Supporting Knowledge-Base Evolution
using Multiple Degrees of Formality

Frank M. Shipman III

CU-CS-592-92 April 1992

%‘University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Supporting Knowledge-Base Evolution
using Multiple Degrees of Formality

Frank M. Shipman IIT

Ph.D. Dissertation Proposal
Department of Computer Science and Institute for Cognitive Science
University of Colorado, Boulder
shipman@cs.colorado.edu
(303) 492 - 1218

Introduction:

The topic of this Ph.D. proposal is the use of representations of varying degrees of formality in supporting
knowledge-base evolution. The work will be done in the context of a computer network design
environment. In the way I will use the terms, representations are formal/informal in relation to a type of
knowledge. Text strings are formal representations for knowledge about the order of a set of characters but
are informal in relation to the semantic content of sentences.

There are three classes of representations with regards to the degree of formality that I will differentiate
between: informal, formal, and semiformal. Informal knowledge is knowledge in a form not processable
by the computer without using heuristic techniques. Examples of informal knowledge are the semantic
content of text, images, and audio or video recordings. Formal knowledge is knowledge which is computer
processable, such as objects in inheritance hierarchies, causal information in production rules, and the
order of characters in a text string. Semiformal knowledge representations combine informal and formal
knowledge. Examples of semiformal representations are those used by design rationale and hypermedia
systems, in which chunks of text and/or other media are connected by a set of machine interpretable
relations.

In order to better support the evolutionary process of design, as described below, I will provide tools to
support the evolution of knowledge from less formal representations to more formal representations. These
tools will use the limited domain of the system (in my case computer network design) to partially
understand informal knowledge in or being added to the system. This limited understanding will be used to
aid the designer in integrating the information in the informal knowledge with formal knowledge already
in the knowledge base. Support for the conversion of knowledge from user-friendly to machine-
processable representations facilitates domain experts in modifying the knowledge in knowledge-based
systems. Conversion in the other direction, from machine-processable to user-friendly representations is
also needed to support the comprehension of knowledge, but my focus will be on supporting formalization.

The next section contains a discussion of the problem and theoretical framework. This is followed by a
description of related work and how it differs from my approach. Then comes a description of the system
as it currently exists, the basic components that still need to be added, and the integration of tools
supporting knowledge-base evolution. Finally there is are two scenarios and a discussion of the evaluation
methods. An appendix has been added to provide more detail about the knowledge and mechanisms used.

Statement of the Problem:

Design environments, which consist of a number of components integrated to support the process of
design, have been discussed in [Fischer et al.1989] and [Fischer et al. 1991]. These design environments
include a number of different mechanisms for representing knowledge, including semiformal and formal
knowledge representations with respect to domain knowledge (see Figure 1).

The argumentation mechanism in design environments includes a semiformal knowledge representation in
the form of the Procedural Hierarchy of Issues (PHI) method [McCall 1987] of issue-based deliberation
[Kunz, Rittel 1970]. PHI contains three basic types of nodes: issues, answers, and arguments. The palette
of design items in a design environment is represented as an inheritance hierarchy of objects with attributes
and values. Critics, which link the construction and argumentation components of a design environment,
are represented as rules like those found in rule-based systems but whose actions are limited to providing
the designer with messages and links into argumentation.

Informal Semiformal Formal
Text. Anawers
Arguments
Resolutions .
Inheritance
Hierarchies

FIGURE 1. Knowledge in our system is represented in a variety of methods ranging from
informal, like text notes, to formal, like inheritance hierarchies and production rules.

With these different knowledge representations there have been different mechanisms developed for
supporting the modification of knowledge represented in different forms. Systems in which PHI-style
argumentation is editable and extensible have existed since the early 1980s [McCall et al. 1981]. Tools
supporting the designer in modifying and creating palette items and critic rules have been developed
[Fischer, Girgensohn 1990] and general principles for achieving end-user modifiability have been outlined
[Girgensohn, Shipman 1992]. No one has examined how knowledge represented in one representation can
be transferred to other representations in these design environments. My goal is to look at mechanisms to
.support such transference.

The different representations used in a design environment were chosen to be appropriate to a type of
information needed by the designer or system. By having multiple representations designers have the
choice to deal with information in different ways. Allowing this choice becomes critical when designers
decide whether to add to or modify the information in the knowledge base. When the designer can choose
a representation that matches the information, the “accidental complexity” [Brooks 1987] of the
modification is reduced.

The difficulty of changing the knowledge base is too great, from the knowledge acquisition point of view,
when the designers will not put forth the effort required to correct errors or add new information to the

20f31

system. The work I propose attempts to reduce the difficulty of adding knowledge to the system by
allowing the initial addition of knowledge in representations that do not create accidental complexity.

Design as an evolutionary process.

The designers using a design environment do not have a static understanding of the domain or of the issues
involved in their task. They gain understanding of their specific task as they follow the interaction between
their design and the various constraints placed upon the design process [Simon 1981]. Their understanding
of the design issues in a task gradually evolves along with their design [Suchman 1987]. An example in the
computer network domain is when a new type of machine is added to the network. Over time the network
administrator will learn more about how this new machine interacts with the other machines on the
network.

@]
The CAPP Lab has

New slower response time

. from tigger and
Problem anchor since moving
Discovered to the class room

Lo

Examinations
of physical

and/or logical
network provide
new insight.

The twisted pair
multiport will be
slower than a direct
connection to the
backbone because of
the ring topology.

Problem and
solution are
described for

future reference.

FIGURE 2. When problems are detected, in either a simulated or real network, the symptoms
may not provide enough information to know what the problem really is. Over time
the designer/administrator will gain more information on the problem and be able to
come up with solutions.

30f31

Initially, a designer may attempt one partial design scheme only to later find that this does not work as
expected. This is called a breakdown situation [Winograd, Flores 1986]. Schon has said that it is at this
time the designer often gains some (possibly limited) understanding of the unexpected problem in the
design and acts on this insight [Schon 1983]. As time passes, the “story” the designer will tell about why
the decision was made will change to reflect the designer’s more recent experiences [Schank 1990].

Designers will not be able to immediately enter new knowledge in its final form into the design
environment unless the issue involved is very simple. Because of (1) the limited understanding the
designer may have of the new issue, and (2) the need to not require too much effort from the designer at
this time, the design environment should try to remain transparent by allowing the designer to enter this
information using the method most comfortable to the designer. Text and other representations used in
human-human communication are appropriate to provide for use since designers will have much
experience with them and since they allow for much information to remain implicit.

As the designer encounters (and hopefully solves) unforeseen problems in the design task the designer will
come to understand more about the domain and the relationships between knowledge within the design
environment. As this occurs designers must be able to modify the information previously entered in all of
the representations provided to reflect the change in their knowledge. Support for the incremental
modification of knowledge, not just within a single representation, but also across representations, is
needed to support this knowledge acquisition process.

Evolution from informal to formal representations.

As already noted, work already has been done focussing on the evolution of knowledge within a single
knowledge representation. Evolution across representations will most likely occur from informal to formal
representations, as the designers gain understanding of their task and the problems they encounter. The
advantage for the designers in converting knowledge from informal to formal representations is that the
system will be able to provide better support services to the designer. The important threshold is where the
designer sees the effort of adding new information or formality to the knowledge base as being outweighed
by the benefit provided by the system [Grudin 1988]. By allowing the gradual addition of new knowledge
and formality to knowledge already in the system, and by providing tools to aid the designer in this
process, the system will support knowledge-base modification through a number of small-effort steps.

One difficulty in this evolution is that the transfer of knowledge from informal to formal representations is
likely to be not purely syntactic. This is because informal representations allow more information to
remain implicit, and converting this knowledge to formal representations will likely require some of this
implicit information to be reevaluated while being made explicit. As the designer is forced to be more
explicit, the effort of the designer required to modify knowledge base is likely to increase. This is similar
to the difference between explaining conceptually how an algorithm works and actually writing the code
which implements the algorithm. In this case the explanation allows many details to remain unstated, while
the code requires the algorithm to be specified exactly.

The implicit nature of informal representations of information means that the informal representations
should not be “tossed out” upon the information’s evolution to more formal representations. The informal
representations may be preferred by other designers and will contain information whose effort to formalize
was not considered worthwhile. An example is that each use of an informal representation like text can
imply much about its author. Formal representations of information will often not contain such implicit

4 of 31

information. Informal representations of information need to be kept so that a designer can better
understand and evaluate a piece of formally represented information.

Figure 2 shows a designer discovering a problem in a simulated or real network. Figure 3 could describe
the actual addition of information to the design environment by the designer. Initially, labelled Nov. 15 in
Figure 3, the designer encounters the problem but does not immediately understand what is causing it. At
this time the designer might enter a description of the symptoms and create an issue in the design rationale
structure concerning the problem. The designer will gain understanding of the problem through
examination of the real or simulated network and by locating relevant information in the knowledge base
or other information resources. After working with the network over a period of time the designer gains
new insight into the cause of the problem. Such insight can be added to the design environment by adding
textual descriptions of new information and ideas as well as modifying the PHI structure to better represent
the new understanding of the problem. Eventually the problem and solution are found. At this point the
designer adds some final text describing the test confirming the cause of the problem, adds notation to the
PHI structure marking a solution as having been chosen, and the creation of a critic rule and object
attributes to monitor the system for the occurrence of this problem.

Informal Semiformal Formal

- &

Time Line
Text describing the Initial PHI structure
Nov. 15 symptoms of a new added discussing
ov. problem are added. possible causes and
solutions.
Tests run during Modification of PHI
Nov. 24 scheduled down time structure to better
ov- are described with represent new data.
their results.
Test confirming Confirmed PHI answer Attributes added to
Dec. 7 possible cause is is marked as such. design units & critic
ec. performed, test and A solution is chosen. rule added to monitor
v data are described. for style of problem.

FIGURE 3. As a designer’s understanding of a new problem changes the different
representations will be used to store this knowledge. This time line shows the
postulated inclusion of knowledge about a new problem. In this case the designer
changes the knowledge in the system three times. The different representations are
used for different types of knowledge which are available at different times during
the solution process.

The discussion to here has focussed on a single designer interacting with the system. With multiple
designers using the system the evolution can be expected to occur at a faster rate than with a single
designer. A designer who has more experience in a particular aspect of the domain (like the use of
AppleTalk networks) may understand how a new problem, encountered by another designer, is related to
information already in more formal representations. This not only allows the dispersal of design issues to

Sof31

be handled by the people who can answer them but also provides for discussion between designers to occur
in different formats.

Perceived costs are especially important in the acceptance of groupware systems [Grudin 1988; Markus,
Connoly 1990; Grudin 1992]. The goal of lowering the costs associated with adding knowledge to a
knowledge-based system would increase the possibility of acceptance of the knowledge-based system.
This work will not address problems associated with difficulties that arise from social interactions such as
the incorrect assumptions about conversational patterns built into Cognoter and discussed in [Tatar et al.
1991].

Problems associated with multiple designers modifying the information space in a single design
environment include access and modification rights, and notification of changes. While access and
modification rights are difficult problems, I believe that techniques used or being explored in existing
hypermedia [Berlin, O’Day 1990; Hahn et al. 1991] and groupware systems [Ellis et al. 1991] are
sufficient for my task. The necessity for a notification mechanism to provide designers with an overview of
changes is difficult and there should be domain-oriented, as well as general purpose, mechanisms for
supporting this in the design environment, but this is not part of my planned dissertation research.

Related Work:

As described, this topic intersects with a number of different research communities. The work which is
most closely related to my research falls into three main categories: knowledge acquisition, hypermedia,
and design rationale.

Knowledge acquisition.

Within the knowledge acquisition community, my work is related to work on automated knowledge
acquisition. This area focuses on tools for knowledge engineers and possibly end-users, but is generally
limited to supporting only formal knowledge representations. One of the older and most well known
systems in this area, Teirasias [Davis 1984], can be thought of as an expert system on knowledge-base
design. More recent systems such as MOLE [Eshelman et al. 1987], OPAL [Musen 1989], and the HITS
Knowledge Editor [Terveen et al. 1991] improve on this approach through the use of a presupposed
problem solving method, an explicit domain model, and cooperative problem solving respectively.

Creating domain-oriented knowledge acquisition tools, such as OPAL, is time-consuming and difficult.
Meta-level tools, such as PROTEGE [Musen 1989] and DOTS [Eriksson 1991], support the creation of
domain-oriented knowledge acquisition tools by knowledge engineers. The domain-oriented knowledge
acquisition tools, such as P10 and ALF-A [Eriksson 1991], created are then meant to be usable by the
domain experts.

An important difference between this work and mine is that these knowledge acquisition systems are
limited to use with formal knowledge representations and do not provide support for the transfer of
knowledge between representations. Another difference is that my work focuses on supporting designers
that are in the process of design, rather than as a separate task that is performed in isolation.

6of 31

Hypermedia.

Hypermedia systems use semiformal representations and multiple medias (text, graphics, audio, video) to
support the authoring and browsing of information for many purposes [Conklin 1987]. One of Frank
Halasz’s “Seven issues for the Next Generation of Hypermedia Systems” [Halasz 1988; Halasz 1991] is
how to integrate computation into hypermedia systems and how to perform computation over hypermedia.
Since Halasz’s initial call for the investigation of this issue, many people have examined the connections
between knowledge representation and hypermedia [Russel 1990; Schwabe et al. 1990; Kaindl, Snaprud
1991]. Systems like CONCORDE [Hofmann et al. 1990], SPRINT [Carlson, Ram 1990], and RelType
[Barman 1991] allow for formal knowledge representation in addition to the informal and semiformal
information. The knowledge representation scheme I plan to use has similarities to the representation used
by the Virtual Notebook System [Shipman et al. 1989], which I have worked on previously.

One system with similar goals to my work is Aquanet. Aquanet is a generic hypermedia system which
focuses on “knowledge structuring tasks” [Marshall et al. 1991]. Aquanet supports the creation of structure
“schemas” in a schema editor. These schemas are then used as building blocks in structuring the
knowledge in the system. In Aquanet there is no domain orientation other than that provided by the
schemas created by the user.

One difference between my proposed work and the work done on these systems is my emphasis on
domain-oriented tools to aid the user in placing new knowledge within the existing knowledge base and in
the transfer of knowledge between representations. This emphasis on supporting authoring will have to be
of more concern in future hypermedia systems since the information location problem becomes worse (and
it already is a difficult problem for large applications) in poorly organized hyperdocuments. Another
difference between my proposed work and the above systems is that these systems are not integrated with
the system supporting design construction.

Design rationale.

Design rationale systems are specialized hypertext systems that are primarily concerned with supporting
the capture and use of design rationale. This support ranges from systems which provide an interface
through which the user can create/edit design rationale to systems which actively elicit design rationale by
asking questions about decisions the user has made. Design rationale is normally captured in a semiformal
representation with a possibly extensible set of node and link types [Jarczyk et al. 1992]. There is no
attempt by these systems to gain any understanding of the informal knowledge captured within nodes.

Design rationale systems vary in the level of formality that they support with SIBYL [Lee 1990] being the
system which provides the most support for formal representations while systems/models like gIBIS
[Conklin, Begeman 1988], DR [MacLean et al. 1989], and AAA [Schuler, Smith 1990] have favored the
simpler and easier to use representations. PHIDIAS [McCall et al. 1990] provides typed links between
textual or CAD-object nodes and a query language which can then process over the links (structure -based
queries) as well as the graphical content of the nodes (content-based queries).

When design rationale systems support more formal representations they do not provide any of the support
of the knowledge acquisition tools discussed above in helping the user take advantage of this functionality.
Other differences from my work are that these systems provide no aid to the user for transforming rationale
already entered from one form to another, and that most are stand-alone systems separated from the
systems supporting design construction.

7 of 31

The Implementation of XNetwork:

In this section I describe how my system implementation will support the evolution of a knowledge base.
First I describe XNetwork, the X Windows-based design environment for computer network design, as it
currently exists. Then I will discuss the basic components of the system that still need to be implemented
and how the Evolving Formality Tools (EFT) will be integrated into the existing system.

HHHARBIBIOL

Enginsering Centar Backbone ; 24 Workstation

S

4
&
H]
=

Could youplease replace thisbridgewith o B
router in the next couple months. ioonthe -

backbonehaspicked uptothe pointwhere we
need all connections to Limit their traffic
Bridge205 { Bridge production. =-Tom-- S17/91

‘This does not need to be replaced by a router since :

thisbridge learns which side each addressisonand {1 Macllfx

50 can reduce traffic almostas much as a router, :
—Joe-- 921481

Sparcstation II

HP 3000 HP 8000 Symbolics 250 Meg D

4 Sunds0 Sun 4110
¢3d2,cs.colorado.edu munch.cs.colorado.edu i _

00 Meg Drive]

3
L
E
-:
.
2

3

o3d L.es.colorado,edu

i

Sun 47150

BT

FIGURE 4. XNetwork provides a work area, an overview area, a palette, and a (so far non-
functional) critics area. The work area shows discussion around a bridge that
connects the engineering center backbone cable to the AI lab network cable and the
machines in the Al lab. All objects in all aspects of XNetwork are treated the same,
providing flexibility in creating tools to integrate the various representations.

Figure 4 shows the designer’s workspace in XNetwork. The top right part of the window contains a palette
of design units which can be used in the design. By choosing a palette item a copy of that item appears in
the work space to the right of the palette. This work space is the area where the design units are arranged
and discussed. Below the work space is the construction overview, which provides a wider angle view of
the construction space to provide the designer with a feel for where they are in relation to the rest of the
design. The bottom right hand corner contains a critics area, which the system will use to notify the
designer of any messages that are provided by critics, which currently have not been implemented in the
system.

8 of 31

Issue: How can networksbe linked together sothat extra traffic on the networks is kept
toa minimum?

Answer: A router canbe used to connect networks and minimize the excess traffic.

Argument: Routers keeptrafficwhose source and destination are on one side ofthe
router on that side,

Argument: Routers are expensive, so if you don‘t need the added functionality,
don’tuse one,

Answer: Mostnewmodels of bridges can be used to connect networks and minimize
the excesstraffic.

Argument: Bridges should notbe used to connecttwo large networks (such astwoparts
of the Internet) since itwouldtake a longtimeto determine all the addresses
on each side of the bridge.

Argument: Most newbridges watch the packets that gobyto determine which side of the
bridge each network addressis on, Initially, thesebridges cause excess
traffic, but after they have been operating a shortwhile they can limittraffic
quite successfully if in use connecting one small networkto a large one.

Example for the use of modern bridges in the place of routers:

Engineering Center Backbone

Could yrou please replace thisbridge with a
router in the next couple raonths, Trafficonthe
backbonehaspicked up tothe pointwherewe
need all connectionsto limittheir traffic

Bridge 205 Bridge production, --Tom-- 9/17/91

This does not need tobe replaced by a router since

thisbridge learns which side each addressison and

socan reducetraffic alraost as much asa router,
--Joe-- 8/21/91

Al Lab Network

Decstation 3100 HP 9000 | HPww Syrabolics

00 Meg Drive c3d1.es.colorado.edu ¢3d2.cs.colorado.edu raunch,.cs.colorade.edu

sigi.cs.colorado.edu

FIGURE 5. Argumentation pages in XNetwork can be used to collect design rationale along with
pieces of actual designs. This page shows a part of the design seen in Figure 4 being
used as an example of an answer to the issue being discussed in the argumentation.

9of 31

Figure 5 shows an argumentation page in XNetwork. User interaction in the argumentation pages operate
similarly to the workspace area of the main window. Argumentation pages can contain all types of objects
and no particular support for the PHI style of argumentation has yet been provided in the system. Figure 5
shows a piece of the design shown in Figure 4 being used to illustrate the use of bridges in connecting
networks without overly increasing traffic on the networks, which is the topic of the discussion on this
page. This page shows a combination of informal text notes, PHI design rationale, and formally
represented and connected design units. In the following discussion I will focus on the differences between
XNetwork and JANUS [Fischer et al. 1989], a kitchen design environment, and why these differences are
important.

Current state of the system.

My implementation has integrated the different representations in the design environment (text,
semiformal design rationale, and formal knowledge including objects with attached properties) into a
single knowledge base. One purpose of this is to simplify the connections between the components in
design environment. In describing the Human Interface Tool Suite, [Hollan et al. 1991, p. 294] claim that:

“To act collaboratively, an interface must be integrated. Events and objects in one part of the
interface must be accessible to the other parts so that tasks can be split between interface
components as appropriate and still function with users in a collaborative and integrated fashion.”

Since the components in XNetwork access the same knowledge base, rather than each component having
its own storage means for knowledge, as it is in JANUS, changes made in one component are immediately
accessible by the other components. This practical consideration for implementation becomes critical for
my tools (EFT) which need to be able to read and modify all of the various representations and possibly
use knowledge-base consistency as one means for providing suggestions. Figure 6 diagrams the use of the
integrated representation as an underlying layer in the design environment architecture.

Design Environment

Toolkit for Application

Integrated Hypermedia y Programmer
/ Frame Representation .

Existing Software
Packages

FIGURE 6. The work up to now on XNetwork has focussed on providing a toolkit for design
environment developers which allows easier creation and integration of components
in the design environment.

10 of 31

To integrate the various types of knowledge in the design environment, all knowledge is kept in a single
database of objects similar to Minsky’s frames [Minsky 1975]. Each object in XNetwork has a display and
attribute/value pairs. The display method is a set of graphics primitives, like draw a circle of a certain size,
and can be created and edited by users in a graphical editor similar to MacDraw. (JANUS requires users to
use a lisp-like language to modify object displays.)

Attributes and values of objects can be created and edited in a property sheet, as seen in Figure 7. The user
can choose between various types for attributes, which will then be enforced. Attributes of type link have
other objects as values. Knowledge about relationships between objects is added by creating new links.
Design units are represented by objects with their technical specifications encoded as attributes and values.
Textual notes are represented as objects with a textual display component. Links between objects allow for
combinations of formal and informal knowledge in the system.

Inherits from <Bridge-180>;

Model # Anixter #B49577;
Routing Capability True;

Serial & 5562390LN;
ervice Contract With Computer Support Services;

umber of Connections 2;

Protocoel Ethernet,

FIGURE 7. Each object in XNetwork, whether a text note or a palette item, has attributes and
values which can be edited in a property sheet. Italics indicates that the attribute is
inherited.

Objects can move between components and can be displayed in multiple components at once. Objects can
be grouped into compound objects, which have their own attributes and values, much in the way one
groups pieces of a drawing in MacDraw. Compound objects allow for subassemblies, such as a subnetwork
or a combination of a workstation with its peripherals and drop cable. Compound objects can also be used
to blur the distinction between the catalog and the palette. Catalog examples in JANUS consist of a set of
design units grouped together in a particular formation which might be connected to argumentation and
specification information specific to this example. Figure 5 shows such an example in the context of an
argumentation page. Such a catalog example can be represented by a compound object which contains a
configuration of design objects, comments, formal knowledge about the configuration, and links to related
argumentation. The easy creation and use of compound objects is critical to supporting the construction of
large design artifacts efficiently and to allowing discussion to focus on a group of design units as an
intermediate abstraction.

11 0f 31

XNetwork includes the inheritance of attributes between objects. The top attribute in Figure 7 shows that
the object <Bridge-197> inherits attributes from <Bridge-180>. Inherited attributes are shown in italics
and follow any locally defined attributes in the list provided by the property sheet. Any object can inherit
attributes from any other object; there is no class/instance distinction. Removing this distinction allows the
network designers to use the inheritance mechanism without having to learn about these knowledge
engineering concepts. The creation of objects that act as classes can still be done with this mechanism,
although the system will make no distinction in how such objects can be otherwise used. When adding the
initial domain knowledge “seed”, that the designers will then modify, the developers of the design
environment will use knowledge-representation techniques (such as concept hierarchies) most often
associated with class/instance inheritance mechanisms.

Connected to Engineering Center Backbone

Smart traffic isolation

False

Send owner message “Connections to the backbone must be with routing capable devices.”

Highlight display

Add attribute “Replace by” with value “April 1992"

FIGURE 8. A diagram of what a critic rule editing interface might look like. The top part of the
interface is where the designer would define the applicability condition and the lower
part is where the designer specifies the actions to take when the condition is met.

Additions to basic system.

Still missing from the basic XNetwork implementation are a query mechanism for the retrieval of
knowledge from the knowledge base and a simple action language to operate on the knowledge base. The
query mechanism will primarily be for internal use within the system. Interaction between the users and
the query mechanism will be through intermediate interfaces, like a variation on property sheets. By filling
out a form which includes a property sheet the user will be able to retrieve all objects whose properties
match those in the property sheet. This form will take advantage of the user’s knowledge of how to use the
basic property sheets, while adding controls for greater expressiveness as deemed necessary.

An action language will be added so that users can perform operations on the knowledge base, such as
displaying knowledge to the user and modification of knowledge. The action language, like the query

12 of 31

mechanism, is meant to be an intermediate layer in the system which would often be hidden from the user.
The action language will include domain specific operations.

A generic critic mechanism, which is important for linking the components of the design environment, will
consist of a query (using the query mechanism) and an action (using the action language). A critic’s query
and action will be stored and constantly active unless the designer has asked for the critic to be turned off.
Here is an example of what such a critic might be:

Query: Retrieve all objects where the attribute ‘Connected to’ includes the value ‘Engineering center
backbone’ and where the attribute ‘Smart traffic isolation’ has the value ‘False’.
Action: Provide the user with a list of the objects retrieved.

Besides providing a list of these objects, the action of the critic could have included the addition of a new
attribute, such as ‘Replace by’ with a value of ‘April 1992°. This mechanism would allow critics to include
a combination of actions including notifications to the user, as well as automatic modifications to the
knowledge base. Figure 8 shows a critic similar to the one just described. This more general notion of
critics, where they may perform knowledge-base modifications automatically, might better described as
‘agents’. By providing the user with the ability to create and edit these critics the user has control over
which tasks the system performs automatically, and which tasks the system leaves to the user.

Evolving Formality Tools (EFT).

So far the discussion focussed on additions to the system which are to be used as the building blocks for
tools to support the primary goal of knowledge-base evolution. These tools will include process-support
tools, which will aim to provide the designer with the information they require to make changes to the
knowledge base. This section describes a number of tools to give an idea of the range of tools that might be
of use in supporting the formalization of knowledge. I plan on implementing some subset of the tools
described in this section, plus tools similar to these whose usefulness appears later in the research.

Concept Browser. A concept browser provides some view of the domain concepts and relationships
among them. One interface a concept browser might have is that of an outline processor, where opening up
a concept shows more specialized concepts in such a system. This style of interface has been used to
provide access to the Medical Subject Headings (MeSH) and as an alternative browsing mechanism to the
Virtual Notebook System (VNS) [Burger et al. 1991]. Graphical browsers could also be of use, although
they require more screen space and can become cluttered quickly for large networks of nodes and links
being graphed.

The concept browser, as envisioned, would also allow modifications to the structure of the concept
hierarchies. In MeSH the terminology is updated periodically (at least annually) by the National Institute
of Health. For the network design environment there needs to be methods for designers to modify the
hierarchies of concepts.

External Information Includer. An external information includer would take information from other
computerized information resources and help include them in the system. One example would be taking an
electronic mail message, striping off the header, and creating a text note in the design environment
containing the body of the email. This includer could also parse the header and would include this
information as attributes/values of the text-note object. I believe that electronic mail is the primary
candidate since it is network designer’s main mode of communication, other than face-to-face.

13 of 31

Versions of this tool could also be built for incorporating articles posted to the network newsgroups, and
reports from specific programs or databases. SA-Tool, a proposed tool to aid in network administration
[Nemeth 1991], suggests the need for information from the Simple Network Management Protocol [Case
et al. 1990] in order to provide active information on the network. As I develop an understanding of which
information sources are used frequently and contain information that it is critical to capture, I will create
tools to integrate information from these information resources. Work at Baylor College of Medicine on an
Integrated Academic Information Management System (IAIMS) [Gorry et al. 1988; Shipman et al. 1989]
has created tools such as these to provide medical researchers access to a variety of information through a
seamless environment.

Knowledge Elicitor. A knowledge elicitor would query a designer for information by leading a dialog
with the designer that is based on a decision tree of prepared alternatives. The purpose of this tool is to
elicit knowledge to be included in the knowledge base. This approach was used by Ray McCall in his
dissertation work to elicit argumentation [McCall 1979]. By posing questions like “What is the problem
with this design?” and “How could this problem be detected in the future?” specific types of knowledge
can be elicited about which relationships can be inferred.

Several knowledge acquisition tools for knowledge-based systems have used interviewing techniques to
elicit knowledge. KNACK [Klinker et al. 1987] uses an initial interrogation session to elicit concept
descriptions and vocabulary for a domain, ASKE [Patel 1989] leads a dialog with the domain expert to
build an initial model of the task, and SALT [Marcus, McDermott 1989] uses this method to acquire
procedural control knowledge. The Knowledge Elicitor would try to get less formal information from the
designers than these tools, with the assumption that designers would be more willing to use the tool if it
does not ask them to formalize the information they are adding to the system.

This interrogation method shows promise for getting less formally represented knowledge into the system
in a semi-structured format. The knowledge elicitor can automatically create relations between pieces of
text through assumptions made about the relations between answers to different questions. Active
elicitation schemes have the possibility of annoying the designer, and so must be able to be turned off or
might only become active due to requests by the designer.

Suggestion tools. There is a variety of information that the tool will have available to aid in making
suggestions. The more formal domain knowledge, along with the placement, textual content, and textual
attribute values can be used by the tool. For example one simple tool could look for vocabulary in textual
values of attributes which might relate to other objects and suggest replacement (or augmentation) by a
object relationship between the two objects. An example of this would be a workstation in the design
(c3d2) that has an attribute “disk server” with the value “c3d1” as a text string. This tool would suggest the
recasting of this attribute to be a relation, instead of a string, with a value of the object in the design that
represents the device c3d1. Such a transformation may be trivial but it gives the system information needed
to provide services, such as simulation.

XNetwork Connector. More ambitious tools could make use of partial understanding of informally
represented knowledge to locate information within the knowledge base which is likely to be related. The
XNetwork Connector suggests relationships to knowledge already in the system. The following text, which
is taken from an electronic mail message between network designers, will be used to discuss this tool.

14 of 31

“dec will not be putting thick on the loaner decstations. i ordered one thick card for the lab. on
machines you borrow temporarily from lloyd you will have to make do. the ugrad lab is thinnet.
one thick card will igve us the gateway we need.”

This text (including typos and lack of capitalization) is directly from the original email message. Assuming
such communication would sometimes occur in the design environment as text annotations [Reeves 1991],
text like this will be available.

There are a number of domain concepts in this piece of text: dec, thick (thicknet), loaner, decstations, card
lab, machines, lloyd, ugrad lab, thinnet, gateway.

Assuming that some of these concepts like thicknet, decstation, card and ugrad lab are already in the
knowledge base, the tool could retrieve objects within the system that relate these concepts. This type of
suggestion could be done with a key-word matching algorithm. Beyond what could be considered key-
word matching, the processing of the text should be able to suggest that thicknet, decstations, and the ugrad
lab is the topic of this text because of these concepts’ recurrence and positions in the sentences. Using this
information the tool can locate objects related to thicknet and decstations in relation to the ugrad lab. Issues
in the issue base and other text objects which discuss these topics would then be suggested as related to the
piece of text.

Associated with <UGrad Lab-205>

Keywords Thicknet; Decstaiions; UGrad Lab J l

UGrad Lab-205

Issue ‘How to use thicknet with Decstations?’

Answer ‘Installing a thicknet card in the Decstation.’

FIGURE 9. A diagram of what the XNetwork Connector might look like. Suggestions for new
attributes and values for an object are in the top part of display while a list of
possibly related objects appears in the lower section. Designers can accept attributes
that they agree should be added and view objects that might contain related
information.

150t 31

Figure 9 shows what this tool might look like. This tool provides a list of suggested attributes and values
that categorize the text and create relations to other objects, which provide information on the object when
chosen by the user. The user can modify the suggestions made by the tool, accept the suggestions, or
ignore the suggestions.

By analyzing network-domain text and interviewing network designers I hope to determine the most
frequently occurring domain concepts. Sources for network-domain text include email to the trouble alias,
email between the network administrators, and text in books on network design and administration. One
problem with key-word and similar approaches is how to recognize synonyms, different uses of the same
word, and misspellings (such as the typo ‘igve’ for ‘give’). If significant problems in the acceptability of
suggestions result from these types of problems, I can use techniques such as described in the Knowledge
Elicitor section to ask the user for keywords, instead of having the system infer them.

XNetwork Formalizer. The XNetwork Formalizer will use domain-oriented techniques similar to those
described for the XNetwork Connector to provide suggestions. While the XNetwork Connector suggests
associative connections between pieces of knowledge in the system, the XNetwork Formalizer will suggest
possible reformations of the knowledge in other representations. This would include suggestions about
converting textual annotations to PHI-style argumentation as well as text in annotations or argumentation
to attributes, values, and critic rules. This tool will look much like the XNetwork Connector shown in
Figure 9.

To continue with the example of the piece of the email message between network designers, the XNetwork
Formalizer could retrieve the ugrad lab description and suggest that attributes related to cabling or
workstations might be modified. Now let us assume that the text processing could determine more about
the content of the text, such as the fact that the ugrad lab is using thinnet, from the text “the ugrad lab is
thinnet.” The tool might then suggest that a new attribute of the ugrad lab description be created, if it does
not already exist, which describes the type of cable being used. This particular knowledge can be very
crucial since thinnet has very .different characteristics than thicknet, which is used in most of the
department’s network.

Also in this text is the knowledge that one thicknet card has been ordered and will be used as a gateway for
the subnetwork under discussion. For the system to suggest this requires more global level knowledge of
the network, such as the backbone cable is thicknet. The system will certainly not be able to suggest
formalizations for all the knowledge in a piece of text, and as was argued before, the text will still be of
use. This piece of text contains the notion that some of the work being discussed is a temporary setup,
which will have to be redone when the new machines arrive. In this case the designers may not want to
make the effort to encode much of the content since it may be out of date in a couple weeks.

Summary. There are many types of tools to support the evolution of knowledge from informal
representations to more formal representations. Some of the tools are designed to support the process by
providing interfaces appropriate for browsing information in the design environment and initially getting
information into the environment. Other tools use the system’s knowledge of the domain to make
suggestions about possible formalizations that could be added to the knowledge base.

An example using text from an actual email message between network designers was used to show some
benefits from a simple mechanism for processing informally represented information that was very close to
keyword matching. As the ability to interpret the informal knowledge increases, the suggestions become

16 of 31

more detailed and I hope to investigate if they become more useful. Even the most ambitious tools
described does not rely on fully understanding a piece of informal information, but instead gains most of
its effectiveness by using the topic(s) of a piece of informal information. Suggestions made by the tools
will not be completely accurate and the assumption/approach is that they provide a basis for reformulation
by the human designer, such as with the suggestion illustrated in Figure 9. The usefulness of automatic
translation programs as preprocessors for professional translators provides support for this approach.

While the example shows text as the informal representation, processing which could provide similar
understanding of other informal representations would act similarly. I expect that I will use knowledge of
the drawing layout, such as distance between objects in the work area, as another source of informal
knowledge that will be used by my tools. An example is that the text annotations in Figure 4 are near
network cables, some drop cables, the bridge, and some workstations. Based on the knowledge that both
pieces of text discuss bridges, routers, and traffic, and the knowledge of the text’s position in the layout, a
better suggestion can be made than with either piece of knowledge alone.

The above discussion of the tools have included small examples. To better communicate how I view the
tools being used I have included the two following scenarios. The first scenario describes the addition of a
new connection to the network, while the second scenario describes the solution of a problem with the
network. The section of the first scenario describing the use of the XNetwork Formalizer has been
expanded in Appendix 1 to include more description on the types of knowledge and mechanisms required
by the system.

17 of 31

A Network Design Scenario:

One of the goals of XNetwork is to support collaboration and communication between designers. The
following scenario shows the above tools aiding in formalizing information contained in a discussion
between network designers. This scenario is based on actual email messages between three network
designers involved in adding a connection to a departmental network. The network designers were not
using XNetwork and actions taken by the designers in the scenario are only postulated. The names in the
messages have been changed and one grammatical mistake was corrected.

Adding new request. The system designers for a department get a request to connect a large
instructional room which is not under control of the department to the departmental network. The
email request states:

“please make sure there is an item in your queue to get a net drop to cr2-whatever... the
room with the very large screen projection system in the north end of the 2nd floor of CR.”

The email request is received by Sal, who brings the message into the design environment through
an Information Includer, which parses the mail header to automatically create attributes such as
sender, subject, time sent, and time of arrival. At this time no other understanding or representation
of the message is attempted.

Integrating request. Sal also happens to be the designer who normally handles such requests. Sal
selects the request and asks for the XNetwork Connector to suggest relations to knowledge already
in the knowledge base. The Connector recognizes the concepts ‘drop cable’, ‘2nd floor’, and ‘CR
wing’ and notifies Sal that there is no information about the combination of these three concepts.
Sal then specifies to list objects which match two of the three concepts. Looking at what the
Connector did locate, Sal finds that there is information on network connections in the CR wing,
but no connections exist on the second floor.

Consulting another designer. Sal decides that a senior designer must be asked to verify that the
request can be fulfilled, and if so how. To do this Sal places the original request and a new note
near the CR part of the network diagram. Sal also specifies for XNetwork to notify the senior
network designers of the new note’s existence. In particular the note to the other designers says:

“we allowed to do this? i don’t think we own anything on the 2nd floor. AND how are we
supposed to get a drop cable up to the second floor in this area? there is the elevator shaft
but i don’t think we can make it (lenght wise). it will also require a dedicated tap. So could
one of you higher-ups please respond to my concerns over this.”

Gaining permission. A senior designer, Pat, reads the note from Sal and uses the design
environment to get information on who controls the access to places where the new cable is likely
to be placed in this part of the building. The design environment, having a complete floor plan of
the building with some information about what rooms are used for, shows that the math
department and media services use several rooms in the area. Pat sends email to representatives to
each of these groups to make sure that the addition of such a connection will be acceptable. A
reply from media services okays the connection and details where the connection should be. After

18 of 31

approval has been granted, Pat edits the message from media services and adds it next to the
message from Sal. Pat specifies for XNetwork to notify Sal of this new message:

“we have permission from mary caldwell, boss at media services, to install the network
connections we want in cr2-28 and have them terminate in the media closet. you can pick
up a key to the closet by calling x8470 and going over to get it. you can keep the key for a
couple of weeks after the installation to be sure everything is up and working properly.”

Evaluating possible solutions. A third designer, Paul, is put in charge of actually physically adding
the cable and devices to the network. Paul decides to look into different possibilities for getting the
connection to the classroom. Paul selects the three text nodes about the project and asks for
suggestions of related information from the XNetwork Connector.

Because of the large number of topics found, the Connector provides a list of topics that the system
feels might be important topics to the discussion. These topics are: department network, drop
cable, second floor, CR wing, CR cable, elevator shaft, and dedicated tap. Paul selects a subset of
these topics as being of interest: drop cable, CR cable, and dedicated tap. Paul looks at information
found by the Connector about previous dedicated tap connections to the CR cable, including
examples in the current design, issues on how best to do add dedicated tap connections, and notes
about particular installations of dedicated taps.

Request #237 -- Add connection to 2nd floox classroom.

please make surethere is an itera in your queue

to geta netdrop to cr2-whatever. ., the rooxa with
the very large screen projection system in the north
end ofthe 2nd floor of CR.

Media services closet

2nd floor

we allowed to dothis? idon’tthink we own anything on the 2nd floor, ANDhow
arewe supposed to get a drop cable uptothe second floor inthisarea? thereisthe
elevator shaftbutidon’tthink we can make it (lenght) wise). itwill also require
adedicated tap. So could one of you higher-upsplease respond to my concerns
over this, Sal

--Sa

1st floor

wehavepermission from mary caldwll, boss at media services, to
install the network connections wewant in cr2-28 and have them
Elevator shaft terminate in the media closet, you canpick up a keytothe closetby
calling %8470 and going overto getit. you can keepthe keyfora
couple of weeks after the installation to be sure everyvthing isup and
working properly.

—-Pat §

CR Backbone Cable

FIGURE 10. The current project is made into an example which can later be examined when
similar tasks arise. This view shows the plan for adding the drop cable to the
second floor and the discussion about the task.

Making modification to network layout. Paul checks the current state of the part of the CR
backbone that would likely be tapped to locate a site that will work for adding the new connection.

19 of 31

Once chosen, Paul adds the connection to the design in the design environment to let the other
designers know of the current plan for connecting the classroom. Paul creates a new view in
XNetwork including all the modifications to the network made and the discussion about the
project to create an example when similar projects come up. This new view is shown in Figure 10.
Paul then asks the XNetwork Formalizer to make suggestions for formal descriptors of this view.

Formalizing description of view. The Formalizer suggests attributes/values based on the design
configuration in the view and the discussion about the design configuration. Based on the text and
layout shown in Figure 10 the Formalizer picks out values for common attributes that are needed
in the domain. The Formalizer attempts to suggest values for attributes encoded by the design
environment developer, who also provides algorithms making suggestions based on the current
state of the knowledge base. The suggestions that the Formalizer provides to Paul are shown in
Figure 11. In this case the Formalizer has suggested attributes to be attached to this project view
which specify the physical devices used, the affected locations, people involved in the design, and
the request number. Figure 11 also shows the suggested new issues to the argumentation space
which are based on prefabricated issues which are important for the domain. The two issues shown
in Figure 11 are based on the general domain issue “How to install a connection to <location>.”

Physical Devices CR Backbone Cable; Dedicated Tap; Drop Cable
Affected Locations CR2-28; Media Closet; Elevator Shaft; 2nd Floor; 1st Floor
People Involved Sal; Pat; Mary Caldwell

Request Number 237

Issue ‘How to install a connection to 2nd floor.’

Issue ‘How to install a connection to media services closet.’

FIGURE 11. A diagram showing the XNetwork Formalizer after Paul asks for suggestions
based on the knowledge about the project he has been working on. Paul has
accepted three of the four suggested attribute/value pairs and one of the two
suggested argumentation nodes shown.

Describing state of project. After the cable has been initially installed, Paul adds a message in the
design environment describing the current state of the project. The status message is shown in the
top right-hand side of Figure 12. The message says:

20 of 31

“one cable and one tap are in there. gary gave me a hand (thanks!) i made a mistake
because i thought we had one spool of cable and we got another one hour before we started
to work on it, so i have to go back and run the second one later.”

Refining knowledge about project. Now that the installation task has been partially completed,
Paul also adds more detailed information on this project of connecting the classroom. Changes to
the design that were made during the physical process of laying the cable need to be added to the
network layout in the design environment. Paul adds text and changes the project view to show
that in order to get through a fire wall the drop cable had to be routed through the room CR 2-34.

Request #237 —- Add connection to 2nd floor classroom. Status!

onecable and onetap arein there, garygave meahand
(thanks!) i rmnade a mistake because i thoughtvwehad one
spool of cable and wwe got another one hour before we started ~
towork on it, so ihav;w glo back and runthe second one later.
~-Pau

please make surethere is an itern in your queue

1o get a netdrop to cr2-whatever.., the roomn with
the very large screen projection systexn in the north
end of the 2nd floor of CR.

Media services closet

2nd floox

duetoa firebarrier wehad to route the cablethrough
cr2-34 (there was a hole through the fire wall there.)
this is a room controlled by CNS.

CR2-34

we allowed to dothis? i don’tthink we ovwn anything on the 2nd floor, ANDhow
1st floor arewe supposed to geta drop cable uptothe second floor inthis area? thereisthe

elevator shaftbutidon’tthink we can make it (lenghO wise). itwill also require

adedicated tap. Socould one of youhigher-upsplease respond to my concerns

over this,

Elevator shaft --Sal
wehavepermission from mary caldwll, boss at media sexvices, to
install the network connections we wantin cr2-28 and hawe them
terminate in the media closet, you canpick up a keytothe closetby
calling x8470 and going over to getit. you can keepthe key fora
couple of weeks after the installation tobe sure everything isup and
working properly.
vy Pt
L I

CR Backbone Cable

FIGURE 12. After the installation task has initially been accomplished the designer goes
back and changes the planned design to include changes that were made.
Now the project status has been added to the project view.

Paul asks the Formalizer for suggestions based on the new project view. The Formalizer suggests
the addition of “CR2-34” to the value of the attribute “Affected Locations”, and the addition of
“Paul” and “Gary” to the value of the attribute “People Involved”. Paul accepts these additions but
rejects the Formalizer’s suggestion to add a new issue “How to install a connection to CR2-34” to
the argumentation.

This scenario describes the support of a few network designers working on a project. In this scenario a
single designer has done most of the formalizing of knowledge in the discussion after the whole
conversation has taken place. This is the case because my work is not specifically concerned with issues
arising out of multiple users of the system. I expect XNetwork to include support for some style of directed

messaging, such as providing a list of new messages specified to be to a particular designer to that
designer, but this is not part of my proposed thesis work.

21 of 31

A Network Administration Scenario:

The following scenario shows the tools aiding in a normal network administration task, handling email
complaints. The message used below is again an actual message that was received by network designers
from a student (XX is a workstation named after a Mexican beer).

Request arrives. The system administrator at a university gets an email message from a student
that there appears to be some problem in communication between the workstation that the student
uses and the department’s network. In particular the message says:

“Looks like there is a break in the connection between xx (in the CAPP lab) and the
concentrator in the machine room. XX refuses to reboot (unable to obtain internet address)
and the concentrator shows no carrier on that line.”

Adding request to system. Upon receiving this message the system administrator copies the
message into the system as a text object. This can occur either by selecting the email message from
another program with the mouse and pasting it into a text object, or by a specialized tool, such as
the External Information Includer. The latter would have the advantage that it would parse and
attach the contents of the mail header as attributes and values of the text object. At this point the
text object does not have any relations to other information in the system

Connecting related information. The designer selects the text object and asks the XNetwork
Connector for suggesting related information. XNetwork already has knowledge about the
concepts XX, CAPP lab, and concentrator. The knowledge base includes the information that XX
is a workstation in the CAPP lab, and that the CAPP lab uses a twisted-pair concentrator for its
subnetwork. By using this knowledge the system can suggest links from the new text object into
the argumentation and the network layout based on the connectivity between XX and the
concentrator. Specifically, the system can suggest issues in the issue base, examples, and other
textual annotations which discuss problems that might be the cause of a workstation loosing its
connection to a twisted-pair concentrator. Beyond the use of the machine names and types the
system should recognize some of the other key-words from the domain, like connection, reboot,
internet address, no carrier, and line. Using these the Connector tool could further order or prune
its suggestions to emphasize the information found which also discusses these concepts. The
network designer decides that none of the suggested connections discuss exactly the problem
reported but adds connections between the new request and a few general issues concerning
twisted-pair connections in the issue base.

Solving the problem. After examining the network layout the administrator decides that the
problem is most likely with the concentrator and less likely with a physical connection, such as a
twisted pair wire. By viewing the attributes of the concentrator in a property sheet the system
administrator decides that resetting the concentrator should fix the problem, and proceeds to try
this fix. After resetting the concentrator the workstation XX can again reboot and the problem has
been fixed.

Recording the solution. After fixing the problem, the network designer switches back to the design
environment and starts to formalize the symptoms and solution to the problem. Now the designer
uses the Knowledge Elicitor (KE) to create PHI-structured argumentation about the problem that

22 0of 31

occurred and the solutions that were attempted. Upon invoking the Elicitor the designer specifies
that the new argumentation will be about a new problem and solution. The Elicitor uses this
information to pick the predefined script it will use to ask questions of the designer. The following

dialog occurs:

KE:

Designer:

KE:

Designer:

KE:

Designer:

KE:

Designer:

KE:

Designer:

KE:

Designer:

KE:

Designer:

KE:

Please describe the problem encountered.

A workstation lost its connection to a twisted-pair concentrator.
What was the first solution tried?

Resetting the concentrator.

Did this fix the problem? (yes, no, in part)

Yes.

When will this solution fix the problem?

When the concentrator is in an incorrect state.

When would this solution not work for this problem?

If the problem had been with the wiring or with the workstation.
Were any other solutions tried? (yes, no)

No.

Were any other solutions considered? (yes, no)

No.

Thank you for the information. Please review the argumentation produced for
mistakes.

Revising elicited argumentation. The Knowledge Elicitor then provides initial argumentation
structure and text to the designer in a new argumentation page (see Figure 13). The designer then
edits the argumentation that the Elicitor created to improve readability. Structural errors could also
be fixed by the designer at this point, but in this scenario the argumentation created is small and
the designer does not consider there to be any mistakes in the structure. The benefit of the Elicitor
is that the designer does not have to state PHI relationships between pieces of text, but can react to
a suggested structure provided by the Elicitor.

23 0f 31

Issue: Howcan one fix the problem when " A workstation lost its connectiontoa
twisted-pair concentrator."?

Answer: "Resetting the concentrator,"

Argurment: Thisworks "When the concentrator isin an incorrect
state

Argument: Thiswould notwork when "Ifthe problem had been
with the wiring or with the workstation,

FIGURE 13. Initial argumentation provided by Knowledge Elicitor. The designer is then
asked to read over the argumentation and improve it. The Elicitor uses
scripts for commonly occurring types of knowledge, such as addressing new
problems, or adding a new device to the network.

Integrating the new knowledge. The designer now brings up the XNetwork Connector again to add
explicit connections between the knowledge just added to the system and knowledge already in the
system. The designer selects the new argumentation and asks the Connector for suggested
connections. At the top of the list of objects provided by the Connector are objects related to
twisted-pair concentrators, since this is the domain concept most frequently referenced in the
argumentation. The designer decides this is too broad of a topic and uses the Concept Browser to
refine the concepts used by the Connector. In this case the designer adds the topic broken
connection to the topic twisted-pair concentrator. The list of objects that the Connector now
suggests are about connection problems with twisted-pair concentrators. The designer picks the
original message from the student from the list of suggestions to have connections to the new
argumentation page. '

The problem described in this scenario is encountered not during a ‘design’ task, but during routine
administration. Network problems often do not occur without specific conditions that are not controllable
by the designer. Problems may not be noticed upon immediate implementation of a design, but only later
on by a user of the network when such a condition occurs. The tools I describe support the gradual
evolution of the knowledge base along with the designers’ gradually improving understanding of the
domain and the specific design being constructed.

Evaluation of the Mechanisms:

I plan to evaluate my work through both observation of network designers using the system and through
experiments. I plan to have two evaluation/user-testing periods, the first of which will aid in locating the
aspects of the system that need to be emphasized in revisions to the system implementation. Information
on the use of my system in a more natural setting will also be gathered.

24 0of 31

Experiments. The first evaluation will occur after the creation of domain-oriented tools for supporting the
conversion of knowledge from less formal representations to more formal representations. This evaluation
will divide subjects up into two sets, one in which the subjects will use the tools designed to support
evolution and the other in which the subjects will not use the tools. The subjects will be given scenarios
which contain a problem and solution for the subjects to enter into the system. The tools will be evaluated
favorably if the subjects who use the tools put more knowledge from these scenarios in formal
representations than those users without the aid of the tools. Beyond the amount of formal knowledge
added to the system I will get network designers to critique the organization of the new knowledge in
relation to the existing knowledge.

The second round of evaluations will be similar to the first round and will occur after modifications to the
system and tools have occurred. These modifications will be based on the outcome of the first round of
evaluations, and are meant to remove implementation problems such as interaction style which may be
causing the subjects to have difficulties with the tools. If problems with this evaluation process are
encountered in the first round of evaluation, changes will be made to try to remove these problems before
the second round of evaluations are performed.

Real-use Observations. Beyond the experiments I plan to provide the system to network administrators
for their use in real-world network administration tasks. If the system is accepted for real use by network
designers I will add a recording mechanism which would provide information concerning the percentage
of system suggestions that were accepted. Because of my determination to use standards widely used in the
UNIX world, I believe that I will be able to recruit network administrators (including from the computer
science departments sysops group) to use my system and provide feedback.

Besides statistics on accepted recommendations I will ask that the network designers send me their
knowledge-bases after some use. By comparing the variations of the returned knowledge base I hope to
determine which knowledge-base modifications are common across designers and projects and which are
different.

Summary:

The problem of knowledge-base evolution is a serious one for the use of knowledge-based systems in
rapidly changing domains and in domains dealing with ill-defined problems, such as design. Through
using representations of varying degrees of formality I am attempting to reduce the perceived costs for
designers adding knowledge to the system. This is to be accomplished by initially allowing knowledge to
be added in the format most comfortable to the designer. Over time the designer, with the use of tools, may
transform this knowledge into representations with which the computer can computer over and thus
provide more services.

Tools to support evolution can merely provide information useful in formalizing knowledge, or can use
domain-oriented techniques to make suggestions for the formalization of knowledge in less formal
representations. Specifically, the tools I have proposed are to work with textual annotations, PHI-style
argumentation, inheritance hierarchies of objects, and critic rules.

This work is being proposed in the context of XNetwork, a knowledge-based design environment to

support the collaborative long-term design of computer networks. A prototype of XNetwork exists, but still
requires extensions before the basic system is complete. The Evolving Formality Tools will build on top of

25 0f 31

the XNetwork basic system. Once implemented the tools will be evaluated through both empirical
experiments and observations of real-use situations.

References:
[Barman 1991]

[Berlin, O’Day 1990]

[Brooks 1987}
[Burger et al. 1991]
[Carlson, Ram 1990]
[Case et al. 1990}
[Conklin 1987]

[Conklin, Begeman 1988]

[Davis 1984]

[Ellis et al. 1991]
[Eriksson 1991]
[Eshelman et al. 1987]
[Fischer et al. 1989]

[Fischer et al. 1991]

[Fischer, Girgensohn 1990]

D. Barman, “RelType: Relaxed Typing for Intelligent Hypermedia Representations”, Brown
University Technical Report, CS-91-26, April 1991.

L. Berlin, V. O’Day, “Platform and Application Issues in Multi-User Hypertext”, in Multi-User
Interfaces and Applications, S. Gibbs, A. Verrijn, eds., Amsterdam: North-Holland, 1990, pp. 293-
309.

F. Brooks Jr., “No Silver Bullet: Essence and Accidents of Software Engineering”, IEEE Computer,
Vol. 20, No. 4, April 1987, pp. 10-19.

A. Burger, B. Meyer, C. Jung, K. Long, “Technical Briefing: The Virtual Notebook System”,
Proceedings of Hypertext ‘91 (San Antonio, TX), ACM, December 1991, pp. 395-401.

D. Carlson, S. Ram, “Hyperlntelligence: The Next Frontier”, Communications of the ACM, Vol. 33,
No. 3, March 1990, pp. 311-321.

J. Case, M. Fedor, M. Schoffstall, J. Davin, “A Simple Network Management Protocol”, RFC 1157,
DDN Network Information Center, SRI International, May 1990.

J. Conklin, “Hypertext: An Introduction and Survey”, IEEE Computer, Vol. 20, No. 9, September
1987, pp. 17-41.

J. Conklin, M. Begeman, “gIBIS: A Hypertext Tool for Exploratory Policy Discussion”,
Proceedings of the Conference on Computer Supported Cooperative Work (CSCW ‘88), ACM,
September 1988, pp. 140-152.

R. Davis, “Interactive Transfer of Expertise,” in Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project, B.G. Buchanan, E.H. Shortliffe, eds.,
Addison-Wesley Publishing Company, Reading, MA, 1984, pp. 171-205, ch. 9.

C. Ellis, S. Gibbs, G. Rein, “GroupWare: Some Issues and Experiences”, Communications of the
ACM, Vol. 34, No. 1, 1991, pp. 38-58.

H. Eriksson, “Meta-Tool Support for Knowledge Acquisition,” Linkoping Studies in Science and
Technology, Dissertations, No. 244, Linképing, Sweden, 1991.

L. Eshelman, D. Ehret, J. McDermott, M. Tan, “MOLE: A Tenacious Knowledge-Acquisition Tool,”
International Journal of Man-Machine Studies, Vol. 26, 1987, pp. 41-54.

G. Fischer, R. McCall, A. Morch, “JANUS: Integrating Hypertext with a Knowledge-Based Design
Environment”, Proceedings of Hypertext ‘89 (Pittsburgh, PA), ACM, November 1989, pp. 105-117.

G. Fischer, J. Grudin, A. Lemke, R. McCall, J. Ostwald, B. Reeves, F. Shipman, “Supporting
Indirect Collaborative Design with Integrated Knowledge-Based Design Environments”, to appear
in Human Computer Interaction, Vol. 7, No. 3, 1992.

G. Fischer, A. Girgensohn, “End-User Modifiability in Design Environments”, Human Factors in
Computing Systems, CHI ‘90 Conference Proceedings (Seattle, WA), ACM, 1990.

[Girgensohn, Shipman 1992] A. Girgensohn, F. Shipman, “End-User Modifiability: Tools and Representations”, Proceedings of

[Gorry et al. 1988]

[Grudin 1988]

[Grudin 1992]

the Symposium for Applied Computing (Kansas City, MO), ACM, March 1992, pp. 340-348.

G. Gorry, A. Burger, J. Chaney, K. Long, C. Tausk, “Computer Support for Biomedical Research
Groups”, Proceedings of the Conference on Computer Supported Cooperative Work (CSCW *88),
ACM, September 1988, pp. 39-51. ‘

J. Grudin, “Why CSCW Applications Fail: Problems in the Design and Evaluation of Organizational
Interfaces”, Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW’88),
ACM, New York, September 1988, pp. 85-93.

J. Grudin, “Groupware and social dynamics: Eight challenges for developers”, Communications of
the ACM, 1992, (in press).

26 of 31

[Hahn et al. 1991}

[Halasz 1988}
[Halasz 1991]

[Hofmann et al. 1990]

[Hollan et al. 1991]

[Jarczyk et al. 1992]

[Kaindl, Snaprud 1991}

[Klinker et al. 1987]

[Kunz, Rittel 1970]

[Lee 1990]

[MacLean et al. 1989]

[Marcus, McDermott 1989]

[Markus, Connolly 1990]

[Marshall et al. 1991]
[McCall 1979]

[McCall 1987]

[McCall et al. 1981]

[McCall et al. 1990]

[Minsky 1975]

[Musen 1989}

U. Hahn, M. Jarke, S. Eherer, K. Kreplin, “CoAUTHOR - A Hypermedia Group Authoring
Environment,” in Studies in Computer Supported Cooperative Work, J.M. Bowers, S.D. Benford,
eds., Elsevier Science Publishers, North-Holland, 1991, pp. 79-100.

F. Halasz, “Reflections on NoteCards: Seven Issues for the Next Generation of Hypermedia
Systems,” Communications of the ACM, Vol. 31, No. 7, July 1988, pp. 836-852.

F. Halasz, ““Seven Issues”: Revisited”, Hypertext ‘91 Keynote Talk, (San Antonio, TX), ACM,
December, 1991.

M. Hofmann, U. Schreiweis, H. Langendorfer, “An Integrated Approach of Knowledge Acquisition
by the Hypertext System CONCORDE,” in Hypertext: Concepts Systems and Applications, A.
Rizk, N. Streitz, and J. Andre’, eds., Cambridge University Press, 1990, pp. 166-179.

J. Hollan, E. Rich, W. Hill, D. Wroblewski, W. Wilner, K. Wittenburg, J. Grudin, “An Introduction
to HITS: Human Interface Tool Suite,” in Intelligent User Interfaces, J. Sullivan, S. Tyler, eds.,
ACM Press, New York, 1991, pp. 293-338.

A. Jarczyk, P. Loffler, F. Shipman, “Design Rationale for Software Engineering: A Survey,”

. Proceedings of the 25th Annual Hawaii International Conference on System Sciences, Vol. 2,

(Honolulu, HA), IEEE, 1992, pp. 577 - 586.

H. Kaindl, M. Snapru, “Hypertext and Structured Object Representation: A Unifying View”,
Proceedings of Hypertext ‘91 (San Antonio, TX), ACM, December, 1991, pp. 345-358.

G. Klinker, J. Bentolila, S. Genetet, M. Grimes, J. McDermott, “KNACK -- Report-Driven
Knowledge Acquisition”, in International Journal of Man-Machine Studies, Vol. 26, No. 1, 1987, pp.
65-79.

W. Kunz, H.W.J. Rittel, “Issues as Elements of Information Systems”, Working Paper 131, Center
for Planning and Development Research, University of California, 1970.

J. Lee, “SIBYL: A Qualitative Decision Management System,” in Artificial Intelligence at MIT;
Expanding Frontiers, P. Winston, S. Shellard, eds., Cambridge, Mass.: The MIT Press, 1990, pp.
104-133.

A. MacLean, R. Young, T. Moran, “Design Rationale: The Argument behind the Artifact”, Human
Factors in Computing Systems, CHI’89 Conference Proceedings (Austin, TX), ACM, 1989, pp.
247-252.

S. Marcus, J. McDermott, “SALT: A Knowledge Acquisition Language for Propose-and-Revise
Systems”, in Artificial Intelligence, No. 39, pp. 1-37.

M. Markus, T. Connolly, “Why CSCW Applications Fail: Problems in the Adoption of
Interdependent Work Tools”, Proceedings of the Conference on Computer-Supported Cooperative
Work (CSCW’90), ACM, New York, October 1990, pp. 371-380.

C. Marshall, F. Halasz, R. Rogers, W. Janssen Jr., “Aquanet: a hypertext tool to hold your knowledge
in place”, Proceedings of Hypertext ‘91 (San Antonio, TX), ACM, December, 1991, pp. 261-275.

R. McCall, “On the Structure and Use of Issue Systems in Design”, Doctoral Dissertation (1978),
University of California, Berkeley, University Microfilms, 1979.

R. McCall, “PHIBIS: Procedurally Hierarchical Issue-Based Information Systems”, Proceedings of
the Conference on Architecture at the International Congress on Planning and Design Theory,
American Society of Mechanical Engineers, New York, 1987.

R. McCall, 1. Mistrik, W. Schuler, “An Integrated Information and Communication System for
Problem Solving”, Proceedings of the Seventh International CODATA Conference, Pergamon,
London, 1981.

R. McCall, P. Bennett, P. d’Oronzio, J. Ostwald, F. Shipman, N. Wallace, “PHIDIAS: A PHI-Based
Design Environment Integrating CAD Graphics into Dynamic Hypertext”, Proceedings of the
European Conference on Hypertext (ECHT’90), 1990.

M. Minsky, “A Framework for Representing Knowledge”, in The Psychology of Computer Vision,
P. Winston, ed., McGraw-Hill Book Company, New York, 1975, pp. 211-277.

M. Musen, “An Editor for the Conceptual Models of Interactive Knowledge-Acquisition tools,”
International Journal of Man-Machine Studies, Vol. 31, 1989, pp. 673-698.

27 0f 31

[Nemeth 1991}
[Patel 1989]

[Reeves 1991]

[Russel 1990]

[Schank 1990]
[Schon 1983]

[Schuler, Smith 1990]

[Schwabe et al. 1990]

[Shipman et al. 1989]

[Simon 1981}
[Suchman 1987]

[Tatar et al. 1991]

[Terveen et al. 1991]

[Winograd, Flores 1986]

E. Nemeth, “SA-Tool, A System Administrator’s Cockpit”, in Proceedings of the Usenix
Conference, 1991, pp. 193-205.

J. Patel, “On the Road to Automatic Knowledge Acquisition”, in Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI ‘89), 1989, pp. 628-632.

B. Reeves, “Merging Cooperative Problem Solving and Computer Supported Cooperative Work”,
Doctoral Dissertation Proposal, Department of Computer Science, University of Colorado, Boulder,
1991.

D. Russell, “Hypermedia and Representation,” in Hypertext und Hypermedia: Von Theoretischen
Konzepten zur Practischen Anweldung, PA. Gloor and N.A. Streitz, eds., Springer-Verlag, Berlin,
1990, pp. 1-9.

R. Schank, “Tell Me A Story: A new look at real and artificial memory,” Charles Scribner’s Sons,
New York, 1990.

D.A. Schén, The Reflective Practitioner: How Professionals Think in Action, Basic Books, New
York, 1983.

W. Schuler, J. Smith, “Authors Argumentation Assistant (AAA): A Hypertext Based Authoring Tool
for Argumentative Texts,” in Hypertext: Concepts Systems and Applications, A. Rizk, N. Streitz,
and J. Andre’, eds., Cambridge University Press, 1990, pp. 137-151.

D. Schwabe, B. Feijo, W. Krause, “Intelligent Hypertext for Normative Knowledge in Engineering,”
in Hypertext: Concepts Systems and Applications, A. Rizk, N. Streitz, and J. Andre’, eds.,
Cambridge University Press, 1990, pp. 123-136.

F. Shipman, J. Chaney, G. Gorry, “Distributed Hypertext for Collaborative Research: The Virtual
Notebook System”, Proceedings of Hypertext ‘89 (Pittsburgh, PA), ACM, November 1989, pp. 129-
135.

H. Simon, “The Sciences of the Artificial,” MIT Press, Cambridge, MA, 1981.

L. Suchman, “Plans and Situated Actions: The problem of human-machine communication,”
Cambridge University Press, Cambridge, UK, 1987.

D. Tatar, G. Foster, D. Bobrow, “Design for Conversation: Lessons from Cognoter”, International
Journal of Man-Machine Studies, Vol. 34, March 1991, pp. 185-209.

L. Terveen, D. Wroblewski, S. Tighe, “Intelligent Assistance through Collaborative Manipulation,”
Proceedings of the Twelfth International Joint Conference on Attificial Intelligence (IJCAIL-91),
August 1991.

T. Winograd, F. Flores, “Understanding Computers and Cognition: A new foundation on design,”
Addison-Wesley Publishing Company, Reading, MA, 1986.

28 of 31

Appendix 1:

This appendix tries to provide a detailed look the knowledge required in the system for one segment of the
network design scenario in the proposal. Because the XNetwork Formalizer requires the most knowledge
of the Evolving Formality Tools, I will look at the section of the scenario in which the Formalizer is used.
This is on page 20 and is labeled “Formalizing description of view.” This section and the accompanying
figure have been reprinted below to reduce the need of looking back to the original scenario.

Formalizing description of view. The Formalizer suggests attributes/values based on the design
configuration in the view and the discussion about the design configuration. Based on the text and
layout shown in Figure 10 the Formalizer picks out values for common attributes that are needed
in the domain. The Formalizer attempts to suggest values for attributes encoded by the design
environment developer, who also provides algorithms making suggestions based on the current
state of the knowledge base. The suggestions that the Formalizer provides to Paul are shown in
Figure 11. In this case the Formalizer has suggested attributes to be attached to this project view
which specify the physical devices used, the affected locations, people involved in the design, and
the request number. Figure 11 also shows the suggested new issues to the argumentation space
which are based on prefabricated issues which are important for the domain. The two issues shown
in Figure 11 are based on the general domain issue “How to install a connection to <location>.”

Physical Devices CR Backbone Cable; Dedicated Tap; Drop Cable

Affected Locations CR2-28; Media Closet; Elevator Shaft; 2nd Floor; 1st Floor

People Involved Sal; Pat; Mary Caldwell

Request Number 237

Issue ‘How to install a connection to 2nd floor.’

Issue ‘How to install a connection to media services closet.’

FIGURE 11. A diagram showing the XNetwork Formalizer after Paul asks for suggestions
based on the knowledge about the project he has been working on. Paul has
accepted three of the four suggested attribute/value pairs and one of the two
suggested argumentation nodes shown.

29 of 31

The suggestions made by the Formalizer require a variety of different types of knowledge about the
domain of network design, about the building, about the network designers, and about the specific network
that is involved. The attributes the Formalizer tries to formulate suggestions for can be thought of as a list
of attribute names and methods for computing the suggested value for a particular attribute. This list of
attributes and methods is created by knowledge engineers and is meant to support the designers. [will now
go through the four suggested attributes shown in Figure 11. Then I will discuss the two issues which the
Formalizer suggests being added to the argumentation.

Attribute suggestions. The first suggestion that the Formalizer makes is to create an attribute containing
the list of physical devices important for the example. The suggested value is a list of all devices in the
example view. This may seem like redundant information since this value could always be computed from
the design itself, as it is to create the suggestion. The purpose of having it not be just a computed value is
that not all physical devices may be important to a given view they occur in. This separate attribute allows
the designer to choose which subset of devices are important enough to be considered as characteristics of
the view. The knowledge that the system needs to suggest this attribute’s value is the list of all devices in
the view and textual descriptions for these devices.

Request #237 -~ Add connection to 2nd floor classroom.

please make surethere is an item in your queue

to geta net drop to cr2-whatever. .. the room with
the very large screen projection systexn in the north
end of the 2nd floor of CR,

Media services closet

2nd flooy

we allowed to dothis? i don‘tthink we owm anything onthe 2nd flooy. ANDhow
arewe supposed to geta drop cable uptothe second floor inthisarea? thezeisthe
elevator shafibutidon’tthink we can make it (lenght} wise), itwill also require
a dedicated tap. So could one of you higher-upsplease respond to may concerns
over this. Sal

——Da.

1st floor

wehavepermission from mary caldwll, boss at media services, to
install the network connections we want in cr2-28 and have thera
Elevator shaft terminate in the media closet, you can pick up a keytothe closetby
calling x8470 and going over to get it, you can keepthe key fora
couple of weeks after the installation to be sure everything isup and
working properly.

--Pat

CR Backbone Cable

FIGURE 10. The current project is made into an example which can later be examined
when similar tasks arise. This view shows the plan for adding the drop cable
to the second floor and the discussion about the task.

The second suggestion that the Formalizer makes is to create an attribute that lists the affected locations of
the network in the view. To understand the method for computing this attribute’s suggested value I have
copied Figure 10 from the body of the proposal. The knowledge that is required by this method is to have a

30 0f 31

list of phrases that represent locations within the building. This list will need to have synonyms for a single
location point to the same conceptual location in the knowledge base. The way in which this method has
made its suggestion is to scan all pieces of text in the view looking for these references to locations. In this
example there are many such references: 2nd floor, 1st floor, elevator shaft, CR2-28, and media services
closet. All references to locations mentioned in the text are then presented as possible locations affected by
the design in this view. Because the system is just doing string searches this method will not recognize
references to locations not already in its list of references to locations. The designers will be able to add
new references to the list. More complicated methods could be used to try to improve the suggestion for
this value. Knowledge from the design could be used to add the locations of objects in the view which are
not referenced in the text.

The suggestion for the attribute of people involved in this segment of the network is made with a method
very similar to the suggestion for affected locations. This time the method uses a list of references to
people in the text. New people can be added to the knowledge base by the designer. This method could
also use more complicated methods to make its suggestions. The design environment could keep a history
of who changes what object and use this information to add to the list of people referenced.

The final suggestion, for request number, is a special attribute which is added for the specific process by
which these designers handle requests from users of the network. For this example it is assumed that each
request is numbered so that its progress can be tracked. The method suggesting this attribute is a very
simple one which looks for a text object labeling the request in this view. One view could have many
requests associated with it, so the method should be able to handle such situations.

Argumentation suggestions. The other type of suggestion the Formalizer provides is one for new
argumentation. In this example two issues have been suggested by a single mechanism. In general,
methods are created by the knowledge engineers which are to suggest new argumentation nodes to the
designer based upon the current state of the view and the knowledge base. These methods are likely
specialized to create certain types of argumentation nodes, in this example the method creates issues about
how to connect locations to the network.

This method uses information about where the devices in the view are located, as well as the more general
information of all locations in the building which have previously been connected. This information should
be computable from the basic design in the design environment. In particular, this method suggests new
issues of the form “How to install a connection to <X>” where <X> is each location of a network device in
this view which was not previously connected (in other views). While this method suggests new top-level
issues other methods might suggest answers, arguments, or examples to already existing chunks of
argumentation.

Summary. This appendix has tried to provide a better feel for the types of knowledge and mechanisms
required for the most complex of the Evolving Formality Tools discussed in the proposal. It has explained
each suggestion individually with respect to the knowledge that the system has and the method for using
this information to create a suggestion.

310f31

