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Abstract

In this paper, we present the results of experiments conducted on three widely used cluster-
ing methods. In this analysis we focus on the stability of each method and the behavior of each
one vis-a-vis the others. The input data are taken randomly from the segment [0,1] using few
distributions. Various correlation coefficients are computed to help us understand each method’s
behavior. Surprisingly, the results came out to indicate that there is almost no difference among
the chosen methods with respect to the input space. Furthermore, all methods appear to be
almost stable. Those results show that the behavior is practically the same regardless of the
method used.






1. Introduction and Motivation

Clustering has many applications that spans many areas of science and technology. This
term is often used to define how two sets of entities are similar or dissimilar. The types of enti-
ties span a wide range that would include animals, plants, planets, and database objects.

Clustering methods differ in the approach used to measure the distance between two clus-
ters (sets) of entities. In essence, every methods is different from other methods in the way enti-
ties are clustered.

Depending on the area of application, analyzing clusters is important in determining similar
characteristics and behavior of clusters. We are particularly interested in database clustering as a
test study. In databases, the problem is to minimize the number of disk accesses while fetching
an object. In object-oriented databases, the problem is more specific. The existence of semantic
relationship enables database designers to make some educated guess about future queries. This
is due to the fact objects have some semantic relationships like Is-Part-Of and IS-A relationships
[HuK88] [TsNO91].

The idea is to adaptively cluster database objects based on previous query patterns. In the
past, databases have relied on an off-line clustering [HuK88]. This is done after bringing the
database down and make it unavailable for a certain period of time. In many instances and
application, this is undesirable and counter-productive. Therefore the idea is to cluster database
objects while it is servicing requests and queries. We would like to cluster objects in an adaptive

fashion and on-line.

Conducting a cluster analysis on objects enables designers to have an insight about how
objects should be clustered based on the requests made previously. This has the important
feature that clustering is done dynamically and adaptively and without any human intervention.
Most importantly, the database re-clusters objects on-line. The work presented in this paper is
based on research conducted in [Bou87].

1.1. Clustering Description

In this study, we describe three of the most widely known and used Cluster Analysis
methods. The difference among those methods resides mainly in the way how two clusters are
joined. There are several other important methods which are also used in this area. The
interested reader may find a more exhaustive study in [Rom84], [SnS73], and [SnS63].



1.2. Background
We start by giving some definitions of the terminology used in this paper.

Cluster Definition

A cluster is an ordered list of points. The points belong to an interval [a,b].2 A cluster can
also be defined as a set with the constraint that its elements are ordered.

Example of Clusters:

{0.1}, {0.6} are two different clusters
{0.2, 0.3, 0.5} is a cluster

Distance Between Two Clusters

The distance between two clusters involves some or all elements of the two clusters. The
clustering method determines how the distance should be computed.

Coefficient of Correlation and Standard Deviation

The coefficient of correlation r of two random variables X and Y where

X =(xq, x5 X30..0.X,) (1.1)
and
Y=0)1>y29y3 """ yn) (1.2)

is given by the following formula:

E(XY)-EX)E(Y)

T B - EXX)Y? (E(Y?) - EXY))H? (1.3)
where
éxi
i=l (1.4)
E(X) ==
and
E(Y)= Elyi (1.5)

* In our study the interval {a,b] is the interval [0,1]



and

Exi Vi (1.6)

EXY)=

All other terms are computed in a similar way.

The standard deviation of a random variable X is given by the following formula:

o(X) =VE (X?) -EXX) (1.7)

Dissimilarity Coefficient

The dissimilarity coefficient of two clusters is the distance between those two clusters. The

smaller the value of a dissimilarity coefficient, the more similar two clusters are. The larger its

value, the more dissimilar they are.?

Description of Some Clustering Methods

Cluster Analysis is the name of the various mathematical methods that are used in Numer-

ical Classification to find the similarity among objects in a given set. The process of clustering is
aimed at grouping OTU’s (Operational Taxonomic Unit) progressively according to their simi-
larity.
1) SLINK clustering method: SLINK is short for "Single LINKage" clustering method. When
this method is used, two clusters are joined based upon the criterion that their dissimilarity
coefficient is that of their nearest pair of elements, each one exactly in one cluster. This method
is also called "nearest neighbor" clustering method.

2) CLINK clustering method: CLINK stands for "Complete LINKage" clustering method. Using
this method we join two clusters when their dissimilarity coefficient is that of their furthest pair
of elements, each one exactly in one cluster. This method is also called "furthest neighbor" clus-
tering method.

3) UPGMA clustering method: UPGMA stands for "Unweighted Pair-Group Method using
Arithmetic averages" clustering method. This method forms clusters based on the average value
of dissimilarity coefficient between two clusters. This method is also called "average linkage"

clustering method.*

*We will use interchangeably the terms "distance between clusters” and "dissimilarity coefficient" throughout the remaining paper.
* We will use "average method" to indicate this method for the remaining paper.



1.3. Statement of the Problem

In this section we will state what it is to be done. We are interested in finding the relation-
ship among some clustering methods, namely Slink, Clink and Average using some parameters

as means for the comparison.
Working Set and Distribution Functions

The working set of the three clustering methods is the set of real numbers taken on line in

the interval [0..1].° The data are generated randomly using some distribution. Two kinds of dis-
tribution have been selected to carry out our random number generation [Knu71].

1- Uniform distribution of random numbers. The respective distribution function is the follow-
ing:
F(x)=x (1.8)

The schematic representation of this distribution function is:

x=b.5 x;1

Fig 1.1 Illustration of the uniform distribution function

The density function of this distribution is:

f(x)=F'(x)=1 for all x such that 0sx <1 (1.9)

It is schematically represented as follows:

*From now on we will be using as working set the domain [0..1] unless explicitly stated otherwise.



y=1

X= X.=1

Fig 1.2 Tllustration of the density of the uniform distribution

2- the second kind of distribution is given by the following function:

005 if 0 sx <037
0.475 if 037 sx <0.62
F(x)=40525 if 0.62 <x <0.743 (1.10)
0.95 if 0.743 s x <0.89
1 if089 <x=<1

The schematic representation of this distribution is:

y=1 I
y=0.95

y=0.525 + I e
y=0475 4

y=0.05

0 x=0.37 x=062  x=0.743 x=0.89 x=1

Fig 1.3 Illustration of the distribution function (1.10)

The density function of this discontinuous distribution can be obtained in similar way for all
intervals as shown below. For an interval [a,b] the density function is:



fx)= ibb){_g(_@_ for all x such that @ sx < b (1.11)

The density function of this distribution is schematically represented as follows:

y=2.891

y=1.7

y=0454 T L
y=0.4 +

y=0.135

0 x=037 x=0.62  x=0.743 x=0.89 x=1

Fig 1.4 Illustration of the density of the distribution function (1.10)

Clustering and Tree Construction

After generating the random numbers we proceed by building the tree. As a step towards
this goal the tree, we need to sort the data so that we can make use of the distance difference.
The way of joining clusters varies accordingly to the method we are using. The distance
between two clusters is computed using the dissimilarity coefficient.

General algorithm for clustering: Initially every cluster is composed of exactly one datum
point. This algorithm is applicable to Slink, Clink or Average.

step 1:

Scan all the clusters and look for the minimum dissimilarity coefficient



step 2:

Scan all the clusters and look for the dissimilarity coefficient which is equal to the

minimum and then join those clusters.
step 3:

If exactly one cluster remains then end

else go to step 1

We see here that the three methods differ only in the way of computing the dissimilarity
coefficient.

There is a case where an ambiguity arises when clustering using Clink or Average method.
Suppose when performing step 1 that we find three (3) successive clusters to be joined. When
performing step 2 we would first join the two (2) first clusters. However when computing the
dissimilarity coefficient between this new cluster and the former third cluster we would obtain a
dissimilarity coefficient different than the minimum. In this case a question arises: How should

we proceed? Two answers can be drawn:

(1) Either proceed by joining clusters using a recomputation of the dissimilarity coefficient

each time we are in step 2.

(1) Or join all those clusters that have the dissimilarity coefficient equal to the minimum at

once. In this case, we do not recompute the dissimilarity coefficient in step 2.

The issue of choosing one solution over another is irrelevant since there is no satisfactory
distinction between those two solutions.

Following are examples of how we cluster some data. In example 1 we use Slink method.
In example 2 we use Clink method. Finally in example 3 we use Average method. We assign an
identification number to each point generated. We then proceed by sorting those points in an
increasing order. The same sample is used as input for the three clustering methods. The dis-
similarity coefficient is the magnitude of the difference between two points. The number of
points is equal to 10.

The sorted data along with their identifications are:



Tab 1.1 Sample data used for clustering 10

]
Q.

Value
0.1058909
0.2117760
0.3294196
0.4353047
0.5529483
0.6588334
0.7647185
0.7764770
0.8823621
0.9882473

o
O N[OOI |I|WICo |~

example 1 (Slink):
step 1:

The clusters (10) and (1) are joined at the distance 0.0117584
step 2:

The clusters (6) and (10 1) are joined at the distance 0.1058850
step 3:

The clusters (4) and (8) are joined at the distance 0.105885140
step 4:

At the distance 0.105885148 the clusters (3) and (7) are merged to form one cluster as well
as the clusters (2), (6 10 1), (5) and (6) are joined to form one cluster

step S:
The clusters (4 8), (3 7) and (2 6 10 1 5 9) join to form one cluster at the distance 0.117643.

From the previous clustering we derive the following tree:
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0.117643 l

0,103885148) | |

0.1058850

0.0117584 {

0
4 8 37 261015 9
Fig 1.5 First example of a tree using Slink

example 2 (Clink):

step 1:

The clusters (10) and (1) are joined at the distance 0.0117584
step 2:

The clusters (4) and (8) are joined at the distance 0.105885140
step 3:

At the distance 0.105885148 the clusters (3) and (7) are merged to form one cluster as well
as the clusters (2), (6) are merged to form one cluster. Same case for the clusters (5) and

©)
step 4:
The clusters (2 6) and (10 1) are joined at the distance 0.2235286
step S:
The clusters (4 8), (3 7) join to form one cluster at the distance 0.3294138
step 6:
The clusters (2 6 10 1), (5 9) join to form one cluster at the distance 0.4352989
step 7:
The clusters (4 8 3 7) and (2 6 10 1 5 9) join to form one cluster at the distance 0.8823563.

From the previous clustering we derive the following tree:
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0.8823563 +

0.4352989 -

0.3294138 ¢

0.2235286 -

0.105885148¢
0.0117584 lr‘—‘,
o I

4 8 3 7 2 6 101 59

Fig 1.6 Second example of a tree using Clink

cxample 3 (Average):
step 1:

The clusters (10) and (1) are joined at the distance 0.0117584
step 2:

The clusters (4) and (8) are joined at the distance 0.105885140
step 3

At the distance 0.105885148 the clusters (3) and (7) are merged to form one cluster as well
as the clusters (2), (6) are merged to form one cluster. Same case for the clusters (5) and

©)
step 4:

The clusters (2 6) and (10 1) are joined at the distance 0.1647068
step S:

0.2235286
step 6:
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The clusters (2 6 10 1), (5 9) join to form one cluster at the distance 0.2470603

step 7:
The clusters (4 83 7) and (26 10 1 5 9) join to form one cluster at the distance 0.49999992.

From the previous clustering we derive the following tree:

0.49999992 +

0.2470603 +

0.2235286 1

0.1647068 +

0.105885148;

0.0117584 (}
o L
1 59

4 8 3 7 2 6 10

Fig 1.7 Third example of a tree using Average

Correlation Coefficients

The correlation coefficient is always computed between two lists. Let us show how the
pairs of a list are prepared to be later used to compute the correlation coefficient [Knu71]. The
first list consists of a sequence of distances between pairs of elements. The second list is also a
sequence of distances between pairs of elements. The intersection of elements involved in com-
puting distances in the first list and those involved in computing distances in the second list
might be empty or non-empty.
example: As an example we want to compute the first correlation coefficient (see below for
definition).



Tab 1.2 First data sample

—
ol

Value
0.7764770
0.5529483
0.3294196
0.1058909
0.8823621
0.6588334
0.4353047
0.2117760
0.9882473
0.7647185

Olelulalun|salwo]—

p—
o

Tab 1.3 Second data sample

Value Id
0.7764770 1
0.5529483 | 2
0.3294196 | 3
0.1058909 | 4
0.8823621 | 5

after we sort the first sample we get the following list:

Tab 1.4 First sample data after sorting

bt
Q.

Value
0.1058909
0.2117760
0.3294196
0.4353047
0.5529483
0.6588334
0.7647185
0.7764770
0.8823621
0.9882473

[N
O N|= 1O |J|W (00|~

after we sort the second sample we get the following list:

14



Tab 1.5 Second sample data after sorting 15

Value Id
0.1058909 | 4
0.3294196 | 3
0.5529483 | 2
0.7764770 | 1
0.8823621 | 5

After having sorted the two samples we construct the trees of the two (2) lists. The tree of first
list is shown in Fig 1.5 (using Slink method). The second tree is constructed in a similar way.

We first form all possible pairs for the first list. In this case we would have the following pairs:
(1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10)

(2,3), (2,4), (2.5), (2,6), (2,7), (2,8), (2,9), (2,10)

(3,4), (3,5), (3,6), (3,7), (3,8), (3,9), (3,10)

4.5), (4,6), (4,7), (4,8), (4,9), (4,10)

(5,6), (5,7), (5,8), (5,9), (5,10)

(6,7), (6,8), (6,9), (6,10)

(7,8), (7,9), (7,10)

(8,9), (8,10)

(9,10)

We proceed by forming all the pairs in the second list. In this case we would have the following
pairs:

(1,2), (1,3), (1.4), (1,5)
(2,3), (2.4), (2.5)
(3.4), (3.5)

(45)

Using the first distance we get the following table:



Tab 1.6 List of distances 16

pair | distance in Istlist | distance in 2nd list
(1,2 0.105885148 0.22352868
(1,3) 0.117643 0.22352871
(1,4 0.117643 0.22352871
(1,5) 0.105885148 0.10588514
(2,3) 0.117643 0.22352871
(2,4) 0.117643 0.22352871
(2,5 0.105885148 0.22352868
(3.4 0.117643 0.22352869
(3,9 0.117643 0.22352871
(4,5) 0.117643 0.22352871

In the case we are using the first distance we would look for the node where two points join. In
the case we are using the second distance we would look for the number of tree edges joining
those two points.

To compute the correlation coefficient we need to pick one pair in the second list and compute
its distance and then look for the same pair in the first list and compute its distance. We do the

same thing for all remaining pairs in the second list.

Examples of how trees are constructed are given in Fig 1.5, Fig 1.6, Fig 1.7. Following are all
correlation coefficients computed. For each one of them there are 3*2*2 possible designs except
for the last one where the third input is a combination of uniform distribution and the distribution
(1.10).

Slink
first input Clink
Average

) distance 1
second input distance 2

o uniform distribution
third input distribution (1.10)

1) First correlation coefficient: The first coefficient of correlation is the one between a list of
pairs built from a sample S and a list of pairs built from the first half of the sample S. The first
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half of S is taken before S is sorted.

2) Second correlation coefficient: The second coefficient of correlation is the one between a list
of pairs built from a sample S and a list of pairs built from the second half of the sample S. The
second half of S is taken before the sample S is sorted.

3) Third correlation coefficient: The third coefficient of correlation is the one between a list of
pairs built from the first half of the sample S ,say Sth, and a list of pairs built from the first half
of another sample S’, say Sfh’. The two samples are given the id’s after being sorted. The first
point of sample Sfh is given as id the number 1 and so is given the first point of sample Sfh’.
The second point of sample Sth is given as id the number 2 and so is given the second point of
sample Sfh’ and so on.

4) Fourth correlation coefficient: The fourth coefficient of correlation is the one between a list of
pairs built from the second half of the sample S ,say Sfh, and a list of pairs built from the second
half of another sample S’, say Sfh’. The two samples are given the id’s after being sorted. The
first point of sample Sfh is given as id the number 1 and so is given the first point of sample Sfh’.
The second point of sample Sfh is given as id the number 2 and so is given the second point of

sample Sfh’ and so on.

5) Fifth correlation coefficient: The fifth coefficient of correlation is the one between a list of
pairs built from the sample S and a list of pairs built from the sample X added to the sample S.
The sample X contains 10 new randomly generated points.

6) Sixth correlation coefficient: The sixth coefficient of correlation definition is the same as the
fifth correlation coefficient except the sample X contains 20 new randomly generated points.

7) Seventh correlation coefficient: The seventh coefficient of correlation definition is the same as
the fifth correlation coefficient except the sample X contains 30 new randomly generated points.

8) Eighth correlation coefficient: The eighth coefficient of correlation definition is the same as
the fifth correlation coefficient except the sample X contains 40 new randomly generated points.

9) Ninth correlation coefficient: The ninth coefficient of correlation is the one between a list of
pairs built from the sample S using the uniform distribution given by the formula (1.8) and a list
of pairs built from the sample S’ using the second distribution given by the formula (1.10). The
sample X contains 10*i new randomly generated points where i is in [AUHS83, Rom84].

We introduce some notations which are going to be used in Chapter 4. This is intended to
give a readable version of the program output. We will give a shorthand names to indicate all
possible program inputs. Following is a table showing the inputs with their shorthand indicator.



Tab 1.7 Terms shorthand 18

term shorthand
Slink
Clink
Average
Unif distrib
Distrib (1.10)
Distance 1
Distance 2

R |=OC| > |O»n

In order to use a combination of terms we only need to concatenate the shorthands in the order
showed above.

example: Suppose we want to have as input the following parameters:
1-Slink

2-Uniform distribution

3-Distance 1

We would indicate this input by the shorthand SU1.

Function Approximation of the Correlation Coefficients

We want to find the relationship between the correlation coefficients and the data size. We
start by computing the average of 100 correlation coefficients taken between two lists computed
from the same data size. We then compute the standard deviation of this average correlation
coefficient using the formula (1.7). We proceed by performing the same steps for the other data
sizes.

When we finish the two computations mentioned above we then proceed with the approxima-
tion of those points by a linear function

f(x)=ax +b (1.12)
Using the least squares problem.

We now give the criterion of a good approximation: We say we have a good approximation if
the inequation

Ly = f(x) | so(y;) for all i (1.13)

, where y; is the point to approximate, f is the approximation function, and o(y,) is the standard
deviation fory, , is satisfied.
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If the inequation (1.13) is not satisfied then we do not consider the linear function as a good

approximation.

2. Results and their Interpretation

We start by giving some shorthands used in the subsequent tables:
The number # is the size of the data input.

The shordhand sd stands for the standard deviation.

The shorthand cc stands for the correlation coefficient.

The shorthand CDD stands for:
C: Clustering Method
D: Distribution function
D: Distance used

We now give some information about the entries of the two tables shown for each correlation
coefficient:
Each entry (row) of the first table consists of two sub-entries:
a: The average of 100 correlation coefficients taken between two lists
formed from the same kind of data sizes
b: The standard deviation of those 100 correlation coefficients.

It is easy to check that the inequation (1.13) is satisfied for all the correlation points. This is true
for every function approximation shown in this chapter. Thus all approximations are good since
they verify our criterion of goodness.



Tab 4.1 First correlation coefficient

n SU1 | SU2 | CU1 | CU2 | AUL | AU2 | SO1 S02 | CO1 Cco2 AO1 | AO2
cc | 079 | 670 | 0.70 | 0.73 | 0.77 | 075 | 096 0.88 094 | 0.85 0.97 0.89
10
sd | 028 | 020 | 027 | 022 | 0.18 | 0.19 | 0.077 | 0.078 | 0.19 | 0.11 0.056 | 0.070
cc | 0751065 ) 072 | 0.72 | 076 | 0.74 | 095 0.87 0.89 | 0.83 0.97 0.89
15
sd | 034 | 032 | 023 | 0.17 | 0.17 | 0.16 | 0.090 | 0.076 | 0.15 | 0.18 0.065 | 0.067
cc | 0.82 | 068 | 073 | 0.73 | 0.78 | 0.75 | 0.95 0.87 090 | 0.84 096 | 0.89
20
sd | 031|020 | 021 | 0.17 | 0.15 | 011 | 0.073 | 0.075 | 0.16 | 0.099 | 0.060 | 0.060
cc | 077 | 064 | 073 | 073 | 0.73 | 0.73 | 095 0.87 0.88 | 0.84 0.95 0.89
25
sd | 028 | 023 | 0.20 | 0.15 | 024 | 0.16 | 0.075 | 0.071 | 0.17 | 0.13 0.059 | 0.064
cc | 075 1 062 | 072 | 072 | 075 | 0.73 | 0.94 0.87 0.85 | 0.81s0 | 095 0.87
30
sd | 028 | 026 | 020 | 0.15 | 021 | 0.16 | 0.049 | 0.079 | 0.13 | 0.10 0.052 | 0.057
cc | 0.68 | 0.59 | 0.77 | 074 | 0.76 | 0.75 | 0.94 0.86 085 | 0.82 0.95 0.87
35
sd | 028 | 0.19 | 0.16 | 0.15 | 0.16 | 0.14 | 0.059 | 0.068 | 0.17 | 0.10 0.13 0.053
cc | 073 | 056 | 0.67 | 0.70 | 0.75 | 0.73 | 0.96 0.88 0.88 | 0.83 0.96 0.88
40
sd | 032 | 024 | 0.18 | 0.14 | 0.18 | 0.12 | 0.079 | 0.078 | 0.15 | 0.11 0.049 | 0.064
cc | 074 | 0.57 | 0.70 | 069 | 0.71 | 0.71 | 096 | 0.86 0.86 | 0.81 096 | 0.87
45
sd | 025 { 022 | 021 | 0.12 | 019 | 0.12 | 0.11 0.067 | 017 | 0.11 0.054 | 0.053
cc | 076 | 056 | 0.67 | 0.68 | 0.73 | 0.72 | 0.92 0.86 0.84 | 0.81 0.95 0.87
50
sd | 027 | 025 | 0.16 | 0.12 | 0.18 | 0.10 | 0.083 | 0.071 | 0.11 | 0.11 0.064 | 0.049

20



Tab 4.2 Function approximation

CDD function approx

SU1 -0.00083 X + 0.81
SU2 -0.0018 X + 0.73

CU1 -0.00034 X + 0.73
Cu2 -0.00020 X + 0.72
AUl -0.00040 X + 0.77
AU2 -0.00011 X + 0.74
SO1 -0.00025 X + 0.96
SO2 -0.00007 X + 0.87
CO1 -0.0011 X + 0.95

CcO2 -0.00051 X + 0.86
AO1 -0.00013 X + 0.97
AO2 | -0.000073 X + 0.88

21



Tab 4.3 Second correlation coefficient

n SUl | SU2 | CUl | CU2 | AUl | AU2 | SO1 SO2 | CO1 | CO2 AO1 AO2
cc | 078 | 0.74 | 079 | 0.77 0.81 0.78 | 097 0.88 091 | 0.84 0.94 0.87
10
sd | 022 | 022 | 0.16 | 0.12 0.19 012 | 0.094 | 0.092 | 0.15 | 0.12 0.13 0.098
cc | 076 | 0.67 | 072 | 0.71 0.77 074 | 097 0.88 0.88 | 0.83 0.94 0.88
15
sd | 027 | 0.23 | 032 | 032 | 0.17 | 031 | 0.11 0.093 | 0.15 | 0.13 0.088 | 0.074
cc | 0.84 | 070 | 073 | 0.75 0.79 078 | 095 0.87 0.90 | 0.85 0.95 0.88
20
sd | 026 | 023 | 023 | 0.18 0.18 0.10 | 0.089 | 0.088 | 0.16 | 0.11 0.078 | 0.072
cc | 0.80 | 0.68 | 0.72 | 0.74 0.76 076 | 094 0.87 0.88 | 0.85 0.94 0.88
25
sd | 031 | 023 | 023 | 0.18 0.18 0.11 | 0.050 | 0.077 | 0.16 | 0.11 0.097 | 0.072
cc { 079 | 065 | 0.72 | 0.72 0.78 0.76 | 0.95 0.86 0.88 | 0.83 0.94 0.87
30
sd | 028 | 021 | 021 | 0.15 0.17 0.11 | 0.049 | 0.067 | 0.16 | 0.094 | 0.080 | 0.052
cc | 0.69 | 0.62 | 071 0.70 0.76 0.75 | 0.94 0.85 0.85 | 0.81 0.94 0.87
35
sd | 025 | 022 | 020 | 0.15 0.16 0.17 | 0.082 | 0.081 | 0.18 | 0.090 | 0.079 | 0.049
cc | 072 | 0.57 | 0.67 | 0.69 0.76 074 | 095 0.88 0.87 { 0.83 0.97 0.89
40
sd | 027 | 0.26 | 0.19 | 0.15 0.15 0.15 | 0092 | 0.085 | 0.16 | 0.10 0.068 | 0.054
cc | 0.74 | 0.55 | 0.69 0.69 0.74 0.71 | 095 0.87 0.85 | 0.81 0.95 0.87
45
sd | 031 | 020 | 018 | 0.14 0.27 0.12 | 0.11 0.070 | 0.15 | 0.10 0.056 | 0.058
cc | 077 | 0.55 | 071 | 0.70 0.73 073 | 092 0.86 0.82 | 0.81 0.94 0.87
50
sd | 027 | 029 | 0.18 | 0.13 0.22 0.13 | 0.082 | 0.076 | 0.17 | 0.096 | 0.064 | 0.058
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Tab 4.4 Function approximation

CDD function approx
SU1 -0.0012 X + 0.84
SU2 -0.0024 X + 0.78
CU1 -0.0012 X + 0.80
CU2 | -0.00082 X+ 0.77
AU1 -0.0011 X + 0.84
AU2 | -0.00052 X+ 0.78
SO1 -0.00016 X + 0.95
SO2 0.00017 X + 0.85
CO1 -0.00089 X + 0.93
CO2 | -0.00030 X + 0.85
AO1 | 0.000063 X + 0.94
AO2 0.00022 X + 0.86
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Tab 4.5 Third correlation coefficient

n SuUl | SU2 | Cu1 cu2 AUl AU2 | SO1 | SO2 | CO1 | CO2 | AO1 | AO2
cc | 032 { 041 | 050 | 0.49 0.53 | 0.51 046 | 0.57 | 0.56 | 0.60 | 0.53 | 0.61

10
sd | 0.18 | 020 | 022 | 0.20 022 | 0.20 034 | 022 | 030 | 0.19 0.31 0.19
cc | 035 | 042 | 055 | 054 0.58 | 0.57 047 | 056 | 059 | 0.61 0.56 | 0.61

15
sd | 0.18 | 0.17 | 019 | 0.17 020 | 0.17 030 | 023 | 024 | 0.16 | 027 | 0.17
cc | 032 | 040 | 060 | 0.57 0.60 | 0.57 0.52 | 0.58 | 0.67 | 0.65 | 0.63 | 0.66

20
sd | 0.17 | 0.18 | 018 | 0.13 0.14 | 0.10 029 | 027 | 022 | 0.13 0.26 0.17
cc | 033 | 042 | 061 | 058 0.64 | 0.61 053 | 057 | 0.66 | 0.64 0.63 0.65

25
sd | 0.17 | 0.14 | 0.14 | 0.11 014 | 0095 | 026 | 0.24 | 0.18 | 0.17 0.24 0.17
cc | 038 | 041 | 0.61 | 057 0.64 | 0.60 0.60 | 0.63 | 0.66 0.64 0.68 | 0.67

30
sd | 0.14 | 0.16 | 0.19 | 0.14 0.14 | 0.11 022 | 0.17 | 018 | 0.15 0.19 0.15
cc | 036 | 041 | 060 | 0.59 0.63 | 0.61 0.61 | 0.63 0.68 0.65 0.69 0.67

35
sd | 016 | 0.14 | 0.16 | 0.096 | 0.13 | 0.087 021 | 0.16 | 0.16 | 0.11 0.18 0.15
cc | 038 | 041 | 0.63 | 0.60 0.67 | 0.62 0.60 | 0.63 | 0.64 | 062 | 0.66 | 0.66

40
sd | 0.14 | 0.15 | 0.17 | 0.092 | 0.14 | 0.08 | 023 | 0.16 | 0.26 | 0.12 | 0.16 0.11
cc | 034 | 042 | 063 | 0.58 0.66 | 0.62 0.63 | 0.65 | 0.71 0.66 | 0.71 0.68

45
sd | 0.13 | 0.14 | 0.15 | 0.11 014 | 0.097 | 023 | 0.13 | 0.16 | 0.10 | 0.16 0.11
cc | 0.36 | 043 | 0.61 | 059 0.66 | 0.63 0.65 | 0.65 | 073 | 0.68 | 0.74 0.69

50
sd | 0.14 | 0.15 | 0.15 | 0.091 | 0.14 | 0.089 | 023 | 0.16 | 0.17 | 0.10 | 0.16 | 0.11
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Tab 4.6 Function approximation

CDD function approx
SU1 | 0.00072 X + 0.30
SU2 | 0.00048 X + 0.38
CU1 0.0017 X + 0.49
CU2 0.0016 X + 0.47
AU1 0.0023 X + 0.47
AU2 0.0020 X + 0.46
SO1 0.0030 X + 0.38
SO2 0.0018 X + 0.49
CO1 0.0023 X + 0.51
CO2 0.0014 X + 0.55
AO1 0.0030 X + 0.46
AO2 0.0017 X + 0.54




Tab 4.7 Fourth correlation coefficient

n SU1l | SU2 | CU1l | CU2 | AUl | AU2 | SO1 | SO2 | CO1 | CO2 | AO1 | AO2

cc | 025 037 | 051 | 050 0.48 | 049 047 | 054 | 0.58 | 0.57 0.55 | 0.57
10

sd | 046 | 0.19 | 023 | 0.19 022 | 0.19 026 | 025 | 027 | 0.24 026 | 025

cc | 031 041 | 058 | 055 0.56 | 0.55 045 | 0.54 | 063 | 061 0.58 | 0.60
15

sd | 0.14 | 0.18 | 0.18 | 0.15 0.17 | 0.14 027 | 022 | 022 | 017 0.19 | 021

cc | 035 | 044 | 057 | 055 0.59 | 058 054 | 058 | 0.66 | 0.63 0.65 | 0.63
20

sd | 015 | 015 | 0.17 | 0.12 0.18 | 0.13 025 | 022 | 020 | 0.16 0.19 | 0.18

cc | 037 | 045 | 0.63 | 0.60 0.65 | 0.60 0.56 | 0.58 | 0.70 | 0.65 0.66 | 0.65
25

sd | 0.16 | 0.15 | 017 | 0.12 0.13 | 0.10 024 | 021 | 017 | 012 0.14 | 0.16

cc | 036 | 0.44 | 062 | 0.59 0.65 | 0.60 0.61 | 0.65 | 0.72 | 0.66 0.70 | 0.69
30

sd | 015 | 015 | 017 | 0.11 0.13 | 011 024 | 0.16 | 0.18 | 0.10 0.10 | 0.16

cc | 037 | 042 | 0.62 | 0.60 0.64 | 0.61 0.61 | 0.63 | 0.74 | 0.68 0.71 | 0.69
35

sd | 0.14 | 0.15 | 0.17 | 0.10 0.17 | 0.084 | 022 | 0.18 | 0.17 | 0.11 0.11 | 0.16

cc | 038 | 042 | 0.62 | 0.59 0.65 | 0.62 0.66 | 0.67 | 0.69 | 0.67 073 | 0.70
40

sd | 0.15 | 0.14 | 0.15 | 0.097 | 0.15 | 0.088 | 024 | 0.15 | 0.16 | 0.11 0.11 | 0.18

cc | 034 | 041 | 0.65 | 059 0.68 | 0.62 0.64 | 0.64 | 0.67 | 0.65 0.71 | 0.68
45

sd | 021 | 0.15 | 0.14 | 0.10 0.15 | 0.10 020 | 012 | 0.16 | 0.13 0.18 | 0.12

cc | 034 | 039 | 0.64 | 0.60 0.66 | 0.62 0.63 | 0.65 | 0.71 | 0.67 0.73 | 0.69
50

sd | 0.16 | 0.15 | 0.16 | 0.096 | 0.14 | 0.086 | 023 | 0.15 | 0.16 | 0.093 | 0.15 | 0.095
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Tab 4.8 Function approximation

CDD function approx
SU1 0.00097 X + 0.28
SU2 | 0.00056 X + 0.38
CU1 0.0018 X + 0.49
CuU2 0.0016 X + 0.47
AUl 0.0024 X + 0.47
AU2 0.0020 X + 0.46
SO1 0.0034 X + 0.36
SO2 0.0027 X + 0.43
CO1 0.0027 X + 0.49
CO2 0.0025 X + 0.48
AO1 0.0035 X + 0.44
AO2 0.0029 X + 0.47
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Tab 4.9 Fifth correlation coefficient

n Su1 SuU2 | CUl | CU2 | AUl | AU2 | SO1 SO2 | CO1 | CO2 | AO1 | AO2
cc | 0.68 0.62 075 | 0.69 | 079 | 0.69 097 0.83 093 | 083 0.96 0.83
10
sd | 030 0.25 019 | 023 | 017 | 0.21 0.059 | 0.12 0.13 | 013 0.081 | 0.14
cc | 0.83 0.69 071 | 0.74 | 076 | 0.73 0.98 0.96 092 | 085 096 | 0.87
20
sd | 0.20 0.17 027 | 014 | 016 | 0.12 0.050 | 0.093 | 0.14 | 0.11 0.060 | 0.087
cc | 0.85 0.72 078 | 080 | 078 | 0.77 0.99 0.89 090 | 086 | 097 | 0.89
30
sd | 0.19 0.16 017 | 0.12 | 0.16 | 0.11 0.030 | 0.058 | 0.16 | 0.11 0.045 | 0.076
cc | 0.89 0.75 073 | 077 | 076 | 0.76 0.98 0.90 0.89 | 0.87 096 | 0.89
40
sd | 0.16 0.12 021 | 0.11 | 0.16 | 0.11 0.047 | 0.053 | 0.15 | 0.099 | 0.051 | 0.062
cc | 0.89 0.77 074 | 078 | 0.76 | 0.76 0.98 0.90 0.89 | 0.87 0.96 | 0.90
50
sd | 0.15 0.11 019 | 0.11 | 0.16 | 0.10 0.033 | 0051 | 0.15 | 0.082 | 0.050 | 0.066
cc | 0.88 0.76 074 | 077 | 0.74 | 0.76 0.99 0.92 0.90 | 088 | 097 | 0.90
60
sd | 0.19 0.12 0.18 | 0.10 | 024 | 0.098 | 0.031 | 0.038 | 0.13 | 0.069 | 0.042 | 0.043
cc | 0.92 0.77 0.79 | 0.80 | 075 | 0.76 0.99 0.92 090 | 0.89 0.97 0.90
70
sd | 0.081 | 0.11 017 | 0.10 | 0.18 | 0.094 | 0.024 | 0.040 | 0.15 | 0.079 | 0.041 | 0.043
cc | 0.90 0.77 079 | 0.81 | 075 | 0.77 0.99 0.93 0.89 | 0.89 097 | 091
80
sd | 017 0.11 0.18 | 0.10 | 0.14 | 0.098 | 0.017 | 0.047 | 0.14 | 0.078 | 0.036 | 0.048
cc | 095 0.80 075 | 0.80 | 0.76 | 0.78 0.99 0.93 0.89 | 0.89 0.97 0.90
90
sd | 0.056 | 0.095 | 0.17 | 0.10 | 0.14 | 0.081 | 0.021 | 0.047 | 0.15 | 0.083 | 0.038 | 0.053
cc | 0.96 0.82 078 | 0.82 | 073 | 0.77 0.99 0.94 0.86 | 0.88 0.95 0.89
100
sd | 0.096 | 0.11 0.19 | 0.11 | 0.16 | 0.091 | 0.018 | 0.037 | 0.16 | 0.090 | 0.048 | 0.044
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Tab 4.10 Function approximation

CDD function approx
SU1 0.0022 X + 0.75
SU2 0.0018 X + 0.65
CuU1 0.00044 X + 0.73
CuU2 0.0011 X + 0.72
AUl -0.00042 X + 0.78
AU2 0.00061 X + 0.72
SO1 0.00022 X + 0.97
SO2 0.0011 X + 0.84
COo1 -0.00051 X + 0.92
CO2 0.00053 X + 0.84
AO1 | -0.0000092 X + 0.97
AO2 0.00056 X + 0.86
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Tab 4.11 Sixth correlation coefficient

n SU1 sSU2 | CU1 Ccu2 AU1 AU2 SOt SO2 COo1 CcOo2 AO1 AO2
cc | 0.68 0.60 | 0.72 | 0.65 0.78 | 0.67 095 0.80 092 | 0.78 0.97 0.80
10
sd | 0.30 023 | 027 | 023 017 | 0.23 0.092 | 0.14 0.16 | 0.14 0.070 | 0.14
cc | 0.77 0.67 | 073 | 071 0.78 | 0.72 0.96 0.82 090 | 0.81 0.95 0.94
20
sd | 0.22 0.18 | 021 | 0.14 0.16 | 0.14 0.075 | 0.11 013 | 0.13 0.056 | 0.11
cc | 0.80 0.66 | 069 | 0.72 0.77 | 0.74 097 0.83 0.89 | 0.82 0.96 0.85
30
sd | 0.20 0.19 | 019 | 0.12 0.16 | 0.11 0.051 | 0.082 | 0.14 | 0.11 0.056 | 0.097
cc i 0.82 0.66 | 0.73 | 0.74 0.77 | 0.75 097 0.85 0.89 | 0.84 0.96 0.87
40
sd | 0.19 0.14 | 0.17 | 0.10 0.16 | 0.11 0.045 | 0.064 | 0.15 | 0.091 | 0.046 | 0.068
cc | 0.84 067 | 071 | 073 0.76 | 0.74 097 0.86 0.88 | 0.85 0.96 0.88
50
sd | 0.16 0.14 | 017 | 0.11 0.15 | 0.11 0.036 | 0.066 | 0.16 | 0.089 | 0.045 | 0.055
cc | 0.86 0.68 { 0.70 | 0.71 0.76 | 0.73 0.97 0.88 0.86 | 0.84 0.96 0.88
60
sd | 0.16 012 | 0.16 | 0.10 014 | 0.10 0.032 | 0.048 | 0.15 | 0.090 | 0.045 | 0.047
cc | 0.89 0.69 | 0.70 | 0.72 0.73 0.72 0.98 0.87 084 | 0.84 0.96 0.87
70
sd | 008 | 0.12 | 017 | 0.11 025 | 0.099 | 0.029 | 0.049 | 0.14 | 0.075 | 0.041 | 0.042
cc | 0.87 0.69 | 071 | 0.75 0.75 0.74 0.98 0.90 0.88 | 0.86 0.97 0.89
80
sd | 0.15 015 | 017 | 0.10 0.14 | 0.091 | 0024 | 0.045 | 0.15 | 0.081 | 0.044 | 0.053
cc | 0.89 070 | 072 | 0.74 075 | 0.74 0.99 0.90 085 | 0.85 0.96 0.89
90
sd | 0.13 0.12 | 0.15 | 0.085 | 0.19 | 0.074 | 0.029 | 0.055 | 0.16 | 0.081 | 0.050 | 0.049
cc | 0.90 070 { 073 | 0.76 0.71 0.73 0.99 0.90 0.84 | 0.84 0.95 0.87
100
sd | 0.15 0.14 | 0.17 | 0.094 | 0.17 | 0.088 | 0.016 | 0.048 | 0.15 | 0.083 | 0.072 | 0.048
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Tab 4.12 Function approximation

CDD function approx
SU1 0.0021 X +0.72
SU2 0.00084 X + 0.63
CU1 0.000065 X + 0.71
CU2 0.00080 X + 0.68
AU1 -0.00063 X + 0.79
AU2 0.00031 X + 0.71
SO1 0.00046 X + 0.95
SO2 0.0012 X + 0.80
Co1 -0.00076 X + 0.92
CcO2 0.00055 X + 0.80
AO1 | -0.000015 X + 0.96
AO2 0.00070 X + 0.82
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Tab 4.13 Seventh correlation coefficient

n SU1 | SU2 | Cul | CU2 | AUl | AU2 | SO1 802 | CO1 | CO2 | AO1 | AO2
cc 062 | 056 | 0.70 | 0.62 0.74 | 0.62 0.94 0.80 091 | 0.76 0.97 0.80
10
sd | 032 | 022 | 026 | 0.20 0.26 | 0.21 0.084 | 0.012 | 0.15 | 0.16 0.058 | 0.14
cc | 075 | 062 | 070 | 0.69 0.77 | 0.70 0.94 0.81 0.89 | 0.79 0.96 0.83
20
sd | 023 | 018 | 0.21 | 0.14 0.15 | 0.14 0.083 | 0.10 017 | 0.12 | 0.057 | 0.11
cc | 077 | 060 | 072 | 0.70 0.77 | 0.70 0.94 0.82 0.84 | 0.79 0.95 0.85
30
sd | 021 | 0.18 | 020 | 0.14 0.16 | 0.14 0.078 | 0.097 | 0.14 | 0.13 0.055 | 0.087
cc | 0.80 | 0.62 | 0.71 | 0.71 076 | 0.72 0.96 0.83 0.87 | 0.82 0.95 0.85
40
sd | 0.19 | 0.16 | 0.16 | 0.11 0.15 | 0.11 0.066 | 0.090 | 0.15 | 0.093 | 0.048 | 0.077
cc | 0.81 | 0.63 | 070 | 0.70 0.74 | 0.71 0.97 0.84 0.87 | 082 | 095 0.85
50
sd | 0.17 | 0.15 | 017 | 0.11 0.18 | 0.11 0.040 | 0.078 | 0.15 | 0.083 | 0.060 | 0.070
cc | 0.80 | 063 | 0.72 | 0.70 074 | 0.71 0.97 0.84 0.84 | 0.80 0.96 0.85
60
sd | 017 | 0.16 | 0.17 | 0.11 0.18 | 0.10 0.043 | 0.069 | 0.16 | 0.085 | 0.047 | 0.061
cc | 085 | 064 | 072 | 071 0.73 | 0.71 0.97 0.84 0.81 | 080 | 0.96 0.86
70
sd | 013 | 013 | 0.17 | 0.11 0.17 | 0.093 | 0.050 | 0.071 | 020 | 0.084 | 0.042 | 0.046
cc | 083 | 063 | 070 | 0.71 0.76 | 0.72 0.98 0.86 0.87 | 0.84 0.97 0.87
80
sd | 0.16 | 0.12 | 0.15 | 0094 | 0.13 | 0.091 | 0.038 | 0.076 | 0.16 | 0.090 | 0.053 | 0.059
cc | 086 | 0.66 | 0.69 | 0.70 0.76 | 0.73 0.98 0.88 0.85 | 0.83 0.95 0.87
90
sd | 014 | 0.12 | 0.15 | 0.082 | 0.15 | 0.072 | 0.035 | 0.063 | 0.15 | 0.091 | 0.048 | 0.055
cc | 0.87 | 067 | 072 | 0.73 074 | 0.73 0.98 0.87 0.82 | 081 0.95 0.86
100
sd | 0.16 | 0.12 | 0.16 | 0.094 | 0.16 | 0.098 | 0.038 | 0.062 | 0.15 | 0.087 | 0.066 | 0.048
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Tab 4.14 Function approximation

CDD function approx

SU1 0.0021 X + 0.68

SU2 0.00085 X + 0.58
CU1 0.00004 X + 0.71
Cu2 0.00069 X + 0.66
AUl | -0.00014 X + 0.76
AU2 0.00076 X + 0.66
SO1 0.00049 X + 0.93
SO2 0.00082 X + 0.79
CO1 | -0.00071 X+ 0.90
CO2 0.00052 X + 0.78
AO1 -0.00011X + 0.96
AO2 0.00060 X + 0.82
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Tab 4.15 Eighth correlation coefficient

n SU1 | SU2 | CU1 | CU2 | AUl | AU2 | SO1 | SO2 | CO1 | CO2 | AO1 | AO2
cc | 0.64 | 055 | 0.69 | 0.63 0.74 | 0.65 092 | 0.80 0.88 | 0.77 0.97 0.81
10
sd | 031 | 026 | 029 | 0.22 0.27 | 0.23 0.097 | 0.12 0.17 | 0.16 0.055 | 0.13
cc | 077 | 0.58 | 0.71 | 0.67 0.75 | 0.69 092 | 0.81 0.86 | 0.78 0.95 0.83
20
sd | 023 | 0.18 | 020 | 0.14 0.15 | 0.13 0.11 0.12 0.15 | 0.11 0.056 | 0.11
cc | 081 | 060 | 0.72 | 0.71 0.76 | 0.71 094 | 0.82 0.86 | 0.80 0.96 0.86
30
sd | 0.19 | 0.17 | 020 | 0.12 0.15 | 0.11 0.11 0.092 | 015 | 0.12 0.050 | 0.083
cc | 0.82 | 0.62 | 0.69 | 0.68 0.74 | 0.71 0.94 0.82 0.84 | 0.80 0.94 0.85
40
sd | 0.18 | 0.14 | 0.17 | 0.12 020 | 0.10 0.099 | 0.082 | 0.18 | 0.12 0.068 | 0.063
cc | 0.79 | 0.60 | 0.70 | 0.68 075 | 0.71 0.95 0.84 0.86 | 0.82 0.94 0.85
50
sd | 0.18 | 0.17 | 0.18 | 0.12 0.15 | 0.11 0.083 | 0.077 | 0.16 | 0.083 | 0.056 | 0.050
cc | 0.75 | 0.60 | 0.71 | 0.69 074 | 0.71 0.97 0.82 0.84 | 0.80 0.95 0.84
60
sd | 020 | 0.17 | 0.16 | 0.12 0.16 | 0.099 | 0040 | 0.061 | 0.15 | 0.088 | 0.046 | 0.088
cc | 079 | 058 | 0.68 | 0.68 0.74 | 0.71 097 | 0.83 078 | 078 | 0.95 0.85
70
sd | 0.16 | 0.16 | 0.16 | 0.11 0.16 | 0.092 | 0.037 | 0.056 | 0.17 | 0.085 | 0.045 | 0.041
cc | 081 ] 060 { 072 | 0.70 0.76 | 0.72 098 | 0.85 085 | 0.81 0.96 0.87
80
sd | 0.18 | 0.14 | 0.15 | 0.099 | 0.15 | 0.095 | 0.041 | 0.067 | 0.18 | 0.085 | 0.046 | 0.054
cc | 083 | 061 | 071 | 0.71 074 | 0.73 098 | 085 0.83 | 0.81 0.95 0.87
90
sd | 0.13 | 015 | 0.15 | 0.10 0.17 | 0.091 | 0.038 | 0.062 | 0.15 | 0.89 0.053 | 0.053
cc | 086 | 0.61 | 070 | 0.71 0.74 | 0.73 096 | 0.85 0.81 | 0.80 0.94 0.87
100
sd | 0.13 | 0.14 | 0.15 | 0.11 0.16 | 0.094 | 0070 | 0.059 | 0.15 | 0.092 | 0.056 | 0.048
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Tab 4.16 Function approximation

CDD function approx
SU1 0.0014 X + 0.71
SU2 0.00032 X + 0.58
CU1 0.00009 X + 0.70
CU2 0.00059 X + 0.65
AU1 | -0.000073 X + 0.75
AU2 0.00064 X + 0.67
SO1 0.00063 X + 0.92
SO2 0.00054 X + 0.80
CO1 -0.00063 X + 0.88
CO2 0.00029 X + 0.78
AO1 -0.00012 X + 0.96
AO2 0.00053 X + 0.82




Tab 4.17 Ninth correlation coefficient

n SUO1 | SUO2 | CUO1 | CUO2 | AUO1 | AUO2

cc | 033 0.45 0.51 0.52 0.49 0.54
10

sd | 015 0.27 0.25 022 025 0.22

cc | 031 0.46 0.54 0.54 0.53 0.54
15

sd | 013 0.14 0.21 0.15 0.21 0.16

cc | 029 0.42 0.56 0.57 0.53 0.55
20

sd | 012 0.20 0.18 0.12 0.18 0.13

cc | 026 0.43 0.58 0.57 0.53 0.54
25

sd | 013 0.20 0.17 0.10 0.17 0.14

cc | 027 0.42 0.59 0.57 0.54 0.54
30

sd | 012 0.17 0.17 0.12 0.17 0.11

cc | 025 0.42 0.60 0.57 0.57 0.56
35

sd | 028 0.17 0.15 0.12 0.16 0.12

cc | 0.24 0.40 0.63 0.58 0.57 0.56
40

sd | 019 0.16 0.18 0.12 0.17 0.12

cc | 024 0.40 0.59 0.58 0.57 0.59
45

sd | 019 0.18 0.16 0.10 0.15 0.093

cc | 022 0.40 0.60 0.59 0.60 0.62
50

sd | 0.14 0.15 0.15 0.086 0.15 0.090

Tab 4.18 Function approximation

CDD function approx
SUO1 -0.0023 X + 0.34
SUO2 | -0.00093 X + 0.45
CUO1 0.0020 X + 0.52
CuUO2 0.0013 X + 0.52
AUO1 0.0021 X + 0.48
AUO2 0.0016 X + 0.51

a) First category of correlation

coefficients are meant to check the influence of the context upon the way points are clustered.
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b) Second category of correlation coefficients: The fifth, sixth, seventh, and eight correlation
coefficients are meant to check the influence of the context size upon the way points are
clustered.

¢) Third category of correlation coefficients: The ninth correlation coefficient is meant to check
the relation which might exist between two lists of pairs formed from two samples which are
generated using different distributions.

We conducted the same kind of experiment using the step size equal to five (5) and ten
(10) to see whether the results are going to be sensible to the step size or not. Those results
using a step size equal to five (5) do not differ in any way from the results obtained using the
step size equal to ten (10). This fact merely confirms the conclusions drawn from the tables
(1.1) to (1.18).

3. Conclusion

In the past, some comparative studies have been conducted and narrowed to a specific set
of input [Boy69] while others have been dealing with the theoretical aspects of the methods used
in Cluster Analysis [Sne69]. Our work is the beginning of a more general comparison among

some clustering methods since numerous criteria are used to carry out the comparison.

1) First observation: The results shown in tables 1.1, 1.2, 1.3, and 1.4 show that the context does
not completely hide the samples. Indeed, we notice that the correlation coefficients shown in
tables 1.1 and 1.2 are quite different than the ones shown in tables 1.3 and 1.4. This fact clearly
shows what correlation coefficient we are computing.

2) Second observation: The tables 1.1 to 1.4 and the tables 1.9 to 1.18 clearly demonstrate that
the context does not influence the way the data are clustered since all the correlation coefficients
are close to one (1). Moreover, those results demonstrate that the three (3) methods are equally
stable. This fact is rather surprising since we expect that the average method would be more
stable than the other clustering methods.

3) third observation: The third and fourth correlation coefficient compared to the ninth correla-
tion coefficient surprisingly show that the distribution does not matter when clustering a set of
points. Indeed, the correlation coefficients shown in the respective tables are sensibly the same.
One expects that two lists taken from the same distribution would be more similar than the ones
taken from different distributions.

4) Fourth observation: The taxonomic distance does not influence the way the correlation
coefficients are computed since there is no significant difference between the correlation
coefficients using the first distance and those using the second distance. This fact is a constant
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for all tables shown in chapter 4.

5) Fifth observation: The tables 1.17 and 1.18 also show that the three (3) methods would be
good even in a noisy environment since there is no difference of behavior with the results
obtained when using the uniform distribution.

6) Sixth observation: The last observation has to do with the fact that all tables, clearly show that
no method shows to be better than the others no matter what criterion we used. However, Slink
and Clink methods are computationally more attractive than Average method.

Some conclusions drawn above are rather surprising since the results conflict with the intui-
tion we had before undertaking this study. For future work we would recommend developing a
program having as a working set the multi-dimensional space. We also recommend working
with other kinds of distribution of random numbers. We expect that the more dimensions we use
as working set the closer the correlation coefficient of two lists to zero (0) would be. This is our
expectation and it would be interesting to see whether the experiments will confirm or infirm our
expectation. This would give a more general comparison and conclusion among the three (3)
methods mentioned above.
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