Computers and Cognition: A New Foundation for Design. New
York: Addison-Wesley.

Winston P H (1981) Artificial Intelligence. Reading, MA: Addison-Wesley.

page 39

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

