SchemePaint: a Programmable
Application for Graphics

Michael Eisenberg

CU-CS-587-92 April 1992

ﬂ

%‘University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE |

SchemePaint: a Programmable Application for Graphics
Michael Eisenberg .
University of Colorado at Boulder

Abstract

Programmable applications are software systems that seek to
combine the best features of direct manipulation interfaces
(accessibility, learnability, aesthetic appeal) with the best features of
interactive programming environments (extensibility and expressive
range). This paper describes such a programmable application for
graphics. The program, named SchemePaint, combines a "Macintosh-
style" paint program interface with a Scheme interpreter that has
been specifically enriched for graphics programming. Besides
describing the particular features of SchemePaint, this paper also
touches upon some of the more important issues involved in creating
programmable applications in general: the construction of "embedded
sub-languages” within a programming environment, the extension of
an application through language/interface libraries, and the
development of methods by which a direct manipulation interface
and a programming language can achieve some measure of symbiotic
cooperation.

SchemePaint: a Programmable

Application for Graphics
Michael Eisenberg
University of Colorado at Boulder

1. A Scenario

Visit any home computer store and you will see a shelf or more of graphics
applications—each one advertising that it is more featureful, more powerful,
more usable than the others. Glancing over the applications, it is indeed hard
to choose between them: they all present a cheerfully busy screen with a top
row of menus, side panels of icons, multiple windows, perhaps a color wheel,
and (the final bulleted item on every package) "much, much more."

Imagine, then, that an artist—wishing to exploit the artistic range of his
newly-purchased home computer—walks into the store and picks out the first
graphics application that catches his eye. This application, which we'll call EZ-
Paint, advertises that it is user-friendly; and the artist (being after all a user)
decides that this must be the right package for him. Proud of his purchase, the
artist returns home and quickly becomes enthralled with his new program.
Within an afternoon, he has placed all manner of rectangles and ellipses and
spline curves on the screen, and by the end of the first evening has even
drawn his first picture.

Several days later, the artist's daughter (who is in fourth grade) returns home
from school and shows her father a picture that she made that afternoon in
Logo class: a spiral. The artist is intrigued by the design and sets out to create a
spiral in EZ-Paint. Surely, he thinks, this must be a standard project... but after
hunting through the interface (and even as a last resort checking the

- manual) he discovers that there is no such thing as an EZ-Paint spiral. Well,
perhaps there is some way to add to the interface?... Apparently not. "User-
friendly" only goes so far, it seems.

As the weeks go by, the artist's catalog of frustration begins to expand. He can't
create a maze; can't tile the plane with octagons and squares; can't generate a
random walk; can't make a fractal, a sine wave, a Lissajous figure, a cycloid, a
Moire pattern. The program that once seemed so enjoyable has—by virtue of its
strengths and the high expectations they engendered—become that much more
disappointing in the long run.

Perhaps one of those other programs at the store would be an improvement,
the artist decides; and this time he purchases a larger package labelled XTra-
Power-Paint. This program is much more imposing than the previous one; it
includes more features, more (and longer) menus, submenus, sub-submenus,
scrolling boxes, and even macros which allow the artist to give reusable names
to sequences of mouse operations. But most of the projects that couldn't be done
before with EZ-Paint still can't be done with XTra-Power-Paint. In some sense,
in fact, the larger program is the inferior one: it's hard to find out just what it
can and can't do. Days can be spent discovering that XTra-Power-Point isn't
able to handle some particular project.

EZ-Paint, XTra-Power-Paint, and their non-fictional cousins are actually more
alike in spirit than their designers might wish to believe. In particular, they
all share the same fundamental design flaw: each is predicated on the notion
that users cannot and will not write programs. Although it isn't clear why this
should be true, it is nonetheless the fundamental tenet of the reigning
philosophy of "user-friendly" application design. No matter that what the user
wants to express could conceivably be written in a short, simple, expressive,
interactive program; no matter that in fact fourth graders do write such
programs to generate (among other patterns) spirals. It remains a matter of
faith that users just can't attain the same level of sophistication as software
designers. This condescending view toward the audience of applications users
may or may not be mistaken; but it is certainly unsubstantiated by anything
like hard evidence.

2. Programmable Applications: a Strategy for Software Design

This paper describes a program named SchemePaint. SchemePaint is designed
as a working prototype of a programmable application: that is, it combines the
learnability and accessibility of a direct manipulation interface (of the kind
typified by "Macintosh-style" programs) with the power and expressive range
provided by a domain-enriched interactive programming environment. By
providing users with the ability to create graphical effects both "by hand" and
"by program,” SchemePaint—even as prototype—provides its users with a range
of expression beyond the capabilities of even the most baroque non-
programmable applications currently available.

The remainder of this section is devoted to a more thorough explanation of the
design philosophy behind programmable applications in general (and
SchemePaint in particular). We first describe some of the problems associated
either with "pure" direct manipulation interfaces or with "pure" general-
purpose programming environments; we then discuss some of the design
issues that arise in trying to construct programmable applications and
thereby steer a middle ground between these two extremes.

Section 3 is an overview of the SchemePaint system; this is followed by four
sections describing specific aspects of the program. Specifically, Section 4
details the SchemePaint interface; Section S the associated "graphics-
enriched" language; Section 6, some of the more experimental features of the
system that attempt to achieve a measure of symbiotic cooperation between the
language and interface portions of the program; and Section 7, several
special-purpose "library" extensions to the program. We conclude in Section 8
with several illustrations of work done in SchemePaint; a discussion of related
and future work; and some final speculations on potentially interesting
research issues for developing programmable applications in general.

2.1 Direct Manipulation Interfaces (and Their Disadvantages)

"Direct manipulation” is a broad term whose meaning is probably better
indicated through examples than through any attempt at a formal definition.
(Shneiderman{19} and Hutchins et a/{13} provide informative discussions of
the term.) For our own purposes, we can simply stipulate that an application
has a "pure direct manipulation interface” if that interface is entirely

2

composed of (say) menus, icons, dialog boxes, buttons, sliders, and other
relatively simple mouse-operated elements. The Apple Macintosh computer is a
good source of illustrations: the Macintosh operating system and most of its
more popular software packages may be comfortably classified as direct

manipulation according to the informal criteria of the previous sentence. |

Direct manipulation interfaces have some important strengths, including most
notably learnability and ease of use. Among graphics applications,
MacPaint{S5} is a good example: in a matter of hours, one can pick up the
rudiments of MacPaint usage and embark on reasonably sophisticated projects.
Clearly this interface has been designed with a remarkable combination of
care, ingenuity, and programming skill.

Problems arise with such interfaces, however, when they are subject to long-
term, serious, creative use. Perhaps a MacPaint user has read a book on
fractals and would now like to create pictures that freely combine fractals
with other MacPaint features; or perhaps some slight variation of the standard
MacPaint ellipse (say, a parabola) is desired; or perhaps one would like to draw
a figure of a person turning a (correctly scaled) sequence of gears for a
physics text. In every case, if the appropriate tools are not immediately
available in the MacPaint interface, the user has no recourse: if the feature is
absent now, it will be absent forever.

The point here is not merely that some specific features are absent from one
specific paint program. The problem is rather a near-universal (and nearly
always major) flaw in "pure" direct manipulation systems. The range of
expression provided by clicking/dragging/icon-selection is simply too
impoverished to accommodate the imagination of long-term users. Whenever a
user, intrigued by the wonderful features of some program, wishes to invent
some variant or extension of those features, he or she will inevitably run up
against the limitations of an interface that sacrifices the creation of new
concepts to selection among designer-specified concepts.

What are the aspects of programming environments that are missing from
"pure” direct manipulation systems? Briefly, these fall under three headings:

» Control Structures. Virtually every programming language
provides a "standard" set of control structures: conditionals,
loops, recursion, sequencing. (More exotic languages might
expand on this list and include (say) parallel-programming

constructs such as "forking” and "joining.")

» Compound Data Objects. Programming languages include
methods for combining data objects into larger groups: lists,
structures, and arrays are typical examples.

» Abstraction and parametrization mechanisms. Perhaps most
important of all, programming languages include techniques for
naming data objects and procedures (and for likewise naming

1of course, "Macintosh-style” programs are ;miow available on other home computers and on
high-end workstations as well. Thus, the discussion of "direct-manipulation” in this
paper should not be interpreted as applying solely to Apple machines and software.

parameters for procedures). These named entities can then be
used in the definition of other procedures and objects. Without
this facility, we cannot create more complex concepts than
those that we began with.

In the absence of these features—which may be said to operationally define the
concept of programmability—users of direct manipulation applications find
themselves hampered in one project after another.

The application designers, when confronted by those users' complaints, tend to
respond by augmenting their programs willy-nilly, slapping on an ever-
increasing collection of ad hoc icons and menu choices. Thus, the fictional EZ-
Paint program (from the scenario described earlier) might eventually become
EZ-Paint 5.0, including spirals, sine waves, reflections in mirrored surfaces,
digital logic icons, international traffic symbols, and so on. These additions
tend to render the program more and more confusing, and eventually they
hurt the program rather than help it (one might think of the fictional XTra-
Power-Paint as a reasonable analogue to EZ-Paint 5.0). More to the point, they
don't really address the users' problems: no finite set of additions possibly
could. Having noticed a (logarithmic) spiral choice on the menu, the user
suddenly realizes that what he wants is an Archimedean spiral, or an Ionian
column design, or a spider web. Another artist never uses spirals but she
wonders why cycloids still haven't been included in the new release.

In short, users have a nagging habit of being creative; and they therefore
need a medium in which new concepts can be defined, altered, saved, extended,
and combined. They need programming languages.

2.2 General-Purpose Programming Environments (and Their
Disadvantages)

The discussion above might be read as an argument for the use of
programming environments as opposed to direct manipulation applications.
Why not, for example, provide our hypothetical artist with a Pascal or Lisp
programming environment instead of a program like EZ-Paint? If direct
manipulation interfaces are so limited, why shouldn't artists work in the far
more powerful medium of a programming language?

There are two major arguments against the use of "pure" (general-purpose)
programming environments in this context. The first is that direct
manipulation interfaces, while insufficiently expressive for most applications,
do have their characteristic strengths. Consider the problem, for instance, of
trying to write a program to draw a horse (this type of problem is not
unfamiliar to elementary-school Logo programmers). This is simply a task that
is more easily accomplished by direct manipulation (using a mouse, or perhaps
light-pen) than by writing code. In other words, there is a role in graphics
applications (indeed, in virtually every type of application) for interface tools
that take advantage of essentially extra-linguistic skills that users have; and
these tools do not generally come pre-packaged with general-purpose
programming environments.

The second problem with programming environments has to do with that

phrase "general-purpose." An artist using a programming language wants to
deal with data objects such as points, lines, polygons, colors, brush styles, and

4

so forth (and with procedures that operate on these data objects). Thus, there is
a level of domain-specificity (or "domain-enrichment") that is required in a
graphics language, and that is missing in standard general-purpose
environments. Typically, programming environments are seen as tools for
programmers (particularly, systems programmers), as opposed to
professionals with other interests; the resulting language constructs are thus
at a relatively low level with respect to other domains. Programming
environments within applications need to be structured so that interesting
tasks within the domain of the application can be expressed within two or
three lines of code.

2.3 Design issues for Programmable Applications

The previous two subsections argued for the incompleteness, within
application design, of an approach that focuses either on "pure" direct
manipulation or “"pure" general-purpose programming environments. In this
section, we briefly discuss some of the design issues that arise in attempting to

combine the respective strengths of the two approaches within applications.2
2.3.1 Choosing a Language

One of the primary design choices in constructing a programmable
application is deciding on the nature of the programming language that will
accompany it. In most popular applications that achieve a measure of
programmability (Mathematica{S7}, Director{S2}, and 4th Dimension{S3} are
good examples), the language provided is a brand-new application-specific
language, complete with its own syntax and vocabulary. In contrast, one can
imagine basing an application on a domain-enriched version of some existing
general-purpose language: AutoCAD({S1}, which is based on Lisp, is perhaps
the most famous example of this approach.

There are arguments to be made in favor of either approach; time and space do
not permit a thorough airing out of the issues here. Briefly, one might argue
that an application-specific language can be constructed with special
attention to the syntactic and control structures appropriate to a given
domain; on the other hand, using an existing language allows for a certain
breadth in application design—users who know the rudiments of (say) Pascal
can work with any Pascal-based application.

SchemePaint, as we will explain in the following section, may be viewed as
fitting within the second camp: its primary programming language is the
Scheme dialect of Lisp. The program does, however, include a rudimentary
Basic interpreter for users who are more comfortable with this language; a
Logo interpreter is also under development. The position thus argued for here
is that the particular choice of language is a second-order issue in
programmable application design; an application can indeed profitably
include a choice of several languages. Providing the user with some
language—whether application-specific or a domain-enriched dialect of any
one of several existing languages—is much more important than the question
of which particular language to include.

2 Further discussion can be found in Eisenberg {8}.

2.3.2 Constructing a "Domain-Enriched Dialect”: a Case Study

Several times in the course of this paper we have referred to the notion of
constructing a "domain-enriched” dialect of some general-purpose language.
This simple phrase hides a wealth of delicate design considerations which can
only be hinted at in this discussion.

The notion of language-building as a technique for application design is based
on the software engineering philosophy described by Abelson and
Sussman{2}. These authors present a portrait of the programming process in
which the key engineering questions are essentially those used in language
construction: i.e., what are the fundamental (primitive) data objects,
procedures, means of combination, and means of abstraction necessary to
build an interactive language in which a given domain may be fruitfully
represented.

As a miniature example of this language-construction process, we can
consider a portion of the actual SchemePaint language: namely, that portion
directly related to the manipulation of colors. In a sense, this collection of
object types and procedures embodies a "sub-language" within the larger
SchemePaint language. The fundamental object type in this case is a color-
object, represented as a list of three floating point numbers in the range 0-1
and corresponding to the R, G, and B components (respectively) of the given
color. Thus, the color-object represented by the list (0. 0. 1.) would correspond
to the color blue.3

Starting with this representation of a color object, our "color language" must
now include a data-object constructor, and selectors that access parts of a
given data-object:

make-schemepaint-color-object red green blue procedure
This procedure takes as arguments three floating point numbers between
0. and 1. and returns the appropriate color object.

get-schemepaint-color-object~red color-object procedure
get-schemepaint—-color-object-green color-object procedure
get-schemepaint-color-object-blue color-object procedure
These three procedures each take a single (color-object) argument and
return the appropriate component of that object (represented as a
floating point number between 0. and 1.).

There is also a type-predicate for color objects:
color-object? object procedure

This procedure takes a single object of any type and returns true if the
object is of type color-object (and false otherwise).

3 Obviously, myriad other data representations are possible (e.g., we might have chosen a
color representation based on hue-saturation-brightness). Although space considerations
do not permit a discussion of this matter, such choices among alternative object
representations are clearly fundamental aspects of the overall language construction
process.

And finally, there are procedures that can reset the current foreground (pen)
and background colors to a given color object.

set-pen-color! color-object procedure

This procedure, when called on a color-object, changes the current
foreground color to the desired value. If the pen is now used to draw lines
or points, they will appear on the screen in the specified color.

set-background-color! color-object procedure

This procedure, when called on a color-object, changes the default
background color to the desired value. The next time the screen is cleared,
it will appear as a solid background of the specified color.

This set of procedures constitutes the backbone of our color language. As it
stands, this "language" is still quite sparse; and indeed, the actual "color sub-
language" of SchemePaint is significantly larger. But there is a larger point to
be made: because we can create our own (Scheme) procedures that build from
the framework provided here, even this small core can serve as the basis for
extensive experimentation. For example, we might begin by assigning names
to two "typical” colors:

(define red
(make-schemepaint-color-object 1. 0. 0.))

(define blue
(make-schemepaint-color-object 0. 0. 1.))

Now suppose we would like to write express the idea of combining two colors
by averaging together their respective R, G, B components. We could easily
write a new procedure for this purpose:

{define (average-between-colors colorl color2)
(make-schemepaint-color—-object

(average (get-schemepaint-~color-object-red colorl)
(get-schemepaint-color-object-red color2))

(average (get-schemepaint-color-object—-green colorl)
(get-schemepaint-color-object-green color2))

(average (get-schemepaint-color-object-blue colorl)
(get-schemepaint-color-object-blue color2)))))

We could now use this procedure to create a new color that is the "average" of
red and blue:

(define purple (average-between-colors red blue))

And we could average the new color with some other one:

(define reddish-purple (avérage-between—colors red purple))

In point of fact, SchemePaint includes a more general-purpose procedure that
subsumes the utility of average-between-colors; but again, the key issue is that
we are able to use our overall Scheme language to build complexity where we
need it from a simple set of "primitive" concepts. If the notion of "averaging

two colors” had not been included in our core set, we could still create it
ourselves, by writing a relatively straightforward procedure; we needn't
depend on some unseen omnipotent interface designer to include this notion
in an advanced-level menu.

Even the tiny example of this section suggests some of the design issues that
are involved in creating an embedded domain-specific language. We might
wonder, for instance, if we have chosen an appropriate (elegant, efficient,
learnable) representation for color-objects: perhaps a hue-lightness-
saturation representation would be preferable on a number of different
grounds. Or we might ask what additional procedures ought to be pre-supplied
along with the very minimal core set shown thus far. These sorts of issues—the
pragmatic, operational aspects of language construction—are crucial subjects

for research in building programmable applications.4
2.3.3 Interface/Language Cooperation

Programmable applications, as already noted, seek to combine the best features
of direct manipulation interfaces and domain-enriched programming
environments. The reason for attempting this combination is not that there is
some law of software architecture that dictates that the marriage should
always work; rather, it is simply that we wish to build maximally expressive
applications, and in doing so we should feel empowered to employ the most
appropriate methods available. If the user wishes to perform some tasks (e.g.,
drawing a Lissajous figure), our application should probably include a
programming language; for other tasks (drawing a face) a direct-
manipulation design is superior. If we now wish to construct an application
that can accomplish a range of such tasks, then the application will quite
reasonably contain elements of both design paradigms.

The simplest strategy for combining these two "halves" (interface and
language) within one system would be to design them independently. In a
graphics application, for instance, we might first imagine what sort of direct
manipulation system would be concocted by our worst nightmare of a "user-
friendly" designer (the hypothetical EZ-Paint program might be a starting
point); then we might imagine what kind of graphics language would be
constructed by a designer paying no attention to visual interface whatever.
Joining these two sub-projects together would produce a "zeroth-order"
programmable application.

In fact, the applications constructed by this methodology would quite likely be
more expressive than virtually anything available in the current commercial
software world. Even so, this "parallel-track" design strategy ignores the
exciting possibilities of collaboration between language and interface. Rather
than simply tack these two elements together, we can seek to promote a
creative symbiosis between them.

As a very rough taxonomic scheme for discussing interface/language
cooperation, we can divide the range of collaborative strategies into two broad
categories according to the direction of influence. That is, we have (on the one
hand) language constructs that affect interface behavior, and (on the other)

4We will return to this topic again in Section 8 of this paper.

interface operations that create or alter the objects or procedures of the
language. The "macros" available in some graphics applications are
reasonable illustrations of the latter strategy: these are sequences of interface
operations that can be given names (and hence in some sense can 'create new
procedures").5 An example of the former strategy can be seen in AutoCAD{S1};
here, AutoLisp procedures can be written that will add new command
constructs to the system.6 SchemePaint includes experimental constructs of
both "directional” types; these are described in Section 6 later in this paper.

3. SchemePaint: an Overview

SchemePaint is a programmable graphics application written in the Lightship
Software's MacScheme{S6} dialect of Lisp. The program is designed to run on
Apple Macintosh computers equipped with color screens (such as the

Macintosh II).7

When the application is started, our screen appears as in Figure 3.1. There are
three windows visible: the Pen (or "palette") window, the SchemePaint (or
“canvas") window, and the transcript (or "interpreter") window. Briefly, the
first is used to select among various drawing modes (pen-width, color, text, and
so forth); the second is the window in which graphics work appears; and the
third is used to evaluate Scheme expressions. The interpreter window is a
standard feature of the MacScheme environment, as are the first four menus
(excluding the "apple" menu) in Figure 3.1; because SchemePaint is in fact not
only written but embedded in MacScheme, it can take advantage of all the
powerful features that accompany the MacScheme environment (including
file system, editor, debugger, and byte code compiler).

SThe classification is really only approximate in that the macros in question generally do
not include either parameters or control constructs; thus applications with only macros of
this type cannot truly be said to be programmable.

6A similar example would be the way in which new commands and behavior in the Emacs
editor {20} can be created via Lisp procedures. In both this case and that of AutoCAD, the
interface constructs affected are not of the (simple, manipulable) type generally
classified as "direct manipulation." HyperTalk {} is perhaps another example of a
language that is used to affect (really to create) interface constructs; more discussion of
this program vis-a-vis the programmable application concept can be found in Eisenberg
{8}.

7Current1y, SchemePaint consists of about 30 source files, and runs in a minimum of
approximately 1M of memory. The program is available from the author, along with
documentation, for the cost of copying and postage.

% File Edit Command Window Paint Planar Maps Turtle Languages

MacScheme™ Top Leuel
»»> (start-schemepaint)
done

{-100, 00} § (180, {00}

T T T O T O A O T T o T

Figure 3.1: The initial SchemePaint screen.

The last four menus visible in Figure 3.1 are specific to SchemePaint. The
Paint menu is mainly devoted to setting global variables (such as the x.,y-
coordinates associated with the corners of the canvas window, or whether a
background grid will be displayed); the Planar Maps menu can be used to
create and experiment with maps (both linear and nonlinear) from R2 o R2;
the Turtle menu includes a few commonly-used turtle commands; and the
Languages menu permits the user to select among several different

language interpreters.8 These last four menus and their associated commands

8 Currently, only the Basic interpreter is implemented, and this is rather rudimentary. A
(likewise simple) Logo interpreter is under development. These will be described in
Section 8, but otherwise when programming issues are mentioned in this paper it will be
assumed that language under discussion is Scheme.

10

will be described in subsequent sections of this paper; the four MacScheme
menus will be mentioned occasionally, as needed.9

In the next four sections, we will focus on specific aspects of the SchemePaint
system: its interface, language, special features, and library mechanism,
respectively. Before proceeding to this more detailed examination, however,
the reader is encouraged to peruse the Color Plates that accompany this paper.
These pictures are discussed at some length in Section 8; but even in the
absence of explanation, they should provide an intuitive portrait of the
program's expressive range.

4. The SchemePaint Interface

This section introduces the SchemePaint program through its most
straightforward interface features. Several more advanced features are best
described in conjunction with elements of the SchemePaint language; in
subsequent sections, we will return to examine these more language-oriented
interface elements.

fill
proc
click

Figure 4.1: The palette (Pen) window in SchemePaint.

4.1 The Palette Window

Figure 4.1 depicts SchemePaint's palette window. Loosely, the three columns on
the left-hand side of the window are used to select a particular pen
(foreground) color; the two columns at right present a selection of pen modes.
The modes depicted in the fourth column correspond to (reading from the top

down) three pen-widths for "normal drawing"; an "erase mode", a "text mode",
and a "turtle-dragging mode"; the selections in the rightmost column
correspond to "fill mode", "programmable-color-procedure mode", and

"programmable-click mode". These last two will be described in Section 6, and
the turtle mode in Section 5; the rest are explained below.

N thorough description of the MacScheme interface can be found in the MacScheme
documentation.{S5}

11

4.1.1 Drawing and erasing lines; filling regions

The most typical use of the pen is simply to draw lines on the canvas window

by dragging the mouse. This is the "normal drawing mode", and it is depicted

in Figure 4.2. The three upper selections in the fourth palette-window column
correspond to three pen-widths (of one, three, or five pixels). The line drawn
is in the currently selected foreground color.

e

(-1, 100

100]

(-0 100}

{108, -100]

Figure 4.2: Drawing a line in "normal drawing mode."

Selecting "erase mode" effectively sets the pen color to the current
background color and retains the current pen width.

When the pen is in "fill mode", then double-clicking on some canvas window
point will cause the contiguous region with the same color as that point to be
set to the current foreground color.

4.1.2 Text mode

When the pen is in "text mode", the mouse can be used to set a cursor position
on the canvas window; starting at this position, the user may type text directly
on the screen. (The text color is the currently selected foreground color.)
There is a small selection of available fonts and type sizes; these are selected
via SchemePaint expressions to be described later. Figure 4.3 depicts the use of
the pen in text mode.

12

{106, ~£00)

Figure 4.3: Typing text in text mode.

4.2 The Paint Menu

SchemePaint's Paint menu is a sort of general-purpose parameter-setting
menu for the program. The menu selections available (and their meanings)
are listed in Table 4.4.

5. The SchemePaivnt Language

Thus far, we have examined SchemePaint through its interface features only.
These might be regarded as constituting a useful if skeletal "Macintosh-style”
application interface. In this section we consider the second major element of
the system—namely, the graphics-enriched Scheme environment that adds
programmability to the interface features already described.

The SchemePaint language consists of several major packages, or "sub-
languages,"” which collectively augment the core MacScheme system. These
sub-languages focus on the following topics:

» Turtle Graphics

¢ Planar Maps

» Colors

e Miscellaneous features

13

Menu Selection

Notes

Clear Canvas

Toggle Polygon Fill

Toggle Grid Mode

Reset Canvas Coords

Refresh Palette

Window

Background Color

Copy Region

Save Picture

If "grid mode" is active, a gray background grid
is also drawn when the canvas window is
cleared.

When polygons are created (either by direct
manipulation or by SchemePaint expressions)
and displayed on the screen, they are shown by
default either as filled or unfilled polygons. This
selection toggles the current default setting.
Determines whether a gray background grid is
drawn when the canvas window is cleared.
Allows the user to change (via dialog box) the
region of the Cartesian plane to which the
canvas window corresponds.

Redraws the Palette window. (Necessary because
SchemePaint does not currently refresh window
contents when they are hidden and later
redisplayed.)

Allows the user to change (via dialog box) the
current background color. The change will not
be seen until either the canvas is cleared or the
pen is used in "erase" mode.

Allows the user to select a rectangular canvas
window region with the mouse and copy it to
some region of equal size elsewhere on the
canvas window.

Allows the user to save the current canvas
window contents as a Scheme file (whose name
is chosen via dialog box).

Table 4.4: Paint menu contents.

With few exceptions, each of these sub-languages adheres to the usual
conventions of Scheme syntax and evaluation (to rephrase this in Scheme
terminology: there are only a few special forms among the new additons).
Thus, a user who knows the rudiments of Scheme's syntax and evaluation rules
should be able to exploit the enhanced SchemePaint vocabulary without any

difficulty.

In the remainder of this section, we will examine each of the four sub-

languages in turn.

5.1 Turtle Graphics

SchemePaint includes a full set of the standard turtle-graphics procedures
usually associated with Logo systems. (The most important of these are listed

14

in Table 5.1.) In addition, the Turtle menu presents a selection of commonly-
used turtle-related commands (including home, pen-up/down, and show/hide-
turtle).

As an example of how turtle commands can be used, suppose we wish to have
the turtle draw an octagon. To accomplish this we could evaluate the following
Scheme expression:

(repeat 8 (fd 25) (rt 45))

The shape drawn is shown in Figure 5.2. We might now wish to define a more
general octagon-drawing procedure:

(define (octagon side)
(repeat 8 (fd side) (rt 45)))

This new procedure can be used to draw an octagon of any side-length desired.

Because SchemePaint is embedded in Scheme, it can take advantage of some of
the more powerful semantic features of that language—notably including the
use of procedures as first class objects. For instance, we can edit our original
octagon procedure so that it now takes two arguments—a side argument as
before, and a "turtle-move-procedure” argument:

(define (octagon turtle-move side)
(repeat 8 (turtle-move side) (rt 45)))

Command Description
(fd steps) Moves the turtle forward/back the distance
(bk steps) specified by steps.
(rt angle) Turns the turtle right/left by angle (measured in
{1t angle) degrees).
(turtle-penup) Sets the state of the turtle pen.

(turtle-pendown)

(setpos x y) Sets the position (heading) of the turtle to the
(seth heading) desired value.

(getpos) Returns the current position (heading) of the
(geth) turtle.

(show-turtle) Renders the turtle visible (invisible).

(hide-turtle)

Table 5.1 Turtle-Related Commands

15

B
‘.'.7’.

N

/7
N

TN
QL

\\’-"l

/

Figure 5.3: A turtle-drawn figure.

5.1.1 The Turtle Menu; Turtle-dragging mode

Before leaving the topic of turtle graphics, two elements of the SchemePaint
interface deserve mention. The first is the Turtle menu; this menu presents a
selection of turtle operations that are so common that they constitute "cliches":
moving the turtle to the origin, picking up (or putting down) the turtle's pen,
rendering the turtle visible (or invisible). Because these operations are so
often used, they are reasonable candidates for the simple selection operation

provided by a menu: that is, rather than evaluate the expression
(turtle~penup)

the user need merely select the appropriate menu choice for this operation.
(Note, however, that we have not eliminated the language construct for this
operation; the use of the menu is an optional feature.)

The second SchemePaint interface feature worth noting here is "turtle-
dragging mode," denoted by the box with the turtle-icon in the palette window.
When the mouse is placed in turtle-dragging mode, it can be used to drag the
turtle interactively about the canvas window: by pressing the mouse button on
the turtle’s center and dragging the mouse to a given point, the turtle will
follow the mouse pointer (without drawing lines). In this mode, the mouse may
also be used to turn the turtle: by pressing the mouse button on the turtle's tip,
the turtle will point toward the mouse position (without moving its own
position) until the mouse button is finally released.

Turtle-dragging mode is an extremely useful feature in combination with

turtle-graphics procedures. Suppose, for instance, we have written a
procedure such as the one for drawing octagons above; we can now position

17

Sohmmafaint

Figure 5.2: A turtle-drawn octagon.

Now our standard octagon could be generated as follows:

(octagon fd 25)

We could also use the new procedure to express a variety of "ocatgon
variations." As a start, we could write a procedure that makes a tall, thin
rectangle:

(define (thin-rectangle side)
(repeat 2 (fd side) (rt 90) (f£d (/ side 5)) (rt 90))
(fd side))

We now use the thin-rectangle procedure as the turtle-move argument in the
octagon procedure:

(repeat 8 (octagon thin-rectangle 25) (rt 45))

The result of evaluating the expression above. is shown in Figure 5.3.

These examples barely begin to suggest the wealth of marvelous patterns that
can be created with turtle procedures. Abelson and diSessa{l} and Papert{17}
provide more description of this topic; and some additional illustrations of
turtle graphics are introduced in Section 8.

16

the turtle interactively, by eye (using turtle-dragging mode) and then call the
octagon procedure to place an octagon in some desired location on the screen.

5.2 Planar Maps

In addition to its turtle-related graphics features, SchemePaint includes a
package of procedures and objects for experimenting with planar maps (maps
from R2 to R2). The graphic effects that can be produced with this sub-
language form an interesting complement to those produced via turtle
graphics.

A typical scenario for using planar maps in SchemePaint is as follows:

+ Create a graphics object (point, line, or polygon);

» Create a map to apply to this object;

* Show (in the canvas window) the result of applying the map
(perhaps iteratively) to the given object.

Loosely following this scenario, we will first illustrate how to create graphics
objects and maps in SchemePaint, and will then discuss how objects (and the
results of applying maps to objects) can be displayed in the canvas window.

5.2.1 Creating Graphics Objects and Maps

SchemePaint includes procedures for constructing point objects (given x- and
y-coordinates as arguments), line segment objects (given two point objects as
endpoints), and polygon objects (given a list of point objects as vertices).
These are summarized in Table 5.4, along with procedures for accessing parts
of the various object data structures.

As an illustration of how to construct a SchemePaint graphics object, the
following expression creates a point object (corresponding to the origin) and
binds the name origin to it:

(define origin (make-point 0 0))

This expression creates a polygon object (corresponding to a right triangle)
and binds the name triangle-1 to it:

(define triangle-1
(make-closed-polygon
(list origin
(make-point 80 0)
(make-point 0 80))))

There are numerous ways of creating maps in SchemePaint; the most general-
purpose method employs a special form named make-map. The following make-
map expression, as an example, creates a map which, when applied to a point (x,
y), returns the point (0.5x + 2, 0.6y):

(make-map (x y)

(+ 2 (* 0.5 x))
(* 0.6 y))

18

Procedure Description

(make-point ptx pty) Takes two numeric arguments and returns a
point object.

(point~-xcor pt) Takes a point-object argument and returns its
x-coordinate.

(point-ycor pt) Takes a point-object argument and returns its
y-coordinate.

(make—-line ptl pt2) Takes two point-object arguments and returns

the line-segment object with these two points
as endpoints.

(line-endpoint-1 line) Takes a line-segment object and returns its first
endpoint.
(line~endpoint-2 line) Takes a line-segment object and returns its
second endpoint.
(make-closed-polygon Takes a list of (at least three) point-objects and
ptlist) returns the polygon object with these points as
vertices.
(polygon-vertices Takes a polygon object as argument and returns
poly) its vertices (as a list of point-objects).

Table 5.4: Constructor and selector procedures for graphical objects.

Maps can be affine (like the one above) or nonlinear. The following
expression creates the well-known nonlinear "Henon map"{22} and binds the

name henon to it:10

(define henon
(make-map (x y)
(+ 1 v (* -1.4 x x))
(* 0.3 x)))

It should also be noted that maps may be passed as arguments to Scheme
procedures and returned as results of procedure calls (i.e., maps are "first-
class objects"{21}). The following sample procedure implements a parametrized
version of the Henon map above: it takes two numeric arguments and returns
the appropriately parametrized map:

(define (henon-maker paraml param?2)
(make-map (x y)
(+ 1 vy (* paraml x x))
(* param2 x)))

101y typical algebraic notation, this map would be written:
x « 1l+y - 1.4x2
y' « 0.3x

19

Thus, the following expression creates a map identical to our already-created
Henon map:

(define henon
(henon-maker -1.4 0.3))

SchemePaint maps may be composed together to yield some new map which,
when applied to an object, will simply apply each of the original component
maps in sequence. Another method of map composition is "superposition” (or
applying several component maps independently to some given object, thus

yielding a set of objects); this will be illustrated a bit later. There are also a

Procedure

Description

(make-map (varl varZ2)

next-varl-expression
next-var2-expression)

(make-scale-map scale)

(make-translate-map
xtrans ytrans)

(make-rotate-map
theta)

(make-affine-map
mll ml2 m21 m22
offl off2)

(compose-maps
ml m2 .,. mn)
(superpose—-maps

ml m2 ..., mn)

(iterated-map map n)

(make-next-point-map
diffeg-map dt)

A special form. Followed by a list of two variable names
varl and var2 corresponding to x- and y-coordinates
(typically the names are just x and y). The next two
expressions indicate how to compute the following x- and
y-values from the current ones.

Takes a numeric argument and returns a map which,
when applied to some point, uniformly scales both
coordinates by the given value.

Takes two numeric arguments and returns a map which,
when applied to some point, translates the x- and y-
coordinates by the specified values.

Takes a numeric (radian) argument and returns a map
which, when applied to some point, rotates the point by
theta radians about the origin.

Takes six numeric arguments and returns the affine map
corresponding to the 2x2 matrix specified by the first
four values followed by the x- and y-offsets specified by
the last two values.

Takes two or more maps and returns the map which
applies in sequence mn,..., m2, ml. (That is, the final
argument map mn is the first to be applied in the
composed map.)

Takes two or more maps and returns the map which,
when applied to a given point, returns a list of all the
points returned by each of the individual maps.

Takes a map and a positive integer argument and returns
the n-fold iterated map. (That is, the given map is
composed with itself n times.)

Takes a "differential equation map" of the form (x', y) =
(dx/dt, dy/dt), and a dt value, and returns a map which,
when applied to a given point (x, y) will integrate the
differential equation (using a fourth-order Runge-Kutta
integrator) to obtain the point (x+dx, y+dy).

Table 5.5: Map constructors.

20

variety of "simple" map constructors to create commonly-used types of affine
maps: for instance, the following expression uses the procedure make-rotate-
map to construct a map which, when applied to a point, will rotate that point =
radians (180 degrees) about the origin:

(make-rotate-map 3.14159)

Some of the more important SchemePaint map constructors are summarized in
Table 5.5.

5.2.2 Applying Maps to Objects; Displaying Objects

The previous paragraphs illustrated how both graphics objects and maps may
be constructed in SchemePaint. Thus far, however, we have said nothing about
how objects may be displayed on the screen; and we have not seen how to
apply maps to graphics objects. The SchemePaint procedure show is used for
the first purpose: this procedure takes a graphics object (or set of objects) and
displays the object(s) on the screen. Thus, if we evaluate the following
expression:

(show triangle-1)

we will see displayed on the screen the polygon object that we created earlier
(see Figure 5.6).11

(-100, £00);

clgpAteny oottt i G ¢ pi0d -fon)

Figure 5.6: Displaying a polygon object.

l1Note that the SchemePaint screen corresponds to the rectangular region of the plane
bounded by the point (-100, -100) at bottom left and (100, 100) at upper right. These
coordinates may be changed by the user via menu commands or SchemePaint expressions.

21

The most general SchemePaint procedure for applying maps to objects is
named apply-map; this procedure takes two arguments—a map and an object (or
set of objects)—and applies the given map to the object(s). The result returned
is itself a new graphical object which may be displayed on the screen (via the
show procedure) or to which we may apply still other maps.

As an example of how maps may be applied to objects, consider the following
expression; this applies the rotate-180-degrees map that we created earlier to
the polygon object triangle-1 (and displays the result on the screen):

(show (apply-map (make-rotate-map 3.14159) triangle-1))

The resulting picture is shown in Figure 5.7 (compare the original triangle of
Figure 5.6).

fqoo gogy S f i b i E L yad fan)

Figure 5.7: Applying a rotation map to our triangle object.

Maps may be applied iteratively to a given starting object. The SchemePaint
primitive show-n-iterations is used for this purpose; this procedure takes
three arguments (a graphics object, a map, and a number n of iterations), and
shows the result of applying the map 0, 1, 2,...n times to the given object.12 As
an example, we can take our already-created henon map and apply it several
thousand times to a particular starting point, showing the result of each
successive application:

(show—-n-iterations (make-point 1 1) henon 3000)

121t would not in fact be all that difficult to write this procedure ourselves, using
rudimentary knowledge of Scheme syntax and the existing primitives show and apply-map;
but because applying maps iteratively is such a common task, the show-n-iterations
procedure is included as a primitive in its own right.

22

The resulting figure is seen in Figure 5.8.

qohamePaint

1.5, 1.5} |

Figure 5.8: The "Henon attractor”, produced by iterating
a nonlinear map. (Cf. {22})

5.2.3 A Brief Example: Creating a Fractal

Just to demonstrate how the various elements of SchemePaint's dynamical
systems sub-language may be combined within an overall project, this
subsection illustrates how we can create a well-known fractal. We begin by
creating a polygon—in this case, the same right triangle (triangle-1) that we
have used for previous examples. We now create three simple affine maps:

(define mapl
(make-scale-map 0.5))

(define map2
(compose-maps (make-translate-map 40 0)
mapl))

(define map3
(compose-maps (make-translate-map 0 40)
mapl))

In Figure 5.9 we have shown (in gray) the original triangle object and (in
black) three smaller triangles that result from applying each of our three new
maps to that triangle. (The smaller triangles, displayed afterward, block most
of the gray triangle from our view.)

23

Figure 5.9: The original triangle (in gray), mostly blocked by three smaller
triangles (in black).

We can now create a composite "superposition map" that is the combination of
all three of our individual maps:
(define sierpinski (superpose-maps mapl map2 map3))

If we were to apply our new superposed map to the original triangle, as
follows:

(show (apply-map sierpinski triangle-1))
SchemePaint would display the same three smaller triangles of Figure 5.9.

Having come this far, we can now apply our new sierpinski map iteratively.
Figure 5.10 shows the result of evaluating the following expression:

(show (apply-map sierpinski (apply-map sierpinski triangle-1)))

Figure 5.10: Applying the sierpinski map twice in succession. Nine smaller
(black) triangles again block much of the original (gray) triangle.

24

In Figure 5.10, each of the three triangles from Figure 5.9 has had a (three-
fold) superposed map applied to it, and the result is a set of nine triangles.

We could continue this process by applying the sierpinski map five
successive times; a relatively straightforward method for achieving this uses
the map constructor iterated-map, as follows:

(show (apply-map (iterated-map sierpinski 5) triangle-1))

The result, depicted in Figure 5.11, is an approximation to the "Sierpinski
triangle”, a well-known fractal set.{4}

Figure 5.11: Iterating the sierpinski map five times. (The original triangle is
again shown in gray behind the 243 smaller black triangles.)

5.2.4 The Planar Maps Menu

Most of SchemePaint's map-related functionality is based in its language
component—in the procedures and objects with which the core Scheme
language has been enhanced. There are, however, a few interface features
(realized as selections within the Planar Maps menu) that facilitate novice-
level experimentation with maps.

The selections presented on the Planar Maps menu are summarized in Table
5.12. These can essentially be read, in order, as the component operations of
certain simple types of experiments. That is, we first create a map which will
act as our "default map" (using the New Default Map selection); we then choose
how many iterations of that map we want (using the Number of Iterations
selection); we create an initial object (using Make an Object); optionally, we
specify how the color of the object will depend on iteration count (using Color
Procedure); and finally, we display the operation of the map on the given
starting object for n successive iterations. With the exception of the color-
procedure setting, these individual steps are basically the same choices

25

Menu Selection Notes

New Default Map Presents dialog boxes which allow the user to
type in expressions for computing next-x and
next-y (or, in polar coordinates, next-r and
next-theta) values.

Number of Iterations Prompts the user to specify how many times the
default map should be applied (and if some
initial number of iterations should not be
displayed).

Make an Object Asks the user to create (via mouse or by typing
in coordinates) a point, line, rectangle, polygon,
or circle on the screen. (This will be the object
to which the new given map should be applied.)

Color Procedure Allows the user to create a procedure which
determines (based, among other things, on
iteration count) the color of objects displayed
when the map is applied.

Do the Map When a map, iteration count, starting object,
and (optionally) color procedure are known,
this selection applies the map for the specified
number of times and displays the mapped
objects (at appropriate iteration counts and in
the appropriate colors).

Table 5.12 Planar Maps menu contents.

reflected in the arguments to the show-n-iterations procedure mentioned
earlier.13

Because there is little conceptually new in the Planar Maps menu, we will
not present a detailed discussion here. One might consider this menu a kind of
“training wheel" for helping the user find out the kind of patterns one can
create with planar maps. There is one feature of the menu, however, which
has more general utility and will be referred to a bit later on in this paper:
namely, the Make an Object selection. Using this selection, the user can create
a point, line, or polygon object (as well as certain types of polygons such as
rectangles and circles) directly on the screen, via mouse operations. In this
sense, the Make an Object choice is similar in function to the typical polygon-
creating modes supplied with virtually all interactive paint programs.

1 3Actually, yet another SchemePaint primitive, experiment-with-iterations, is an
"enhanced" version of show-n-iterations which includes a color procedure parameter.

26

5.3 Color-Related Procedures

The bulk of SchemePaint's package of color-related procedures and objects was
introduced earlier in this paper, in Section 2.3.2; to summarize that discussion,
color objects are represented as lists of three floating point numbers in the
range 0.—1. (corresponding to the R, G, and B components of the desired color)
and there are a variety of primitive procedures that create, access, test,
combine, and use these color objects. SchemePaint includes a "starter's kit" of
sixteen named color objects (including red, blue, green,black, and white),
corresponding to those visible in the palette window; and of course the user
can create as many new color objects as desired.

There are several color-related features in SchemePaint not mentioned in the
earlier discussion. As an example of one such feature, we present the color-
combining primitive interpolate-between-colors. This procedure takes three
arguments colorl, color2, and n (two color objects and a number in the range
0-1), and returns a new color object somewhere on a spectrum "between"
colorl and color2 (with n = 0 corresponding to colorl and n = 1 corresponding
to color2). Thus, the color object returned by the following expression

corresponds to a bluish color with just a hint of purple:14

(interpolate-between-colors red blue 0.9)

This color corresponds to a deep purple:

(interpolate-between-colors red blue 0.5)

Even though interpolate-between-colors is supplied as a primitive procedure,
it would not be difficult to write; the enterprising reader familiar with Scheme
might try this as an exercise, using the earlier example of average-between-
colors as a hint of how to proceed.

Another feature worth mentioning is SchemePaint's use of "custom colors."
The palette window shown in Figure 4.1 includes two "empty circles” in its
bottom row; these two circles can be filled with any color of the user's
choosing, after which the newly-added color can be accessed like any other in
the palette window. The procedure that adds (or changes) an existing custom
color is set-custom~color! (which takes two arguments: the first is the
integer 1 or 2—depending on which of the two circles we want to access—and
the second is the new color object). Thus, if we wished to add a yellow color to
the first empty circle of the palette window, we could evaluate the following
SchemePaint expression:

(set—custom-color! 1 (make-color-object 1. 1. 0.))

1410 this expression we are using the color objects named red and blue defined in the
earlier section.

27

5.4 Miscellaneous Features

Besides the language features already described—features which, as noted, may
be grouped into several "sub-languages"—there are a few additional handy
SchemePaint procedures that deserve mention here. Two file-related
procedures (save-schemepaint-canvas and restore-schemepaint-canvas) save
the contents of the canvas window to a file and restore the canvas contents
from a file, respectively. There are also several text-related procedures: one,
draw-string-at-point, takes two arguments (a string and a point object). When
called on these arguments, the procedure causes the string to be displayed
starting at the given point on the canvas window. Another procedure, setup-
canvas-text-size-and-font, takes two arguments (a size and font-number);
when called on these arguments the procedure changes the current font and
size for future text displayed in the canvas window. As an example, we might
evaluate the following expression:

(setup~canvas-text-size-and-font 18 1)

Having evaluated this expression, subsequent text written either via direct
manipulation (using the text mode palette choice mentioned earlier) or via
SchemePaint expressions (e.g., calls to draw-string-at-point) will appear in
18-point Geneva font.

6. Features for Interface/Language Cooperation

In designing programmable applications we seek to go beyond a mere passive
combination of direct manipulation interfaces and programming
environments. Rather—as discussed in Section 2.3.3—we would like to find ways
in which these two portions of the application can play off one another in
new and creative ways, thereby enhancing the expressiveness of the overall
system. In this section, we examine several features of SchemePaint that
represent experiments in this direction—features in which the "language
half" and the "interface half" of the program join forces to produce novel
types of functionality for the user.

6.1 Programmable colors and mouse-clicks

Two simple (but powerful) techniques for interface/language cooperation
involve the as-yet-undescribed "proc" and "click" boxes of the palette window
in Figure 4.1. These boxes are the interface elements that access SchemePaint's
mechanisms for "programmable colors" and "programmable mouse-clicks."
The following two sub-sections explain these features in more detail.

6.1.1 Programmable colors
The purpose of SchemePaint's "programmable color" feature is to allow the
mouse to draw lines in procedure-determined colors. The typical scenario for
using this feature is as follows:

* The user writes a new SchemePaint procedure which takes

two arguments (corresponding to the x- and y-coordinates of a
point on the canvas window) and returns a color object.

28

e The user now calls the SchemePaint primitive
set-mouse-function! with the new procedure as argument.

* Having completed these steps, the user selects "proc" mode
on the palette window. The mouse will now draw lines on the
canvas window in colors specified by the given procedure.

As an example of this scenario, suppose that the user would like the mouse to
draw lines whose color is red if the x-coordinate of the mouse point is less than
zero, and green if the x-coordinate is greater than or equal to zero. The
following procedure expresses this idea:

(define (negative-x-red-positive-x—-green x y)

(if (< x 0)
red
green))
Now, the user calls the SchemePaint primitive set-mouse-function! with this

new procedure as argument:
(set-mouse-function! negative-x-red-positive-x—-green)

Finally, by selecting proc (for "mouse-procedure”) mode in the palette
window, the user can now draw lines with the mouse which will obey the
given procedure: that is, if the mouse is dragged along in the canvas window
from left to right past the vertical line x = 0, the color drawn by the mouse will

change from red to green, as shown in Figure 6.1.13

A little imagination at this juncture will suggest the expressive range of the
programmable color mechanism. Suppose, for instance, we would like to have
the mouse draw in a shade that varies smoothly from red at the left of the
canvas window (for an x-coordinate of -100) to blue at the right of the window
(for an x-coordinate of 100). The following procedure expresses this idea:

(define (red-to-blue-horizontally x y)
(interpolate-between-colors
red blue (/ (abs (+ x 100)) 200)))

Again we can call the set-mouse~function! primitive:
(set-mouse-function! red-to-blue-horizontally)

Having done this (and again selecting proc mode) we have captured the
functionality that is usually associated with the notion of "color gradients" in
conventional graphics applications. Note, however, that our programmable
color mechanism provides a much richer range of features than color
gradients alone. We can create non-linear gradients; gradients with
randomized elements; "two-dimensional" gradients (e.g., colors whose red

15Note, in this figure, that the default canvas coordinates range from
(-100, -100) at the bottom left corner to (100, 100) at the upper right coordinates.

29

100, 300

{106 -fo0]

Figure 6.1: An example of programmable colors in action. The pen color
changes from red to green as the mouse is dragged past the vertical line x = 0
while in "proc" (or "mouse-procedure"”) mode.

component varies horizontally and whose blue component varies vertically).
Indeed, gradients are only a tiny fraction of what we can express: we could
have the mouse draw in stripes or plaids; or have the mouse draw colors
according to the values of an electrical potential in the plane (e.g., a high
potential corresponds to red, a low potential to blue); or have the mouse draw
colors that vary sinusoidally. Because we can express colors through
procedures—procedures that we, as users, can write for ourselves—we can give
our creative powers free rein in a way that would be unthinkable in a "pure"
direct manipulation setting.

6.1.2 Programmable mouse-clicks

The programmable mouse-click mechanism in SchemePaint is similar in
operation to the programmable color mechanism. Here, the idea is that we can
write a procedure that will determine an action that is taken every time the
mouse button is pressed and released in the canvas window. The typical
scenario is as follows:

e The user writes a procedure which takes two arguments
(again corresponding to the x- and y-coordinates of the current
mouse point) and which performs a series of actions when
called on those arguments.

* Having done this, the user calls the SchemePaint primitive
set-mouse-click! with the new procedure as argument.

30

» Now, by selecting click mode in the palette window, the
mouse behavior is set so that every time the mouse button is
pressed and released in the canvas window, the given
procedure is called on the current mouse x- and y-coordinates
as arguments.

As an example, suppose we want the mouse behavior to be as follows: every
time the button is pressed, the turtle will move to the current mouse location
and draw an octagon (of side-length 10) at that spot. As a first step, we write a
new procedure:

(define (draw-octagon-here x vy)
(turtle-penup)
(setpos x y)
(turtle-pendown)
(octagon 10))

We now call the SchemePaint primitive set-mouse-click! with our new
procedure as argument:

(set-mouse-click! draw-octagon-here)

Finally, we select click mode in the palette window; and henceforth, every
mouse-click in the canvas window will cause an octagon to be drawn at the
current mouse location.

Just as with programmable colors, the range of expression provided by even
this relatively simple programmable mouse-click mechanism is extremely
wide. We could, for instance, simply reset the current color in a fashion
specified by the current mouse position:

(define (set-color-according-to-point x y)
(set—-foreground-color!
(make—-color-obiject (/ (abs x) 100)
{(/ (abs y) 100)
1900

(set-mouse-click! set-color-according-to-point)

Or we could write a procedure that simply points the turtle toward the current
mouse point:

(define (point-turtle-here x y)
(seth (toward (make-point x y))))

(set-mouse-click! point-turtle-here)

6.2 General Constructs for Programmable Mouse Behavior

The two features described in the previous section are actually special cases of
more advanced constructs in SchemePaint. In particular, SchemePaint
includes procedures named set-mouse-procedure-1! and set-mouse-procedure-
2! which can be used to denote an even wider range of mouse-dragging and

31

mouse-clicking behavior. Here, we will describe the operation of the former
procedure; the behavior of set-mouse-procedure-2! is analogous.

The SchemePaint primitive set-mouse-procedure-1! takes three arguments,
each of which is itself a procedure. The three arguments—buttondownproc,
buttonstilldownproc, and buttonupproc—dictate (respectively) mouse behavior
when the button is first depressed in the canvas window in proc mode; mouse
behavior as the mouse is dragged in the canvas window; and mouse behavior
when the button is finally released. The form of each of the three argument
procedures is as follows:

* Buttondownproc should be a procedure of four arguments:
mousex, mousey, this-point, and this-color. These refer to the
x- and y-coordinates (in window—i.e., pixel-—coordinates) of the
mouse when the button is first pressed; the point (in
SchemePaint coordinates) where the button has been pressed;
and the color of the pixel at which the mouse is positioned.

* Buttonstilldownproc is a procedure of 10 arguments, called
repeatedly as the mouse is dragged along. Its arguments are:
mousex, mousey, this-point, this-color, previous-mousex,
previous-mousey, previous-point, previous-color, counter,
and down-time. The first four of these are analogous to the
four arguments for buttondownproc; the next four denote
similar values for the previous recorded mouse point during
the current dragging operation; the ninth argument simply
counts how many times buttonstilldownproc has been applied;
and the final argument refers to the amount of time (in 0.01-
second units) since the button was first pressed in this
dragging operation.

e Buttonupproc is a procedure of eight arguments, called when
the mouse button is finally released (i.e., when the dragging
operation is concluded). The eight arguments for this procedure
are mousex, mousey, this-point, this-color, previous-mousex,
previous-mousey, previous-point, and previous-color. The
meaning of these arguments is identical to that of the first
eight arguments to buttonstilldownproc.

As an example of how this more general construct may be used, imagine that
we would like the behavior of the mouse to be as

follows: when the button is first pressed (in procedure mode) the

color is blue, but over the course of twenty seconds the color

should change smoothly to red. Finally, when the mouse button

is released, the color should reset back to blue.

To accomplish this, we need to write the three procedures which will
eventually be used as arguments for set-mouse-procedure-1!. The first (the
eventual value of the buttondownproc argument) should simply set the
current foreground color to blue:

(define (start-at-blue mousex mousey this-point this-color)
(set-pen~-color! blue))

32

The dragging procedure (the eventual value of buttonstilldownproc) should
change the color toward red over the course of twenty seconds, making sure to
display the current point:

(define (toward-red-over-20-seconds

mousex mousey this-point this-color
previous—-mousex previous-mousey
previous-point previous-color
counter down-time)

(set-pen-color!

(interpolate~between-colors

blue red (min 1 (/ down-time 2000))))
(show this-point))

The third (button-releasing) procedure should reset the pen color
to blue:

(define (finish-at-blue mousex mousey this-point this-color
previous—mousex previous-mousey previous-point
previous-color)

(set-pen-color! blue))

Finally, we pass the three new procedures as arguments to
set-mouse-procedure-1"! as follows:

(set-mouse-procedure-1!
start—-at-blue
toward-red-over-20-seconds
finish—-at-blue)

Now, when the mouse is in proc mode, it will (as specified) paint in a color that
gradually changes from blue to red over the course of 20 seconds per dragging
operation.

6.3 Naming Objects Created by Direct Manipulation

In our earlier discussion of interface/language cooperation (Section 2.3.3), we
noted that there were, broadly speaking, two effective "directions” of
cooperation: we could design language constructs that specify interface
behavior, or interface operations that send information back to a running
program. Thus far, the operations that we have examined in this section fall
within the former category: we have presented language constructs which
can denote rather wide-ranging and sophisticated interface behavior. In this
sub-section, we look at SchemePaint features which work in the opposite
direction—features which allow interface operations to have linguistic
consequences.

The first such feature is associated with the object-creation techniques
provided by the Make an Object selection of the Planar Maps menu. When a
new object (point, line, rectangle, circle, or general polygon) is created
through this menu, it is automatically given a default name (*last-point-
created*, *last-line-created*, *last-rectangle-created*, and so forth). Thus,
if we choose Make an Object from the Planar Maps menu and (for instance)
choose to create a rectangle using the mouse, then this rectangle will

33

afterward be the polygon object denoted by the name *last-rectangle-
created*; and the name will continue to be bound to this object until such time
as another rectangle is created via the Make an Object choice.

The net result of this feature is that the objects we create via direct
manipulation automatically have a name that allows us to access them in a
running program. For instance, suppose we have written a procedure that

takes as argument a polygon and finds the geometric center of that polygon:16

(define (find-geometric-center polygon)
(let ((vertices (polygon-vertices polygon)))
(make-point
(average-of-list (map point-xcor vertices))
(average-of-list (map point-ycor vertices))))

If we have at some time created a rectangle using the Make an Object selection,
then we can evaluate the following expression:

(show (find-geometric-center *last-rectangle-created*))

and the center point of the previously-created rectangle will be displayed on
the screen. With little additional effort we could (e.g.) show the rectangle itself
with lines from each vertex to the geometric center; or we could display
another polygon translated so that its center point is now at the geometric
center of the rectangle; or we could rotate the rectangle about its geometric
center and display the result.

The second SchemePaint feature to be mentioned here is similar in spirit to the
first; this feature allows graphics objects to be "read” by Scheme expressions.
Specifically, SchemePaint includes primitive procedures named read-a-point,
read-a-line, read-a-rectangle, and so forth; when one of these procedures is
called (on no arguments), the user is prompted to create a graphics object of
the appropriate sort in the canvas window; and this object then becomes the
returned value of the procedure call. Suppose, for instance, we would like to
find the distance between two points on the screen. The following procedure
will work for this purpose:

(define (find-distance-between-screen-points)
(let* ((ptl (read-a-point))
(pt2 (read-a-point)))
(point-distance ptl pt2)))

When this procedure is called on no arguments, the user will be prompted to
enter two particular points on the canvas window; the returned result of the
procedure call will be the distance (in SchemePaint coordinates) between
these two points.

16Technically, this procedure computes the center of mass of equal masses placed at the
vertices of the polygon.

34

7. Extending SchemePaint via Libraries

In the earlier discussion of the SchemePaint language, we noted that the
program's linguistic features could be divided, roughly, into portions dealing
with colors, dynamical systems, turtle graphics, and so forth. Indeed, we
referred to these portions as "sub-languages" embedded in Scheme—collections
of interrelated procedures, object types and (occasionally) special forms
designed around some particular topic.

This organization of the SchemePaint language suggests a natural strategy for
expansion of the system. If we would like to extend SchemePaint to draw (say)
flowcharts, or geometric diagrams, or tiling designs, we need only create files
that constitute a new sublanguage, or library, that can be added in to the set
already present. In other words, we create a "flowchart-design library"—some
new collection of object types and procedures for creating flowcharts—and we
load this library into SchemePaint. Once this is done, our programming
environment can be regarded as a "core” Scheme system enhanced by the
union of all the procedures and object types of the various sublanguages.

There are many software design issues raised by this rather oversimplified
scenario; some of these will be mentioned toward the end of this section.
Before discussing these more general matters, however, we will first examine
two sample libraries that have been implemented for SchemePaint.

7.1 Escher (Tiling) Library

The first sample library to be discussed is a "tiling library" based on a program
first developed by Henderson{12} and later implemented in Scheme by Abelson
and Sussman{3}. This library is particularly useful for drawing recursive and
repetitive designs of the type made popular by the late Dutch artist M.C.Escher.

Our tiling library may be loaded into SchemePaint by evaluating the following
expression:

(load~schemepaint-library "escher")

Once this is done, a collection of new procedures and object types is added to
our language; in addition, a new (fourth) window appears on the SchemePaint
screen. This window, labelled Escher, is shown in Figure 7.1; its use will be
described a bit later on in this section.

7.1.1 The Tiling Language

The basic object type of our new tiling language is the picture type. A picture
is an object associated with a collection of lines and polygons drawn within the
unit square (i.e., the square of side-length 1 whose bottom left-hand corner is
the origin). We can think of these graphic objects as the "canonical picture"—
the picture as it would appear if it were drawn within the unit square. In fact,

35

S NS U TS W O TS N T W

1 1 1 1 i i1 1 1
] ¥ 1 ¥

1
¥

O»Illllllll

J i

m

Figure 7.I: The Escher window accompanying the tiling library.

however, a picture may be drawn within any rectangular region on the
screen; and when this is done, the "canonical picture" is scaled to the
dimensions of the particular rectangle in which the drawing occurs. Figure
7.2 illustrates the idea: here, the very same picture object has been drawn in
three rectangles of different dimensions. In the first rectangle (the unit
square), we see the canonical picture; in the second, the picture has been
stretched into a short, fat version; in the third, the picture has been stretched
lengthwise into a tall, thin version.

Figure 7.2: The same picture-object, displayed within three different
rectangles. (Here, the boundaries of the rectangles are shown; the actual
picture-object itself consists of the triangle and "stripe.")

By drawing pictures within rectangles at various sizes and orientations, we
can generate a wide range of patterns. To start with a simple example: by
drawing a picture within a rotated rectangle, we obtain a rotated version of
the Figure 7.2 picture, as shown in Figure 7.3.

36

Figure 7.3: The same picture object as in Figure 7.2, now displayed within a
rectangle that has been "turned on its side."

We can also combine pictures together by drawing them within smaller
rectangular portions of a larger rectangle. Figure 7.4 depicts the result of
drawing two pictures side-by-side in the left and right halves of a long
rectangle.

Figure 7.4. The original picture and its rotated version have been placed beside
one another within a short, wide rectangle.

All of these concepts—creating picture objects, drawing them within
rectangles, combining them together—have linguistic representation in our
library. Table 7.5 summarizes a few of the more important SchemePaint
procedures; the crucial point, however, is not so much the specific choices of
procedures and object types, but the overall power provided by having a
programming language at all. In particular, we are able to build complexity by
giving names to procedures that create compound pictures from simpler ones.
For instance, the following procedure takes three pictures as arguments and
(using the beside procedure from Table 7.5) creates a new picture which,
when drawn within some rectangle, will draw each of the three component
pictures in one third of the rectangle:

(define (make-three-fold-picture pictl pict2 pict3)
(beside pictl
(beside pict2 pict3 0.5)
0.333))

We could now make a three-fold version of the picture shown in Figure 7.2:

(define three-fold-pict
(make-three-fold-picture
figure-7-2-pict figure-7-2-pict figure-7-2-pict))

37

Procedure Description

make-primitive-picture Takes as argument a list of line and polygon

lines-and-polygons objects and creates the primitive picture object
which would draw these lines and polygons
within the unit square.

together pictl pict2 Takes two picture objects as arguments and
returns a new picture object that, given a
rectangle, draws both pict! and pict2.

beside pictl pictZ ratio Takes two picture objects and a ratio and
returns a new picture object that, given a
rectangle, draws pict! in the left portion of the
rectangle and pict2 in the right portion. The
division between left and right portions is made
so that the left portion has (ratio * 100) percent
of the overall rectangle.

above pictl pict2 ratio Takes two picture objects and a ratio and
returns a new picture object that, given a
rectangle, draws pict! in the upper portion and
pict2 in the lower portion. The division
between upper and lower portions is made so
that the upper portion has (ratio * 100) percent
of the overall rectangle.

flip pict Takes a picture object and returns a new
picture object which, given a rectangle, draws
the "flipped" version (a horizontal mirror
image) of pict.

rotate90 pict Takes a picture object and returns a new
picture object which, when given a rectangle,
will draw pict rotated by 90 degrees.

Table 7.5: Procedures for creating and combining picture objects in the
tiling library.

The result of drawing three-fold-pict in a given rectangle is shown in
Figure 7.6. This is all well and good, but again the more interesting point is
that three-fold-pict is now itself a picture object that can be combined with
others in still larger compound forms. We could, for instance, create a nine-
fold picture as follows:

(make-three-fold-picture
(rotate90 three-fold-pict)
three-fold-pict

(rotate270 three-fold-pict))

By building complexity in this way—by combining compound pictures into

"second-level” compound pictures, and combining those into "third-level"
compound pictures, and so on—we can quickly create the ingredients for a rich

38

catalog of intricate designs. Figure 7.7 and Color Plate 9 illustrate a very tiny
subset of the easily available possibilities.

Figure 7.6: A three-fold copy of our original picture (from Figure 7.2). This is
now a new, compound picture object.

Figure 7.7. A design made by using the original picture of Figure 7.2, repeated
with different scales and rotation values.

7.1.2 The Escher Window

From the user's standpoint, probably the most time-consuming and difficult
aspect of experimenting with SchemePaint's tiling language is in the creation
of "primitive pictures” via the make-primitive-picture procedure. In order to
create a primitive picture this way, the user has to specify each of the
component line and polygon objects that go to make up the canonical picture
(i.e., the picture as it would appear within the unit square).

The Escher window, shown earlier in Figure 7.1, permits the user to create

primitive pictures via direct manipulation. This window depicts (by default)
the unit square of the Cartesian plane; by using the mouse to draw lines and
polygons within this square, the user can essentially construct by hand the
various shapes that can later be incorporated into primitive picture objects.

39

F T N S T |

Py

HSES FOU . |

B T S TS T T W T T

Do)

YT T T T T

3lllvl!lll

/I

—

5 SO SUURP R S W WU SR S
14— .

1 1 b I N | 1 H
-
-

—1|;.—1—1—-1—-1—1—

ﬂj‘,"'ll‘.'l

E.

-~

6 U TN T TN U YUY JOUUR W S |

kY
.

5,
",

.(\’
<

5 B

Y K
s,
‘1\ :
S
kS v
" ‘*-5 g
3
5 5

-
e
e

f

T
.=s r
T

foy

Figure 7.8: Creating a primitive picture. The figure shows three "snapshots" as
three polygons are created, all constituents of a single primitive picture.

Figure 7.8 depicts several stages in a typical picture-drawing scenario using
the Escher window. Here, the user has selected the "polygon" icon at the
bottom of the window, indicating that she wishes to draw polygons (as opposed

to lines). The user now creates several polygons in different colors and
decides to make a primitive picture object for which these polygons constitute
the canonical picture. To perform this final step, the user evaluates the
following expression:

(define my-primitive-picture
(snap~escher-picture))

The snap-escher-picture procedure is the central SchemePaint mechanism for
translating Escher window constructions into primitive picture objects: when
called on no arguments, the procedure returns a new primitive picture whose
component canonical objects are those currently appearing within the Escher
window. Figure 7.9 depicts a design created by combining the new primitive
picture with itself as part of a larger, compound picture.

Before leaving the subject of the tiling library, it is worth mentioning two
themes that will reappear in the discussion at the end of this section. First, our
library does not merely consist of new linguistic elements (procedures and
data objects), as suggested by the earlier overly telegraphic description of the
library concept. Rather, our tiling library includes both linguistic. and
interface elements: we have primitive picture objects and procedural methods
for combining them, but we also have a new window that allows us to create
certain types of pictures more easily, via direct manipulation. Thus,
programmable application libraries—Iike their "parent" applications—can
again be designed to incorporate the best features of both programming
environments and direct manipulation interfaces.

17 The operative color in the Escher window is simply the current SchemePaint foreground
color, and may be altered via selection within the palette window or by using the set-
foreground-color! primitive.

40

Figure 7.9: A compound picture created with multiple copies of the newly-
created primitive picture.

The second point worth noting is that the "line and polygon objects" used to
create primitive pictures are the same line and polygon objects used in the
planar maps package. Thus, our tiling library is designed with an eye toward
cooperation (or—viewing the matter more pessimistically—interference) with
other sublanguages within the application.

7.2 A Library of "Specialty Fill" Procedures

The second sample library to be discussed is somewhat less elaborate than the
Escher library, and is at a comparatively earlier stage of implementation.
Nevertheless, the features provided by even this embryonic library are quite
powerful and useful; and the artistic effects made possible by these features
will perhaps seem less exotic than those suggested by the Escher library.

This second library is devoted to performing "specialty fills" of various types;
in essence, its purpose is to expand the semantics of "filling" as provided by
most graphics applications. The library is initialized by evaluating the
expression:

(load-schemepaint-library "fills")

Unlike the Escher library, this second library makes minimal additions to the
basic SchemePaint interface: one new menu choice is added to the Paint
menu, and the behavior of the "fill mode" selector in the Pen window is
slightly altered. Specifically, the new Paint menu choice is labelled Toggle
Specialty Fill Mode; and when "specialty fill mode" is in effect, the meaning of
a fill operation is dictated by several new procedures to be described below. (As
might be expected, when "specialty fill mode" is not in operation the behavior
of a fill operation is unchanged from that provided by the standard
SchemePaint interface.)

The abstract notion of "filling" supported by our library is indicated by the
following skeletal algorithm:

41

Step 1. Given some starting pixel p, find a set of "pixels-to-fill."
Step 2. For each of the pixels in the set found in Step 1, perform a
"fill action" on that pixel.

Expressed in this form, the "normal" filling operation could be written:

Step I: Find the set of pixels of the same color as p, and connected to p by
an unbroken path of pixels.
Step 2: Re-color each of these pixels to some new specified color.

In this sense, our abstract notion of filling is capable of recapturing the usual
operation. However, it is of course capable of expressing much more. We
might, for instance, wish to re-color all pixels connected to some starting pixel
up to some specified boundary color:

Step 1. Find the set of pixels connected to p by a path that does not
include a pixel of color boundary-color.
Step 2: Re-color each of these pixels to some new specified color.

The idea here is that we might have a multicolored region surrounded by (say)
a black boundary; and we would like our fill operation to re-color all the pixels
within this boundary (rather than just those of some one specified color).

Yet another possible fill operation could be written as follows:

Step 1: Find the set of pixels of a given color ¢ within some radius
(expressed in pixels) of the original pixel p.

Step 2: For each of these pixels, "flip a coin" and re-color the pixel to
some new color ¢’ if the choice is heads. (That is, for each pixel

in the set returned by step 1, we have a 0.5 probability of changing
that pixel's color.)

Our new library uses two global procedures to specify the "variable slots" of
the abstract algorithm given above. One procedure, *find-fill-pixels*, takes
a single argument (a starting pixel), and should return a set of all pixels on
which the "fill action” will be performed; a second procedure, *fill-action*
takes two arguments (the original starting pixel and the "current pixel”) and
performs some specified action on the current pixel. When a given pixel is
now selected via mouse in "specialty fill mode," SchemePaint first finds all the
pixels dictated by the *find-fill-pixels* procedure, and performs the *£il1l-
action* operation on each. Thus, we might specify the normal filling
operation by evaluating the following expressions:

(define (*find-fill-pixels* start-pixel)
(find-all-connected-pixels-of-same-color start-pixel))

(define (*fill-action* start-pixel current-pixel)
(set-pixel-color! current-pixel blue))

Evaluating these expressions would cause our specialty filling mode to behave
like a normal filling operation; in this case, selected regions are filled with the
color blue. An important point to note is that we have assumed for this example
that procedures such as find-all-connected-pixels-of-same-color have already
been written; indeed, a selection of "pre-supplied" procedures of this kind are

42

included in our library. Some particularly handy "pixel-finder" and "pixel-
action" procedures are summarized in Table 7.10 below.l8

Pixel-Finder Procedure

Description

(find-all-connected-
pixels-of-same-color
start-pixel)

(findrall-connected-
pixels-up-to-boundary-
color start-pixel
boundary-color)

(find-pixels~-within-
radius start-pixel
radius)

(find-boundary-pixels-of-
same-color start-pixel)

Returns the set of all pixels of the same color as
the start pixel and connected to it by an
unbroken path of pixels. (This is the pixel-
finder for "standard" fill operations.)

Returns the set of all pixels not of the given
boundary color, and connected to the start-
pixel by an unbroken path.

Returns the set of all pixels within a given
radius (measured in pixels) of the start pixel.

Returns the set of pixels of the same color as
the start; connected to it by an unbroken path;
and adjacent to a pixel of a different color.

Pixel-Action Procedure

Description

(set-pixel-color!
color)

pixel

(set-pixel-color~with-
probability! pixel color
prob)

(set-pixel-according-to-
distance! pixel start-
pixel distance-to-color-
function)

Sets pixel to the specified color.

Sets pixel to the specified color with probability
prob (where prob is between 0 and 1); thus,
with probability 1 - prob the pixel is left
unchanged.

Sets pixel to a color specified by calling
distance-to-color-function on the distance (in
pixels) between pixel and start-pixel.

Table 7.10: Procedures for

the

finding pixel-sets and for creating fill-actions in
“specialty fill" library.

180ur library makes use of various low-level procedures that construct and access "pixel
objects” (expressed in integer coordinates according to the x- and y-distances of the given
pixel from the upper left corner of the canvas window). The procedures in Table 7.10 are
in turn implemented in terms of fairly general procedure-constructors, so that a wide
range of variations may be expressed with comparative brevity,

43

Just to illustrate how some additional specialty filling operations may be
created, we provide the SchemePaint recipe for the latter two fill-algorithms
mentioned earlier. The first, which fills all pixels up to some boundary color,
could be written as follows (here, the boundary is black, and the fill color is
red):

(define (*find-fill-pixels* start-pixel)
(find-all-connected-pixels-up-to-boundary-color start-pixel black))

(define (*fill-action* start-pixel current-pixel)
(set-pixel-color! current-pixel red))

The second example, a "randomized" fill up to a given radius, could be written
as follows (here, the radius is 10, and the "random fill color" is red):

(define (*find-fill-pixels* start-pixel)
(find-pixels-within-radius start-pixel 10))

(define (*fill-action* start-pixel current-pixel)
(if (= (random 2) 0)
(set-pixel-color! current-pixel red)

()

7.3 Modularizing Programmable Applications Through Libraries

The two sample libraries discussed in this section illustrate a more general
software-engineering strategy for developing and expanding programmable
applications. By loading in a personalized collection of libraries, we can build
our own enhanced language as the union of sub-languages, each tailored to
some domain of interest to us. Thus, we might imagine (say) a graphics
application for designing charts and graphs, and whose language is built from
a variety of distinct cooperating chart-drawing libraries (one for drawing,
e.g., bar, line, and pie graphs; another for drawing time-lines; another for
drawing mathematical functions; and so forth).

It is worth considering, in contrast, the dilemma encountered by most users of
graphics applications. Typically, someone who begins by owning a single
graphics application will eventually own many: a paint program, a draw
program, a flowchart-drawing program, a business-chart-drawing program, a
geometric diagram-drawing program, and more. The reason for this plethora
of programs (which are inevitably less than completely compatible) is that the
user needs various special-purpose graphics features at different times; and
no one program is ever satisfactory for this range of concerns.

Programmable applications—particularly those built by "enriching" a
general-purpose language environment—offer an alternative to this scenario
through the use of libraries. One can imagine, for instance, a SchemePaint
user loading in libraries for the various specialized domains mentioned in the
previous paragraph; and not only would the user have relatively little new
material to learn (besides vocabulary—the core Scheme syntax remains
constant), but the usually horrendous complications of multiprogram
integration are alleviated if not eliminated entirely.

44

The notion of modularizing programmable applications through libraries
brings with it a variety of attendant complications and software engineering
issues. First, we note that modularization takes place both at the language and
interface level simultaneously: our libraries must be designed to achieve some
measure of cooperation in both realms. For instance, in the tiling library, we
noted that the foreground color of the Escher window was determined in the
same way as for the canvas window—i.e., either by selecting a color directly (in
the palette window) or by evaluating a set-foreground-color! expression.
Similarly, the polygon objects of which primitive tiling pictures are
constructed are the same polygon objects created both by direct manipulation
and by SchemePaint expressions. In designing a library for a programmable
application, then, we need to take account of (and take advantage of) both the
linguistic and interface-related contexts into which the library will be loaded.
Going a step further, we might also wish to create "second-order" libraries
which can be thought of as enhancements to our original libraries, and which
are expressly designed to foster collaboration between libraries (e.g., by
translating data structures from the form used by one library into that used by
the other).

A second issue raised by the introduction of libraries is the question of how
one achieves modularity in language design. This is similar in spirit to the
overall task of programmable application design, which depends crucially on
the creation of learnable and expressive embedded languages—but now there
are added difficulties. Typically, a programmable application designer would
like to think of an embedded language as a conceptual "layer" in a hierarchy
of languages: the new embedded language makes use of more "primitive" data
object types from the underlying language, and communicates with that
underlying language only through the medium of procedures that construct
and access abstract data types. When a collection of libraries is added to this
picture, new patterns of inter-library communication are introduced; we can
no longer think of the various libraries as occupying a strict ordering or
hierarchy of complexity. Thus, we may want a solid geometry library to work
with a tiling library (to place, say, a planar tiling design on the surface of a
tetrahedron); and we may want the tiling library to work with solid figures
(say, to tile three-dimensional space with cubes); and we may want both
libraries to make use of procedures for incorporating perspective elements
such as "vanishing points" in three-dimensional scenes. In short, the
conceptual pecking order between various libraries is not as clear-cut and
amenable to abstraction barriers as is that between an "embedded" and "host"
language (as exemplified in the "core" SchemePaint system); and finding
strategies for constructing and maintaining these more complicated language
collections will be a recurring problem in programmable application design.

8. SchemePaint Pictures; Related Work; Future Research
8.1 SchemePaint Pictures

By way of summing up the features of SchemePaint discussed so far, Color
Plates 1-9 illustrate graphical work done with the program. Plates 1 and 2 were
generated using the planar maps package; the first depicts three "basins of
attraction” of a complex map. The fixed points of this map are the three cube
roots of 1, and each point in the complex plane is shaded according to which
root it approaches (and how quickly that approach is made) under Newton's

45

root-finding method. The second color plate depicts the result of applying a
particular set of superposed affine maps (the notion is described in Section
5.2.3); here the maps are actually constructed with small random factors to
provide a more naturalistic "botanical" appearance.

Plates 3-8 all illustrate the same basic idea: namely, SchemePaint's ability to
combine hand-drawn and computer-drawn figures to good effect. Plate 3 (the
amateurish one, drawn by the author) depicts a bee in a honeycomb. The bee is
of course easily created by hand but would be hard to create via code; whereas
the honeycomb is produced by a relatively straightforward turtle program but
would be tedious (though admittedly not impossible) to create via direct
manipulation in most commercial graphics programs. Plates 4-8 make a
similar point (but with higher-quality artwork, by Orca Starbuck). Plate 4
incorporates a simple "rotated octagon" figure, similar to the pattern shown in
Figure 5.3 earlier; note that the amount of programming required to generate
this pattern amounts to three lines of SchemePaint code. Plates 5-7 include
patterns described in Abelson and diSessa's book Turtle Geometry{1}: recursive
tree-like shapes (Plate 5), the "dragon curve" (Plate 6), and an "inspi" variant
of a simple spiral pattern (Plate 7). The feathers in Plate 8 are in fact created
by a procedure whose structure is nearly identical to the tree-generating code
of Plate S.

Finally, Plate 9 was created by combining the features of the Escher tiling
library (to make the fish-and-butterfly design) and the planar maps package

(to "wrap" the tiled plane around a sphere).!®

8.2 Related Work

SchemePaint may be fruitfully compared to other work along two separate
dimensions: as a graphics application per se, and (more generally and perhaps
more interestingly) as a programmable application.

Certainly many commercial graphics applications include features that
SchemePaint does not (mouse-selectable brush-types, fill-patterns, and more
elaborate text-manipulation facilities are typical examples). Indeed, many of
these features do represent desirable potential enhancements to SchemePaint.
On the other hand, by virtue of SchemePaint's programmability—because it
allows the user to express control constructs such as recursion and to build
complexity by naming and parametrizing procedures and data structures—it is
capable of a far wider range of expression than any of the better-known
commercial applications. (Compare, for instance, the functionality of the
systems reviewed in {16}.) Moreover, it is not entirely unfair to point out that
there is no structural reason preventing the inclusion of additional features
such as "brush types" within SchemePaint—that is, it would in no way
represent a rethinking of SchemePaint's architecture to include these
features either in the core application or as a library. In contrast, "pure"
direct manipulation programs cannot approach the expressive range already
present in SchemePaint without undergoing a philosophical conversion and
incorporating a full-fledged programming environment.

19plates 1-8 all appear as well in Eisenberg {8}; Plate 9 in this paper is a variant of the
(planar) Plate 9 of the earlier paper.

46

Several interactive graphics programs do incorporate programmability.
Beckman{5} describes a Scheme graphics package (but apparently this system
does not include direct manipulation interface features). Sherin{18} has
constructed a Boxer program that combines direct manipulation features (e.g.,
for drawing lines using the mouse) with a full-featured Boxer programming
environment{7} ; his system also includes an extremely interesting option that
allows direct manipulation operations to be translated automatically into
equivalent Boxer statements. The graphics language of Sherin's system,
however, is less extensive than that of SchemePaint (it does not include, e.g.,
planar maps, color-manipulation features, or the interface-language
cooperation features described in Section 6). Lieberman{14} describes an
interesting variation on the theme of programmability: his graphics program
works to induce procedural descriptions of the user's direct-manipulation
operations, which are rendered into Lisp and made accessible to the user for
editing.

In domains other than graphics, there are instances of commercial or widely-
known applications that incorporate some degree of programmability.
Examples include Mathematica{S7} (for mathematical programming and
symbolic algebra) , 4th Dimension{S3} (a database system), Director{S2} (for
constructing animations), Stella{S8} (for simulating dynamical systems). Each
of these programs includes a new, ad hoc programming language (as opposed
to an "enhanced" dialect of some existing language). In contrast, AutoCAD{S1}
is a programmable application based on AutoLisp, a "design-enriched" Lisp
dialect; similarly, one might describe the venerable Emacs editor{20} as an
early example of a programmable application (in its current instantiation,
Emacs is, like AutoCAD, based on its own "enhanced" Lisp dialect). All these
applications have experienced longevity and success, though each in some
measure deviates from the programmable application "ideal": the applications
based on ad hoc languages exhibit problems deriving from that choice (such
as the absence of a clear language semantics or a powerful programming
environment), while the Lisp-based applications are not really designed to
lead novice users into programming by tight integration of interface and
language features.

8.3 Continuing SchemePaint Development

SchemePaint is expressly intended as a prototype of a programmable
application in one particular sample domain; as such, it is the first of a
projected suite of sample applications in different domains. In practical terms,
this means that continuing work on SchemePaint will proceed on only a part-
time basis, in tandem with development of other (conceivably related)
applications. Nevertheless, there is an extensive slate of enhancements
planned for the program; some of these are motivated by research issues
mentioned later in Section 8.4.

In the near term, several new library files are currently being created for the
program. These include a package of 3D-mapping procedures (and a 3D-turtle);
a geometric-diagram package; an enhanced text manipulation package; and a
function-graphing package. As noted earlier, a rudimentary Basic interpreter
has been implemented (to be viewed as an alternative language environment
for those users unfamiliar with Scheme); and a Logo interpreter, created in a

47

similar spirit, is at an earlier stage of development. Other possible
enhancements include multiple-window features (e.g., primitives that
combine the contents of windows according to the dictates of user-defined
procedures); brush-styles (an exciting, though as always non-programmable,
feature of the best current commercial packages); and procedures for
manipulating scanned-in artwork and "clip art" files.

Longer-term development is also planned for SchemePaint—experimental
enhancements of the program that go the beyond "quantitative" expansion
projected in the previous paragraph. One planned project (in collaboration
with G. Fischer) would involve incorporating knowledge bases into the basic
SchemePaint structure; these would form the basis of critics{9} to assist users
in the design of information charts and displays. (Cf. {6}, {23}.) The resulting
system should also include a browsable database (or "catalog") of exemplary
instances of chart design that can be employed as starting points for new
user-created charts. A second major avenue of development focuses on the use
of SchemePaint as a venue in which novice users can learn to program; this
direction of work would likely include the creation of embedded "tutoring"
programs, files of illustrative SchemePaint examples, and perhaps
enhancements that allow direct manipulation operations to be translated into
editable programs.{8}

8.4 Research Directions

The creation and use of programmable applications present a wealth of
fascinating questions for research. Some of these have been alluded to in
previous sections in the context of the SchemePaint program in particular—
embedding tutors or knowledge bases within programmable applications;
modular design of domain-specific languages; the use of multiple
programming language environments in a single application; finding
avenues of creative symbiosis between the “interface” and "language"
portions of a given application. Naturally, all of these questions transcend the
particular example of SchemePaint; ideally, research into these issues should
inform the design of programmable applications in a wide range of
domains.{8}

There are still other major questions in programmable application design that
deserve mention here. We would like to know, for instance, what type of
“software life cycle” to expect from these applications—how they are debugged,
maintained, and extended, and what sorts of user communities grow around
them. We would also want to investigate what sorts of programmable
applications might be developed for use by children: assuming that one wished
to develop a version of SchemePaint accessible to (say) fifth-graders, which of
the original design decisions in interface and (especially) language would
have to be rethought or abandoned? Finally—and perhaps more futuristically—
we would like to extend the programmable application concept to incorporate
the exciting new developments in interface hardware (3D-viewing devices,
"DataGloves,” and so forth) that are likely to appear in commercially available
systems in the near future.{15} All these areas of research could have direct
application to SchemePaint and its future instantiations; but again, all have
more general consequences for programmable application design. In
pursuing these questions, we as application designers can work toward a world

48

of tools in which language and interface, word and hand, are both given their
due; and we can look forward to a world in which programming languages are
not treated as arcane cryptograms hidden deep beneath a smoothly polished
graphical interface, but rather as means of creative expression available to
all.

Acknowledgments

The ideas of Hal Abelson, Andy diSessa, and Gerald Jay Sussman have been the
primary motivating influences behind this work. Thanks are also due to Barry
Dworkin, Wally Feurzeig, Gerhard Fischer, Mark Friedman, Matthew Halfant,

Paul Horwitz, Roy Pea, Mitchel Resnick, and Franklyn Turbak for advice,

erudition, encouragement, and criticism. Orca Starbuck generously
contributed her time and artistic talent to create five SchemePaint pictures.

References

{1} Abelson, H. and diSessa, A. Turtle Geometry. MIT Press, Cambridge, MA 1980.
{2} Abelson, H. and Sussman, G. with Sussman, J. Structure and Interpretation
of Computer Programs. McGraw-Hill, New York; MIT Press, Cambridge, MA
1985.

{3} Abelson, H. and Sussman, G. "Computation: an Introduction to Engineering
Design." MIT Artificial Intelligence Memo 848a, 1986.

{4} Barnsley, M. Fractals Everywhere. Fractals Everywhere. Academic Press,
Inc. Boston, MA 1988.

{5} Beckman, B. "A Scheme for Little Languages in Interactive Graphics."
Software—Practice and Experience, 21:2, 1991.

{6} Bentley, J. L. "Document Design." Communications of the ACM, 29:9, 1986.

{7} diSessa, A. and Abelson, H. "Boxer: a Reconstructible Computational
Medium." Communications of the ACM, 29:9, 1986.

{8} Eisenberg, M. "Programmable Applications: Interpreter Meets Interface."
MIT Artificial Intelligence Lab Memo No. 1325, October 1991.

{9} Fischer, G. et al. "The Role of Critiquing in Cooperative Problem-Solving."
ACM Transactions on Information Systems, 9:2 , 1991.

{10} Foley, J. "Interfaces for Advanced Computing." Scientific American, 257:7,
1987.

{11} Grabowski, R. with Huddleston, D. Using AutoCAD. QUE, Carmel, IN 1991.

{12} Henderson, P. "Functional Geometry." 1982 ACM Symposium on Lisp and
Functional Programming.

49

{13} Hutchins, E.; Hollan, J.; and Norman, D. "Direct Manipulation Interfaces."
In User Centered System Design, Norman, D. and Draper, S., eds. Lawrence
Erlbaum Associates, Hillsdale NJ 1986.

{14} Lieberman, H. "Mondrian: A Teachable Graphical Editor." MIT Media Lab
Technical Report, 1991.

{15} Marcus, A. and van Dam, A. "User-Interface Developments for the
Nineties." I[EEE Computer, 24:9, 1991.

{16} McClelland, D. "Paint Imitates Life." MacWorld, March 1992.
{17} Papert, S. Mindstorms. Basic Books, New York 1980.
{18} Sherin, B. Personal communication.

{19} Shneiderman, B. "Direct Manipulation: a Step Beyond Programming
Languages." IEEE Computer, 16:8, 1983.

{20} Stallman, R. GNU Emacs Manual (Fifth Edltlon Version 18). Free Software
Foundation, Cambridge MA 1986.

{21} Stoy, J. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, Cambridge, MA 1977.

{22} Thompson, J.M.T. and Stewart, H.B. Nonlinear Dynamics and Chaos. John
Wiley and Sons, Chichester 1986.

{23} Tufte, E. The Visual Display of Quantitative Information. Graphics Press,
Cheshire, CT 1983.

Software

{S1} AutoCAD. Autodesk, Inc. Sausalito, CA.

{S2} Director. MacroMind, Inc. San Francisco, CA.

{S3} 4th Dimension. Acius, Inc. Cupertino, CA.

{S4} Hypercard. Apple Computer, Inc. Cupertino, CA.

{S4} MacPaint. Claris Corporation. Santa Clara, CA.

{S5} MacScheme. Lightship Software, Inc. Beaverton, OR.

{S6} Mathematica. Wolfram Research, Inc. Champaign, IL.

{S7} Stella. High Performance Systems, Inc. Hanover, NH.

50

Color Plate Key for SchemePaint Pictures

Plate 1. A '"basins-of-attraction" map created using the embedded
planar maps package in SchemePaint. The colors red, green, and blue
correspond to the three complex roots of 1; points are shaded
according to which root they approach under Newton's root-finding
method.

Plate 2. Tree-like figures created by iterating "superposition maps"
in the planar maps package.

Plate 3. A hand-drawn bee in a computer-drawn honeycomb.
Plate 4. A snake slithers through a simple rotated-octagon figure.

Plate 5. A hand-drawn zebra munches on fractal (turtle-drawn)
trees.

Plate 6. The "dragon curve" decorates a hand-drawn seahorse.

Plate 7. The waves are generated by the inspi procedure from
Abelson and diSessa's book Turtle Geometry.

Plate 8. A peacock displays fractal feathers.
Plate 9. An Escher-esque tiling of fish and butterflies wrapped

around a sphere.

Artwork for Plates 4-8 by Orca Starbuck.

<--- Color Plate 1

Color Plate 2 --->

<--- Color Plate 3 ,

Color Plate 4 --->

<--- Color Plate 5

Color Plate 6 --->

st Plate 7

<--- olor Plate

"y

i

<--- Color Plate 1

Color Plate 2 --->

<--- Color Plate 3 ,

Color Plate 4 --->

<--- (Color Plate §

Color Plate 6 --->

Color Plat

o
R

