Query Processing Techniques
for Large Databases

Goetz Graefe

CU-CS-579-92 January 1992

%]University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION

Table of Contents

Index Terms
Introduction
1. Architecture of Query EXCCULON ENZINES ...ccocvvriniiierierenienrenenesenroncrmsssensssseessessessessessessessssssssssssssesasssssssess
2. Sorting and Hashing
2.1, Sortingocevvevevenernns
2.2. Hashing
3. DHSK ACCESS wrvereeuerrireesienterteissirtseterestraestestsesaressassesesesssssssssasssssententss et arsestesesueseesentasentesensenersenessesenssenenns
3.1. File Scans
3.2. Associative Access using Indices
3.3. FaStET SOTAZE DEVICES .cverireerreerererereresemreresssssasassesaressssssssssasssassessssostenssssssssssesssesesessesssasassossassssrassassoses
3.4, BUfer MANAZEIMENLcccovueeeenriieeceireseereerseerestesesssseessasessassosesssestosessassestsassessssessasessssenssensassensossessssansss
3.5. Physical Database DESIZI ..c.evueveveriereiriniirirecreniernrerinieseessssss e sesessessssesssssssssssssssssssensssasessesnonsnsssassssesssssnesns
4. Aggregation and Duplicate REMOVALc.ccveiieiriiiineniereeene ettt eresasanescsnsssassssnss
4.1. Aggregation Algorithms Based 0n SOTUNEcovieverreceneriiiinncrerierceierestereesee et e se oo se s sresssons
4.2. Aggregation Algorithms Based on Hashing
4.3. A Rough Performance COMPATISONccvereuvrvererireeirersieresessessssesreesessesssssessesesssseseressssesssssssssssassseneisessens
4.4, Additional Remarks On AZETEZALIONocceveriiriereerirernerrerrtreeseeseenreeseert e sees e betseseteressesasessessesaresesessessonne
5. Binary Matching OPEIAtiONScccecceveererierseerenersisersiesearestarsssssseessessesstesssssesssesssssessessssssstsssesssssssssssssassessossons
5.1, Nested Loops AIOTIRINS ..ottt ssssnssesssssrsssasasans
5.2. Merge-Join AIZOTIIINS ...cucveevirieveeinieeinecriesscinessenssseessssessessenessessesaesssssesessesnsssssssessssessssessensssensssrssnessnass
5.3. Hash JOIN AIZOTIAINS ...uceeevecureernrierereesnerersseenesessesessssasessesesssssessssssssssssssenessosnbesssuesssnsssesesssssossressesssssnesns
5.4. Pointer-Based Joins
5.5. A Rough Performance Comparison
6. Universal QUANLfICALIONcvveiieiiecineeienteeieeresieesteresraesbssessssssraessessessssssassssssansasasssessasesresasssesnsssassssssessesn
7. Duality of Sorting and HaShinEccocoeviriinireiecenecrnre ettt er s snsss s sossrasrenss
8. Execution of Complex QUETY PIANScccviniiieiniiieniiiiiniii i st sneesssassssssenes
9. Mechanisms for Parallel QUETrY EXCCULOMN .ovvivvvivrieririenenienierirersressesssessneeseressersssssesseessesssnsssossessnesseessssnos
9.1. Parallel vs. Distributed Database SYSIEINScoiveererrererrereerersuesessscerersesseeesersentenessessesssrassessessessnsssssisessess
9.2, Forms of Parallelismccecvevereeevecrnrenrnrnnes

9.3. Implementation Strategies
9.4, Load Balancing and SKEWcceviiveirrinreneiieentiieeneesessssaseessssesssssssessesssssesessessesessesssossesstsssnsessssssenssssones
0.5. Tuning a Parallel SYSIEIMcvveverererenrrrerneestnesrerereiaressetesessssessssesessssessssesessasesssesessonesassssssssesssssssosssnessess
9.6. Architectures and Architecture-INdePEndence ...t
10, Paralle]l AIGOTITRIMS ..veouceceieie ettt st et sr s st bt b e st s bbb s sasshercasasansbens
10.1, Parallel Selections and Updates
10.2. Parallel SOTHNEccerireerrreeneieneeerieiseereseerenesessenssessenns
10.3. Parallel Aggregation and Duplicate Removal
10.4, Parallel Joins and Other Binary Matching OpPerationscc.cveeeereereneeennieereniinieeeese e s sreesvsnsseesees
10.5. Parallel Universal QUANTHICALION ...euevevecievererorerereresssenseresesmonsseenemsesesestesenssissesssseseseresssiesessassasssasesessone
11. Non-Standard Query Processing AIZOTILINScovvveieerievernereirinnioienseenseesessasiensseseessssesssessosesssessestessssesses
11,1, NESEEA REIALONS ..cuvivnienenmenriierisiineneimiseeresssiesesisnssassstsessessssssessssssssssnssesseressssssonssessnossassnsssasasssssssens
11.2. Temporal and Scientific Database Management ...
11.3. Object-Oriented Database SYSIEIMS ...cc.evvereirriererrerererercarsenseseserasessesessneseseeseesessssenes
11,4, MOTE MELA-OPCTALOTS ..veeveverreeiverirerserrresesseseseessrsessesessessassssssssserassseseasssssessssssessesessnessessesesnssnsessssessessns
12. Additional Techniques for Performance Improvement

O O B e e

14
18
18
18
21
21
22
23
24
25
26
27
28
29
30
31
33
33
35
39
43
46
47
48
49
51
53
54
57
57
58
60
61

NI A A

68
69

12.1. Precomputation and Derived Data
12.2. Data Compression
12.3. Surrogate Processing
12.4. Bit Vector Filtering
12.5. Specialized Hardware
SUMMAry and OULLOOKecvveiveveiriniertiienieiesteereesesieereresesssrsserssssssssssesssssassansessessessessessmsessassans reerrenreesesanaaens
Acknowledgements

References

...

-

...

..

...

...

e

69
71
72
73
74
74
75
76

Query Processing Techniques for Large Databases

Goetz Graefe, University of Colorado at Boulder
Computer Science Department Technical Report CU-CS-579-92

Abstract

Database management systems will continue to manage large data volumes. Thus, efficient algorithms for access-
ing and manipulating large sets and sequences will be required to provide competitive performance. The advent of
object-oriented and extensible database systems will not solve this problem; on the contrary, modern data models
exacerbate the problem. In order to manipulate large sets of complex objects as efficiently as today’s database sys-
tems manipulate simple records, query processing algorithms and software will become more complex, and a solid
understanding of algorithm and architectural issues is essential for the designer of database management software.

This survey provides a foundation for the design and implementation of query execution facilities in new database
management systems. It describes a wide érray of practical query evaluation techniques for both relational and
post-relational database systems, including iterative execution of complex query evaluation plans, the duality of
sort- and hash-based set matching algorithms, types of parallel query execution and their implementation, and spe-
cial operators for emerging database application domains.

Index Terms

Relational, Extensible, and Object-Oriented Database Systems; Query Execution Architecture; Iterators; Complex
Query Evaluation Plans; Set Matching Algorithms; Sort-Hash Duality; Dynamic Query Evaluation Plans; Operator
Model of Parallelization; Parallel Algorithms; Emerging Database Application Domains.

Introduction

Effective and efficient management of large data volumes is necessary in virtually all computer applications,
from business data processing to library information retrieval systems, multimedia applications with images and
sound, computer aided design and manufacturing, real-time process control, and scientific computation. While
database management systems are standard tools in business data processing, they are only slowly being intro-
duced to all the other emerging database application areas.

In most of these new application domains, database management systems have traditionally not been used
for two reasons. First, restrictive data definition and manipulation languages can make application development
and maintenance unbearably cumbersome. Research into semantic and object-oriented data models and into per-
sistent database programming languages has been addressing this problem and will eventually lead to acceptable
solutions. Second, data volumes might be so large or complex that the real or perceived performance advantage of
file systems is considered more important than all other criteria. Thus, extensible and object-oriented database
management systems designed for non-traditional database application domains must provide excellent perfor-
mance to meet the challenges of very large data volumes, and techniques for manipulating large data sets will find
renewed and increased interest in the database community.

The purpose of this paper is to survey the software architecture of database query execution engines and
algorithms for executing complex queries over large databases. A "complex” query is one that requires a number
of query processing algorithms to work together, and a "large" database uses files with sizes from several mega-
bytes to many terabytes, which are typical for database applications in the present and the near future [249]. This

User Interface
Database Query Language
Query Optimizer
Query Execution Engine
Files and Indices
1/O Buffer
Disk

Figure 1. Query Processing in a Database System.

survey discusses a large variety of query execution techniques that must be considered when designing and imple-
menting the query execution module of a new database management system: algorithms and their costs, sorting vs.
hashing, parallelism, resource allocation and scheduling issues in complex queries, special operations for emerging
database application domains such as statistical and scientific databases, and general performance-enhancing tech-
niques such as precomputation and compression. While many, although not all, techniques discussed in this paper
have been developed in the context of relational database systems, most of them are applicable to and useful in the
query processing facility for any database management system and any data model, provided the data model per-
mits non-procedural queries over "bulk" data types such as sets and lists.

It is assumed that the reader knows the basics of database query languages, in particular of relational alge-
bra, and of file systems, including some basic knowledge about indices. Query processing fills the gap between
database query languages and file systems, as shown in Figure 1. It can be divided into optimization and execu-
tion. A query optimizer translates a query expressed in a high-level query language into a sequence of operations
that are provided by the query execution engine or the file system. Query optimization is a special form of plan-
ning, employing techniques from artificial intelligence such as plan representation, search including directed search
and pruning, dynamic programming, branch-and-bound algorithms, etc. The query execution engine is a collection
of query execution operators and mechanisms for operator communication and synchronization — it uses concepts
from algorithm design, operating systems, networks, and parallel and distributed computation. It defines the space
of possible plans that can be chosen by the query optimizer.

A general outline of the steps required for processing a database query are shown in Figure 2. Of course,
this sequence is only a general guideline, and different systems may use different steps, in particular extensible and
object-oriented systems. After a query or request has been entered into the database system, be it interactively or

Parsing = Validation
Optimization - View Integration
Plan compilation —_—— Execution

Figure 2. Query Processing Steps.

by an application program, the query is parsed into an internal form. Next, the query is validated against the
meta-data (data about data, also called schema or catalogs) to ensure that the query references only existing data-
base objects. If the database system provides a macro facility like relational views, referenced macros and views
are expanded into the query [258]. Integrity constraints might be expressed as views (externally or internally) and
would also be integrated into the query at this point in most systems [188]. The optimizer then maps the expanded
query expression into an optimized plan that operates directly on the stored database objects. This mapping pro-
cess can be very complex and might require substantial search and cost estimation effort. Optimization is not dis-
cussed in this paper; a relatively recent survey can be found in [151]. The optimizer’s output is called a query exe-
cution plan, query evaluation plan, QEP, or simply plan. This plan is translated using a fairly straightforward algo-
rithm for execution by the database’s query evaluation component; the result of this translation can be compiled
machine code or a semi-compiled or interpreted language.

This survey explicitly discusses only read-only queries; however, most of the techniques are also applicable
to update requests. In most database management systems, update requests may include a search predicate to
specify which database objects are to be modified. Standard query optimization and execution techniques apply to

this search; the actual update procedure can be either applied in a second phase, a method called deferred updates,

! The problem of

or merged into the search phase if there is no danger of creating ambiguous update semantics.
ensuring ACID semantics for updates, — making updates Atomic (all-or-nothing semantics), Consistent (translat-
ing any consistent database state into another consistent database state), Isolated (from other queries and requests),
and Durable (persistent across all failures) — is beyond the scope of this paper; suitable techniques are described

in many other texts, e.g. [18, 20, 118, 128].

Embedded queries, i.e., database queries that are contained in an application program written in a standard
programming language such as Cobol, PL/1, C, or Fortran, are also not addressed specifically in this paper because
all techniques discussed here can be used for interactive as well as embedded queries. Embedded queries usually
are optimized when the program is compiled in order to avoid the optimization overhead when the program runs.
This method was pioneered in System R, including mechanisms for storing optimized plans and invalidating stored
plans when they become infeasible, e.g., when an index is dropped from the database [45].

Recursive queries are omitted from this survey because the entire field of recursive queries — optimization
rules and heuristics, selectivity and cost estimation, algorithms and their parallelization — is still developing
rapidly; suffice it to point to a survey by Bancilhon and Ramakrishnan [§].

Section 1 discusses the architecture of query execution engines. Sorting and hashing, the two general
approaches to managing and matching elements of large sets, are described in Section 2. Section 3 focuses on
accessing large data sets on disk, including a discussion of indexing methods and disk arrays. Section 4 begins the
discussion of actual data manipulation methods with algorithms for aggregation and duplicate removal, continued
in Section 5 with binary matching operations like join and intersection and in Section 6 with operations for univer-
sal quantification. Section 7 reviews the many dualities between sorting and hashing and points out their differ-
ences that have an impact on the performance of algorithms based on either one of these approaches. Execution of

! A standard example for this danger is the "Halloween" problem: Consider the request to "give all employees
with salaries greater than $30,000 a 3% raise." If (i) these employees are found using an index on salaries, (ii) in-
dex entries are scanned in increasing salary order, and (iii) the index is updated immediately as index entries are
found, each such employee will get an infinite number of raises.

very complex query plans with many operators and with non-trivial plan shapes is discussed in Section 8. Section
9 is devoted to mechanisms for parallel execution, including architectural issues, load balancing, and tuning, and
Section 10 discusses specific parallel algorithms. Section 11 outlines some non-standard operators for emerging
database applications such as statistical and scientific database management systems. Section 12 is a potpourri of
additional techniques that enhance the performance of many algorithms, e.g., compression, precomputation, and
specialized hardware. The final section contains a brief summary and an outlook on query processing research and
its future,

1. Architecture of Query Execution Engines

This survey focuses on useful mechanisms for processing sets of items. These items can be records, tuples,
entities, or objects. Furthermore, most of the techniques discussed in this survey apply to sequences, not only sets,
of items, although most query processing research has assumed relations and sets. All query processing algorithm
implementations iterate over the members of their input sets; thus, sets are always represented by sequences.
Sequences can be used to represent not only sets but also other one-dimensional "bulk" types such as lists, arrays,
and time series, and many database query processing algorithms and techniques can be used to manipulate these
other bulk types as well as sets. The important point is to think of these algorithms as algebra operators consuming
zero or more inputs (sets or sequences) and producing one (or sometimes more) outputs. A complete query execu-
tion engine consists of a collection of operators and mechanisms to execute complex expressions using multiple
operators, including multiple occurrences of the same operator. Taken as a whole, the query processing algorithms
form an algebra which we call the physical algebra of a database system.

The physical algebra is equivalent to, but quite different from, the logical algebra of the data model or the
database system. The logical algebra is more closely related to the data model and defines what queries can be
expressed in the data model; for example, the relational algebra is a logical algebra. A physical algebra, on the
other hand, is system-specific. Different systems may implement the same data model and the same logical alge-
bra but may use very different physical algebras. For example, while one relational system only uses nested loops
joins, another system may provide both nested loops join and merge-join, while a third one relies entirely on hash
join algorithms.

Another significant difference between logical and physical algebras can be found in the mapping of logical
algebra expressions to physical algebra expressions. Some operators in the physical algebra may implement multi-
ple logical operators. For example, all serious implementations of relational join algorithms include a facility to
output fewer than all attributes, i.e., a relational delta-project (a projection without duplicate removal) is included
in the physical join operator. Other physical operators may not even exist in the logical algebra, e.g., a sort opera-
tor has no place in pure relational algebra because it is an algebra of sets.

Finally, some properties that hold for logical operators do not hold, or only with some qualifications, for the
counterparts in physical algebra. For example, while intersection and union are entirely symmetric and commuta-
tive, algorithms implementing them (e.g., nested loops or merge-join) do not treat their two inputs equally.

The purpose of the query execution engine is to execute physical algebra expressions produced by the query
optimizer from a logical algebra expression. Thus, the premier design goal for the query execution engine is to
implement a variety of efficient query execution mechanisms. The policies for using these mechanisms are built
into an optimizer.

Synchronization and data transfer between operators is the main issue to be addressed in the architecture of
the query execution engine. Imagine a query with two joins and consider how the result of the first join is passed
to the second one. The simplest method is to create (write) and read a temporary file. The need for temporary
files, whether they are kept in the buffer or not, is a direct result of executing an operator’s input subplans com-
pletely before starting the operator. Alternatively, it is possible to create one process for each operator and then to
use interprocess communication mechanisms (e.g., pipes) to transfer data between operators, leaving it to the
operating system to schedule and suspend operator processes as pipes are full or empty. While such data-driven
execution removes the need for temporary disk files, it introduces another cost, that of operating system scheduling
and interprocess communication. In order to avoid both temporary files and operating system scheduling, Freytag
proposed writing rule-based translation programs that transform a plan represented as a tree structure into a single
iterative program with nested loops and other control structures [89]. However, the required rule set is not simple,
in particular for algorithms with complex control logic such as sorting, merge-join, or even hybrid hash join (to be
discussed later in the section on matching).

The most practical alternative is to implement all operators in such a way that they schedule each other
within a single operating system process. The basic idea is to define a granule, typically a single record, and each
time an operator needs another granule, it calls its input (operator) to produce one. This call is a simple procedure
call, much cheaper than inter-process communication since it does not involve the operating system at all. The cal-
ling operator waits (just as any calling routine waits) until the input operator has produced an item. That input
operator, in a complex query plan, might require an item from its own input to produce an item; in that case, it calls
its own input (operator) to produce one. Two important features of operators implemented in this way are that they
can be combined into arbitrarily complex query evaluation plans and that any number of operators can execute and
schedule each other in a single process without assistance from or interaction with the underlying operating sys-
tem. This model of operator implementation and scheduling resembles very closely those used in relational sys-
tems, e.g., System R (and later SQL/DS and DB2), Ingres, Informix, and Oracle; as well as in extensible systems,
e.g., Exodus’ E language [209], Genesis [11, 12], and Starburst [126, 127]. Operators implemented in this model
are called iterators, streams, synchronous pipelines, row-sources, or similar names in the "lingo" of commercial
systems.

To make the implementation of operators a little easier, it makes sense to separate the functions (a) to
prepare an operator for producing data, (b) to produce an item, and (c) to perform final house-keeping. In a scan,
these functions are called open, next, and close procedures; we adopt these names for all operators. Table 1 gives a
rough idea what the open, next, and close procedures for some operators do. The first three examples are trivial,
but the hash join operator shows how an operator can schedule its inputs in a non-trivial manner. The interesting
observations are that (i) the entire query plan is executed within a single process, (ii) operators produce one item at
a time on request, (iii) this model effectively implements, within a single process, (special-purpose) co-routines
and demand-driven dataflow, (iv) items never wait in a temporary file or buffer between operators because they are
never produced before they are needed, (v) therefore this model is very efficient in its time-space-product memory
costs, (vi) iterators can schedule any tree, including bushy trees (see below), (vii) no operator is affected by the
complexity of the whole plan, i.e., this model of operator implementation and synchronization works for simple as
well as very complex query plans. As a final remark, there are effective ways to combine the iterator model with
parallel query processing, as will be discussed later.

Since query plans are algebra expressions, they can be represented as trees. Query plans can be divided into
prototypical shapes, and query execution engines can be divided into groups according to which shapes of plans

Iterator Open Next Close
Print open input call next on input; for- close input
mat the item on screen
Scan open file read next item close file
Select open input call next on input until close input
an item qualifies
Hash join allocate hash directory; call next on probe in- close probe input;
(without open left "build" input; put until a match is deallocate hash direc-
overflow build hash table calling next found tory
resolution) on build input; close build
input; open right "probe" in-
put
Merge-Join open both inputs get next item from in- close both inputs
put with smaller key
until a match is found
Sort open input; build all initial determine next output destroy remaining run
run files calling next on in- item; read new item files
put and quicksort or re- from the correct run
placement selection; close file
input; merge run files until
their number is reduced to
the fan-in; open the remain-
ing run files
Table 1. Examples of Iterator Functions.
Join C-D Join A-B
Join B-C
Join B-C

Figure 3. Left-Deep, Bushy, and Right-Deep Plans.

they can evaluate. Figure 3 shows prototypical left-deep, right-deep, and bushy plans for a four-way join. The set
of bushy plans is the most general as it includes the sets of both left-deep and right-deep plans. These names are
taken from [101]; left-deep plans are also called "linear processing trees" [172] or "plans with no composite inner”
[199].

For queries with common subexpressions, the query evaluation plan is not a tree but an acyclic directed
graph (DAG). Most systems, if they identify and exploit common subexpressions, execute the plan equivalent o a
common subexpression separately, saving the intermediate result in a temporary file to be scanned repeatedly and
destroyed after the last scan. Each plan fragment that is executed as a unit is indeed a tree. The alternative is a
"split" iterator that can deliver data to multiple consumers, i.e., that can be invoked as iterator by multiple consu-
mer iterators. The split iterator paces its input subtree as fast as the fastest consumer requires it and holds items

until the slowest consumer has consumed them. If the consumers request data at about the same rate, the split
operator does not require a temporary spool file; such a file and its associated I/O cost is required only if the data
rate required by the consumers diverges above some predefined threshold.

Among the implementations of iterators for query processing, one group can be called "stored-set-oriented”
and the other "algebra-oriented." In System R, an example for the first group, complex join plans are constructed
using binary join iterators that "attach” one more set (stored relation) to an existing intermediate result [4, 180], a
design that supports only left-deep plans. This design led to a significant simplification of the System R optimizer

which could be based on dynamic programming techniques but ignores the optimal plan for some queries? [235].
A similar design was used, although not strictly required by the design of the execution engine, in the Gamma
database machine [69, 71, 93]. On the other hand, some systems use binary operators for which both inputs can be
intermediate results, i.e., the output of arbitrarily complex subplans. This design is more general as it also permits
bushy plans. Examples for this approach are the second query processing engine of Ingres based on Kooi’s thesis
[168, 169], the Starburst execution engine [126], and the Volcano query execution engine [113]. The tradeoff
between left-deep and bushy query evaluation plans is reduction of the search space in the query optimizer against
generality of the execution engine and efficiency for some queries.

The remainder of this section provides more detail of how iterators are implemented in the Volcano extensi-
ble query processing system. We use the Volcano system as an example repeatedly in this survey because it pro-
vides a large variety of mechanisms for database query processing and it is publicly available, but mostly because
its model of operator implementation and scheduling resembles very closely those used in relational and extensible
systems. The purpose of this section is to provide implementation concepts from which a new query processing
engine could be derived.

Figure 4 shows how iterators are represented in Volcano. Each node in a query evaluation plan consists of
two data structures, a small structure of four pointers and a state record. The small structure is the same for all
algorithms. The type of state records is different for each iterator as it contains the iterator’s arguments and local
variables (state) while the iterator is suspended, i.e., currently not active. Query plan nodes are linked together by
means of input pointers, which are also kept in the state records. Since function pointers are used, all procedures
can be written in such a way that the names of input operators and their iterator procedures are not "hard-wired"
into the code, and the operator modules do not need to be recompiled for each query. Furthermore, all operations
on individual items, e.g., printing, are imported into Volcano operators as functions, making the operators indepen-
dent of the semantics and representation of items in the data streams they are processing. This organization using
function pointers for input operators and item interpretation is fairly standard in commercial database management
systems.

Figure 4 shows two operators in a query evaluation plan that prints selected records from a file. Purpose and
capabilities of the filter operator in Volcano includes printing items of a stream using a print function passed to the
filter operator as one of its arguments. The small structure at the top gives access to the filter operator’s iterator
functions as well as to its state record. Using a pointer to this structure, the open, next, and close procedures of the
filter operator can be invoked and their local state can be passed to them as a procedure argument. The functions

2 Since each operator in such a query execution system will access a permanent relation, the name "access
path selection” used for System R optimization, although including and actually focusing on join optimization, was
entirely correct and more descriptive than "query optimization."

open-filter
next-filter
close-filter

H 1
Arguments | Input | State
|

w 1 | 1
print ()

open-filescan
next-filescan
close-filescan

1 T
Arguments | Input | State
1

| 1

predicate ()
Figure 4. Two Operators in a Volcano Query Plan.

themselves, e.g., open-filter, can use the input pointer contained in the state record to invoke the input operator’s
functions, e.g., open-file-scan. Thus, the filter functions can invoke the file scan functions as needed, and can pace
the file scan according to the needs of the filter.

The advantages of a uniform iterator interface for all query processing algorithms are obvious: it permits
arbitrary combination of all operators including new ones in extensible systems, it permits arbitrarily complex
plans, and it makes the query optimizer simpler to design and implement.

In this section, we have discussed general physical algebra issues and synchronization and data transfer
between operators. Iterators are relatively straightforward to implement and are suitable building blocks for
efficient, extensible query processing engines. In the following sections, we consider individual operators and
algorithms including a comparison of sorting and hashing, detailed treatment of parallelism, special operators for
emerging database applications such as scientific databases, and auxiliary techniques such as precomputation and
compression.

2. Sorting and Hashing

Before discussing specific algorithms, two general approaches to managing sets of data are introduced. The
purpose of many query processing algorithms is to perform some kind of matching, i.e., bringing items that are
"alike" together and performing some operation on them. There are two basic approaches used for this purpose,
sorting and hashing. This pair permeates many aspects of query processing, from indexing and clustering over
aggregation and join algorithms to methods for parallelizing database operations. Therefore, we discuss these
approaches first in general terms, without regard to specific algorithms. After a survey of specific algorithms for
unary (aggregation, duplicate removal) and binary (join, semi-join, intersection, division, etc.) matching problems
in the following sections, the duality of sort- and hash-based algorithms is discussed in detail.

2.1. Sorting

Sorting is used very frequently in database systems, both for presentation to the user in sorted reports or list-
ings and for query processing in sort-based algorithms such as merge-join. All sorting algorithms used in database
systems use merging, i.e., the input data are written into initial sorted runs and then merged into larger and larger
runs until only one run is left, the sorted output. Only in the unusual case that a data set is smaller than the avail-
able memory can in-memory techniques such as quicksort be used. An excellent reference for many issues dis-
cussed here is Knuth [166].

In order to ensure that the sort module interfaces well with the other operators, €.g., file scan or merge-join,
sorting should be implemented as iterator, i.e., with open, next, and close procedures as all other operators of the
physical algebra. In the Volcano query processing system (which is based on iterators) most of the sort work is
done during open [105, 113]. This procedure consumes the entire input and leaves appropriate data structures for
next to produce the final, sorted output. If the entire input fits into the sort space in main memory, open leaves a
sorted array of pointers to records in the buffer which is used by rext to produce the records in sorted order. If the
input is larger than main memory, the open procedure creates sorted runs and merges them until only one final
merge phase is left. The last merge step is performed in the next procedure, i.e., when demanded by the consumer
of the sorted stream, e.g., a merge-join. The input to the sort module must be an iterator, and sort uses open, next,
and close procedures to request its input; therefore, sort input can come from a scan or a complex query plan, and
the sort operator can be inserted into a query plan at any place or at several places.

There are two alternative methods for creating initial runs, also called "level-0 runs" here. First, an in-
memory sort algorithm can be used, typically quicksort. Using this method, the number of initial runs W will be
W =[1/M1 for input size I and memory size M. Second, runs can be produced using replacement selection.
Replacement selection starts by filling memory with items which are organized into a priority heap, i.c., a data
structure that efficiently supports the operations insert and remove-smallest. Next, the item with the smallest key is
removed from the priority heap and written to a run file, and then immediately replaced in the priority heap with
another item from the input. With high probability, this new item has a key larger than the item just written, and
therefore will be included in the same run file. Notice that if this is the case, the first run file will be larger than
memory. Now the second item (the currently smallest item in the priority heap) is written to the run file, and also
replaced immediate in memory by another item from the input. This process repeats, always keeping the memory
and the priority heap entirely filled. If a new item has a key smaller than the last key written, the new item cannot
be included in the current run file and is marked for the next run file. In comparisons among items in the heap,
items marked for the current run file are always considered "smaller” than items marked for the next run file.

Eventually, all items in memory are marked for the next run file, at which point the current run file is closed and a
new one is created.

Using replacement selection, run files are typically larger than memory. If the input is already sorted or
almost sorted, there will be only one run file. This situation could arise, for example, if a file is sorted on field A
but should be sorted on A as major and B as minor sort key. If the input is sorted in reverse order, which is the
worst case, each run file will be exactly as large as memory. If the input is random, the average run file will be
twice the size of memory, except the first few runs (which get the process started) and the last run. On the average,
the expected number of runs is about W = [/ (2xM) | + 1, i.e., about half as many runs as created with quick-
sort. A more detailed discussion and an analysis of replacement selection can be found in [166].

An additional difference between quicksort and replacement selection is the resulting I/O pattern during ini-
tial run creation. Quicksort results in bursts of reads and writes for entire memory loads from the input file and to
initial run files, while replacement selection alternates between individual read and write operations. If only a sin-
gle device is used, quicksort may result in faster I/O because fewer disk arm movements are required. However, if
different devices are used for input and temporary files, or if the input comes as a stream from another operator, the
alternating behavior of replacement selection may permit more overlap of I/O and processing and therefore result
in faster sorting.

The problem with replacement selection is memory management. If input items are in pages in the buffer,
each page must be kept in the buffer until its last record has been written to a run file. On the average, half a
page’s records will be in the priority heap. Thus, the priority heap must be reduced to half the size (the number of
items in the heap is one half the number of records that fit into memory), cancelling the advantage of longer and
fewer run files. The solution to this problem is to copy records into a holding space and to keep them there while
they are in the priority heap and until they are written to a run file. If the input items are of varying sizes, memory
management is more complex than for quicksort because a new item may not fit into the space vacated in the hold-
ing space by the last item written into a run file. Solutions to this problem will introduce memory management
overhead and some amount of fragmentation, i.e., the size of runs will be less than twice the size of memory.
Thus, the advantage of having fewer runs must be balanced with the different I/O pattern and the disadvantage of
more complex memory management.

The level-0 runs are merged into level-1 runs, which are merged into level-2 runs, etc., to produce the sorted
output. During merging, a certain amount of buffer memory must be dedicated to each input run and the merge
output. We call this memory the cluster size C in this survey. The maximal merge fan-in F, i.e., the number of
runs that can be merged at one time, is the quotient of memory size and cluster size, F = | M / C |. Since the sizes
of runs grow by a factor F from level to level, the number of merge levels L, i.e., the number of times each item is

written to a run file, is logarithmic with the input size, namely L = ‘- logr (W) |.

There are four considerations that can improve the merge efficiency. The first two issues pertain to schedul-
ing of I/O operations. First, disk accesses are faster if read-ahead is used; therefore, double buffering using two
pages of memory per input run might speed the merge process [224, 225]. The obvious disadvantage is that the
fan-in is cut in half. However, instead of reserving 2 x F clusters, a predictive method called forecasting can be
employed in which the largest key in each input buffer is used to determine from which input run the next cluster
will be read. Thus, the fan-in can be set to any number in the range |M /2 xC)] <F <[M /C |. One or two
read-ahead buffers per input disk are sufficient, and F = LM /C | — 2 will be reasonable in most cases.

10

Second, if the operating system and the I/O hardware support them, using large cluster sizes for the run files
is very beneficial. Larger cluster sizes will reduce the fan-in and therefore may increase the number of merge lev-
els. However, each merging level is performed much faster because much fewer 1/O operations and disk seeks and
latencies are required. Furthermore, if the unit of I/O is equal to a disk track, rotational latencies can be avoided
entirely with a sufficiently smart disk controller. Usually, relatively small fan-ins with large cluster sizes are the
optimal choice, even if the sort requires multiple merge levels [105]. The precise tradeoff depends on disk seek,
latency, and transfer times. It is interesting to note that the optimal cluster size and fan-in basically do not depend
on the input size.

As a concrete example, consider sorting a file of / = 50 MB = 51,200 KB using M = 160 KB of memory.
The number of runs created by quicksort will be W = [51200/ 160 | = 320. Depending on the disk access and
transfer times, C = 16 KB will typically be a good cluster size for fast merging. If two clusters are used for read-
ahead, the fan-in will be F = | 160/16 | —2=8. The number of merge levels will be L = {1og8(320)] =3. Ifa

16 KB I/O operation takes T = 33 ms, the total I/O time, including a factor of two for writing and reading at each
merge level, for the entire sort will be 2 X L X [1/C7%xT=10.56 min.

The third and fourth issues address exploiting the maximal fan-in as effectively and often as possible. Both
issues require adjusting the fan-in of the first merge step using the formula given below, either the first merge step
of all merge steps or, in semi-eager merging [105], the first merge step after the end of the input has been reached.
The third issue to be considered is that the number of runs W is typically not a power of F ; therefore, some merges
proceed with fewer than F inputs which creates the opportunity for some optimization. Instead of always merging
runs of only one level together, the optimal strategy is to merge as many runs as possible using the smallest run
files available. The only exception is the fan-in of the first merge, which is determined to ensure that all subse-
quent merges will use the full fan-in F.

Let us explain this idea with an example shown in Figure 5. Consider a sort with a maximal fan-in F = 10
and an input file that requires W = 12 initial runs. Instead of merging only runs of the same level as shown in Fig-
ure 5, merging is delayed until the end of the input has been reached. In the first merge step, only 3 of the 12 runs
are combined and the result is then merged with the other 9 runs, as shown in Figure 6. The /O cost (measured by
the number of memory loads that must be writien to disk to any of the runs created) for the first strategy is
12 + 10 + 2 = 24, while for the second strategy it is 12 + 3 = 15, meaning that the first strategy requires 60% more
1/0O to temporary files than the second one. The general rule is to merge just the right number of runs after the end
of the input file has been reached, and to always merge the smallest runs available for merging. More detailed
examples are given in [105]. One consequence of this optimization is that the merge depth L, i.e., the number of
runs files a record is written to during the sort, is not uniform for all records. Therefore, it makes sense to calculate

Figure 5. Naive Merging.

11

Figure 6. Optimized Merging.

an average merge depth, which may be a fraction.

Fourth, since some operations require multiple sorted inputs, for example merge-join (to be discussed in the
section on matching) and sort output can be passed directly from the final merge into the next operation (as is
natural when using iterators), memory must be divided among multiple final merges. Thus, the final fan-in f and
the "normal fan-in" F should be specified separately in an actual sort implementation. Using a final fan-in of 1
also allows the sort operator to produce output into a very slow operator, e.g., a display operator that allows scrol-
ling by a human user, without occupying a lot of buffer memory for merging input runs over an extended period of
time.

Considering the last two optimization options for merging, the following formula determines the fan-in of
the first merge. Each merge with normal fan-in F will reduce the number of run files by F — 1 (removing F runs,
creating one new one), and the goal is to reduce the number of runs from W to f and then to 1 (the final output).
Thus, the first merge should reduce the number of runs to f + k(F — 1) for some integer k. In other words, the
first merge should use a fan-in of Fo=(W —f —1)mod (F —1)+2. In the example of Figure 6,
(12 ~10- 1) mod (10— 1) + 2 results in a fan-in for the initial merge of Fo= 3. If the sort of Figure 6 were the
input into a merge-join and a final fan-in of 5 were desired, the initial merge should proceed with a fan-in of
Fo=(12-5-Dmod (10-1)+2=8.

If multiple sort operations produce input data for a common consumer operator, e.g., a merge-join, the two
final fan-ins should be set proportionally to the size of the two inputs. For example, if two merge-join inputs are 1
MB and 9 MB, and 20 clusters are available for the two final merges, 2 clusters should be allocated for the first and
18 clusters for the second input (1 /9 =2/ 18).

Sorting is sometimes criticized because it requires, unlike hybrid hashing (discussed in the next subsection),
that the entire input be written to run files and then retrieved for merging. This makes a difference in particular for
files only slightly larger than memory, e.g., 1% times the size of memory. In hybrid hashing, only slightly more
than Y of the memory size is written to temporary files on disk while the remainder of the file remains in memory.
In sorting, the entire file is written to one or two run files and then read for merging. Thus, sorting seems to require
five times more I/O for temporary files than hybrid hashing. However, this is not necessarily true. The simple
trick is to write initial runs in decreasing (reverse) order. When the input is exhausted and merging in increasing
order commences, buffer memory is still full of useful pages with small sort keys that can be merged immediately
without I/O and that never have to be written to disk.

To demonstrate the effect of cluster size optimizations (the second of the four merging issues discussed
above), we sorted 100,000 100-byte records, about 10 MB, with the Volcano query processing system, which

12

Cluster Fan-in Average Disk Pages Total I/O
Size Depth Operations Transferred Cost
[x4 KB] [x 4 KB] [sec]

1 40 1.376 6874 6874 185.598

2 20 1.728 4298 8596 124.642

3 13 1.872 3176 9528 98.456

4 10 1.936 2406 9624 79.398

5 8 2.000 1984 9920 69.440

6 6 2.520 2132 12792 78.884

7 5 2.760 1980 13860 77.220

8 5 2.760 1718 13744 70.438

9 4 3.000 1732 15588 74.476

10 4 3.000 1490 14900 67.050

11 3 3.856 1798 19778 84.506

12 3 3.856 1686 20232 82.614

13 3 3.856 1628 21164 83.028

14 2 5.984 2182 30548 115.646

15 2 5.984 2070 31050 113.850

Table 2. Effect of Cluster Size Optimizations.

175 —

150

Total 125
I/O Cost 100
[sec] 75|
50 —

25—

Ot T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster Size [x 4 KB]

Figure 7. Effect of Cluster Size Optimizations.

includes all merge optimizations described above with the exception of read-ahead and forecasting.> We used a
sort space of forty pages (160 KB) within a fifty-page (200 KB) I/O buffer, varying the cluster size from one page
(4 KB) to fifteen pages (60 KB). The initial run size was 1,600 records, for a total of 63 initial runs. We counted
the number of I/O operations and the transferred pages for all run files, and calculated the total I/O cost by charg-
ing 25 ms per /O operation (for seek and rotational latency) and 2 ms for each transferred page (assuming 2
MB/sec transfer rate). As can be seen in Table 2 and Figure 7, there is an optimal cluster size with minimal 1/O
cost. It is clearly suboptimal to always choose the smallest cluster size (one page) to obtain the largest fan-in and
fewest merge levels. Furthermore, it seems that the range of cluster sizes that result in near-optimal total I/O costs

3 This experiment was reported before in [105].

13

is fairly large; thus, it is not as important to determine the exact value as it i3 to use a cluster size "in the right ball
park." The optimal fan-in is typically fairly small; however, it is not e or 3 as derived by Bratbergsengen under
the (unrealistic) assumption that the cost of an I/O operation is independent of the amount of data being transferred
[39].

2.2. Hashing

For many matching tasks, hashing is an alternative to sorting. In general, when equality matching is
required, hashing should be considered because the complexity of set algorithms based on hashing is O (V) rather
than O (N log N) as for sorting.

Hash-based query processing algorithms use an in-memory hash table of database objects to perform their
matching task. If the entire hash table (including all records or items) fits into memory, hash-based query process-
ing algorithms are very easy to design, understand, and implement, and outperform sort-based alternatives. Note
that for binary matching operations, such as join or intersection, only one of the two inputs must fit into memory.
However, if the required hash table is larger than memory, hash table overflow occurs and must be dealt with.

There are basically two methods for managing hash table overflow, namely avoidance and resolution. In
either case, the input is divided into multiple partition files such that partitions can be processed independently
from one another and the concatenation of the results of all partitions is the result of the entire operation. Partition-
ing should ensure that the partitioning files are of roughly even size, and can be done using either hash-partitioning
or range-partitioning, i.e., based on keys estimated to be quantiles. Usually, partition files can be processed using
the original hash-based algorithm. The maximal partitioning fan-out F, i.e., number of partition files created, is
determined by the memory size divided over the cluster size, i.e., F = | M / C | just like the fan-in for sorting.

In hash table overflow avoidance, the input set is partitioned into F partition files before any in-memory
hash table is built. If it turns out that fewer partitions than have been created would have been sufficient to obtain
partition files that will fit into memory, bucket tuning (collapsing multiple small buckets into larger ones) and
dynamic destaging (determining which buckets should stay in memory) can improve the performance of hash-
based operations [163, 189].

Algorithms based on hash table overflow resolution start with the assumption that overflow will not occur,
but resort to basically the same set of mechanisms as hash table overflow avoidance once it does occur. Hybrid

methods combine the two ideas [67, 240]%. They start out with the premise that no overflow will occur; if it does,
however, they partition the input into multiple partitions of which only one is written immediately to temporary
files on disk. The other F + 1 partitions remain in memory. If another overflow occurs, another partition is written
to disk. If necessary, all F partitions are written to disk. Thus, hybrid hash algorithms use all available memory
for in-memory processing, but at the same time are able to process large input files by overflow resolution. Figure
8 shows the idea of hybrid hash algorithms. As many hash buckets as possible are kept in memory, e.g., as linked
lists as indicated by solid arrows. The other hash buckets are spooled to temporary disk files, called the overflow
or partition files, and are processed in later stages of the algorithm. Hybrid hashing is useful if the input size I is
larger than memory but smaller than the memory size multiplied by the fan-out,ie., M </ <F XM.

4 Although invented for relational join and known as hybrid hash join, hybrid hashing is equally applicable to
all hash-based query processing algorithms.

14

. Hash Buckets
. in Memory
~ ~ 4 \§
.
~ -~ ..
< Partition
. ™ Files
S~ On Disk
N
~ ~
Hash h

Directory

Figure 8. Hybrid Hashing.

In order to predict the number of I/O operations (which actually is not necessary for execution because the
algorithm adapts to its input size but may be desirable for cost estimation during query optimization), the number
of required partition files on disk must be determined. Call this number K, which must satisfy 0<K <F.
Presuming that the assignment of buckets to partitions is optimal and each partition file is of size M, the amount of
data that may be written to K partition files is equal to K x M. Writing K partition files requires K x C output
buffer space, leaving M — K x C memory for the hash table. The optimal X for a given input size I is the minimal
K for which K xM +(M —K xC)=I. Solving this inequality and taking the smallest such K results in
K=[(W -M)/M -C)]. The minimal possible I/O cost, including a factor of 2 for writing and reading the par-
tition files and measured in the amount of data that must be written or read, is 2 X ({ — (M — K x C)). To deter-
mine the I/O time, this amount must be divided by the cluster size and multiplied with the I/O time for one cluster.

For example, consider an input of / = 240 pages, a memory of M = 80 pages, and a cluster size of C =8
pages. The fan-out is F = | 80/8)=10. The number of partition files that need to be created on disk is
K =[(240 -80) /(80— 8) | = 3. In other words, in the best case, K X C =3 x 8 = 24 pages will be used as output
buffers to write K =3 partition files of no more than M = 80 pages, and M — K x C = 80— 3 x 8= 56 pages of
memory will be used as hash table. The total amount of data written to and read from disk is
2 x (240 — (80 — 3 x 8)) = 368 pages. If writing or reading a cluster of C =8 pages takes 40 msec, the total I/O
time is 368 / 8 x 40 = 1.84 sec.

In the calculation of K, we assumed an optimal assignment of hash buckets to partition files. If buckets were
assigned in the most straightforward way, e.g., by dividing the hash directory into F equal-size regions and assign-
ing the buckets of one region to a partition as indicated in Figure 8, all partitions were of nearly the same size and
either all or none of them will fit into their output cluster and therefore into memory. In other words, once hash
table overflow occurred, all input were written to partition files. Thus, we presumed in the earlier calculations that
hash buckets were assigned more intelligently to output partitions.

15

There are three ways to assign hash buckets to partitions. First, each time the hash table overflow occurs, a
fixed number of hash buckets is assigned to a new output partition. In the Gamma database machine, the number

of disk partitions is chosen "such that each bucket’ can be reasonably be expected to fit in memory" [68], e.g., 10%
of the hash buckets in the hash directory for a fan-out of 10 [230]. In other words, the fan-out is set a priori by the
query optimizer based on the expected (estimated) input size. Since the page size in Gamma is relatively small,
only a fraction of memory is needed for output buffers, and an in-memory hash table can be used even while out-
put partitions are being written to disk. Second, in bucket tuning and dynamic destaging {163, 189], a large
number of small partition files is created and then collapsed into fewer partition files no larger than memory. In
order to obtain a large number of partition files and, at the same time, retain some memory for a hash table, the
cluster size is set quite small, e.g. C =1 page, and the fan-out is very large though not maximal, e.g.,
F =M /C /2. Inthe example above, F =40 output partitions with an average size of I / F =6 pages could be
created, even though only K =3 output partitions are required. The smallest partitions are assigned to fill an in-
memory hash table of size M — K X C =80~ 3 x 1 =77 pages. Hopefully, the dynamic destaging rule — when an
overflow occurs, assign the largest partition still in memory to disk — ensures that indeed the smallest partitions
are retained in memory. The partitions assigned to disk are collapsed into K = 3 partitions of no more than M =80
pages, which are processed in K =3 subsequent phases. In binary operations such as intersection and relational
join, bucket tuning is quite effective for skew in the first input. It avoids spooling parts of the second, typically
larger input to temporary partition files because the partitions in memory can be matched immediately using a hash
table in the memory not required as output buffer and because a number of small partitions have been collapsed
into fewer, larger partitions, increasing the memory available for the hash table. For skew in the second input,
bucket tuning and dynamic destaging has no advantage. Another disadvantage of bucket tuning and dynamic des-
taging is that the cluster size has to be relatively small. Third, statistics gathered before hybrid hashing commences
can be used to assign hash buckets to partitions [114].

Unfortunately, it is possible that one or more partition files are larger than memory. In that case, partitioning

<
<
éz
%::

Figure 9. Recursive Partitioning.

HEHIn

il

> Bucket in [68] means what is called an output partition in this survey.

16

is used recursively until the file sizes have shrunk to memory size. Figure 9 shows how a hash-based algorithm for
a unary operation such as aggregation or duplicate removal partitions its input file over multiple recursion levels.
The recursion terminates when the files fit into memory. In the deepest recursion level, hybrid hashing may be
employed.

If the partitioning (hash) function is good and creates a uniform hash value distribution, the file size in each
recursion level shrinks by a factor equal to the fan-out, and therefore the number of recursion levels L is loga-
rithmic with the size of the input being partitioned. After L partitioning levels, each partition file is of size
I"=1I/FL, In order to obtain partition files suitable for hybrid hashing (with M <1’ < F x M), the number of full
recursion levels L, i.e., levels at which hybrid hashing is not applied, is L = llog rdIM)J. The I/O cost of the

remaining step using hybrid hashing can be estimated using the hybrid hash formula above with I replaced by 7’
and multiplying the cost with FL because hybrid hashing is used for this number of partition files. Thus, the total
I/O cost for partitioning an input and using hybrid hashing in the deepest recursion level is

2xI XL +2><FL><{I'—(M—K xC)]
=2><[1 X(L+1)-FLxM-K xC)J
=2x[1 x(L+1)-—FLX[Mal—(l’—M)/(M—C)-I xc]].

=2><{1><(L+1)—FLx[M—[(I/FL—M)/(M—C)}xcn.

A major problem with hash-based algorithms is that their performance depends on the quality of the hash
function. In many situations, fairly simple hash functions will perform reasonably well. Remember that the pur-
pose of using hash-based algorithms usually is to find database items with a specific key or to bring like items
together; thus, methods as simple as using the value of a join key as hash value will frequently perform satisfac-
torily. For string values, good hash values can be determined by using binary exclusive "or" operations or by
determining cyclic redundancy check (CRC) values as used for reliable data storage and transmission. If the qual-
ity of the hash function is a potential problem, universal hash functions should be considered [43].

If the partitioning is skewed, i.e., the hash value distribution is non-uniform and the partition files are of
uneven sizes, the recursion depth may be unexpectedly high, making the algorithm rather slow. This is analogous
to the worst-case performance of quicksort, O (N2) comparisons for an array of N items, if the partitioning pivots
are chosen extremely poorly and do not divide arrays into nearly equal subarrays.

Skew is the major danger for inferior performance of hash-based query processing algorithms. There are
several ways to deal with skew. For hash-based algorithms using overflow avoidance, bucket tuning and dynamic
destaging are quite effective [163, 189]. Another method is to obtain statistical information about hash values and
to use it to carefully assign hash buckets to partitions. Such statistical information can be kept in the form of histo-
grams, and can either come from permanent system catalogs (meta-data), from sampling the input, or from previ-
ous recursion levels. For example, for an intermediate query processing result for which no statistical parameters
are known a priori, the first partitioning level might have to proceed naively pretending that the partitioning hash
function is perfect, but the second recursion and further levels should be able to use statistics gathered in earlier
levels to ensure that each partitioning step creates even partitions, i.e., that the data is partitioned with maximal
effectiveness [40]. As a final resort, if skew cannot be managed otherwise or if not distribution skew but

17

duplicates are the problem, some systems resort to algorithms that are not affected by data or hash value skew. For
example, Tandem’s hash join algorithm resorts to nested loops join (to be discussed later) [295].

As for sorting, larger cluster sizes result in faster I/O at the expense of smaller fan-outs, with the optimal
fan-out being fairly small [112]. Thus, multiple recursion levels are not uncommon for large files, and statistics
gathered on one level to limit skew effects on the next level are a realistic method for large files to control the per-
formance penalties of uneven partitioning.

3. Disk Access

All query evaluation systems have to access base data stored in the database. For databases in the megabyte
to terabyte range, base data are typically stored on secondary storage in form of rotating random-access disks.
However, deeper storage hierarchies including optical storage, (maybe robot-operated) tape archives, and remote
storage servers will also have to be considered in future high-functionality high-volume database management sys-
tems, e.g., as outlined in [268]. Research into database systems supporting and exploiting a deep storage hierarchy
is still in its infancy.

3.1. File Scans

The first operator to access base data is the file scan, typically combined with a built-in selection facility.
There is not much to be said about file scan except that it can be made very fast using read-ahead, particularly
large-chunk (e.g., "track-at-a-crack") read-ahead. Efficient read-ahead requires contiguous file allocation, which is
supported by many operating systems, frequently called extents. The UNIX operating system does not provide
contiguous files, and many database systems running on UNIX use "raw" devices instead, even though this means
that the database management system must provide operating system functionality like file structures, disk space
allocation, and buffering.

The disadvantages of large units of I/O are buffer fragmentation and the waste of I/O and bus bandwidth if
only individual records are required. Permitting different page sizes may seem to be a good idea, even at the added
complexity in the buffer manager [41, 248], but this does not solve the problem of mixed sequential scans and ran-
dom record accesses within one file. The common solution is to choose a middle-of-the-road page size, e.g., 8 KB,
and to support multi-page read-ahead.

3.2. Associative Access using Indices

In order to reduce the number of accesses to secondary storage (which is relatively slow compared to main
memory), most database systems employ associative search techniques in the form of indices that map key or attri-
bute values to locator information with which database objects can be retrieved. The best-known and most-often
used database index structure is the B-tree [13, 61]. Various extensions to the basic structure have been proposed
for fast loading from a sorted file, increased fan-out through prefix and suffix truncation, faster scans in B-trees,
better space utilization in random insertions into B*-trees, and better locking behavior through preventive mainte-
nance in top-down B-trees [120]. Interestingly, B-trees seem to be having a renaissance as a research subject, in
particular with respect to improved space utilization [7], concurrency control [256], recovery [175], parallelism
[232], and on-line creation of B-trees for very large databases [255]. On-line storage structure reorganization and
modification, though not a new idea [195], is likely to become an important research topic within database research
over the next few years as databases become larger and larger and are spread over many disks and nodes in parallel
and distributed systems.

18

While most current database system implementations only use some form of B-trees, there is an amazing
variety of index structures described in the literature, e.g., [14, 16, 119, 122-124, 134, 145-147, 150, 157, 167, 170,
171, 179, 192, 210, 226, 250]. One of the few multi-dimensional index structures actually implemented in a com-
plete database management system are R-trees in Postgres [124, 265].

The large variety of index types can be described by the following six characteristics. First, does the index
support range retrievals and ordered scans, or only exact-match equality lookups? This issue is the main difference
between sort-based indices like B-trees and hash-based indices. Indices that support ordered key domains tend to
have logarithmic insertion, deletion, and search costs, while indices based on hashing have constant average
maintenance complexity.

Second, is the index structure static (e.g., ISAM) or dynamic (e.g., B-tree)? In other words, either the index
structure allocates a fixed number of "buckets” when it is first created and resorts to overflow pages if buckets can-
not hold all data items that logically belong in them, or it reorganizes itself incrementally as items are inserted and
deleted.

Third, an index structure can be programmed to permit only single-attribute search or it can support multiple
attributes in a hierarchical fashion. Such index implementations supporting composite keys, e.g., last name and
first name, are still single-dimensional indices because the components of the composite key are ordered hierarchi-
cally into a major and a minor key. Note that this is an implementation detail; logically, multiple attributes are
concatenated into one search key.

Fourth, does the index support only single-dimensional data or also data representing multiple dimensions?
True multi-dimensional indices support all dimensions as equals, for example the x- and y-axes in a geometric
application. Figure 10 shows a node in a quadtree [15, 226, 278], the simplest multi-dimensional index structure.
The region represented by this node is divided along both dimensions, and each of the four subregions is
represented by its own node.

The use of multi-dimensional indices for record-keeping applications has been largely ignored, despite their
effectiveness for conjunctive queries. Consider a search for employees within both a certain age and salary range,
e.g., 20 < employee.age < 30 and 60 < employee.salary < 70. In a system with single-dimensional indices only,

100 .
:
Pointer : Pointer
2 ! 4
i
i
¥
U S : ----------
1
Pointer I Pointer
1 1 3
1
I
I
50 i
0 25 50

Figure 10. A Node in a Quadtree.

19

either only one index can be utilized or two pointer lists must be intersected. Using only one index results in more
data accesses since all employee records satisfying one clause must be inspected to evaluate the other clause.
Intersection of two lists (or sets) can be quite expensive as will be seen in the subsequent section on binary match-
ing which includes join and intersection. A two-dimensional index, on the other hand, permits much more direct
access to only the required employees because it supports both restriction clauses simultaneously. Presuming that
the two dimensions represent age and salary, the relevant region is shaded in Figure 10. It is clear from the figure
that more than one pointer from one node may need to be followed for some range queries, possibly at each index
level. However, a multi-dimensional index promises to be still faster for large data sets than any method using
single-dimensional indices. Of course, multi-dimensional indices can also be used for disjunctive queries, although
their performance advantage is not as obvious for disjunctive as for conjunctive queries.

Fifth, do the indices support point data or range data? Range data have two data points in each dimension,
the standard example is the case of two-dimensional rectangles. One method to support N -dimensional range data
is to use an index structure for point data in 2 X N dimensions. For example, the region shaded in Figure 10 could
be represented in a four-dimensional index for point data as x; =20, x2 =30, x3=60, and x4="70. One of the
problems with this solution is that pairs of dimensions will likely be correlated, and the data structure may or may
not include space-efficient balancing mechanisms.

Sixth, most index implementations can be switched to accept or reject duplicate keys. Finally, different
index structures can be compared by their average and worst case insertion, lookup, and deletion performance and
space utilization. '

The common theme for all index structures is that they associatively map some attribute of a data object to
some locator information that can then be used to retrieve the actual data object. Typically, in relational systems,
an attribute value is mapped to a tuple or record identifier (TID or RID). Different systems use different
approaches, but it seems that most new designs do not firmly attach the record lookup to the index scan.

There are several advantages to separating index scan and record lookup. First, it is possible to scan the
index only. For example, if only salary values are needed (to determine the sum of all salaries), it is sufficient to
access the salary index only without actually retrieving the data records. The advantages are that (i) fewer 1/O’s
are required (consider the number of 1/O’s for retrieving N successive index entries and those to retrieve N index
entries plus N full records, in particular if the index is non-clustering [183]) and (ii) the remaining I/O operations
are basically sequential along the leaves of the index (at least for a B*-tree; other index types behave differently).
The optimizers of several commercial relational products have recently been revised to recognize situations in
which an index-only scan is sufficient. Second, if two or more indices can be used for a query, it may be more
effective to union or intersect two RID lists obtained from two index scans than using only one index (algorithms
for union and intersection are discussed below as join algorithms in the section on binary matching). Third, for
non-clustering indices, sets of RID’s can be sorted by physical location and the records retrieved very efficiently,
reducing substantially the number of disk seeks and their seek distances. Obviously, the second and third advan-
tages can be combined.

Record access performance for non-clustering indices can also be addressed without performing the entire
index scan first (as required if all RID’s are to be sorted) by using a "window" of RID’s. Instead of obtaining one
RID from the index scan, retrieving the record, getting the next RID from the index scan, etc., the lookup operator
(sometimes called "functional join") could load N RID’s, sort them into a priority heap, retrieve the most con-
veniently located record, get another RID, insert it into the heap, retrieve a record, etc. Thus, a functional join

20

operator using a window always has N open references to items that must be retrieved, giving the functional join
operator significant freedom to fetch items from disk efficiently. Of course, this technique works most effectively
if no other transactions or operators use the same disk drive at the same time.

This idea has been generalized to assemble complex objects. In object-oriented systems, objects can contain
pointers to (identifiers of) other objects or components, which in turn may contain further pointers, etc. If multiple
objects and all their unresolved references can be considered concurrently when scheduling disk accesses,
significant savings in disk seek times can be achieved [155].

3.3. Faster Storage Devices

Both for file scans and for index retrieval, the raw performance of the underlying storage (disk) system is
crucial. Numerous ideas for faster disk access have been proposed, including RAM disks, i.e., simulation of disk
drives using semi-conductor memory, and improvements in disk hardware speed, including physically smaller
disks for faster seeks, faster disk rotation for shorter rotational latencies, and improved channel transfer rates.
Other commonly used techniques are dual- or even quadruple-ported memory for concurrent transfer to or from
multiple disks and processors and the insertion of RAM caches at various points in the data staging hierarchy, e.g.,
the disk controller or the drive. Write-only disk caches are an interesting proposal for cache use because most disk
writes can be delayed in safe RAM and later piggy-backed transparently onto disk reads to the right cylinder or
track, thus giving the illusion of instantaneous writes [254].

Recently, the idea of using multiple disk devices as a single, more powerful device has received considerable
attention, and is now commonly known as Redundant Array of Inexpensive Disks (RAID) [204], although essen-
tially the same idea had been proposed earlier as disk striping [222]. Put simply, by distributing the data and
blocks of a file over multiple disk devices, higher transfer rates can be achieved. Furthermore, by using controlled
redundancy, the mean time to failure as well as the mean time to repair can be improved substantially [28, 51, 62,
92,98]. The idea can be further generalized from multiple disks to multiple nodes in a distributed system [266].

The problem with all disk array designs is to ensure proper placement of data on the disks to obtain the
benefits of parallel I/O without incurring the additional overhead of controlling many devices for relatively simple
and small requests [262, 263, 283]. Furthermore, RAID disk controller prohibit accessing the individual disks in a
disk array separately, although it could be very useful for database query processing, in particular while merging
multiple sorted runs or while partitioning large files. In sort- and hash-based query processing algorithms, access
to individual disk drives could guarantee sequential I/O for temporary files including the merge input and partition-
ing output. Without solving these problems, it will be difficult to maximize disk array benefits; nonetheless,
several vendors are making disk arrays commercially available, including the implementation of RAID control
logic within device controllers to permit replacing a disk drive by a disk array.

3.4. Buffer Management

1/O cost can be further reduced by caching data in an I/O buffer. A large number of buffer management
techniques have been devised; we point out only a few references. Effelsberg surveys many of the buffer manage-
ment issues, including those pertaining to issues of recovery, e.g., write-ahead logging [78]. In his survey paper on
the interactions of operating systems and database management systems, Stonebraker pointed out that the "stan-
dard" buffer replacement policy, LRU (least recently used), is wrong for many database situations [259]. For
example, a file scan reads a large set of pages but uses them only once, "sweeping” the buffer clean of all other

21

pages, even if they might be useful in the future and should be kept in memory. Sacco and Schkolnick focused on
the non-linear performance effects of buffer allocation to many relational algorithms, e.g., nested loops join [219,
220]. Chou and DeWitt combined these two ideas in their DBMIN algorithm which allocates a fixed number of
buffer pages to each scan, depending on its needs, and uses a local replacement policy for each scan appropriate to
its reference pattern [56, 57]. A recent study into buffer allocation is the study by Faloutsos et al. on using margi-
nal gain for buffer allocation [84, 193]. A very promising research direction for buffer management in object-
oriented database systems is the work by Palmer and Zdonik on saving reference patterns and using them to predict
and prevent future page faults by prefetching [203].

The interactions of index retrieval and buffer management were studied by Sacco as well as Mackert and
Lohman [183, 221], while several authors studied database buffer management and virtual memory provided by
the operating system, e.g., {246, 259, 276].

3.5. Physical Database Design

In order to minimize the I/O costs in a database system, it is important that (a) the data structures on disk
permit efficient retrieval of only relevant data through effective access paths, and (b) data be arranged and placed
on disk such that the IO cost for relevant data is minimized. Both of these concerns are addressed in physical
database design. Because physical database design is a wide area in which there are many studies on individual
techniques but no comprehensive set of rules or guidelines on how to consider all of them in combination, we only
list a number of choices to be made in physical database design and a few selected references:

(1) index selection, i.e., indexed attributes and index structure, e.g. [119, 130, 157],

(2) clustering, i.e., assignment of data to disk locations, e.g. [9, 47, 48, 52, 90, 96, 133, 144, 197, 253, 292},
(3) declustering (striping) over multiple disks or nodes [117, 204, 222, 266, 283],

(4) replication for reliability and performance, e.g. [28, 51, 62, 98, 140, 204],

(5) physical representation types for abstract data types,

(6) management of derived information, e.g. [32, 144, 152, 206, 216, 2741,

(7) physical pointers to represent relationships, e.g. [42, 50, 211, 244, 272},

(8) data compression, e.g. [63, 108, 149, 178, 182, 194],

(9) assignment of data to deeper archival storage levels, e.g. [268], and

(10) automatic staging (rules) of data between storage levels, e.g. [97, 203].

It is important to recognize that most of these choices exist independently of the data model. For example,
replication has beneficial availability and performance effects in network, relational, semantic, and object-oriented
databases alike. On the other hand, clustering might have more effect in systems with logical or physical refer-
ences, i.e., network and object-oriented databases, but master-detail clustering is used in relational system as well
and is particularly effective in conjunction with index and pointer joins (to be discussed later in the section on
binary matching). Thus, extensible database systems designed to build high-performance database systems must
allow for a wide array of physical database design options.

While the number of choices for physical database design is confusing, the most significant source of com-
plexity in physical database design is that many decisions are interdependent. For example, the optimal clustering
of data items depends on whether or not replication of data items is supported. For example, when the clustering

22

module cannot decide among two advantageous locations for a data item, it might choose to place a copy in each
location. Replication must not be used too freely, however, since it can increase system performance by giving the
optimizer or retrieval algorithm the choice of which copy to use, but also decrease overall performance if the cost
of updating and maintaining multiple copies dominates their benefits [29, 144]. Moreover, the performance effects
of replication are different depending on whether or not replicas of collections are declustered over multiple
storage media as wholes or by means of partitioning, and whether or not the replicas are clustered equally. There
is only limited research into making physical database design easier, e.g., [86, 87, 153]. Considering the complex-
ity of physical database design, automating physical database design in a comprehensive and extensible way seems
to be an extremely fruitful area for database research, in particular in light of the added choices and complexity
faced by the database implementor and administrator in extensible and object-oriented database management sys-
tems.

4. Aggregation and Duplicate Removal

Aggregation is a very important statistical concept to summarize information about large amounts of data.
The idea is to represent a set of items by a single value or to classify items into groups and determine one value per
group. Most database systems support aggregate functions for minimum, maximum, sum, count, and average
(arithmetic mean). Other aggregates, e.g., geometric mean or standard deviation, are typically not provided, but
may be constructed in some systems with extensibility features. Aggregation has been added to relational calculus
and algebra and adds the same expressive power to each of them [165].

Aggregation is typically supported in two forms, called scalar aggregates and aggregate functions [81].
Scalar aggregates calculate a single scalar value from a unary input relation, e.g., the sum of the salaries of all
employees. Scalar aggregates can easily be determined using a single pass over a data set. Some systems exploit
indices, in particular for minimum, maximum, and count.

Aggregate functions, on the other hand, determine a set of values from a binary input relation, e.g., the sum
of salaries for each department. Aggregate functions are relational operators, i.e., they consume and produce rela-
tions. Figure 11 shows the output of the query "count of employees by department.” The "by-list" or grouping
attributes are the key of the new relation, the department attribute in this example.

Algorithms for aggregate functions require grouping, €.g., employee items may be grouped by department,
and then one output item is calculated per group. This grouping process is very similar to duplicate removal in
which equal data items must be brought together, compared, and removed. Thus, aggregate functions and dupli-
cate removal are always implemented by the same module. There are only two differences between aggregate
functions and duplicate removal. First, in duplicate removal, items are compared on all their attributes, but only on
the attributes in the by-list of aggregate functions. Second, an identical item is immediately dropped from further
consideration in duplicate removal whereas in aggregate functions some computation is performed before the

Department Count
Toy 3
Shoe 9
Hardware 7

Figure 11. Count of Employees by Department.

23

second item of the same group is dropped. Both differences can easily be dealt with using a switch in an actual
algorithm implementation. Because of their similarity, duplicate removal and aggregation are described and used
interchangeably here.

In most existing commercial relational systems, aggregation and duplicate removal algorithms are based on
sorting, following Epstein’s work [81]. Since aggregation requires that all data be consumed before any output can
be produced, and since main memories were significantly smaller 15 years ago when the prototypes of these sys-
tems were designed, these implementations used temporary files for output, not streams and iterator algorithms.
However, there is no reason why aggregation and duplicate removal cannot be implemented using iterators.

4.1. Aggregation Algorithms Based on Sorting

There are basically two types of algorithms for duplicate removal, one based on sorting and one based on
hashing. Sorting will bring equal items together, and duplicate removal will then be easy. The cost of duplicate
removal is dominated by the sort cost, and the cost of this naive duplicate removal algorithm based on sorting can
be assumed to be that of the sort operation. For aggregation, items are sorted on their grouping attributes.

This simple method can be improved by detecting duplicate removal as possible, easily implemented in the
routines that write run files during sorting. With early duplicate removal, a run file can never contain more items
than the final output (because otherwise it would contain duplicates!), which may speed up the final merges
significantly [27].

Since aggregation implemented by sorting using replacement selection can perform aggregation of matching
items in the priority heap, it is only necessary that the output, not the input, fit into memory to make the entire sort
and aggregation operation proceed without I/O to temporary run files. A corresponding optimization for sort-based
aggregation using quicksort can be designed, but would be fairly cumbersome to implement.

As for any external sort operation, the optimizations discussed in the section on sorting, namely read-ahead
based on forecasting, large cluster sizes, merge optimizations, and reduced final fan-in for binary consumer opera-
tions, are still applicable when sorting is used to perform aggregation or duplicate removal. However, to limit the
complexity of the formulas, we will derive I/O cost formulas without the effects of these optimizations.

The amount of I/O in sort-based aggregation is determined by the number of merge levels and the effect of
early aggregation on each merge step. The total number of merge levels is unaffected by aggregation; in sorting
with quicksort and without optimized merging, the number of merge levelsis L = | logr (I / M) | for input size I,

memory size M, and fan-in F. In the first merge levels, the likelihood is negligible that items of the same group
end up in the same run file, and we therefore assume that the sizes of run files are unaffected until their sizes would
exceed the size of the final output. Runs on the first few merge levels are of size M x F* for level i, and runs of
the last levels have the same size as the final output. Assuming the output cardinality (number of items) is G -times
less than the input cardinality (G =1 / O), where G is called the average group size or the reduction factor, only
the last [logp (G) | merge levels, including the final merge, are affected by early aggregation because in earlier

levels, more than G runs exist and items from each group are distributed over all those runs, giving a negligible
chance of early aggregation.

In the first merge levels, all input items participate, and the cost for these levels can be determined without
explicitly calculating the size and number of run files on these levels. In the affected levels, the size of the output
runs is constant, equal to the size of the final output O =1 / G, while the number of run files decreases by a factor

24

equal to the fan-in F in each level. The number of affected levels that create run files is L, = {log F (G)} —1; the

subtraction of 1 is necessary because the final merge does not create a run file but the output stream. The number
of unaffected levels is Ly =L — L,. The number of input runs is W / F* on level | (recall the number of initial

runs W =1 / M from the discussion of sorting). The total cost, including a factor 2 for writing and reading, is®

L -
2xI XL1+2x0 x ZjW/Fl
151,

=2xI XL, +2x0 xWx{l/FL‘——I/FL]/[l—I/F].

For example, consider aggregating / = 100 MB input into O =1 MB output (i.e., reduction factor G = 100)
using a system with M =100 KB memory and fan-in F =10. Since the input is W = 1,000 times the size of
memory, L =3 merge levels will be needed. The last L, =1logr (G)—1=1 merge level into temporary run files
will permit early aggregation. Thus, the total I/O will be

2><100><2+2><1xlOOOx{1/102—1/103]/[1—-1/10}

=400+ 2 x 1000 x 0.009 / 0.9 = 420 MB

which has to be divided by the cluster size used and multiplied by the time to read or write a cluster to estimate the
I/O time for aggregation based on sorting. Naive separation of sorting and subsequent aggregation would have
required reading and writing the entire input file three times, for a total of 600 MB I/O. Thus, early aggregation
realizes a 30% savings in this case.

Aggregate queries may require that duplicates be removed from the input set to the aggregate functions, e.g.,
using the SQL distinct keyword. If such an aggregate function is to be executed using sorting, early aggregation
can be used only for the duplicate removal part. However, the sort order used for duplicate removal can be suit-
able to permit the subsequent aggregation as a simple filter operation on the duplicate removal’s output stream.

4.2, Aggregation Algorithms Based on Hashing

Hashing can also be used for aggregation by hashing on the grouping attributes. Items of the same group (or
duplicate items in duplicate removal) can be found and aggregated when inserting them into the hash table. Since
only output items, not input items, are kept in memory, hash table overflow occurs only if the output does not fit
into memory. However, if overflow does occur, the partition files (all partitioning files in any one recursion level)
will basically be as large as the entire input because once a partition is being written to disk, no further aggregation
can occur until the partition files are read back into memory.

The amount of I/O for hash-based aggregation depends on the number of partitioning (recursion) levels
required before the output (not the input) of one partition fits into memory. This will be the case when partition
files have been reduced to the size G X M. Since the partitioning files shrink by a factor of F at each level
(presuming hash value skew is absent or effectively counter-acted), the number of partitioning (recursion) levels is

{logp d/GIM)-l = [logp ©OIM)-|. The costs at each level are equal to the input file size /. The total I/O

6 Using ﬁoa"= {l—aN“]/[l—a}and ﬁ‘ka"= ﬁ‘,a"— Kila"= [aK—-aN”]/[L-aJ.
i€ i i i<h

i= i=0

25

cost for hashing with overflow avoidance, including a factor of 2 for writing and reading, is

2 %I X (logp © /M)].

The last partitioning level may use hybrid hashing, i.e., it may not involve I/O for the entire input file. In that
case, L = [logp OI/M)J complete recursion levels involving all inputs records are required, partitioning the

input into files of size I’ =1 / F£. In each remaining hybrid hash aggregation, the size limit for overflow files is
M x G because such an overflow file can be aggregated in memory. The number of partition files K must satisfy
KXMXG+M—-KxC)xG 2I’, meaning K = [U'1G-M)yIM -)] partition files will be created. The
total I/O cost for hybrid hash aggregation is

2x1I XL +2><FL><[1’—(M—K xC)xG}
=2><[1 XL +1)-FL x(M—KxC)xG]

=2><[1 x(L+1)~FL><{M—[(I’/G —M)/(M—C)]xc] xG].

As for sorting, if an aggregate query requires that duplicates be removed from the input set to the aggregate
function, the group size or reduction factor of the duplicate removal step determines the performance of hybrid
hash duplicate removal. The subsequent aggregation can be performed as a simple filter operation on the duplicate
removal output stream. ‘

4.3. A Rough Performance Comparison

It is interesting to note that the performance of both sort- and hash-based aggregation is logarithmic and
improves with increasing reduction factors. Figure 12 compares the performance of sort- and hash-based

600 —
500 —
400 —
I/O
[MB] 300 -
200 — . .) 9
O Sorting without early aggregation
100 — A Sorting with early aggregation
x Hashing without hybrid hashing
0 [0 Hashing with hybrid hashing

[I I I I ! [1 [I
1 2 3 5 10 20 30 50 100 200300 500 1000

Group Size or Reduction Factor

Figure 12. Performance of Sort- and Hash-Based Aggregation.

aggregation using the formulas developed above for 100 MB input data, 100 KB memory, fan-in or fan-out of 10,
and varying group sizes or reduction factors. The output size is the input size divided by the group size.

It is immediately obvious in Figure 12 that sorting without early aggregation is not competitive because it
does not limit the sizes of run files, confirming the results of Bitton and DeWitt [27]. The other algorithms all
exhibit similar, though far from equal, performance improvements for larger reduction factors. Sorting with early
aggregation improves once the reduction factor is large enough to affect not only the final but also previous merge
steps.

Hashing without hybrid hashing improves in steps as the number of partitioning levels can be reduced, with
"step" points where G =1 /M / F* for some {. Hybrid hashing exploits all available memory to improve perfor-
mance, and generally outperforms overflow avoidance hashing. At points where overflow avoidance hashing
shows a step, hybrid hashing has no effect and the two hashing schemes have the same performance.

While hash-based aggregation and duplicate removal seem superior in this rough analystical performance
comparison, recall that the cost formula for sort-based aggregation does not include the effects of replacement
selection or the merge optimizations discussed earlier in the section on sorting; therefore, Figure 12 shows an
upper bound for the I/O cost of sort-based aggregation and duplicate removal. Furthermore, since the cost formula
for hashing presumes optimal assignments of hash buckets to output partitions, the real costs of sort- and hash-
based aggregation will be much more similar than they appear in Figure 12. The important point is that both their
costs are logarithmic with the input size, improve with the group size or reduction factor, and are quite similar
overall.

4.4. Additional Remarks on Aggregation

Some applications require multi-level aggregation. For example, a report generation language might permit
a request like "sum (employee.salary by employee.id by employee.department by employee.division)" to create a
report with an entry for each employee and a sum for each department and each division. In fact, specifying such
reports conveniently was the driving design goal for the report generation language RPG. In SQL, this requires
multiple cursors within an application program, one for each level of detail. This is very undesirable for two rea-
sons. First, the application program performs essentially a three-way join, which should be provided by the data-
base system. Second, the database system more likely than not executes the operations for these cursors indepen-
dently from one another, resulting in three sort operations on the employee file instead of one.

If complex reporting applications are to be supported, the query language should support direct requests
(perhaps similar to the syntax suggested above), and the sort operator should be implemented such that it can per-
form the entire operation in a single sort and final pass over the sorted data. An analogous algorithm based on
hashing can be defined; however, if the aggregated data are required in sort order, sort-based aggregation will be
the algorithm of choice.

For some applications, exact aggregate functions are not required; reasonably close approximations will do.
For example, exploratory (rather than final precise) data analysis is frequently very useful in "approaching” a new
set of data [277]. In real-time systems, precision and response time may be reasonable tradeoffs. For database
query optimization, approximate statistics are a sufficient basis for selectivity estimation, cost calculation, and
comparison of alternative plans. For these applications, faster algorithms can be designed that rely either on a sin-
gle sequential scan of the data (no run files, no overflow files) or on sampling [5, 136-138].

27

5. Binary Matching Operations

While aggregation is essential for condensing information, there are a number of database operations that
combine information from two inputs, files, or sets and therefore are essential for database systems’ ability to pro-
vide more than reliable shared storage and to perform inferences, albeit limited. A group of operators that all do
basically the same task are called the one-to-one match match operations here because an input item contributes to
the output depending on the its match with one other item. The most prominent among these operations is the rela-
tional join; the other operations are left and right semi-joins, left, right, and symmetric outer-joins, anti-join, left
and right anti-semi-join, intersection, union, left and right differences, and anti-difference. Figure 13 shows the
basic principle underlying all these operations, namely separation of the matching and non-matching components
of two sets, called R and S in the figure, and production of appropriate subsets, possibly after some transformation
and combination of records as in the case of a join. Since all these operations require basically the same steps and
can be implemented with the same algorithms, it is logical to implement them in one general and efficient module.
For simplicity, only join algorithms are discussed here. Moreover, we discuss algorithms for only one join attri-
bute since the algorithms for multi-attribute joins (and their performance) are not different from those for single-
attribute joins.

Since set operations like intersection and difference will be used and must be implemented efficiently for any
data model, we believe that this discussion is relevant to relational, extensible, and object-oriented database sys-
tems alike. Furthermore, binary matching problems occur in some surprising places. Consider an object-oriented
database system that uses a table to map logical object identifiers (OID’s) to physical locations (record identifiers
or RID’s). Resolving a set of OID’s to RID’s can be regarded (as well as optimized and executed) as a semi-join
of the mapping table and the set of OID’s, and all conventional join strategies can be employed. Another example
that can occur in a database management system for any data model is the use of multiple indices in a query: the
pointer (OID or RID) lists obtained from the indices must be intersected (for a conjunction) or unioned (for a

R S
Output Match on all Match on one
Attributes Attribute
A Difference Anti-semi-join
B Intersection Join, semi-join
C Difference Anti-semi-join
A, B Left outer join
A,C Anti-difference Anti-join
B,C Right outer join
A,B,C Union Symmetric outer join

Figure 13. Binary One-to-One Matching.

28

disjunction) to obtain the list of pointers to items that satisfy the whole query. Moreover, the actual lookup of the
items using the pointer list can be regarded as a semi-join of the underlying data set and the list, as in Kooi’s thesis
and the Ingres product [168, 169] and a recent study by Shekita and Carey [244]. Finally, path expressions in
object-oriented database systems like "employee.department.manager.office.floor” can frequently be interpreted,
optimized, and executed as a sequence of one-to-one match operations using existing join and semi-join algo-
rithms. Thus, even if relational systems were completely abolished and replaced by object-oriented database sys-
tems, set matching and join techniques developed in the relational context will continue to be important for the per-
formance of database systems.

Most of today’s database systems use only nested loops join and merge-join because an analysis performed
in connection with the System R project determined that of all the join methods considered, one of these two
always provided either the best or very close to the best performance [33, 34]. However, the System R study did
not consider hash join algorithms which are now regarded as more efficient in many cases.

For the I/O cost formulas given here, we assume that the left and right inputs have R and § pages, respec-
tively, and that the memory size is M pages. We assume that the algorithms are implemented as iterators, and omit
the cost of reading stored inputs and writing an operation’s output from the cost formulas.

5.1. Nested Loops Algorithms

The simplest and, in some sense, most direct algorithm for binary matching is the nested loops join: for each
item in one input (called the outer input), scan the entire other input (called the inner input) and find matches. The
main advantage of this algorithm is its simplicity. Another advantage is that it can also compute a Cartesian pro-
duct and any @-join of two relations, i.e., a join with an arbitrary two-relation comparison predicate. However,
Cartesian products are avoided by query optimizers because their outputs tend to contain many data items that will
eventually not satisfy a query predicate verified later in the query evaluation plan.

Since the inner input is scanned repeatedly, it must be stored in a file, i.e., a temporary file if the inner input
is produced by a complex subplan. This alternative does not change the cost of nested loops, it just replaces the
first read of the inner input with a write.

Except for very small inputs, the performance of nested loops join is disastrous because the inner input is
scanned very often, once for each item in the outer input. There are a number of improvements that can be made
to this naive nested loops join. First, for one-to-one match operations in which a single match carries all necessary
information, e.g., semi-join and intersection, a scan of the inner input can be terminated after the first match for an
item of the outer input. Second, instead of scanning the inner input once for each item from the outer input, the
inner input can be scanned once for each page of the outer input, an algorithm called block nested loops join [161].
Third, the performance can be improved further by filling all of memory except K pages with pages of the outer
input, and using the remaining K pages to scan the inner input and to save pages of the inner input in memory.
Finally, scans of the inner input can be made a little faster by scanning the inner input alternatingly forwards and
backwards, thus reusing the last page of the previous scan and therefore saving one I/O per scan. The I/O cost for
this version of nested loop join is the product of the number of scans (determined by the size of the outer input) and
the cost per scan of the inner input, plus K I/O’s because the first inner scan has to scan or save the entire inner
input. Thus, the total cost for temporary files or for scanning the inner input repeatedly is
[R/M-K)] x(S -K)+K. This expression is minimized if K =1 and R = §, i.e., the larger input should be
the outer.

29

If the critical performance measure is not the amount of data read in the repeated inner scans but the number
of I/O operations, more than one page should be moved in each I/O, even if more memory has to be dedicated to
the inner input and less to to the outer input, thus increasing the number of passes over the inner input. If C' pages
are moved in each I/O on the inner input, and M — C pages for the outer input, the number of I/O’s is
[R/ M -C)] X (S / C)+ 1, which is minimized if C =M /2. In other words, in order to minimize the number
of large-chunk I/O operations, the cluster size should be chosen as half the available memory size [129].

Finally, there is the index nested loops join which uses an index on the inner input’s join attribute to replace
file scans by index lookups. The fastest indices for exact match queries are hash indices, but any index structure
can be used, ordered or unordered (hash), single- or multi-attribute, single- or multi-dimensional. Therefore,
indices on frequently used join attributes (keys and foreign keys in relational systems) may be useful. Index nested
loops is also used sometimes with indices built on-the-fly, i.e., indices built on intermediate query processing
results. For complex queries, multi-way joins are sometimes written as a single module, i.e., a module that per-
forms index look-ups into indices of multiple relations and joins all relations simultaneously. However, it is not
clear how such a multi-way join implementation is superior to multiple index nested loops joins.

5.2. Merge-Join Algorithms

The second commonly used join method is the merge-join. It requires that both inputs are sorted on the join
attribute. Merging the two inputs is similar to the merge process used in sorting. An important difference, how-
ever, is that one of the two merging scans (the one which is advanced on equality, usually called the inner input)
must be backed up when both inputs contain duplicates of a join attribute value and the specific one-to-one match
operation requires that all matches be found, not just one match. Thus, the control logic for merge-join variants for
join and semi-join are slightly different. Some systems include the notion of "value packet,” meaning all items
with equal (join attribute) values [168, 169]. An iterator’s next call returns a value packet, not an individual item,
which makes the control logic for merge-join much easier. If (or after) both inputs have been sorted, the merge-
join algorithm typically does not require any I/O, except when "value packets” are larger than memory.

An input may be sorted because a stored database file was sorted, an ordered index was used, an input was
sorted explicitly, or the input came from an operation that produced sorted output, e.g., a merge-join. The last
point makes merge-join an efficient algorithm if items from multiple sources are matched on the same join
attribute(s) in multiple binary steps because sorting intermediate results is not required for later merge-joins, which

‘led to the concept of interesting orderings in the System R query optimizer [235]. Since set operations such as
intersection and union can be evaluated using any sort order, as long as the same sort order is present in both
inputs, the effect of interesting orderings for one-to-one match operators based on merge-join can always be
exploitet for set operations.

A combination of nested loops join and merge-join, called heap-filter merge-join, was described in [107]. It
first sorts the smaller, inner input by the join attribute, and saves it in a temporary file. Next, it uses all available
memory to create sorted runs from the larger, outer input using replacement selection. As discussed in the section
on sorting, there will be about W =R /(2 x M) + 1 such runs for outer input size R. These runs are not written to
disk; instead, they are joined immediately with the sorted inner input using merge-join. Thus, the number of scans
of the inner input is reduced to about one half when compared to block nested loops. On the other hand, when
compared to merge-join, it saves writing and reading temporary files for the larger outer input.

30

Another derivation of merge-join is the hybrid join used in IBM’s DB2 product [53], combining elements
from index nested loops join, merge-join, and techniques joining sorted lists of index leaf entries. After sorting the
outer input on its join attribute, hybrid join uses a merge algorithm to "join" the outer input with the leaf entries of
a pre-existing B-tree index on the join attribute of the inner input. The result file contains entire tuples from the
outer input and record identifiers (RID’s, physical addresses) for tuples of the inner input. This file is then sorted
on the physical locations and the tuples of the inner relation can then be retrieved from disk very efficiently. This
algorithm is not entirely new as it is a special combination of techniques explored by Blasgen and Eswaran [33, 34]
and Kooi [168]. Blasgen and Eswaran considered the manipulation of RID lists but concluded that either merge-
join or nested loops join is the optimal choice in almost all cases; based on this study, only these two algorithms
were implemented in System R [4] and subsequent relational database systems. Kooi’s optimizer treated an index
similarly to a base relation and the lookup of data records from index entries as a join; this naturally permitted join-
ing two indices or an index with a base relation as in hybrid join.

5.3. Hash Join Algorithms

Hash join algorithms are based on the idea of building an in-memory hash table on one input (the smaller
one, frequently called the build input) and then probing this hash table using items from the other input (frequently
called the probe input). These algorithms have only recently found greater interest [39, 67-69, 91, 162, 163, 189,
198, 228, 240, 295]. One reason is that they work very fast, i.e., without any temporary files, if the build input
does indeed fit into memory, independently of the size of the probe input. However, they require overflow
avoidance or resolution methods for larger build inputs, and suitable methods were developed and experimentally
verified only in the mid-1980’s, most notably in connection with the Grace and Gamma database machine projects
[69,71,91, 162]

In hash-based join methods, build and probe inputs are partitioned using the same partitioning function, e.g.,
the join key value modulo the number of partitions. The final join result can be formed by concatenating the join
results of pairs of partitioning files. Figure 14, adapted from a similar diagram in [162], shows the effect of parti-
tioning the two inputs of a binary operation such as join into hash buckets and partitions. Without partitioning,
each item in the first input must be compared with each item in the second input; this would be represented by

T T T T T T HFH
o] I b HEH
S PN FUR S Y S N— HH
o i f i o
I R HE
1 1 1 I i
i i 1 i I
1 | | I |
Second [~ Tlmtm oo T
Join | _ oo L
{ 1 T i 1 I
Input | _ _,_ - p -
i 1] 1 I
i i I 1 I
L R T TN IO B
| 1 i i]
e Sl Ml it Wl el
]] 1 [} | I
I | [} I | |
] 1 1 1] 1
First Join Input

Figure 14, Effect of Partitioning for Join Operations.

31

complete shading of the entire diagram. With partitioning, items are grouped into partition files, and only pairs in
the series of small rectangles (representing the partitions) must be compared.

If a build partition file is still larger than memory, recursive partitioning is required. Recursive partitioning
is used for both build and probe partitioning files using the same hash and partitioning functions. Figure 15 shows
how both input files are partitioned together. The partial results obtained from pairs of partition files are con-
catenated to form the result of the entire match operation. Recursive partitioning stops when the build partition fits
into memory. Thus, the recursion depth of partitioning for binary match operators depends only on the size of the
build input (which therefore should be chosen to be the smaller input) and is independent of the size of the probe
input. Compared to sort-based binary matching operators, i.e., variants of merge-join in which the number of
merge levels is determined for each input file individually, hash-based binary matching operators are particularly
effective when the input sizes are very different [39, 112].

The 1/O cost for binary hybrid hash operations can be determined by the number of complete levels (i.e., lev-
els without hash table) and the fraction of the input remaining in memory in the deepest recursion level. For
memory size M , cluster size C, partitioning fan-out F = | M / C |, build input size R , and probe input size S , the
number of complete levels is L = | logr (R /M)J, after which the build input partitions should be of size

R’=R |/ FL, The /O cost for the binary operation is the cost of partitioning the build input divided by the size of
the build input and multiplied by the sum of the input sizes. Adapting the cost formula for unary hashing discussed
earlier, the total amount of I/O for a recursive binary hash operations is

2><[R x(L+1)—FLx[M—((R'-M)/(M—C)]xc”/R X(R +8)

which can be approximated with 2 X logp (R / M) X (R + §). In other words, the cost of binary hash operations on
large inputs is logarithmic; the main difference to the cost of merge-join is that the recursion depth (the logarithm)
depends only on one file, the build input, and is not taken for each file individually.

As for all operations based on partitioning, partitioning (hash) value skew is the main danger to effective-
ness. When using statistics on hash value distributions to determine which buckets should stay in memory in
hybrid hash algorithms, the goal is to avoid as much I/O as possible with the least memory "investment." Thus, it

|

A AN A AN
UOULOUO0U0L000D

el
ag
g
(¢
o
w
~
o
(@)
=
]
®
<
[¢]
o
5
=
=
]
=
L)
=
(5]
Pt
=
oo}
—
jos]
]
«
%
Iy
=
o
=
»

32

is most effective to retain those buckets in memory with few build items but many probe items or, more formally,
the buckets with the smallest value for r; / (r; +s;) where r; and s; indicate the total size of a bucket’s build and
probe items.

5.4. Pointer-Based Joins

Recently, links between data items have found renewed interest, be it in object-oriented systems in the form
of object identifiers (OID’s) or as access paths for faster execution of relational joins. In a sense, links represent a
limited form of precomputating results, similar to indices and join indices in particular, and have the usual cost vs.
benefit tradeoff between query performance enhancement and maintenance effort. Shekita and Carey analyzed
three pointer-based join methods based on nested loops join, merge-join, and hybrid hash join [244]. Presuming
relations R and S, with a pointer to an S tuple embedded in each R tuple, the nested loops algorithm simply scans
through R and retrieves the appropriate S tuple for each R tuple. This is very reminiscent of unclustered index
scans and performs similarly poorly for larger set sizes. Their conclusion on naive pointer-based join algorithms is
that "it is unwise for object-oriented database systems to support only pointer-based join algorithms."

The merge-join variant starts with sorting R on the pointers (i.e., according to the disk address they point to)
and then retrieves all S items in one elevator pass over the disk, reading each S page at most once. Again, this idea
was suggested before for unclustered index scans, and variants similar to heap-filter merge-join [107] and complex
object assembly using a window and priority heap of open references [155] can be designed.

The hybrid hash join variant partitions only relation R on pointer values, ensuring that R tuples with S
pointers to the same page are brought together, and then retrieves S pages and tuples. Notice that the two rela-
tions’ roles are fixed by the direction of the pointers, whereas for standard hybrid hash join the smaller relation
should be the build input. Differently than standard hybrid hash join, relation S is not partitioned. This algorithm
performs somewhat faster than pointer-based merge-join if it keeps some partitions of R in memory and sorting
writes all R tuples into runs before merging them.

Pointer-based join algorithms tend to outperform their standard, value-based counterparts in many situations,
in particular if only a small fraction of S actually participates in the join and can be selected effectively using the
pointers in R. Historically, due to the difficulty of correctly maintaining pointers (non-essential links), they were
rejected as a relational access method in System R [46], and subsequently in basically all other system, perhaps
with the exception of Kooi’s modified Ingres [168, 169]. However, they were reevaluated and implemented in the
Starburst project, both as a test of Starburst’s extensibility and as a means of supporting "more object-oriented”
modes of operation [127].

5.5. A Rough Performance Comparison

Figure 16 shows an approximate performance comparison for block nested loops join; merge-join with sort-
ing both inputs, without optimized merging; hash join without hybrid hashing, bucket tuning, or dynamic destag-
ing; and pointer joins with pointers from R to S and from S to R without grouping pointers to the same target page
together. This comparison is not precise; its sole purpose is to give a rough idea of the relative performance of the
algorithm groups, deliberately ignoring the many tricks used to improve and fine-tune the basic algorithms. The
relation sizes vary; S is always ten times larger than R, The memory size is 100 KB, merge fan-in and partitioning
fan-out are 10, and the number of R-records per cluster is 20.

33

125 —
O Nested Loops

A Pointer Join R—S
100 — V Pointer Join S—R

o 7
Count
[x1000] 50—
25 — A P
et ‘ ‘ 0 Merge-Join with Two Sorts
0 + Hashing not using Hybrid Hashing

[[I I I [I I [I [! I I I
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Sizeof R,S=10xR

Figure 16. Performance of Alternative Join Methods.

It is immediately obvious in Figure 16 that nested loops join is unsuitable for medium-size and large rela-
tions, because the cost of nested loops join is proportional to the size of the Cartesian product of the two inputs.
Both merge-join (sorting) and hash join have logarithmic cost functions; the sudden rise in merge-join and hash
join cost around R = 1000 is due to the fact that additional partitioning or merging levels become necessary at that
point. The sort-based merge-join is not quite as fast as hash join because the merge levels are determined individu-
ally for each file, including the bigger S file, while only the smaller build relation R determines the partitioning
depth of hash join. Pointer joins are competitive with their linear cost function, but only when the pointers are
embedded in the smaller relation R. When S-records point to R-records, the cost of the pointer join is even higher
than for nested loops join.

The important point of Figure 16 is to illustrate that pointer joins can be very efficient or very inefficient, that
one-to-one match algorithms based on nested loops join are not competitive for medium-size and large inputs, and
that sort- and hash-based algorithms for one-to-one match operations both have logarithmic cost growth. Of
course, this comparison is quite naive since it uses only the simplest form of each algorithm. Thus, a comparison
among alternative algorithms in a query optimizer must use the precise cost function for the available algorithm
variant.

34

6. Universal Quantification

Universal quantification permits queries like "find the students who have taken all database courses;" the
difference to one-to-one match operations is that a student qualifies because his or her transcript matches an entire
set of courses, not only one item as in an existentially quantified query (e.g., "find students who have taken a (at
least one) database course") that can be executed using a semi-join. In the past, universal quantification has been
largely ignored for four reasons. First, typical database applications, e.g., record-keeping and accounting applica-
tions, rarely require universal quantification. Second, it can be circumvented using a complex expression involving
a Cartesian product. Third, it can be circumvented using complex aggregation expressions. Fourth, there seemed
to be a lack of efficient algorithms.

The first reason will not remain true for database systems supporting logic programming, rules, and
quantifiers, and algorithms for universal quantification will become more important. The second reason is valid;
however, the substitute expressions are very slow to execute because of the Cartesian product. The third reason is
also valid, but replacing a universal quantifier may require very complex aggregation clauses that are easy to "get
wrong" for the database user. Furthermore, they might be too complex for the optimizer to recognize as universal
quantification and to execute with a direct algorithm. The fourth reason is not true; universal quantification algo-
rithms can be very efficient (in fact, as fast as semi-join, the operator for existential quantification), useful for very
large inputs, and easy to parallelize [104, 111]. In the remainder of this section, we discuss sort- and hash-based
direct and indirect (aggregation-based) algorithms for universal quantification.

In the relational world, universal quantification is expressed with the universal quantifier in relational cal-
culus and with the division operator in relational algebra. We will explain algorithms for universal quantification
using relational terminology. The running example in this section uses the relations Student (student-id, name,
major), Course (course-no, title), Transcript (student-id, course-no, grade) and Requirement. (major, course-no)
with the obvious key attributes. The query to find the students who have taken all courses can be expressed in rela-
tional algebra as

Tstudent ~id ,course ~no Transcript + Teourse ~no Course.

The projection of the Transcript relation is called the dividend, the projection of the Course relation the divisor,
and the result relation the quotient. The quotient attributes are those attributes of the dividend that do not appear in
the divisor. The dividend relation semi-joined with the divisor relation and projected on the quotient attributes, in
the example the set of student-id’s of Students who have taken at least one course, is called the set of quotient can-
didates here.

Some universal quantification queries seem to require relational division but actually do not. Consider the
query for the students who have taken all courses required for their major. This query can be answered with a
sequence of one-to-one maich operations. A join of Student and Requirement projected on the student-id and
course-no attributes minus the Transcript relation can be projected on smdent-id’s to obtain a set of students who
have not taken all their requirements. An anti-semi-join of the Student relation with this set finds the students who
have satisfied all their requirements. This sequence will have acceptable performance because its required set
matching algorithms (join, difference, anti-semi-join) all belong to the family of one-to-one match operations, for
which efficient algorithms are available as discussed in the previous section.

Division algorithms differ not only in their performance but also in how they fit into complex queries. Prior
to the division, selections on the dividend, e.g., only Transcript entries with "A" grades, or on the divisor e.g., only

35

the database courses, may be required. Restrictions on the dividend can easily be enforced without much effect on
the division operation, while restrictions on the divisor can imply a significant difference for the query evaluation
plan. Subsequent to the division operation, the resulting quotient relation (e.g., a set of student-id’s) may be joined
with the Student relation to obtain student names. Thus, obtaining the quotient in a form suitable for further pro-
cessing (e.g., join or semi-join with a third relation) can be advantageous.

All universal quantification can be replaced by aggregations. For example, the example query about data-
base courses can be re-stated as "find the students who have taken as many database courses as there are database
courses." When specifying the aggregate function, it is important to count only database courses both in the divi-
dend (the Transcript relation) and in the divisor (the Course relation). This might be easy for the divisor relation,
but requires a semi-join of the dividend relation with the divisor relation to propagate the restriction on the divisor
to the dividend if it is not known whether or not referential integrity holds between the dividend’s divisor attributes
and the divisor, i.e., whether or not there are divisor attributes in the dividend that cannot be found in the divisor.
For example, course-no’s in the Transcript relation that do not pertain to database courses (and are therefore not in
the divisor) must be removed from the dividend by a semi-join with the divisor. In general, if the divisor is the
result of a prior selection, any referential integrity constraints known for stored relations will not hold, and must be
explicitly enforced using a semi-join. Furthermore, in order to ensure correct counting, duplicates have to be
removed from either input if the inputs are projections on non-key attributes.

There are four methods to calculate the quotient of two relations, a sort-based and a hash-based direct
method, and sort- and hash-based aggregation. Methods for sort- and hash-based aggregation and the possible
sort- or hash-based semi-join have already been discussed, including their variants for inputs larger than memory
and their cost functions. Therefore, we focus here on the direct division algorithms.

The sort-based direct method, proposed by Smith and Chang [251] and called naive division here, sorts the
divisor input on all its attributes and the dividend relation with the quotient attributes as major and the divisor attri-
butes as minor sort keys. It then proceeds with a merging scan of the two sorted inputs to determine which items
belong in the quotient. Notice that the scan can be programmed such that it ignores duplicates in either input (in
case those had not been removed yet in the sort) as well as dividend items that do not refer to items in the divisor.
Thus, neither a preceding semi-join nor explicit duplicate removal step are necessary for naive division. Naive
division does not incur any I/O cost beyond sorting the two inputs, if the divisor fits in memory.

Figure 17 shows two tables, a dividend and a divisor, already sorted for naive division. Concurrent scans of
the "Jane" tuples in the dividend and the entire divisor determines that "Jane” is not part of the quotient because

Student Course
Jane Intro Al
Jane Intro DB
Joe DB Readings
Joe Intro DB
Course
DB Readings
Intro DB

Figure 17. Sorted Inputs into Naive Division.

36

she has not taken the "DB Readings” course. A continuing scan through the "Joe" tuples in the dividend and a new
scan of the entire divisor includes "Joe" in the output of the naive division.

The hash-based direct method, called hash-division, uses two hash tables, one for the divisor and one for the
quotient candidates. While building a the divisor table, a unique sequence number is assigned to each divisor item.
After the divisor table has been built, the dividend is consumed. For each quotient candidate, a bit map is kept
with one bit for each divisor item. The bit map is indexed with the sequence numbers assigned to the divisor items.
If a dividend item does not match with an item in the divisor table, it can be ignored immediately. Otherwise, a
quotient candidate is either found or created and the bit corresponding to the matching divisor item is set. When
the entire dividend has been consumed, the quotient consists of those quotient candidates with all bits set.

Figure 18 shows the two hash tables used in hash-division. The divisor table on the left contains all divisor
tuples and associates a unique sequence number with each item. The quotient table on the right contains quotient
candidates, obtained by projecting dividend tuples on their quotient attributes, and a bit map for each item indicat-
ing for which divisor tuples there has been a dividend tuple. The fact that "Jane" took only one DB course is indi-
cated by the incompletely filled bit map. The Al course does not appear in either hash table because it was
immediately determined that there was no Al course in the divisor table.

This algorithm can ignore duplicates in the divisor (using hash-based duplicate removal during insertion into
the divisor table) and automatically ignores duplicates in the dividend as well as dividend items that do not refer to
items in the divisor (e.g., the AI course in the example). Thus, neither prior semi-join nor duplicate removal are
required. However, if both inputs are known to be duplicate-free, the bit maps can be replaced by counters. Furth-
ermore, if referential integrity is known to hold, the divisor table can be omitted and be replaced by a single
counter. Hash-division, including these variants, has been implemented in the Volcano query execution engine and
has shown better performance than the other three algorithms [104, 111]. In fact, the performance of hash-division
is almost equal to a hash-based join or semi-join of dividend and divisor relations (a semi-join corresponds to
existential quantification), making universal quantification and relational division realistic operations and algo-
rithms to use in database applications.

If the two hash tables do not fit into memory, the divisor table or the quotient table or both can be partitioned
and individual partitions held on disk for processing in multiple steps. In divisor partitioning, the final result con-
sists of those items that are found in all partial results. For example, if the Courses relation in the example above
are partitioned into undergraduate and graduate courses, the final result consists of the students who have taken all
undergraduate courses and all graduate courses, i.e., those that can be found in the division result of each partition.

IntoDB '0 Joe

DB Readings, 1 Jane '1 0

Figure 18. Divisor Table and Quotient Table in Hash-Division.

37

In quotient partitioning, the entire divisor must be kept in memory for all partitions. The final result is the concate-
nation of all partial results. For example, if Transcript items are partitioned by odd and even student-id’s, the final
results is the union (concatenation) of all students with odd student-id who have taken all courses and those with
even student-id who have taken all courses. If warranted by the input data, divisor partitioning and quotient parti-
tioning can be combined.

For real queries containing a division, consider the operation that frequently follows a division. In the exam-
ple, a user is typically not really interested in student-id’s only but in information about the students. Thus, in
many cases, relational division results will be used to select items from another relation using a semi-join. The
sort-based algorithms produce their output sorted which will facilitate a subsequent (semi-) merge-join. The hash-
based algorithms produce their output in hash order; if overflow occurred, in no predictable order at all. However,
both aggregation-based and direct hash-based algorithms use a hash table on the quotient attributes which may be
used immediately for a subsequent join. This would require some modifications to hash-based aggregation, but it
seems quite straightforward to modify hash-division such that it removes quotient candidates which do not belong
to the final quotient from the quotient table and then performs a semi-join with a third input relation.

Hash-division can be modified into an algorithm for duplicate removal. Consider the problem of removing
duplicates from a relation R(X,Y) where X and Y are suitably chosen attribute groups. This relation can be stored
using two hash tables, one storing all values of X and assigning them a unique sequence number, the other storing
all values of Y and bit maps that indicate which X values have occurred with each Y value. Consider a brief
example for this algorithm: Say relation R(X,Y) contains 10¢ tuples, but only 10° tuples if duplicates were
removed. Let X and Y be each 100 B long, and assume there are 10* unique values of each X and Y. For the stan-
dard hash-based duplicate removal algorithm, 10° X 200 B of memory are needed for duplicate removal without
use of temporary files. For the redesigned hash-division algorithm, 2 x 10% X 100 B are needed for data values,
10* x4 B for sequence numbers, and 10* x 10* bits for bit maps. Thus, the new algorithm can work efficiently
with slightly less than 14 MB, while conventional duplicate removal requires slightly more than 19 MB of
memory, or 37.5% more than the duplicate removal adapted from hash-division. Clearly; choosing attribute
groups X and Y to find attribute groups with relatively few unique values is crucial for the performance and
memory-efficiency of this new algorithm. Since such knowledge is not available in most systems and queries
(even though some efficient and helpful algorithms exist, e.g. [51), optimizer heuristics for choosing this algorithm
might be difficult to design and verify.

To summarize the discussion on universal quantification algorithms, hash-division performs universal
quantification and relational division generally, i.e., it covers cases with duplicates in the inputs and with referen-
tial integrity violations, and efficiently, i.e., it permits partitioning and hybrid hash techniques similar to hybrid
hash join making universal quantification (division) as fast as existential quantiﬁcati}on (semi-join). As will be dis-
cussed later, it can also be effectively parallelized.

38

7. Duality of Sorting and Hashing

In this section,” we conclude the discussion of individual query processing by outlining the many existing
similarities and dualities of sort- and hash-based query processing algorithms as well as the points where the two
types of algorithms differ. The purpose is to contribute to a better understanding of the two approaches and their
tradeoffs. We try to discuss the approaches in general terms, ignoring whether the algorithms are used for rela-
tional join, union, intersection, aggregation, duplicate removal, or other operations. Where appropriate, however,
we indicate specific operations.

Table 3 gives an overview of the features that correspond to one another. Both approaches permit in-
memory versions for small data sets and disk-based versions for larger data sets. If a data set fits into memory,
quicksort is the sort-based method to manage data sets while classic (in-memory) hashing can be used as hashing
technique. It is interesting to note that both quicksort and classic hashing are also used in memory to operate on
subsets after "cutting” an entire large data set into pieces. The cutting process is part of the divide-and-conquer
paradigm employed for both sorting and hashing. This is an important similarity of sorting and hashing and has
been observed before, e.g., by Bratbergsengen [39] and Salzberg [223]. There exists, however, an important
difference. In the sort-based algorithms, a large data set is divided into subsets using a physical rule, namely into
chunks as large as memory. These chunks are later combined using a logical step, merging. In the hash-based
algorithms, the large data set is cut into subsets using a logical rule, by hash values. The resulting partitions are
later combined using a physical step, i.e., by simply concatenating the subsets or result subsets. In other words, a
single-level merge in a sort algorithm is a dual to partitioning in hash algorithms. Figure 19 illustrates this duality
and the opposite directions.

This duality can also be observed in the behavior of a disk arm performing the I/O operations for merging or
partitioning. While writing initial runs after sorting them with quicksort, the 1/O is sequential. During merging,

Sorting Hashing

Quicksort Classic Hash

Physical divide, logical combine logical divide, physical combine
Single-level merge Partitioning into overflow files
Sequential write, random read Random write, sequential read
Fan-in Fan-out

Read-ahead, forecasting Write-behind

Multi-level merge Recursive overflow resolution
Number of merge levels Recursion depth

Non-optimal final fan-in Non-optimal hash table size
Merge optimizations Bucket tuning

Reverse runs & LRU Hybrid hash

Replacement selection ?

? Single input in memory
Aggregation in replacement selection ~ Aggregation in hash table
Interesting orderings N-way joins, hash-merging

Table 3. Duality of Sort- and Hash-Based Algorithms.

7 This section was derived from [112]. This reference also provides experimental evidence for the relative
performance of sort- and hash-based query processing algorithms.

39

Entire

Subfiles File

1L
\'4

Merging

Partitioning

Figure 19. Duality of Partitioning and Merging.

read operations access the many files being merged and require random I/O capabilities. During partitioning, the
1/O operations are random, but when reading a partition later on, they are sequential.

For both approaches, sorting and hashing, the amount of available memory limits not only the amount of
data in a basic unit processed using quicksort or classic hashing, but also the number of basic units that can be
accessed simultaneously. For sorting, it is well known that merging is limited to the quotient of memory size and
buffer space required for each run, called the merge fan-in. Similarly, partitioning is limited to the same fraction,
called the fan-out, since the limitation is encountered while writing partition files.

In order to keep the merge process active at all times, many merge implementations use read-ahead con-
trolled by forecasting, trading reduced I/O delays for a reduced fan-in. The dual to read-ahead during merging is
write-behind during partitioning, i.c., keeping a free output buffer that can be allocated to an output file while the
previous page for that file is being written to disk. Both read-ahead in merging and write-behind in partitioning are
used to ensure that the processor never has to wait for the completion of an I/O operation.

Considering the limitation on fan-in and fan-out, additional techniques must be used for very large data sets.
Merging can be performed in multiple levels, each combining multiple runs into larger ones. Similarly, partition-
ing can be repeated recursively, i.e., partition files are re-partitioned, the results re-partitioned, etc., until the parti-
tion files fit into main memory. During merging, the runs grow in each level by a factor equal to the fan-in. For
each recursion step, the partition files decrease in size by a factor equal to the fan-out. Thus, the number of levels
during merging is equal to the recursion depth during partitioning. There are two exceptions to be made regarding
hash value distribution and relative sizes of inputs in binary operations such as join; we ignore those for now and
will come back to them later.

If merging is done in the most naive way, i.¢., merging all runs of a level as soon as their number reaches the
fan-in, the last merge on each level might not be optimal. Similarly, if the highest possible fan-out is used in each
partitioning step, the partition file in the deepest recursion level might be smaller than memory, and less than the
entire memory is used when processing these files. Thus, in both approaches the memory resources are not used
optimally in the most naive versions of the algorithms.

In order to make best use of the final merge (which, by definition, includes all output items and is therefore
the most expensive merge), it should proceed with the maximal possible fan-in. This can be ensured by merging
fewer runs than the maximal fan-in after the end of the input file has been reached (as discussed in the earlier sec-
tion on sorting). There is no direct dual in hash-based algorithms for this optimization. With respect to memory

40

utilization, the fact that a partition file and therefore a hash table might actually be smaller than memory is the
closest to a dual. Utilizing memory more effectively and using less than the maximal fan-out in hashing has been
addressed in research on bucket tuning [163].

The development of hybrid hash algorithms [67, 240] was a consequence of the advent of large main
memories that had led to the consideration of hash-based join algorithms in the first place. If the data set is only
slightly larger than the available memory, e.g., 10% larger or twice as large, much of the input can remain in
memory and is never written to a disk-resident partition file. To obtain the same effect for sort-based algorithms, if
the database system’s buffer manager is sufficiently smart or receives and accepts appropriate hints, it is possible
to retain some or all of the pages of the last run written in memory and thus achieve the same effect of saving I/O
operations. This can be done particularly easily if the initial runs are written in reverse (descending) order and
scanned backward for merging. However, if one does not believe in buffer hints or prefers to absolutely ensure
these 1/O savings, using a final memory-resident run explicitly in the sort algorithm and merging it with the disk-
resident runs can guarantee this effect.

A well-known technique to improve sort performance is to generate runs twice as large as main memory
using a priority heap for replacement selection [166]. If the runs’ sizes are doubled, their number is cut in half.
Therefore, merging can be reduced by some amount, namely logr (2) = 1 /log,(F) merge levels. This optimation
for sorting has direct dual in the realm of hashing.

If two sort operations produce input data for a binary operator such as a merge-join and both sort operators’
final merges are interleaved with the join, each final merge can employ only haif the memory. In hash-based one-
to-one match algorithms, only one of the two inputs resides in and consumes memory beyond a single input buffer,
not both as in two final merges interleaved with a merge-join. This is a distinct advantage of hash-based one-to-
one match algorithms that does not have a dual in sort-based algorithms.

Interestingly, these two differences of sort- and hash-based one-to-one match algorithms cancel each other
out. Cutting the number of runs in half (on each merge level, including the last one) by using replacement selec-
tion for run generation exactly offsets this disadvantage of sort-based one-to-one match operations.

Run generation using replacement selection has a second advantage over quicksort; this advantage has a
direct dual in hashing. If a hash table is used to compute an aggregate function using grouping, e.g., sum of
salaries by department, hash table overflow occurs only if the operation’s output does not fit in memory. Consider,
for example, the sum of salaries by department for 100,000 employees in 1000 departments. If the 1000 result
records fit in memory, classic hashing (without overflow) is sufficient. On the other hand, if sorting based on
quicksort is used to compute this aggregate function, the input must fit into memory to avoid temporary files.® If
replacement selection is used for run generation, however, the same behavior as with classic hashing is easy to
achieve.

The final entry in Table 3 concerns interesting orderings used in the System R query optimizer [235] and
presumably other query optimizers as well. A strong argument in favor of sorting and merge-join is the fact that
merge-join delivers its output in sorted order; thus, multiple merge-joins on the same attribute can be performed
without sorting intermediate join results. For joining three relations, as shown in Figure 20, pipelining data from

8 A scheme using quicksort and avoiding temporary /O in this case can be devised but would be extremely
cumbersome; we do not know of any report or system with such a scheme.

41

Merge-Join b=b
Merge-Join a=a

Eonb NG

Sortonb
O | | Merge-Join a=a Sort on a
Merge-Join a=a Input I3 /
/ \ Sortona Sortonkputly
Sorton a Sorton a
Input I1 Input 12
Input I1 Input 12

Figure 20. The Effect of Interesting Orderings.

one merge-join to the next without sorting translates into a 3:4 advantage in the number of sorts compared to two
joins on different join keys because the intermediate result O ; does not need to be sorted. For joining N relations
on the same key, only N sorts are required instead of 2 X N — 2 for joins on different atiributes. For set operations
such as the union or intersection of N sets, interesting orderings can have a significant performance effect.

Hash-based algorithms tend to produce their outputs in a very unpredictable order, depending on the hash
function and on overflow management. To take advantage of multiple joins on the same attribute, the equality has
to be considered in the logical step of hashing, i.e., during partitioning. In other words, such join queries could be
executed effectively by a hash join algorithm that has N inputs, partitions them all concurrently, and then performs
N-way joins on each N-tuple of partition files (not pairs as in binary hash join with one build and one probe file for
each partition). Figure 21 shows recursive partitioning for a 3-way join.

However, N-way recursive partitioning is cumbersome to implement, in particular if some of the "join"
operations are actually semi-join, outer join, set intersection, union, or difference. Therefore, until a clean imple-
mentation method for hash-based N-way matching has been found, it might well be that this distinction, joins on

\

Figure 21. Partitioning in a Multi-Way Hash Join.

42

the same or on different attributes, determines the right choice between sort- and hash-based algorithms for com-
plex queries.

Another use of interesting orderings is the interaction of (sorted, B-tree) index scans and merge-join. While
it has not been reported explicitly in the literature, it is perfectly possible and reasonable to implement a join algo-
rithm that uses two hash indices (provided the same hash function was used to create the indices) like merge-join
uses two B-trees. For example, it is easy to imagine "merging" the leaves (data pages) of two extendible hash
indices [83], even if the key cardinalities and distributions are very different.

In summary, there exist many dualities between sorting using multi-level merging and recursive hash table
overflow management. Two special cases exist which favor one or the other, however. First, if two join inputs are
of different size (and the query optimizer can reliably predict this difference), hybrid hash join will outperform
merge-join because only the smaller of the two inputs will determine what fraction of the input files will have to be
written to temporary disk files during partitioning (or how often each record has to be written to disk during recur-
sive partitioning), while each file determines its own disk I/O in sorting. In other words, sorting the larger of two
join inputs is more expensive than writing a small fraction of that file to hash overflow files. This performance
advantage of hashing grows with the relative size difference, not the absolute sizes, of the two inputs.

Second, if the hash function is very poor, e.g., because of a prior selection on the join attribute or a corre-
lated attribute, hash partitioning can perform very poorly and create significantly higher costs than sorting and
merge-join, If the quality of the hash function cannot be predicted or improved (tuned) dynamically, sort-based
query processing algorithms are superior because they are less vulnerable to non-uniform data disiributions. Since
both cases, join of differently-sized files and skewed hash value distributions, are realistic situations in database
query processing, we recommend that both sort- and hash-based algorithms be included in a query processing
engine and chosen by the query optimizer according to the two cases above. If both cases arise simultaneously,
i.e., a join of differently-sized inputs with unpredictable hash value distribution, the query optimizer has to estimate
which one poses the greater danger to system performance and predictability and choose accordingly.

The important conclusion from these dualities is that neither the input sizes nor the memory size determine
the choice between sort- and hash-based query processing algorithms. Instead, the choice should be governed by
the relative sizes of the two inputs into binary operators and by the danger of skewed data or hash value distribu-
tions. Furthermore, because neither algorithm type outperforms the other in all situations, both should be available
in a query execution engine for a choice to be made in each case by the query optimizer.

8. Execution of Complex Query Plans

When multiple operators such as aggregations and joins execute concurrently in a pipelined execution
engine, physical resources such as memory and disk bandwidth must be shared by all operators. Thus, optimal
scheduling of multiple operators and the division and distribution of resources in a complex plan are important
issues.

In earlier relational execution engines, these issues were largely ignored for two reasons. First, only left-
deep trees were used for query execution, i.e., the right (inner) input of a binary operator had to be a scan. In other
words, concurrent execution of multiple subplans in a single query was not possible. Second, under the assump-
tion that sorting was needed at each step and considering that sorting for non-trivial file sizes requires that the
entire input be written to temporary files at least once, concurrency and the need for resource allocation were basi-
cally absent. Today’s query execution engines consider more complex query plans, including bushy trees, and

43

additional join algorithms that permit extensive pipelining, e.g., hybrid hash join.

Some researchers have considered resource contention among multiple query processing operators with the
focus on buffer management. The perspective in these efforts was to assign disk pages to buffer slots such that the
benefit of each buffer slot would be maximized, i.e., the number of I/O operations avoided in the future. Sacco and
Schkolnick analyzed several database algorithms and found that their cost functions exhibit steps when plotted
over available buffer space, and suggested that buffer space should be allocated at the low end of a step for the
least buffer use at a given cost [219, 220]. Chou and DeWitt took this idea further by combining it with separate
page replacement algorithms for each relation or scan, following observations by Stonebraker on operating system
support for database systems [259], and with load control, calling the resulting algorithm DBMIN [56, 57]. Falout-
sos et al. generalized this goal and used the classic economic concepts of decreasing marginal gain and balanced
marginal gains for maximal overall gain [84, 193]. Zeller and Gray designed a hash join algorithm that adapts to
the current memory and buffer contention each time a new hash table is built [295].

Schneider was the first to systematically examine execution schedules and costs for right-deep trees, i.e.,
query evaluation plans with multiple binary hash joins for which all build phases proceed concurrently or at least
could proceed concurrently (notice that in a left-deep plan, each build phase receives its data from the probe phase
of the previous join, limiting left-deep plans to two concurrent joins in different phases) [229, 230]. Among his
most interesting findings are that through effective use of bit vector filtering (discussed later in its own subsection),
memory requirements for right-deep plans might actually be comparable to those of left-deep plans [231].

For the implementation of binary matching iterators to be used in bushy plans, we have identified several
concerns. First, some query processing algorithms include a point when all data are in temporary files on disk and
no intermediate result data reside in memory. Such "stop" points can be used to switch efficiently between dif-
ferent subplans. For example, if two subplans produce and sort two merge-join inputs, stopping work on the first
subplan and switching to the second one should be done when the first sort operator has all its data in sorted runs
and only the final merge is left, but no output has been produced yet. Figure 22 illustrates this point in time. For-
tunately, this timing can be realized naturally in the iterator implementation of sorting if opening runs for the final
merge is done in the first call of the next procedure, not at the end of the open phase. A similar stop point is avail-
able in hash join when using overflow avoidance. However, this point does not occur in the same way in hybrid
hashing because hybrid hashing produces some output data before the memory contents (output buffers and hash
table) can be discarded.

merge join

RN
T T

(done) to be done

Figure 22. The Stop Point During Sorting.

Second, implementations of hybrid hash join and other binary match operations should be parameterized to
permit overflow avoidance as a run-time option to be chosen by the query optimizer. This will pemmit the query
optimizer to force a stop point in some operators while using hybrid hash in most operations.

Third, binary operator implementations should include a switch that controls which subplan is initiated first.
In the table with algorithm outlines for iterators’ open, next, and close procedures, the hash join open procedure
executes the entire build input plan first before opening the probe input. However, there might be situations in
which it would be better to open the probe input before executing the build input. If the probe input does not hold
any resources such as memory between open and next calls, initiating the probe input first is not a problem. How-
ever, there are situations in which it creates a big benefit, in particular in parallel systems to be discussed later.

Fourth, if multiple operators are active concurrently, memory has to be divided among them. If two sorts
produce input data for a merge-join which in turn passes its output into another sort using quicksort, memory
should be divided proportionally to the sizes of the three files involved. We believe that for multiples sorts produc-
ing data for multiple merge-joins on the same attribute, proportional memory division will also work best. A
comprehensive investigation of memory division for multiple unary and binary operators will need to consider
many special cases for hybrid hash join, its data flow and control logic, and its complex cost function.

Fifth, the division of resources other than memory, ¢.g., disk bandwidth and disk arms for seeking in parti-
tioning and merging, is an open issue that should be addressed soon because the different improvement rates in
CPU and disk speeds will increase the importance of disk performance for overall query processing performance.
One possible alleviation of this problem might come from disk arrays configured exclusively for performance, not
for reliability. On the other hand, disk arrays might not deliver the entire performance gain the large number of
disk drives could provide if it is not possible to access specific disks within an array, particularly during partition-
ing and merging.

Finally, scheduling bushy trees in multi-processor systems is not entirely understood yet. While all con-
siderations discussed above apply in principle, multi-processors permit truly concurrent execution of multiple sub-
plans in a bushy tree. However, it is a very hard problem to schedule two or more subplans such that their result
streams are available at the right times and at the right rates, in particular in light of the unavoidable errors in selec-
tivity and cost estimation during query optimization [58, 148].

The last point, estimation errors, leads us to suspect that plans with 30 or even 100 joins or other operations
cannot be optimized completely before execution. Thus, we suspect that a technique reminiscent of Ingres Decom-
position [288, 291] will prove the most effective one. One of the principal ideas of Ingres Decomposition is a
repetitive cycle consisting of a decision upon the next step, e.g., a selection or join, execution of that step into a
temporary table, and simplifying the query by replacing one or two range variables (relations) in the query with the
new temporary relation and removing predicates evaluated in the execution step. The justification and advantage
of this approach is that all earlier selectivities are known for each decision because the intermediate results are
materialized. The disadvantage is that data flow between operators cannot be exploited, resulting in a significant
cost for writing and reading intermediate files. For very complex queries, we suggest modifying Decomposition to
decide on and execute multiple steps in each cycle, e.g. 3-9 joins, instead of executing only one selection or join as
in Ingres. Such a hybrid approach might very well combine the advantages of a priori optimization, namely in-
memory data flow between iterators, and optimization with exactly known intermediate result sizes.

An optimization and execution environment even further tuned for very complex queries would anticipate
possible outcomes of executing subplans and provide multiple alternative subsequent plans. Figure 23 shows the

45

A

B C
D E F G H
Figure 23. A Decision Tree of Partial Plans.

structure of such a dynamic plan for a complex query. First, subplan A is executed and statistics about its result
are gathered while it is saved on disk. Depending on these statistics, either B or C is executed next. If B is chosen,
one of D, E, and F is used to complete the query; or G or H if C had been chosen. Notice that each letter A~H can
be an arbitrarily complex subplan, although probably not more than 10 operations due to the limitations of current
selectivity estimation methods. Unfortunately, realization of such sophisticated query optimizers will require
further research, e.g., into determination of when separate cases are warranted and limitation of the exponential
growth in the number of subplans.

9. Mechanisms for Parallel Query Execution

Considering that all high-performance computers today employ some form of parallelism in their processing
hardware, it seems obvious that software written to manage large data volumes ought to be able to exploit parallel
execution capabilities. In fact, we believe that five years from now it will be argued that a database management
system without parallel query execution will be as handicapped in the market place as one without indices.

The goal of parallel algorithms and systems is to obtain speedup and scaleup, and speedup results are fre-
quently used to demonstrate the accomplishments of a design and its implementation. Speedup considers addi-
tional hardware resources for a constant problem size; linear speedup is considered optimal. In other words, N
times as many resources should solve a constant-size problem in 1 /N of the time. Speedup can also be expressed
as parallel efficiency, i.e., a measure of how close a system comes to linear speedup. For example, if solving a
problem takes 1400 seconds on a single machine and 100 seconds on 16 machines, the speedup is slightly less than
linear. The parallel efficiency is (1 x 1400) / (16 x 100) = 87.5%.

A third measure for the success of a parallel algorithm based on Amdahl’s law is the fraction of the sequen-
tial program for which linear speedup was attained, defined by p = f x5 /d + (1 — f) X s for sequential execution
time s, parallel execution time p, and degree of parallelism d. For the example above, this fraction is
f = ((1400 — 100)/1400) / ((16 — 1)/16) =99.05%. Notice that this measure is give much higher values than the
parallel efficiency calculated earlier.

An alternative measure for a parallel system’s design and implementation is scaleup in which the problem
size is altered with the resources. Linear scaleup is achieved when N times as many resources can solve a problem
with N times as much data in constant time. Scaleup can also be expressed using parallel efficiency, but since
speedup and scaleup are different, it should always be made clear which parallel efficiency is being reported.

For query processing problems involving sorting or hashing in which multiple merge or partitioning levels
are expected, the speedup can frequently be more than linear, or super-linear. Consider a sorting problem that
requires two merge levels in a single machine. If multiple machines are used, the sort problem can be partitioned
such that each machine sorts a fraction of the entire data amount. This will, in a good implementation, result in
linear speedup. If, in addition, each machine has its own memory such that the total memory in the system grows
with the size of the machine, less than two merge levels will suffice, making the speedup super-linear.

9.1. Parallel vs. Distributed Database Systems

It might be useful to start the discussion of parallel and distributed query processing with a distinction of the
two concepts. In the database literature, "distributed" usually implies "locally autonomous," i.e., each participating
system is a complete database management system in itself, with access control, meta-data (catalogs), query pro-
cessing, etc. In other words, each node in a distributed database management system can function entirely on its
own, whether or not the other nodes are present or accessible. Each node performs its own access control, and
cooperation of each node in a distributed transaction is voluntary. Examples of distributed (research) systems are
R* [125, 275], distributed Ingres [82, 260], and SDD-1 [19, 214]. There are now several commercial distributed
relational database management systems. Ozsu and Valduriez have discussed distributed database systems in
much more detail [201, 202]. If the cooperation among multiple database systems is only limited, the system can
be called a "federated” database system [247].

In parallel systems, on the other hand, there is only one locus of control. In other words, there is only one
database management system that divides individual queries into fragments and executes the fragments in parallel.
Access control to data is independent of where data objects currently reside in the system. The query optimizer
and the query execution engine typically assume that all nodes in the system are available to participate in efficient
execution of complex queries, and participation of nodes in a given transaction is either presumed or controlled by
a global resource manager, but is not based on voluntary cooperation as in distributed systems. There are several
parallel research prototypes, e.g., Gamma [69, 71], Bubba [37, 38], Grace [91, 162], and Volcano [106, 113], and
products, e.g., Tandem’s NonStop SQL [80, 296] and Teradata’s TBC/1012 [191, 273]. ‘

Both distributed database systems and parallel systems have been designed in various kinds, which may
create some confusion. Distributed systems can be either homogeneous, meaning that all participating database
management systems are of the same type (the hardware and the operating system may even be of the same types),
or heterogeneous, meaning that multiple database management systems work together using standardized inter-
faces but are internally different.’ Furthermore, distributed systems may employ parallelism, e.g., by pipelining
datasets between nodes with the receiver already working on some items while the producer is still sending more.
Parallel systems can be based on shared-memory (also called shared-everything), shared-disk (multiple processors
sharing disks but not memory), distributed-memory (without sharing disks, also called shared-nothing), or
hierarchical computer architectures. Stonebraker compared the first three alternatives using several aspects of
database management, and came to the conclusion that distributed memory is the most promising database
management system platform [261]. Each of these approaches has advantages and disadvantages; our belief is that

? In some organizations, two different database management systems may run on the same (fairly large) com-
puter. Their interactions could be called non-distributed heterogeneous. However, since the rules governing such
interactions are the same as for distributed heterogeneous systems, the case is usually ignored in research and sys-
tem design.

47

the hierarchical architecture consisting of multiple clusters, each with multiple CPU’s and disks and a large shared
memory (see Figure 23), is the most general of these architectures and should be the target architecture for new
database software development [109].

9.2. Forms of Parallelism

There are several forms of parallelism that are interesting to designers and implementors of database query
processing systems. Inter-query parallelism is a direct result of the fact that most database management systems
can service multiple requests concurrently. In other words, multiple queries (transactions) can be executing con-
currently within a single database management system. In this form of parallelism, resource contention is of great
concern, in particular contention for memory and disk arms.

The other forms of parallelism are all based on the use of algebraic operations on sets for database query
processing, e.g., selection, join, and intersection. The theory and practice of exploiting other "bulk" types such as
lists for parallel database query execution is only now developing. Inter-operator parallelism is basically pipelin-
ing, or parallel execution of different operators in a single query. For example, the iterator concept discussed ear-
lier has also been called "synchronous pipelines” {205]; there is no reason not to consider asynchronous pipelines
in which operators work independently connected by a buffer mechanism which provides flow control.

Inter-operator parallelism can be used in two forms, either to execute producers and consumers in pipelines,
called vertical inter-operator parallelism here, or to execute independent subtrees in a complex, bushy query
evaluation plan concurrently, called horizontal inter-operator or bushy parallelism here. A simple example for
bushy parallelism is a merge-join receiving its input data from two sort processes. The main problem with bushy
parallelism is that it is hard or impossible to ensure that the two subplans start generating data at the right time and
generate them at the right rates. Note that the right time does not necessarily mean the same time, e.g., for the two
inputs of a hash join, and that the right rates are not necessarily equal, e.g., if two inputs of a merge-join have dif-
ferent sizes. Therefore, bushy parallelism presents too many open research issues and is hardly used in practice at
this time.

The final form of parallelism in database query processing is intra-operator parallelism in which a single
operator in a query plan is executed in multiple processes, typically on disjoint pieces of the problem and disjoint
subsets of the data. This form, also called parallelism based on fragmentation or partitioning, is enabled by the
fact that query processing focuses on sets. If the underlying data represented sequences, for example time series in
a scientific database management system, partitioning into subsets to be operated upon independently would not be
feasible or would require additional synchronization when putting the independently obtained results together.

Both vertical inter-operator parallelism and intra-operator parallelism are used in database query processing
to obtain higher performance. Beyond the obvious opportunities for speedup and scaleup that these two concepts
offer, they both have significant problems. Pipelining does not easily lend itself to load balancing because each
process or processor in the pipeline is loaded proportionally to the amount of data it has to process. This amount
cannot be chosen by the implementor or the query optimizer, and cannot be predicted very well. For intra-
operator, partitioning-based parallelism, load balance and performance are optimal if the partitions are all of equal
size; however, this can be hard to achieve as discussed earlier for partitioning as a hash table overflow manage-
ment method.

48

9.3. Implementation Strategies

The purpose of the query execution engine is to provide mechanisms for query execution from which the
query optimizer can choose — the same applies for the means and mechanisms for parallel execution. There are
two general approaches to parallelizing a query execution engine, which we call the bracket and operator models
and which are used, for example, in the Gamma and Volcano systems, respectively.

In the bracket model, there is a generic process template that can receive and send data and can execute
exactly one operator at any point of time. A schematic diagram of a template process is shown in Figure 24 with
two possible operators, join and aggregation. The code that makes up the generic template initiates the operator
which then controls execution; network I/O on the receiving and sending sides are performed as a service to the
operator on its request and initiation, and is implemented as procedures to be called by the operator. The number
of inputs that can be active at any point of time is limited to two since there are only unary and binary operators in
most database systems. The operator is surrounded by generic template code which shields it from its environ-
ment, for example the operator(s) that produce its input and consume its output. For parallel query execution,
many templates are executed concurrently in the system, using one process per template. Because each operator is
written presuming that it controls all activities in its process, it is not possible to execute two operators in one pro-
cess without resorting to some thread or coroutine facility i.e., a second implementation level of the process con-
cept.

In a query processing system using the bracket model, operators are coded in such a way that network I/O is
their only means of obtaining input and delivering output (with the exception of scan and store operators). The
reason is that each operator is its own locus of control and network flow control must be used to coordinate multi-
ple operators, €.g., to maich two operators’ speed in a producer-consumer relationship. Unfortunately, this also
means that passing a data item from one operator to another always involves expensive inter-process communica-
tion system calls, even in the cases when an entire query is evaluated on a single machine (and could therefore be
evaluated in a single process, without interprocess communication and operating system involvement) or when
data do not need to be repartitioned among nodes in a network. An example for the latter is the three-way join
query "joinCselAselB" in the Wisconsin Benchmark [72] which uses the same join attribute for both two-way
joins. Thus, in queries with multiple operators (meaning almost all queries), interprocess communication and its

Output
N\

Input(s)

PN
Join

Aggregation
~N
Figure 24. Bracket Model of Parallelization.

49

Print

Exchange
J olin
Join Exchange
Exchange Exchange Scan
Sclan Sclan

Figure 25. Operator Model of Parallelization.

overhead are mandatory rather than optional.

An alternative to the bracket model is the operator model. Figure 25 shows a possible parallelization of a
three-way join plan using the operator model, i.e., by inserting "parallelism" operators into a sequential plan, called
exchange operator in the Volcano system [106]. The exchange operator is an iterator like all other operators in the
system with open, next, and close procedures; therefore, the other operators are entirely unaffected by the presence
of exchange operators in a query evaluation plan. Since it does not contribute to data manipulation but provides
query processing control, we call it a meta-operator. Figure 26 shows the processes created by the exchange
operators in the previous figure. Note that this is only one possible parallelization, which makes sense if the joins
are on the same join attributes. Furthermore, the degrees of data parallelism, i.e., the number of processes in each
process group, can be controlled using an argument to the exchange operator.

Figure 26. Processes Created by Exchange Operators.

50

There is no reason to assume that the two models differ significantly in their performance if implemented
with similar care. Both models can be implemented with a minimum of control overhead and can be combined
with any partitioning scheme for load balancing. The only difference with respect to performance is that the
operator model permits multiple work operators in a single process, i.e., operator synchronization and data transfer
between operators with a single procedure call without operating system involvement. The important advantages
of the operator model are that it permits easy parallelization of an existing sequential system as well as develop-
ment and maintenance of operators and algorithms in a familiar and relatively simple single-process environment
[113].

The bracket and operator models both provide pipelining and partitioning as part of pipelined data transfer
between process groups. For most algebraic operators used in database query processing, this is sufficient and pre-
cisely what is required. However, not all operations can be easily supported by these two models. For example, in
a transitive closure operator, newly inferred data is equal to input data in its importance and role for creating
further data. Thus, to parallelize a single transitive closure operator, the new data must also be partitioned like the
input data. Neither bracket nor operator model immediately allow for this need. Hence, for transitive closure
operators, intra-operator parallelism based on partitioning requires that the processes exchange data among them-
selves outside of the stream paradigm.

The transitive closure operator is not the only operation for which this restriction holds. Other examples
include the complex object assembly operator described in [155] and operators for numerical optimizations as
might be used in scientific databases. Both models, the bracket model and the operator model, could be extended
to provide a general and efficient solution to intra-operator data exchange for intra-operator parallelism.

9.4. Load Balancing and Skew

For optimal speedup and scaleup, pieces of the processing load must be assigned carefully to individual pro-
cessors and disks to ensure equal completion times for all pieces. In inter-operator parallelism, operators must be
grouped to ensure that no one processor becomes the bottleneck for an entire pipeline. This is very hard to do
since intermediate set sizes cannot be anticipated with accuracy and certainty in database query optimization.
Thus, no existing or proposed query processing engine relies solely on inter-operator parallelism. In intra-operator
parallelism, data sets must be partitioned such that the processing load is nearly equal for each processor. Notice
that in particular for binary operations such as join, this can be different from partitions of equal size. Uneven data
or processing load is also referred to as skew.

There are several research efforts developing techniques to avoid skew or to limit the effects of skew in
parallel query processing, e.g., [10, 76, 142, 164, 173, 174, 198, 237, 281, 282, 285, 286]. However, all of these
methods have their drawbacks, for example additional requirements for local processing to determine quantiles.

Skew management methods can be divided into basically two groups. First, skew avoidance methods rely on
determining suitable partitioning rules before data is exchanged between processing nodes or processes. For
range-partitioning, quantiles can be determined or estimated from sampling the data set to be partitioned, from
catalog data, e.g., histograms, or from a preprocessing step. Histograms kept on permanent base data have only
limited use for intermediate query processing results, in particular if the partitioning attribute or a correlated attri-
bute has been used in a prior selection or matching operation. However, for stored data they may be very
beneficial. Sampling implies that the entire population is available for sampling because the first memory load of
an intermediate result may be a very poor sample for partitioning decisions. Thus, sampling might imply that the

51

data flow between operators be halted and an entire intermediate result be materialized on disk to ensure proper
sampling and subsequent partitioning. However, if such a halt is required anyway for processing a large set, it can
be used for both purposes. For example, while creating and writing initial run files without partitioning in a paral-
lel sort, quantiles can be determined or estimated and used in a combined partitioning and merging step.

Second, skew resolution repartitions some or all of the data after an initial partitioning has resulted in skewed
loads. This is relatively easy in shared-memory machines, but can also be done in distributed-memory architec-
tures, albeit at the expense of more network activity. Skew resolution can be based on both re-hashing in hash par-
titioning and quantile adjustment in range partitioning. Since hash partitioning tends to create fairly even loads and
network bandwidth will increase in the near future within distributed-memory machines as well as in local- and
wide-area networks, skew resolution is a reasonable method for cases in which a prior processing step cannot be
exploited to gather the information necessary for skew avoidance as in the sort example above.

In their recent research into sampling for load balancing, Naughton et al. have shown that stratified random
sampling can be used, i.e., samples are selected randomly not from the entire, distributed data set but from each
local data set at each site, and that even small sets of samples ensure reasonably balanced loads {76, 237]. Their
definition of skew is the quotient of sizes of the largest partition and the average partition, i.e., the sum of sizes of
all partitions divided by the degree of parallelism. In other words, a skew of 1.0 indicates a perfectly even distribu-
tion. Figure 27 shows the required sample sizes per partition for various skew limits, degrees of parallelism, and
confidence levels. For example, to ensure a maximal skew of 1.5 among 1,000 partitions with 95% confidence,
110 random samples must be taken at each site. Thus, relatively small samples suffice for reasonably safe skew
avoidance and load balancing, making precise methods unnecessary. Typically, only tens of samples per partition
are needed, not several hundreds of samples at each site.

10000 —~ solid — 99 % confidence
dotted — 95 % confidence
O 1024 partitions
1000 — QY O 2 partitions
Sample ’
Size
Per
Partition
100 —
10
| [[[[
1 1.25 1.5 1.75 2
Skew Limit

Figure 27. Skew Limit, Confidence, and Sample Size per Partition.

52

9.5. Tuning a Parallel System

Beyond skew, the major impediments to effective use of parallelism in database query processing are control
overhead, in particular initialization delays, interference on lower software and hardware levels, and synchroniza-
tion delays.

Control overhead was one of the major obstacles to obtaining linear speedups in early database machine
designs, for example DIRECT [35]. The main issue here is that the number of control messages should be linear to
the number of processes, not with the number of data pages or items. If distribution of initiation messages is a
problem and broadcasting is not available or not practical, a linear number of messages can be executed in a loga-
rithmic number of single node-to-node messages using a tree-shaped propagation scheme, as proposed for example
for a highly parallel implementation of the Gamma database machine [93, 94].

Another possible approach to reducing control overhead is to use not only primed processes (i.e., a pool of
processes waiting until work packets arrive), but primed processes with primed connections. Instead of allocating
processes and then establishing connections between them, a pool of process groups is used, each group already
connected in a pattern typically found in parallel query processing. This idea clearly has a lot of promise for mas-
sively parallel systems but it requires determining the size of process groups and suitable "typical" connections.
Furthermore, the query optimizer must be designed to exploit such preconnected process groups.

Interference can occur both on a hardware level and in lower software levels. The prime example for
hardware interference is bus contention in shared-memory multi-processors, the reason for the limited scalability
of single-bus shared-memory architectures. Lower software levels can also introduce bottlenecks and contention,
for example a buffer manager with its residency lookup table or a bit map for disk page allocation. A study of
software interference in a more general sense can be found in [88].

As an example, Figure 28, taken from [115], shows the effect of tuning and removing interference among
processes on a shared-memory machine executing a parallel sort of 100 MB (10 records of 100 B) with an equal
number of processors and disks in each measurement. The time measurements are shown using solid lines and

Ideal Speedup .- [~ 1
1200 — ..,.;"/ 14
1000 — ws 12
R “Final Speedup
800 e — 10
Time -7 -B----" g Speedu
[seconds] ¢y _ BT ” Initial Speedup [~ 8 opeedup

— 6

400 — Initial Time _ |4

2009 = Final Time |2

0

[I I I I
2 4 8 12 16

Number of Processors and Disks
[Initial, A Final Measurements

Figure 28. Tuning Effectiveness for a Parallel Algorithm.

53

refer to the labels on the left. The speedups are shown with dashed lines and refer to the labels on the right. The
initial times and speedups are marked with [I’s while the final ones are marked with A’s. The ideal, linear speedup
is shown by the dotted line. — It is immediately obvious from the solid lines that the final times are significantly
lower than the initial ones, demonstrating the effect of the tuning measures. For two to eight processors and disks,
the observed performance improvements by a factor slightly more than two are largely due to increased cluster size
and reduced I/O cost. Beyond eight processors and disks, the dashed lines indicate that the modifications and
adjustments also improved the speedup which had been completely unsatisfactory with the initial software. For
sixteen processors and disks, the fully tuned software performed about 3% times better than the original version. A
comparison of the dashed and dotted lines shows very close to linear speedup with the fully tuned software. Thus,
tuning improved the parallel behavior as well as the absolute performance. The main reason why the speedup
could be improved was the removal of a latch contention bottleneck from the buffer manager, i.e., interference of
multiple processes using a shared resource.

Synchronization delays can also be induced by hardware and software. Software delays may occur if multi-
ple processes in a pipeline operate with different throughput and require the standard producer-consumer syn-
chronization. On the hardware level, synchronizing multiple caches that, considering today’s cache sizes, can
almost be thought of as constituting a distributed-memory machine, can introduce significant delays. It is interest-
ing to note that one of the advantages of shared-memory, namely effective load balancing through a single run-
queue, might be counterproductive if processes (and their cache residency set) tend to migrate too much or 0o
often. Our recommendation is to make processes "sticky,” i.e., to try but not to force process-to-processor affinity
[115].

9.6. Architectures and Architecture-Independence

1%Many database research projects have investigated hardware architectures for parallelism in database sys-
tems. Stonebraker compared shared-nothing (distributed-memory), shared-disk (distributed-memory with mulii-
ported disks), and shared-everything (shared-memory) architectures for database use based on a number of issues
including scalability, communication overhead, locking overhead, and load balancing [261]. His conclusion was
that shared-everything excels in none of the points considered, shared-disk introduces too many locking and buffer
coherency problems, and that shared-nothing has the significant benefit of scalability to very high degrees of paral-
lelism. Therefore, he concluded that overall shared-nothing is the preferable architecture for database system
implementation.

Bhide and Stonebraker compared architectural alternatives for transaction processing [25, 26] and concluded
that a shared-everything (shared-memory) design provides best performance. To achieve high performance, relia-
bility, and scalability, Bhide suggested considering shared-nothing (distributed-memory) machines with shared-
everything parallel nodes. The same idea is mentioned in equally general terms by Pirahesh et al. [205] and Boral
et al. [38], but none of these authors elaborate on the idea’s generality or potential. Kitsuregawa and Ogawa’s new
database machine SDC uses multiple shared-memory nodes (plus custom hardware like the Omega network and a
hardware sorter) [164], although the effect of the hardware design on operators other than join is not evaluated in
[164].

10 Much of this section has been derived from [109].

54

Customized parallel hardware was investigated but largely abandoned after Boral and DeWitt’s influential
analysis [36] that compared CPU and I/O speeds and their trends and concluded that I/O is the most likely the
bottleneck in future high-performance query execution, not processing. Therefore, they recommended moving
from research on custom processors to techniques for overcoming the I/O bottleneck, e.g., use of parallel readout
disks, disk caching and read-ahead, and indexing to reduce the amount of data to be read for a query. Other inves-
tigations came to the same conclusion that parallelism is no substitute for effective storage structures and query
execution algorithms [66, 190, 245]. Subsequently, both Boral and DeWitt embarked on new database machine
projects, Bubba and Gamma, that executed customized software on standard processors with local disks [38, 71].
For scalability and availability, both projects used distributed-memory hardware with single-CPU nodes, and
investigated scaling questions for very large configurations.

The XPRS system, on the other hand, has been based on shared memory [135, 263, 264]. Its designers
believe that modern bus architectures can handle up to 2,000 transactions per second. Shared-memory architec-
tures provide automatic load balancing and faster communication than shared-nothing machines and are equally
reliable and available for most errors, i.e., media failures, software, and operator errors [116]. However, we
believe that attaching 250 disks to a single machine as necessary for 2,000 transactions per second [263] requires
significant special hardware, e.g., channels or I/O processors, and it is quite likely that the investment for such
hardware can have greater impact on overall system performance if spent on general-purpose CPU’s or disks.
Without such special hardware, the performance limit for shared-memory machines is probably much lower than
2,000 transactions per second. Furthermore, there already are applications that require larger storage and access
capacities.

Richardson et al. [208] performed an analytical study of parallel join algorithms on multiple shared-memory
"clusters" of CPU’s. They assumed a group of clusters connected by a global bus with multiple microprocessors
and shared memory in each cluster. Disk drives were attached to the busses within clusters. However, their
analysis suggested that the best performance are obtained by using only one cluster, i.e., a shared-memory archi-
tecture. We contend that their results are due to their parameter settings, in particular small relations (typically 100
pages of 32 KB), slow CPU’s (e.g., 5 psec for a comparison, about 2—5 MIPS), a slow global network (a bus with
typically 100 Mbit/sec), and a modest number of CPU’s in the entire system (128). It would be very interesting to
see the analysis with larger relations (e.g., 1-10 GB), more and faster CPU’s (e.g., 1,000 X 50 MIPS), and a faster
network e.g., a modern hypercube or mesh with hardware routing. In such machines, multiple clusters are likely to
be the better choice. On the other hand, communication between clusters will remain a significant expense. Wong
and Katz developed the concept of "local sufficiency" [289] that might provide guidance in declustering and repli-
cation to reduce data movement between nodes. Other work on declustering and limiting declustering includes
[62, 85, 95, 139, 141].

Finally, there are several hardware designs that attempt to overcome the shared-memory scaling problem,
e.g., the DASH project [3], the Wisconsin Multicube [99], and the Paradigm project [54]. However, these designs
follow the traditional separation of operating system and application program. They rely on page or cache-line
faulting and do not provide typical database concepts like read-ahead and dataflow. Lacking separation of
mechanism and policy in these designs almost makes it imperative to implement dataflow and flow control for
database query processing within the query execution engine. At this point, none of these hardware designs has
been experimentally tested for database query processing,.

55

New software systems designed to exploit parallel hardware should be able to exploit both the advantages of
shared memory, namely efficient communication, synchronization, and load balancing, and of distributed memory,
namely scalability to very high degrees of parallelism and reliability and availability through independent failures.
Figure 29 shows a general hierarchical architecture, which we believe combines these advantages. The important
point is the combination of local busses within shared-memory parallel machines and a global interconnection net-
work between machines. The diagram is only a very general outline of such an architecture; many details are deli-
berately left out and unspecified. The network could be implemented using a bus such as an ethernet, a ring, a
hypercube, a mesh, or a set of point-to-point connections. The local busses may or may not be split into code and
data or by address range to obtain less contention and higher bus bandwidth and hence higher scalability limits for
the use of shared memory. Design and placement of caches, disk controllers, terminal connections, and local- and
wide-area network connections are also left open. Tape drives or other backup devices would be connected to
local busses.

Modularity is a very important consideration for such an architecture, i.e., the ability to add, remove, and
replace individual units. For example, it should be possible to replace all CPU boards with upgraded models
without having to replace memories or disks. Considering that new components will change communication
demands, e.g., faster CPU’s might require more local bus bandwidth, it is also important that the allocation of
boards to local busses can be changed. For example, it should be easy to reconfigure a machine with 4x16 CPU’s
into one with 8x8 CPU’s.

Beyond the effect of faster communication and synchronization, this architecture can also have a significant
effect on control overhead, load balancing, and resulting response time problems. Investigations in the Bubba pro-
ject at MCC demonstrated that large degrees of parallelism may reduce performance unless load imbalance and
overhead for startup, synchronization, and communication can be kept low [62]. For example, when placing 100
CPU'’s either in 100 nodes or in 10 nodes of 10 CPU’s each, it is much faster to distribute query plans to all CPU’s
and much easier to achieve reasonably balanced loads in the second case than in the first case. Within each

I Interconnection Network '

Local{Bus Local|Bus Lochl|Bus
CpPU CPU CPU
CPU CPU CPU
CpPU CPU CPU
Local|Bus Local{Bus Lochl|Bus
Memory Memory Memory

Figure 29. A Hierarchical-Memory Architecture.

5

N

shared-memory parallel node, load imbalance can be dealt with either by compensating allocation of resources,
e.g., memory for sorting or hashing, or by relatively efficient reassignment of data to processors.

Many of today’s parallel machines are built as one of the two extreme cases of this hierarchical design: a
distributed-memory machine uses single-CPU nodes, while a shared-memory machine consists of a single node.
Software designed for this hierarchical architecture will run on either conventional design as well as a genuinely
hierarchical machine, and will allow exploring tradeoffs in the range of alternatives in between. The most recent
version of Volcano’s exchange operator is designed for hierarchical memory, demonstrating that the operator
model of parallelization also offers architecture- and topology-independent parallel query evaluation [109]. In
other words, the parallelism operator is the only operator that needs to "understand” the underlying architecture,
while all data manipulation operators can be implemented without concern for parallelism, data distribution, and
flow control.

10. Parallel Algorithms

In the previous section, mechanisms for parallelizing a database query execution engine were discussed. In
this section, individual algorithms and their special cases for parallel execution are considered in more detail.
Parallel database query processing algorithms are typically based on partitioning an input using range- or hash-
partitioning. Either form of partitioning can be combined with sort- and hash-based query processing algorithms;
in other words, the choices of partitioning scheme and local algorithm are almost always entirely orthogonal.

When building a parallel system, there is sometimes a question whether it is betier o parallelize a slower
sequential algorithm with better speedup behavior or a fast sequential algorithm with inferior speedup behavior.
The answer to this question depends on the design goal and the planned degree of parallelism. In the few single-
user database systems in use, the goal has been to minimize response time; for this goal, a slow algorithm with
linear speedup implemented on highly parallel hardware might be the right choice. In multi-user systems, the goal
typically is to minimize resource consumption in order to maximize throughput. For this goal, only the best
sequential algorithms should be parallelized. For example, Boral and DeWitt concluded that parallelism is no sub-
stitute for effective and efficient indices [36]. For a new parallel algorithm with impressive speedup behavior, the
question of whether or not the underlying sequential algorithm is the most efficient choice should always be con-
sidered.

10.1. Parallel Selections and Updates

Since disk I/O is a performance bottleneck in many systems, it is natural to parallelize it. Typically, either
asynchronous /O or one process per participating I/O device is used, be it a disk or an array of disks under a single
controller. If a selection attribute is also the partitioning attribute, fewer than all disks will contain selection
results, and the number of processes and activated disks can be limited. Notice that parallel selection can be com-
bined very effectively with local indices, i.e., indices covering the data of a single disk or node. In general, it is
most efficient to maintain indices close to the stored data sets, i.e., on the same node in a parallel database system.,

For updates of partitioning attributes in a partitioned data set, items may need to move between disks and
sites, just as items may move if a clustering attribute is updated. Thus, updates of partitioning attributes may
require setting up data exchange with producers and consumers in order to maintain the consistency of the parti-
tioning. The fact that updating partitioning attributes is more expensive is one reason why immutable (or nearly
immutable) identifiers or keys are usually used as partitioning attributes.

57

10.2. Parallel Sorting

Since sorting is the most expensive operation in many of today’s database management systems, much
research has been dedicated to parallel sorting. There are two dimensions along which parallél sorting methods
can be classified: the number of their parallel inputs (e.g., scan or subplans executed in parallel) and the number of
parallel outputs (consumers) [105]. As sequential input or output restrict the throughput of parallel sorts, we
assume a multiple-input multiple-output parallel sort here, and further assume that the input items are partitioned
randomly with respect to the sort attribute and that the output items should be range-partitioned and sorted.

Considering that data exchange is expensive, both in terms of communication and synchronization delays,
each data item should be exchanged only once between processes. Thus, most parallel sort algorithms consist of a
local sort and a data exchange step. If the data exchange step is done first, quantiles must be known to ensure load
balancing during the local sort step. Such quantiles can be obtained from histograms in the catalogs or by sam-
pling. It is not necessary that the quantiles be precise; a reasonable approximation will suffice.

If the local sort is done first, the final local merging should pass data directly into the data exchange step. On
each receiving site, multiple sorted streams must be merged during the data exchange step. One of the possible
problems is that all producers of sorted streams first produce low key values, limiting performance by the speed of
the first (single!) consumer, then all producers switch to the next consumer, etc.

If a different partitioning strategy than range-partitioning is used, sorting with subsequent partitioning is not
guaranteed to be deadlock-free in all situations. Deadlock will occur if (i) multiple consumers feed multiple pro-
ducers, and (ii) each producer produces a sorted stream and each consumer merges multiple sorted streams, and
(iii) some key-based partitioning rule is used other than range partitioning, i.e., hash partitioning, and (iv) flow con-
trol is enabled, and (v) the data distribution is particularly unfortunate. Figure 30 shows the scenario with two pro-
ducers and two consumers. Presume that the left producer produces the stream 1, 3, 5, 7, ..., 999, 1002, 1004,
1006, 1008, ..., 2000 while the right producer produces 2, 4, 6, 8, ..., 1000, 1001, 1003, 1005, 1007, ..., 1999. The
merging consumers must receive the first item from each producer before they can create their first output item and
remove additional items from their input buffers. However, the producers will need to produce 500 items each
(and insert them into one consumer’s input buffer, all 500 for one consumer) before they will send their first item
to the other consumer. The data exchange buffer needs to hold 1000 items at one point of time, 500 on each side
of Figure 30, minus some items that are in output and input buffers currently being filled or emptied. If flow con-
trol is enabled and the exchange buffer (flow control slack) is less than 500 items, deadlock will occur.

Merge Merge
odd even odd even
Sort Sort

Figure 30. Scenario with Possible Deadlock.

58

The reason deadlock can occur in this situation is that the producers need to ship data in the order obtained
from their input subplan while the consumers need to receive data in sorted order as required by the merge. Thus,
there are two sides which both require absolute control over the order in which data pass over the process boun-
dary. If the two requirements are incompatible, an unbounded buffer is required to ensure freedom from deadlock.

In order to avoid deadlock, it must be ensured that one of the conditions outlined earlier is not satisfied. The
second condition is the easiest to avoid, and should be focussed on. If the receiving processes do not perform a
merge, i.e., the individual input streams are not sorted, deadlock cannot occur because the slack given in the flow
control must be somewhere, either at some producer or some consumer or several of them, and the process holding
the slack can continue to process data, thus preventing deadlock.

Our recommendation is to avoid the above situation, i.e., to ensure that such query plans are never generated
by the optimizer. Consider for which purposes such a query plan would be used. The typical scenario is that mul-
tiple processes perform a merge join of two inputs, and each (or at least one) input is sorted by several producer
processes. An alternative scenario that avoids the problem is shown in Figure 31. Result data are partitioned and
sorted as in the previous scenario. The important difference is that the consumer processes do not merge multiple
sorted incoming streams.

An interesting parallel sorting method with balanced communication and without the possibility of deadlock
in spite of local sort followed by data exchange (if the data distribution is known a priori) is to sort locally only by
the position within the final partition and then exchange data guaranteeing a balanced data flow. This method
might be best seen in an example: Consider 10 partitions with key values from 0 to 999 in a uniform distribution.
The goal is to have all key values between 0 to 99 sorted on site 0, between 100 and 199 sorted on site 1, etc. First,
each partition is sorted locally at its original site, without data exchange, on the the last two digits only, ignoring
the first digit. Thus, each site has a sequence like 200, 301, 401, 902, 2, 603, 804, 605, 105, 705, ... 999, 399. Now
each site sends data to its correct final destination. Notice that each site sends data simultaneously to all other sites,
creating a balanced data flow among all producers and consumers. While this method seems elegant, its problem is
that it requires fairly detailed distribution information to ensure the desired balanced data flow.

In a shared-memory machine, memory must be divided over all concurrent sort processes. Thus, the more
processes are active, the less memory each one can get. The importance of this memory division is the limitation it
puts on the size of initial runs and on the fan-in in each merge process. In other words, large degrees of parallelism
may impede performance because they increase the number of merge levels. Figure 32 shows how the number of
merge levels growths with increasing degrees of parallelism, i.e., decreasing memory per process and merge fan-
in. For input size 7, total memory size M, and P parallel processes, the merge depth L is L =
logy p((I /PY!I (M /P)) =logy,p(I M).

Sort Sort

odd even odd even

Figure 31, Deadlock-Free Scenario.

59

10— Memory Size M = 40
3| Input Size I = 125,000
Merge 6
Depth
4]
9]

I I I [I { I
1 3 5 7 9 11 13

Degree of Parallelism

Figure 32. Merge Depth as a Function of Parallelism.

The optimal degree of parallelism must be determined considering the tradeoff between parallel processing and
large fan-ins, somewhat similar to the tradeoff between fan-in and cluster size. Extending this argument using the
duality of sorting and hashing, too much parallelism in hash-partitioning on shared-memory machines can also be
detrimental, both for aggregation and for binary matching.

10.3. Parallel Aggregation and Duplicate Removal

Parallel algorithms for aggregation and duplicate removal are best divided into a local step and a global step.
First, duplicates are eliminated locally and then data are partitioned to detect and remove duplicates from different
original sites. For aggregation, local and global aggregate functions may differ. For example, to perform a global
count, the local aggregation counts while the global aggregation sums local counts into a global count.

For local hash-based aggregation, a special technique might improve performance. Instead of creating
overflow files locally on hash table overflow, items are moved directly to their final site. Hopefully, this site can
aggregate them immediately into the local hash table because a similar item already exists. In many recent
distributed-memory machines, it is faster to ship an item to another site than to do a local disk I/O."! The advan-
tage of this technique is that disk 1/O is required only when the aggregation output size does not fit into the aggre-
gate memory available on all machines, while the standard local aggregation-exchange-global aggregation scheme
requires local disk I/O if any local output size does not fit into a local memory. The difference between the two is
determined by the degree to which the original input is already partitioned, usually not at all, making this technique
very beneficial.

1 In fact, some distributed-memory vendors attach disk drives not to the primary processing nodes but to spe-
cial "I/O nodes" because network delay is negligible compared to I/O time, e.g. in Intel’s iPSC/2 and its subsequent
parallel architectures.

60

10.4. Parallel Joins and Other Binary Matching Operations

Binary matching operations like join, semi-join, outer join, intersection, union, and difference are different
than the previous operations exactly because they are binary. For bushy parallelism, i.e, a join for which two sub-
plans create the two inputs independently from one another in parallel, we might consider symmetric hash join
algorithms. Instead of differentiating build and probe inputs, the symmetric hash join uses two hash tables, one for
each input. When a data item (or packet of items) arrives, the join algorithm first determines which input it came
from, and then joins the new data items with the hash table built from the other input as well as inserts the new data
items into its hash table such that data items from the other input arriving later can be joined correctly. Such a
symmetric hash join algorithm has been used in XPRS, a shared-memory high-performance extensible-relational
database system [135, 263, 264]. The advantage of symmetric matching algorithms is that they are independent of
the data rates of the inputs; their disadvantage is that they require that both inputs fit in memory.

For parallelizing a single binary matching operation, there are basically two techniques, called here sym-
metric partitioning and fragment-and-replicate. In both cases, the global result is the union (concatenation) of all
local results. Some algorithms exploit the topology of certain architectures, e.g., ring- or cube-based communica-
tion networks [10, 196].

In the symmetric partitioning methods, both inputs are partitioned on the attributes relevant to the operation
(i.e., the join attribute for joins or all attributes for set operations), and then the operation is performed at each site.
Both the Gamma and the Teradata database machines use this method. Notice that the partitioning method (usu-
ally hashed) and the Iocal join method are independent of each other; Gamma uses hybrid hash join while Teradata
uses merge-join.

In the fragment-and-replicate methods, one input is partitioned and the other one is broadcast to all sites.
Typically, the larger input is partitioned by not moving it at all, i.e., the existing partitions are processed at their
locations prior to the binary matching operation. Fragment-and-replicate methods were considered the join algo-
rithms of choice in early distributed database systems like R*, SDD-1, and distributed Ingres because communica-
tion costs overshadowed local processing costs, and it was cheaper to send a small input to a small number of sites
than to partition both a small and a large input.

A technique for reducing network traffic during join processing in distributed database systems uses redun-
dant semi-joins [19, 55, 100], and the idea can also be used in distributed-memory parallel systems. As a simple
example, consider the join of relations R and S stored on two different nodes in a network, say r and s, on a com-
mon attribute A. The semi-join method transfers a duplicate-free projection of R on A to s, performs a semi-join
there to determine the items in § that actually participate in the join result, and ships these items to r for the actual
join. In other words, based on the relational algebra law that

R JOIN § =R JOIN (§ SEMIJOIN m4R),

cost savings of not shipping all of § were realized at the expense of projecting and shipping the R.A -column and
executing the semi-join. Of course, this idea can be used symmetrically to reduce R or S or both, and all opera-
tions (projection, duplicate removal, semi-join, and final join) can be executed in parallel on both r and s or on
more than two nodes using the parallel join strategies discussed earlier in this subsection. Furthermore, there are
probabilistic variants of this idea that use bit vector filtering instead of semi-joins, discussed later in its own sub-
section.

61

Roussopoulos and Kang recently showed that symmetric semi-joins are particularly useful [217]. Using the
equalities (for a join of relations R and S on attribute A)

R JOIN § =R JOIN [S SEMIJOIN nAR}
= [R SEMIJOIN 4 [S SEMIJOIN msR]] JOIN {S SEMIJOIN 4R } (@)

= [R SEMIJOIN w4 [S SEMIJOIN msR }] JOIN {S SEMIJOIN msR] (b)

they designed a four-step procedure to compute the join of two relations stored at two sites. First, the first
relation’s join attribute column R.A is sent duplicate-free to the other relation’s site, s. Second, the first semi-join
is computed at s, and either the matching values (term (a) above) or the non-matching values (term (b) above) of
the join column §.A are sent back to the first site, r. The choice between (a) and (b) is made based on the number

of matching and non-matching'? values of S.A. Third, site » determines which items of R will participate in the
joinR JOIN §,ie., R SEMIJOIN §. Fourth, both input sites send exactly those items that will participate in the
join R JOIN S to the site that will compute the final result, which may or may not be one of the two input sites. Of
course, this two-site algorithm can be used across any number of sites in a parallel query evaluation system.

Typically, each data item is exchanged only once across the interconnection network in a parallel algorithm.
However, for parallel systems with small communication overhead, in particular for shared-memory systems, and
in parallel processing systems with processors without Iocal disk, it may be useful to spread each overflow file over
all available nodes and disks in the system. The disadvantage of the scheme may be communication overhead;
however, the advantages of load balancing and cumulative bandwidth while reading a partition file have led to the
use of this scheme both in the Gamma and SDC database machines, called bucker spreading in the SDC design
[71, 164].

For parallel non-equi-joins, a symmetric fragment-and-replicate method has been proposed by Stamos and

A

R—é’ \ \ 8

b=
av-e

Figure 33. Symmetric Fragment-and-Replicate Join.

12 SEMIJOIN stands for the anti-semi-join, which determines those items in the first input that do not have a
match in the second input.

62

Young [257]. As shown in Figure 33, processors are organized into rows and columns. One input relation is parti-
tioned over rows and partitions are replicated within each row, while the other input is partitioned and replicated
over columns. Each item from one input "meets" each item from the other input at exactly one site, and the global
join result is the concatenation of all local joins.

Avoiding partitioning as well as broadcasting for many joins can be accomplished with a physical database
design that considers frequently performed joins and distributes and replicates data over the nodes of a parallel or
distributed system such that many joins already have their input data suitably partitioned. Katz and Wong formal-
ized this notion as local sufficiency [154, 289]; more recent research on the issue was performed in the Bubba pro-
ject [62].

For joins in distributed systems, a third class of algorithms, called fetch-as-needed, was explored. The idea
of these algorithms is that one site performs the join by explicitly requesting (fetching) only those items from the
other input needed to perform the join [64, 284]. If one input is very small, fetching only the necessary items of
the larger input might seem advantageous. However, this algorithm is a particularly poor implementation of a
semi-join technique discussed above. Instead of requesting items or values one by one, it seems better to first pro-
ject all join attribute values, ship (stream) them across the network, perform the semi-join using any local binary
matching algorithm, and then stream exactly those items that will be required for the join back to the first site. The
difference between the semi-join technique and fetch-as-needed is that the semi-join scans the first input twice,
once to extract the join values and once to perform the real join, while fetch-as-needed needs to work on each data
item only once.

10.5. Parallel Universal Quantification

In our previous discussion on universal quantification, we discussed four algorithms for universal
quantification or relational division, namely naive division (a direct, sort-based algorithm), hash-division (direct,
hash-based), and sort- and hash-based aggregation (indirect) algorithms which might require semi-joins and dupli-
cate removal in the inputs.

For naive division, pipelining can be used between the two sort operators and the division operator. How-
ever, both quotient partitioning and divisor partitioning can be employed as described below for hash-division.

For algorithms based on aggregation, both pipelining and partitioning can be applied immediately using stan-
dard techniques for parallel query execution. While partitioning seems to be a promising approach, it has an
inherent problem due to the possible need for a semi-join. Recall that in the example for universal quantification
using transcript and course relations, the join attribute in the semi-join (course-no) is different than the grouping
attribute in the subsequent aggregation (student-id). Thus, the Transcript relation has to be partitioned twice, once
for the semi-join and once for the aggregation.

For hash-division, pipelining has only limited promise because the entire division is performed within a sin-
gle operator. However, both partitioning strategies discussed earlier for hash table overflow can be employed for
parallel execution, i.e., quotient partitioning and divisor partitioning [104, 111].

For hash-division with quotient partitioning, the divisor table must be replicated in the main memory of all
participating processors. After replication, all local hash-division operators work completely independently of
each other. Clearly, replication is trivial for shared-memory machines, in particular since a single copy of the divi-
sor table can be shared without synchronization among multiple processes once it is complete.

63

When using divisor partitioning, the resulting partitions are processed in parallel instead of in phases as dis-
cussed for hash table overflow. However, instead of tagging the quotient items with phase numbers, processor net-
work addresses are attached to the data items, and the collection site divides the set of all incoming data items over
the set of processor network addresses. In the case that the central collection site is a bottleneck, the collection
step can be decentralized using quotient partitioning,

11. Non-Standard Query Processing Algorithms

In this section, we briefly review the query processing needs of data models and database systems fo mon-
standard applications. In many cases, the logical operators defined for new data models require existing algo-
rithms, e.g., for intersection. The reason is that for processing, bulk data types like array, set, bag (multi-set), or
list are represented as sequences similar to the streams used in the query processing techniques discussed earlier,
and the algorithms to manipulate these bulk types are equal to the ones used for sets of tuples, i.e., relations. How-
ever, some algorithms are genuinely different from the algorithms we have surveyed so far. In this section, we
review operators for nested relations, temporal and scientific databases, object-oriented databases, and more meta-
operators for additional query processing control.

There are several reasons for integrating these operators into an algebraic query processing system. First, it
permits efficient data transfer from the database to the application embodied in these operators. The interface
between database operators is designed to be as efficient as possible; this should also be used for applications.
Second, operator implementors can take advantage of the control provided by the meta-operators. For example, an
operator for a scientific application can be implemented in a single-process environment and later parallelized with
the exchange operator. Third, query optimization based on algebraic transformation rules can cover all operators,
including operations that are normally considered database application code. For example, using algebraic optimi-
zation tools such as the EXODUS and Volcano optimizer generators [101, 110], optimization rules that can move
an unusual database operator in a query plan are easy to implement. For example, for a sampling operator, a rule
might permit transforming an algebra expression to query a sample instead of sampling a query result.

11.1. Nested Relations

Nested relations, or Non-First-Normal-Form (NFZ) relations, permit relation-valued attributes in addition to
atomic values such as integers and strings used in the normal or "flat” relational model. For example, in an order
processing application, the set of individual line items on each order could be represented as a nested relation, i.e.,
as part of the order tuple. Figure 34 showsa NF? relation with two tuples with two and three nested tuples and the
equivalent normalized relations, which we call the master and detail relations. Nested relations can be used for all
one-to-many relationships but are particularly well-suited for the representation of "weak entities” in the Entity-
Relationship (ER) Model [49], i.e., entities whose existence and identification depends on another entity as for
order entries in Figure 34. In general, nested sub-tuples may include relation-valued attributes, with arbitrary nest-
ing depth. The advantages of the NF? model are that component relationships can be represented more naturally
than in the fully normalized model, many frequent join operations can be avoided, and structural information can
be used for physical clustering. Its disadvantage is the added complexity, in particular in storage management and
query processing.

Several algebras for nested relations have been defined, e.g. [75, 227]. Our discussion here focuses not on
the conceptual design of NF? algebras but on algorithms to manipulate nested relations, which are unfortunately
not very well documented to-date.

64

Order Customer Date Items
-No -No Part-No Count
110 911 910902 4711 8

2345 7
112 912 910902 9876 3
2222 1
2357 9
Order-No Customer-No Date
110 911 910902
112 912 910902
Order-No Part-No Quantity
110 4711 8
110 2345 7
112 9876 3
112 2222 1
112 2357 9

Figure 34. Nested Relation and Equivalent Flat Relations.

Two operations required in NF? database systems are operations that transform a NF? relation into a normal-
ized relation with atomic attributes only, and vice versa. The first operation is frequently called unnest or flatten;
the opposite direction is called the nest operation. The unnest operation can be performed in a single scan over the
NF? relation that includes the nested subtuples; both normalized relations in Figure 34 and their join can be derived
readily enough from the NF? relation. The nest operation requires grouping of tuples in the detail relation and a
join with the master relation. Grouping and join can be implemented using any of the algorithms for aggregate
functions and binary matching discussed earlier, i.e., sort- and hash-based sequential and parallel methods.

All operations defined for flat relations can also be defined for nested relations, in particular selection, join,
and set operations (union, intersection, difference). For selections, additional power is gained with selection condi-
tions on subtuples and sets of subtuples using set operations or existential or universal quantifiers. In principle,
since the nested relation is a relation, any relational calculus and algebra expression should be permitted for it. In
the example of Figure 34, there may be a selection of orders in which the ordered quantity of all items is more than
100, which is a universal quantification. The algorithms for selections with quantifier are similar to the ones dis-
cussed earlier for flat relations, e.g., relational semi-join and division, but are easier to implement because the
grouping process built into the flat-relational algorithms is inherent in the nested tuple structure.

For joins, similar considerations apply. Matching algorithms discussed earlier can be used in principle.
They may be more complex if the join predicate involves subrelations, and algorithm combinations may be
required that are derived from a flat-relation query over flat relations equivalent to the NF? query over the nested
relations. However, there should be some performance improvements possible if the grouping of values in the
nested relations can be exploited, as for example in [212].

65

11.2. Temporal and Scientific Database Management

For a variety of reasons, management and manipulation of statistical, temporal, and scientific data are gain-
ing interest in the database resecarch community. Most work on temporal databases has focused on its semantics
and representation in data models and query languages [252]; some work has considered special storage structures,
e.g. [1, 79, 213, 238], algebraic operators, ¢.g., temporal joins [234], and optimization of temporal queries, e.g.
[121, 233]. While logical query algebras require extensions to accommodate time, only some storage structures
and algorithms, e.g., multi-dimensional indices, differential files, and versioning, and the need for approximate
selection and matching (join) predicates are new in the query execution algorithms for temporal databases.

A number of operators can be identified that both add functionality to database systems used to process
scientific data and fit into the database query processing paradigm. Schneider et al. considered algorithms for join
predicates that express proximity, i.e., join predicates of the form R.A —¢1<8.B <R.A + ¢ [73]. Such join
predicates operations are very different from the usual use of relational join. They do not reestablish relationships
based on identifying keys but match data values that express a dimension in which distance can be defined, in par-
ticular time. Traditionally, such join predicates have been considered non-equi-joins and were evaluated by a vari-
ant of nested loops join. However, such "band joins" can be executed much more efficiently by a variant of
merge-join that keeps a "window” of inner-relation tuples in memory or by a variant of hash join that uses range-
partitioning and assigns some build tuples to multiple partition files. A similar partitioning model must be used for
parallel execution, requiring multi-cast for some tuples. Clearly, these variants of merge-join and hash join will
outperform nested loops for large inputs unless the band is so wide that the join result approaches the Cartesian
product.

For storage and management of the massive amounts of data resulting from scientific experiments, database
techniques are very desirable. Operators for processing time series in scientific databases are based on an interpre-
tation of a stream between operators not as a set of items (as in most database applications) but as a sequence in
which the order of items in a stream has semantic meaning. For example, data reduction using interpolation as
well as extrapolation can be performed within the stream paradigm. Similarly, digital filtering [131] also fits the
stream processing protocol very easily. Interpolation, extrapolation, and digital filtering with a single algorithm
(physical operator) were implemented in the Volcano system to verify this fit, including their optimization and
parallelization [287]. Another promising candidate is visualization of single-dimensional arrays such as time
series.

Problems that do not fit the stream paradigm, e.g., many matrix operations such as transformations used in
linear algebra, Laplace or Fast Fourier Transform, and slab (multi-dimensional sub-array) extraction, are not as
easy to integrate into database query processing systems. Some of them seem to fit better into the storage manage-
ment sub-system rather than the algebraic query execution engine. For example, slab extraction has been
integrated into the NetCDF storage and access software [44, 207].

11.3. Object-Oriented Database Systems

Research into query processing for extensible and object-oriented systems has been growing rapidly in the
last few years. Most proposals or implementations use algebras for query processing, e.g. [2, 60, 102, 156, 187,
241-243, 269, 271, 280, 293]. These algebras resemble relational algebra in the sense that they focus on bulk data
types but are generalized to support operations on arrays, lists, etc., user-defined operations (methods) on
instances, heterogeneous bulk types, and inheritance. The use of algebras permits several important conclusions.

66

First, naive execution models that execute programs as if all data were in memory are not the only alternative.
Second, data manipulation operators can be designed and implemented that go beyond data retrieval and permit
some amount of data reduction, aggregation, and even inference. Third, algebraic execution techniques including
the stream paradigm and parallel execution can be used in object-oriented data models and database systems.
Fourth, algebraic optimization techniques will continue to be useful.

Associative operations are an important part in all object-oriented algebras because they permit reducing
large amounts of data to the interesting subset of the database suitable for further consideration and processing.
Thus, set processing and matching algorithms as discussed earlier in this survey will be found in object-oriented
systems, implemented in such a way that they can operate on heterogeneous sets. The challenge for query optimi-
zation is to map a complex query involving complex behavior and complex object structures to primitives available
in a query execution engine. Translating an initial request with abstract data types and encapsulated behavior
coded in a computationally complete language into an internal form that both captures the entire query’s semantics
and allows effective query optimization is still an open research issue [65, 102].

Beyond associative indices discussed earlier, object-oriented systems can also benefit from special relation-
ship indices, i.e., indices that contain condensed information about inter-object references. In principle, these
index structures are similar to join indices [279] bat can be generalized to support multiple levels of referencing.
Examples for indices in object-oriented database systems include the work of Maier and Stein in the Gemstone
object-oriented database system product [184], Bertino et al. in the Orion project [22-24] and by Kemper et al. in
the GOM project [158-160]. At this point, it is immature to decide which index structures will be the most useful
because the entire field of query processing in object-oriented systems is still developing rapidly, from query
languages to algebra design, algorithm repertoire, and optimization techniques. Other areas of intense current
research interest are buffer management and clustering of objects on disk.

One of the big performance penalties in object-oriented database systems is the expense of "pointer chasing”
(using OID references) which may involve object faults, also called goto’s on disk [David Maier]. In order to
reduce I/O cost, some systems use what amounts to main memory databases or map the entire database into virtual
memory. For systems with an explicit database on disk and an in-memory buffer, there are various techniques to
detect object faults; some commercial object-oriented database systems use hardware mechanisms originally per-
ceived and implemented for virtual-memory systems. While such hardware support makes fault detection faster, it
does not address the problem of expensive I/O operations. In order to reduce actual I/O cost, read-ahead and
planned buffering must be used. Palmer and Zdonik recently proposed keeping access patterns or sequences and
activating read-ahead if accesses equal or similar to a stored pattern are detected [203]. Another recent proposal
for efficient assembly of complex objects uses a window (a small set) of open references and resolves, at any point
of time, the most convenient one by fetching this object or component from disk, which has shown dramatic
improvements in disk seek times and makes complex object retrieval more efficient and more independent of
object clustering [155].

67

11.4. More Meta-Operators

The exchange operator used for parallel query processing is not a normal operator in the sense that it does
not manipulate, select, or transform data. Instead, the exchange operator provides control of query processing in a
way orthogonal to what a query does and what algorithms it uses. Therefore, we call it a meta-operator. There are
several other meta-operators that can be used in database query processing, and we survey them briefly in this sec-
tion.

In query processing systems, dataflow is usually paced or driven from the top, the consumer. The left-most
diagram of Figure 35 shows the control flow of normal iterators. The data flow of all diagrams in Figure 35 is
assumed to be upward. However, in real-time systems that capture data from experiments, this approach may not
be realistic because the data source, e.g., a satellite receiver, has to be able to unload data as they arrive. In such
systems, data-driven operators, shown in the second diagram of Figure 35, might be more appropriate. To com-
bine the algorithms implemented and used for query processing with such real-time data capture requirements, one
could design data flow translation meta-operators. The first such operator which we call the active scheduler can
be used between a demand-driven producer and a data-driven consumer. In this case, neither operator will
schedule the other; therefore, an active scheduler that demands items from the producer and forces them onto the
consumer will glue these two operators together. An active scheduler schematic is shown in the third diagram of
Figure 35. The opposite case, a data-driven producer and a demand-driven consumer, has two operators, each try-
ing to schedule the other one. A second flow control operator, called the passive scheduler, can be built that
accepts procedure calls from either neighbor and resumes the other neighbor in a co-routine fashion to ensure that
the resumed neighbor will eventually demand the item the scheduler just received. The final diagram of Figure 35
shows the control flow of a passive scheduler. (Notice that this case is similar to the bracket model of paraliel
operator implementations discussed earlier in which an operating system or networking software layer had to be
placed between data manipulation operators and perform buffering and flow control.)

For very complex queries, it might be useful to break the data flow between operators at some point, for two
reasons. First, if too many operators run in parallel, contention for memory or temporary disks might be too
intense, and none of the operators will run as efficiently as possible. A long series of hybrid hash joins in a right-
deep query plan might illustrate this situation. Second, due to the inherent error in selectivity estimation during
query optimization [148, 185], it might be worthwhile to execute only a subset of a plan, verify the correctness of
the estimation, and then resume query processing with another few steps. After a few processing steps have been
performed, their result size and other statistical properties like minimum and maximum and approximate number

| ! ! |
v | | v

Standard Data-Driven Active Passive
Iterator Operator Scheduler Scheduler

| ! | !
! | v |

Figure 35. Operators, Schedulers, and Control Flow.

68

of duplicate values can be easily determined while saving the result on temporary disk.

In principle, this was done in Ingres’ original optimization method called Decomposition, except that Ingres
performed only one operation at a time before optimizing the remaining query [288, 291]. We propose alternating
more slowly between optimization and execution, i.e., to perform a "reasonable” number of steps between optimi-
zations, where reasonable may be three to ten selections and joins depending on errors and error propagation in
selectivity estimation. Stopping the data flow and resuming after additional optimization could very well turn out
to be the most reliable technique for very large, complex queries.

Implementation of this technique could be embodied in a new meta-operator which we call the stop-and-go
operator, but further research is required to develop the techniques used for placing stop-and-go operators in com-
plex plans. An initial implementation of a stop-and-go operator that uses preoptimized alternative subplans is the
choose-plan operator implemented in Volcano and first described in [103]. In its current implementation, it exe-
cutes zero or more subplans and then invokes a decision function provided by the optimizer that decides which of
multiple equivalent plans to execute depending on intermediate result statistics, current system load, and run-time
values of query parameters unknown at optimization time. We plan on studying optimization and creation of
dynamic query evaluation plans for very complex queries using the Volcano optimizer generator.

The final meta-operator we propose here is an operator that passes the result of a common subexpression to
multiple consumers, as mentioned briefly in the section of the architecture of query execution engines. The prob-
lem is that multiple consumers, typically demand-driven and demand-driving their inputs, will request items of the
common subexpression result at different times or rates. The two standard solutions are either to execute the com-
mon subexpression into a temporary file and let each consumer scan this file at will, or to determine which one will
be the first consumer, execute the common subexpression as part of this consumer, and create a file with the com-
mon subexpression result as a by-product of the first consumer’s execution. Instead, we suggest a new meta-
operator, which we call the split operator, to be placed at the top of the common subexpression’s plan and which
can serve multiple consumers at their own paces. It automatically performs buffering to account for different
paces, uses temporary disk space if the discrepancies are too wide, and is suitably parameterized to permit both
standard solutions described above.

12. Additional Techniques for Performance Improvement

In this section, we consider some additional techniques that have been proposed in the literature or used in
real systems, and that have not been discussed in earlier sections of this survey. In particular, we consider precom-
putation, data compression, surrogate processing, bit vectors, and specialized hardware. Recently proposed tech-
niques that have not been fully developed are not discussed here, e.g., "racing” equivalent plans and terminating
the ones that seem not competitive after some small amount of time.

12.1. Precomputation and Derived Data

It is trivial to answer a query for which the answer is already known — therefore, precomputation of fre-
quently requested information is an obvious idea. The problem with keeping preprocessed information in addition
to base data is that it is redundant and must be invalidated or maintained upon updates to the base data.

The ideas of precomputation and of derived data are duals. Thus, concepts and algorithms designed for one
will typically work well for the other. The main difference is the database user’s view: precomputed data are typi-
cally used after a query optimizer has determined that they can be used to answer a user query against the base

69

data, while derived data are known to the user and can be queried without regard to the fact that they actually must
be derived at run-time from stored based data. Not surprisingly, since derived data are likely to be referenced and
requested by users and application programs, precomputation of derived data has been investigated, both for rela-
tional and object-oriented data models.

Indices are the simplest form of precomputed data since they are redundant and, in a sense, precomputed
selection. They represent a compromise between a non-redundant database and one with complex precomputed
data because they can be maintained relatively efficiently.

The next more sophisticated form of precomputation are inversions as provided in System R’s "0 " proto-
type [46], view indices as analyzed by Roussopoulos [215, 216], two-relation join indices as proposed by Valdu-
riez [279], or domain indices as used in the ANDA project (called VALTREE there) [74] in which all occurrences
of one domain (e.g., part number) are indexed together and each index entry contains a relation identification with
each record identifier. With join or domain indices, join queries can be answered very fast, typically faster than
using multiple single-relation indices. On the other hand, single-selection selections and updates may be slightly
slower if there are more entries for each indexed key.

For binary operators, there is a spectrum of possible levels of precomputations'?, explored predominantly for
joins. The simplest form of precomputation in support of binary operations are individual indices, e.g., clustering
B-trees that ensure and maintain sorted relations. On the other extreme are completely materialized join results.
Intermediate levels are pointer-based joins [244] (discussed earlier in the section on matching) and join indices
[279]. For each form of precomputed result, the required redundant data structures must be maintained each time
the underlying base data are updated, and larger retrieval speedup might be paid for with larger maintenance over-
head.

Larson et al. investigated storing and maintaining materialized views in relational database systems [29-32,
176, 186, 274, 290]. Their hope was to speed relational query processing by storing derived data, possibly not
even all base data, and ensuring that their maintenance overhead would be less than their benefits in faster query
processing. For example, Blakeley demonstrated that for a single join there exists a large range of retrieval and
update mixes in which materialized views outperform both join indices and hybrid hash join [32]. This investiga-
tion should be extended, however, for more complex queries, e.g., three- and four-way joins, and for queries in
object-oriented systems and emerging database applications.

Hanson compared query modification (i.e., query evaluation from base relations) against the maintenance
costs of materialized views, and considered in particular the cost of immediate vs. deferred updates [132]. His
results indicate that for modest update rates, materialized views provide better system performance. Furthermore,
for modest selectivities of the view predicate, deferred view maintenance using differential files [238] outperforms
immediate maintenance of materialized views. However, Hanson also did not include multi-way joins in his study.

Sellis analyzed caching of results in a query language called Quel+ (which is a subset of Postquel [265])
over a relational database with procedural (QUEL) fields [236]. He also considered the case of limited space on
secondary storage used for caching query results, and replacement algorithms for query results in the cache when
the space becomes insufficient.

13 This paragraph was written using ideas and notes by Jose Blakeley.

70

Links between records (pointers of some sort, e.g., record, tuple, or object identifiers) are another form of
precomputation. Links are particularly effective for system performance if they are combined with clustering
(assignment of records to pages). Database systems for the hierarchical and network models have used physical
links and clustering, but supported basically only queries and operations that were "precomputed” in this way.
Some researchers tried to overcome this restriction by building relational query engines on top of network systems,
e.g. [50, 211, 294]. However, with performance improvements in the relational world, these efforts seem to have
been abandoned. With the advent of extensible and object-oriented database management systems, combining
links and ad-hoc query processing might become a more interesting topic again. A recent effort for an extensible-
relational system are Starburst’s pointer-based joins discussed earlier [127, 244].

In order to ensure good performance for its extensive rule processing facilities, Postgres uses precomputation
and caching of the action parts of production rules [262, 265, 267]. For automatic maintenance of such derived
data, persistent "invalidation locks" are stored for detection of invalid data after updates to the base data. A perfor-
mance evaluation of this caching and invalidation scheme is still outstanding.

Finally, the Cactis project focused on maintenance of derived data in object-oriented environments [77, 143,
144]. The conclusions of this project reveal that incremental maintenance coupled with a fairly simple adaptive
clustering algorithm is an efficient way to propagate updates to derived data.

12.2. Data Compression

A number of researchers have investigated the effect of compression on database systems and their perfor-
mance [108, 182, 218, 239]. There are two types of compression in database systems. First, the amount of redun-
dancy can be reduced by prefix- and suffix-truncation, in particular in indices, and by use of encoding tables (e.g.,
color combination "9" means "red car with black interior"). Second, compression schemes can be applied to attri-
bute values, e.g., adaptive Huffman coding or Ziv-Lempel methods [17, 177). This type of compression can be
exploited most effectively in database query processing if all attributes of the same domain use the same encoding,
e.g., the "Part-No" attributes of datasets representing parts, orders, shipments, etc.

Most obviously, compression can reduce the amount of disk space required for a given data set. This has a
number of ramifications on I/O performance. First, the reduced data space fits into a smaller physical disk area;
therefore, the seek distances and seek times are reduced. Second, more data fit into each disk page, track, and
cylinder, allowing more intelligent clustering of related objects into physically near locations. Third, the unused
disk space can be used for disk shadowing to increase reliability, availability, and I/O performance [28]. Fourth,
compressed data can be transferred faster to and from disk. In other words, data compression is an effective means
to increase disk bandwidth (not by increasing physical transfer rates but by increasing the information density of
transferred data) and to relieve the 1/O bottleneck found in many high-performance database management systems
[36). Fifth, in distributed database systems and in client-server situations, compressed data can be transferred fas-
ter across the network than uncompressed data. Uncompressed data require either more network time or a separate
compression step. Finally, retaining data in compressed form in the I/O buffer allows more records to remain in
the buffer, thus increasing the buffer hit rate and reducing the number of I/O’s. The last three points are actually
more general. They apply to the entire storage hierarchy of tape, disk, controller caches, local and remote main
memories, and CPU caches.

For query processing, compression can be exploited far beyond improved I/O performance because
decompression can often be delayed until a relatively small data set is presented to the user or an application

71

program. First, exact-match comparisons can be performed on compressed data. Second, projection and duplicate
removal can be performed without decompressing data. The situation for aggregation is a little more complex
since the attribute on which arithmetic is performed typically must be decompressed. Third, neither the join attri-
butes nor other attributes need to be decompressed for most joins. Since keys and foreign keys are from the same
domain, and if compression schemes are fixed for each domain, a join on compressed key values will give the
same results as a join on normal, decompressed key values. It might seem unusual to perform a merge-join in the
order of compressed values, but it nonetheless is possible and will produce correct results.

There are a number of benefits from processing compressed data. First, materializing output records is faster
because records are shorter and less copying is required. Second, for inputs larger than memory, more records fit
into memory. In hybrid hash join, for instance, the fraction of the file that can be retained in the hash table and
thus be joined without any 1/O is larger. During sorting, the number of records in memory and thus the number of
records per run is larger, leading to fewer runs and possibly fewer merge levels. Third, and very interestingly,
skew is less likely to be a problem. The goal of compression is to represent the information with as few bits as
possible. Therefore, each bit in the output of a good compression scheme has close to maximal information con-
tent, and bit columns seen over the entire file are unlikely to be skewed. Furthermore, bit columns will not be
correlated. Thus, the compressed key values can be used to create a hash value distribution that is almost
guaranteed to be uniform, i.e., optimal for hashing in memory and partitioning to overflow files as well as to multi-
ple processors in parallel join algorithms.

12.3. Surrogate Processing

Another very useful technique in query processing is the use of surrogates for intermediate results. A surro-
gate is a reference to a data item, be it a logical object identifier (OID) used in object-oriented systems or a physi-
cal record identifier (RID) or location. Instead of keeping a complete record in memory, only the fields that are
used immediately are kept and the remainder replaced by a surrogate, which has in principle the same effect as
compression.

The simplest case in which surrogate processing can be exploited is in avoiding copying. Consider a rela-
tional join; when two items satisfy the join predicate, a new tuple is created from the two original ones. Instead of
copying the data fields, it is possible to create only a pair of RID’s or pointers to the original records if they are
kept in memory. If a record is 50 times larger than a RID, e.g., 8 B vs. 400 B, the effort spent on copying bytes is
reduced by that factor.

Copying is already a major part of the CPU time spent in many query processing systems, but it is becoming
more expensive for two reasons. First, many modemn CPU designs and implementations are optimized for an
impressive number of instructions per second but do not provide the performance improvements in mundane tasks
such as moving bytes from one memory location to another [200]. Second, many modern computer architectures
employ multiple CPU’s accessing shared memory over one bus because this design permits fast and inexpensive
parallelism. Although alleviated by local caches, bus contention is the major bottleneck and limitation to scalabil-
ity in shared-memory parallel machines. Therefore, reductions in memory-to-memory copying in database query
execution engines permits higher useful degrees of parallelism in shared-memory machines.

A second example for surrogate processing was mentioned earlier in connection with indices. To evaluate a
conjunction with multiple clauses, each of which is supported by an index, it might be useful to perform an inter-
section of RID-lists to reduce the number of records needed before actual data are accessed.

72

A third case is the use of indices and RID’s to evaluate joins, for example in the query processing techniques
used in Ingres (168, 169] and IBM’s hybrid join [53] discussed earlier in the section on binary matching.

Surrogate processing has also been used in parallel systems, in particular distributed-memory implementa-
tions, to reduce network traffic. For example, Lorie and Young used RID’s to reduce the communication time in
parallel sorting by sending (sort key, RID) pairs to a central site, which determines each record’s global rank, and
then re-partitioning and merging records very quickly by their rank alone without further data comparisons [181].

Berra et al. considered indexing and retrieval organizations for very large (relational) knowledge bases and
databases [21, 59]. They employed three techniques, concatenated code words (CCW'’s), superimposed code
words (SCW’s), and transformed inverted lists (TIL’s). TIL’s are normal index structures for all attributes of a
relation which permit answering conjunctive queries by bitwise anding. CCW’s and SCW’s use hash values of all
attributes of a tuple and either concatenate such hash values or bitwise or them together. The resulting code words
are then used as keys in indices. In their particular architecture, Berra et al. consider associative memory and opti-
cal computing techniques to search efficiently through such indices, although conventional software techniques
could be used as well.

Techniques based on hash values and bit patterns have also been used in other contexts; we discuss bit vector
filtering in the next subsection.

12.4. Bit Vector Filtering

In parallel systems, bit vectors have been used for what we call here "probabilistic semi-joins." Consider a
relational join to be executed on a distributed-memory machine with repartitioning of both input relations on the
join attribute. It is clear that communication effort could be reduced if only the tuples that actually contribute to
the join result, i.e., those with a match in the other relation, needed to be shipped across the network. To accom-
plish this, distributed database systems were designed to make extensive use of semi-joins, e.g., SDD-1 [19].

A faster alternative to semi-joins which, as discussed earlier, require basically the same algorithm as natural
joins, is the use of bit vectors [6]. A bit vector with N bits is initialized with zeroes, and all items in the first
(preferably the smaller) input are hashed on their join key to 0,...,N—1. For each item, one bit in the bit vector filter
. is set to one; hashing collisions are ignored. After the first join input has been exhausted, the bit vector is used to
filter the second input. Data items of the second input are hashed on their join key value, and only items for which
the bit is set to one can possibly participate in the join. There is some chance for false passes in the case of colli-
sions, i.e., items of the second input pass the bit vector filter although they actually do not participate in the join,
but if the bit vector is sufficiently large, the number of false passes is very small.

In general, if the number of bits is about twice as large as the number of items in the first input, bit vectors
are very effective. If many more bits are available, the bit vector can be split into multiple subvectors or multiple
bits can be set for each item using multiple hash functions. Babb analyzed the use of multiple bit vectors in detail

[6l.

The Gamma relational database machine demonstrated the effectiveness of bit vector filtering in relational
join processing on distributed-memory hardware [69-71, 93]. While Gamma used bit vector filtering basically
only for joins, it is equally applicable to all other binary operators, including semi-join, outer join, intersection,
union, and difference. For operators that include non-matching items in their output, e.g., outer joins and unions,
part of the result can be obtained before network transfer, based solely on the bit vector. For parallel relational
division (universal quantification), bit vector filtering can be used on the divisor attributes to eliminate most of the

73

dividend items that do not pertain to any divisor item. Thus, our earlier assessment that universal quantification
can be performed as fast as existential quantification (a semi-join of dividend and divisor relations) even extends to
special techniques used to boost join performance.

Bit vector filtering can also be exploited in sequential systems. Consider a merge-join with sort operations
on both inputs. If the bit vector is built based on the input of the first sort, i.e., the bit vector is completed when all
data have reached the first sort operator. This bit vector can then be used to reduce the input into the second sort
operator on the (presumably larger) second input. -Depending on how the sort operation is organized into phases, it
might even be possible to create a second bit vector from the second merge-join input and use it to reduce the first
join input while it is being merged.

For sequential hash joins, bit vectors can be used in two ways. First, they can be used to filter items of the
probe input using a bit vector created from items of the build input. This is analogous to bit vector usage in paral-
lel systems and for merge-join. Second, bit vectors can be used for each partition or bucket. In the Volcano query
processing system, the operator implementing hash join, intersection, etc. uses the space used as anchor for each
bucket’s linked list for a small bit vector filter after the bucket has been spilled to an overflow file. Only those
items from the probe input that pass the bit vector filter are written to the probe overflow file. This technique is
used in each recursion level of overflow resolution. Thus, during recursive partitioning, cheap bit vector filters are
used repeatedly and at increasingly finer granularity to remove items from the probe input that do not contribute in
the join result. Bit vectors could also be used to remove items from the build input using bit vectors created from
the probe input; however, since the probe input is presumed the larger input and hash collisions in the bit vector
would make the filter less effective, it may or may not be an effective technique.

12.5. Specialized Hardware

Specialized hardware was considered by a number of researchers, e.g., hardware sorters and logic-per-track
selection. A relatively recent survey of database machine research is given in [270]. Most of this research was
abandoned after Boral and DeWitt’s influential analysis [36] that compared CPU and 1/O speeds and their trends.
They concluded that I/O is most likely the bottleneck in future high-performance query execution, not processing.
Therefore, they recommended moving from research on custom processors to techniques for overcoming the 1/O
bottleneck, e.g., by use of parallel readout disks, disk caching and read-ahead, and indexing to reduce the amount
of data to be read for a query. Another very strong argument against custom VLSI processors is that microproces-
sor speed is currently improving so rapidly that it is likely that, by the time a small organization has designed,
fabricated, and tested a special component and integrated it into a larger hardware and software system, the next
generation of general-purpose CPU’s is available and can execute database functions programmed in a high-level
language at the same speed as the specialized hardware component. Furthermore, it is not clear what specialized
hardware would be most beneficial to design, in particular in light of today’s directions towards extensible data-
base systems and emerging database application domains. Therefore, we do not favor specialized database
hardware modules beyond general-purpose processing, storage, and communication hardware dedicated to execut-
ing database management software.

Summary and Outlook

Database management systems provide three essential groups of services. First, they maintain both data and
associated meta-data in order to make databases self-contained and self-explanatory, at least to some extent, and to
provide data independence. Second, they support facilities for data sharing among multiple users as well as

74

prevention and recovery of failures and data loss. Third, they raise the level of abstraction for data manipulation
above the primitive access commands provided by file systems with more or less sophisticated matching and infer-
ence mechanisms, commonly called the query language or query processing facility. We have surveyed execution
algorithms and software architectures used in providing this third essential service.

Query processing has been explored extensively in the last 20 years in the context of relational database
management systems, and is slowly gaining interest in the research community for extensible and object-oriented
systems. This is a very encouraging development, because if these new systems have increased modeling power
over previous data models and database management systems but cannot execute even simple requests efficiently,
they will never gain widespread use and acceptance. Databases will continue to manage massive amounts of data;
therefore, efficient query and request execution will continue to represent both an important research direction and
an important criterion in investment decisions in the "real world." In other words, new database management sys-
tems should provide greater modeling power (this is widely accepted and intensely pursued) but also competitive
or better performance than previous systems. We hope that this survey will contribute to the use of efficient and
parallel algorithms for query processing tasks in new database management systems,

A large set of query processing algorithms has been developed for relational systems. Sort- and hash-based
techniques have been used for physical storage design, for associative index structures, for algorithms for unary
and binary matching operations like aggregation, duplicate removal, join, intersection, and division, and for paral-
lel query processing using hash-partitioning or range-partitioning. Additional techniques such as precomputation
and compression have been shown to provide substantial performance benefits when manipulating large volumes
of data. Many of the existing algorithms will continue to be useful for extensible and object-oriented systems, and
many can easily be generalized from sets of tuples to more general pattern matching functions. Some emerging
database applications will require new operators, however, both for translation between alternative data representa-
tions and for actual data manipulation.

The most promising aspect of current research into database query processing for new application domains is
that the concept of multiple operators, each performing a part of the required data manipulation and each passing
an intermediate result to the next operator, is versatile enough to meet the new challenges. This concept permits
specification of database queries and requests in a logical algebra as well as concise representation of database pro-
grams in a physical algebra. Furthermore, it allows algebraic optimizations of requests, i.e., optimizing translations
of logical into physical expressions. Finally, it permits pipelining between operators to exploit parallel computer
architectures, and partitioning of stored data and intermediate results for most operators, in particular for operators
on sets.

We can hope that much of the existing relational technology for query optimization and parallel execution
will remain relevant, and that research into extensible optimization and parallelization will make a significant
impact on future database applications. In fact, for database management systems to become acceptable for new
application domains, their performance must at least match those of file systems. Automatic optimization and
parallelization may be crucial contributions to achieving this goal, in addition to the query execution techniques
surveyed here.

Acknowledgements

Jose Blakeley, Rick Cole, Diane Davison, David Helman, Ann Linville, Bill McKenna, Gail Mitchell, Barb Pet/ers,
Leonard D. Shapiro, and the students of CU’s "Readings in Database Systems" (Fall 1991) gave many valuable

75

comments on earlier drafts of this survey. Any mistakes or omissions are the author’s, however. — This paper is
based on research partially supported by the National Science Foundation with grants IR1-8996270, IRI-8912618,
IRI-9006348, and IR1-9116547, DARPA with contract DAAB(07-91-C-Q518, Texas Instruments, Digital Equip-
ment Corp., Intel Supercomputer Systems Division, Sequent Computer Systems, ADP, and the Oregon Advanced
Computing Institute (OACIS).

References

1. L -Ahn and R. Snodgrass, ‘Partitioned storage for temporal databases’’, Information Systems 13, 4 (1988),
369.

2. J. Albert, ‘‘Algebraic Properties of Bag Data Types’, Proc. Int'l. Conf. on Very Large Data Bases,
Barcelona, Spain, 1991.

3. D. P. Anderson, S. Tzou and G. S. Graham, ‘“The DASH Virtual Memory System’’, Technical Report
88/461, UC Berkeley CS Division, November 1988.

4. M. M. Astrahan, M, W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, L. L. Traiger, B. W. Wade and V. Watson, ‘‘System
R: A Relational Approach to Database Management’’, ACM Trans. on Database Systems 1,2 (June 1976),
97. Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-Kaufman, San Mateo, CA, 1988.

5. M. M. Astrahan, M. Schkolnick and K. Y. Whang, ‘‘Approximating the number of unique values of an
attribute without sorting’’, Information Systems 12,1 (1987), 11.

6. E. Babb, ‘“‘Implementing a Relational Database by Means of Specialized Hardware’’, ACM Trans. on
Database Systems 4,1 (March 1979), 1.

7. R. A. Baeza-Yates and P. A. Larson, ‘‘Performance of B+-Trees with Partial Expansions’’, IEEE Trans. on
Knowledge and Data Eng. 1,2 (June 1989), 248.

8. F. Bancilhon and R. Ramakrishnan, ‘‘An Amateur’s Introduction to Recursive Query Processing
Strategies’’, Proc. ACM SIGMOD Conf., Washington, DC, May 1986, 16. Reprinted in M. Stonebraker,
Readings in Database Systems, Morgan-Kaufman, San Mateo, CA, 1988.

9. J. Banerjee, W. Kim, S. J. Kim and J. F. Garza, ‘‘Clustering a DAG for CAD Databases’’, IEEE Trans. on
Software Eng. 14, 11 (November 1988), 1684.

10. C. K. Baru and O. Frieder, “Database Operations in a Cube-Connected Multicomputer System’’, I[EEE
Trans. on Computers 38, 6 (June 1989), 920.

11. D. S. Batory, T. Y. Leung and T. E. Wise, ‘‘Implementation Concepts for an Extensible Data Model and
Data Language’’, ACM Transaction on Database Systems 13, 3 (September 1988), 231.

12. D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C. Twichell and T. E. Wise,
““GENESIS: An Extensible Database Management System’’, IEEE Trans. on Software Eng. 14, 11
(November 1988), 1711.

13. R. Bayer and E. McCreighton, ‘‘Organisation and Maintenance of Large Ordered Indices’, Acta
Informatica 1 (1972).

14. B. Becker, H. W. Six and P. Widmayer, ‘‘Spatial Priority Search: An Access Technique for Scaleless
Maps’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 128.

15. D. A. Beckley, M. W. Evans and V. K. Raman, ‘‘Multikey Retrieval from K-d Trees and Quad-Trees’’,
Proc. ACM SIGMOD Conf., Austin, TX, May 1985, 291.

16. N. Beckmann, H. P. Kriegel, R. Schneider and B. Seeger, ‘‘The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles’’, Proc. ACM SIGMOD Conf., Atlantic City, NJ, May 1990, 322.

17. T.Bell, I. H. Witten and J. G. Cleary, ‘‘Modelling for Text Compression’’, ACM Computing Surveys 21, 4
(December 1989), 557.

18. P. A. Bemstein and N. Goodman, ‘‘Concurrency Control in Distributed Database Systems’’, ACM
Computing Surveys 13,2 (June 1981), 185.

19. P. A. Bemstein, N. Goodman, E. Wong, C. L. Reeve and J. B. Rothnie, ‘‘Query Processing in a System for
Distributed Databases (SDD-1)"’, ACM Trans. on Database Systems 6,4 (December 1981), 602.

20. P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Conirol and Recovery in Database Systems,
Addison-Wesley, Reading, MA, 1987.

21. P. B. Berra, S. M. Chung and N. I. Hachem, ‘‘Computer Architecture for a Surrogate File to a Very Large
Data/Knowledge Base”’, [EEE Computer 20,3 (March 1987), 25.

22. E. Bertino and W. Kim, ‘‘Indexing Techniques for Queries on Nested Objects’’, IEEE Trans. on Knowledge

and Data Eng. 1,2 (June 1989), 196.

76

23.
24.
25.
26.
217.
28.
29.
30.
3L
32,
33
34.
3s.
36.
37.
38.

39.
40.

41.

42,
43.
44.

45.

46.

47.

48.

E. Bertino, ‘‘Optimization of Queries Using Nested Indices’’, Lecture Notes in Computer Science 416
(March 1990}, 44, Springer Verlag.

E. Bertino, ‘‘An Indexing Technique for Object-Oriented Databases’’, Proc. IEEE Conf. on Data Eng.,
Kobe, Japan, April 1991.

A. Bhide and M. Stonebraker, ‘‘A Performance Comparison of Two Architectures for Fast Transaction
Processing’’, Proc. IEEE Conf. on Data Eng., Los Angeles, CA, February 1988, 536.

A. Bhide, ‘‘An Analysis of Three Transaction Processing Architectures’’, Proc. Int'l. Conf. on Very Large
Data Bases, Long Beach, CA, August 1988, 339.

D. Bitton and D. J. DeWitt, ‘‘Duplicate Record Elimination in Large Data Files’’, ACM Trans. on Database
Systems 8,2 (June 1983), 255.

D. Bitton and J. Gray, ‘‘Disk Shadowing’’, Proc. Int'l. Conf. on Very Large Data Bases, Long Beach, CA,
August 1988, 331.

J. A. Blakeley, P. A, Larson and F. W. Tompa, ‘‘Efficiently Updating Materialized Views”’, Proc. ACM
SIGMOD Conf., Washington, DC, May 1986, 61.

J. A. Blakeley, N. Coburn and P. A. Larson, ‘‘Updating Derived Relations: Irrelevant and Autonomously
Computable Updates’’, Proc. Int'l. Conf. on Very Large Data Bases, Kyoto, Japan, August 1986, 457.

J. A. Blakeley, N. Coburn and P. A. Larson, ‘“‘Updating Derived Relations: Detecting Irrelevant and
Autonomously Computable Updates’’, ACM Transaction on Database Systems 14,3 (September 1989), 369.
J. A. Blakeley and N. L. Martin, ‘‘Join Index, Materialized View, and Hybrid Hash-Join: A Performance
Analysis”’, Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1990, 256.

M. Blasgen and K. Eswaran, “‘On the Evaluation of Queries in a Relational Database System’’, IBM
Research Report RJ 1745, San Jose, CA, April 8, 1976.

M. Blasgen and K. Eswaran, ‘‘Storage and Access in Relational Databases’’, IBM Systems Journal 16, 4
a97n.

H. Boral, D. DeWitt, D. Friedland, N. Jarrell and W. Wilkinson, ‘‘Implementation of the Database Machine
DIRECT”, IEEE Trans. on Software Eng. 8,6 (November 1982), 533.

H. Boral and D. J. DeWitt, ¢‘Database Machines: An Idea Whose Time Has Passed? A Critique of the Future
of Database Machines’’, Proc. Int'l. Workshop on Database Machines, Munich, 1983.

H. Boral, ‘‘Parallelism in Bubba’’, Proc. Int'l. Symp. on Databases in Parallel and Distributed Systems,
Austin, TX, December 1988, 68.

H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith and P.
Valduriez, *‘Prototyping Bubba, A Highly Parallel Database System’’, IEEE Trans. on Knowledge and Data
Eng. 2, 1 (March 1990), 4.

K. Bratbergsengen, ‘‘Hashing Methods and Relational Algebra Operations’, Proc. Int'l. Conf. on Very
Large Data Bases, Singapore, August 1984, 323.

H. L. Bremers, ‘‘Hash Partitioning Performance Improved By Exploiting Skew and Dealing with
Duplicates’’, M.S. Thesis, University of Colorado at Boulder, 1991.

M. J. Carey, D. J. DeWitt, J. E. Richardson and E. J. Shekita, ‘‘Object and File Management in the
EXODUS Extensible Database System”’, Proc. Int'l. Conf. on Very Large Data Bases, Kyoto, Japan, August
1986, 91.

M. J. Carey, E. Shekita, G. Lapis, B. Lindsay and J. McPherson, ‘‘An Incremental Join Attachment for
Starburst’’, Proc. Int’'l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 662.

J. L. Carter and M. N. Wegman, ‘‘Universal Classes of Hash Functions”’, Journal of Computers and System
Science 18,2 (1979), 143.

U. P. Center, ‘‘NetCDF User’s Guide, An Interface for Data Access’’, NCAR Technical Note TS-334+1A,
Boulder, CO, April 1991. Version 1.11.

D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W. Mehl, T. G. Price, M. Schkolnik, P. G.
Selinger, D. R. Slutz, B. W. Wade and R. A. Yost, “‘Support for Repetitive Transactions and Ad Hoc
Queries in System R*’, ACM Trans. on Database Systems 6, 1 (March 1981), 70.

D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay, R. Lorie, J. W.
Mehl, T. G. Price, F. Putzolo, P. G. Selinger, M. Schkolnik, D. R. Slutz, I. L. Traiger, B. W. Wade and R. A.
Yost, ‘“A History and Evaluation of System R’’, Communications of the ACM 24, 10 (October 1981), 632.
Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-Kaufman, San Mateo, CA, 1988.

E. Chang and R. Katz, ‘‘Exploiting Inheritance and Structure Semantics for Effective Clustering and
Buffering in an Object-Oriented DBMS”’, Proc. ACM SIGMOD Conf., Portland, OR, May-June 1989, 348.
J. P. Cheiney, P. Faudemay, R. Michel and J. M. Thevenin, ‘‘A Reliable Parallel Backend Using
Multiattribute Clustering and Select-Join Operator’’, Proc. Int’l. Conf. on Very Large Data Bases, Kyoto,

77

49.

50.
51.
52.
53.

54.
55.
56.
57.
58.
59.

60.

61.

62.
63.

65.
66.
67.
68.
69.

70.
71.
72.

73.

Japan, August 1986, 220.

P. P. Chen, ‘“The Entity Relationship Model - Toward an Unified View of Data’’, ACM Trans. on Database
Systems 1, 1 (March 1976), 9. Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-
Kaufman, San Mateo, CA, 1988.

H. Chen and S. M. Kuck, ‘“‘Combining Relational and Network Retrieval Methods’’, Proc. ACM SIGMOD
Conf., Boston, MA, June 1984, 131.

P. M. Chen and D. A. Patterson, ‘‘Maximizing Performance in a Striped Disk Array’’, Proc. 17th Annual
Int'1 Symp. on Computer Architecture, ACM SIGARCH Computer Architecture News 18,2 (June 1990), 322.
J. R. Cheng and A. R. Hurson, ‘‘Effective Clustering of Complex Objects in Object-Oriented Databases’,
Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 22.

J. Cheng, D. Haderle, R. Hadges, B. Iyer, T. Messinger, C. Mohan and Y. Wang, ‘‘An Efficient Hybrid Join
Algorithm: Design, Prototype, Modelling and Measurement’’, Proc. IEEE Conf. on Data Eng., Kobe, Japan,
April 1991,

D. R. Cheriton, H. A. Goosen and P. D. Boyle, ‘‘Paradigm: A Highly Scalable Shared-Memory
Multicomputer’’, IEEE Computer 24,2 (February 1991), 33.

D. M. Chiu and Y. C. Ho, ‘““A Methodology for Interpreting Tree Queries Into Optimal Semi-Join
Expressions’’, Proc. ACM SIGMOD Conf., Santa Monica, CA, May 1980, 169.

H. T. Chou and D. J. DeWitt, ‘‘An Evaluation of Buffer Management Strategies for Relational Database
Systems”’, Proc. Int’'l. Conf. on Very Large Data Bases, Stockholm, Sweden, August 1985, 127. Reprinted
in M. Stonebraker, Readings in Database Systems, Morgan-Kaufman, San Mateo, CA, 1988.

H. T. Chou, ‘‘Buffer Management of Database Systems’’, Ph.D. Thesis, May 1985.

S. Christodoulakis, ‘‘Implications of Certain Assumptions in Database Performance Evaluation’’, ACM
Trans. on Database Systems 9, 2 (June 1984), 163.

S. M. Chung and P. B. Berra, ‘“‘A Comparison of Concatenated and Superimposed Code Word Surrogate
Files for Very Large Data/Knowledge Bases’’, Lecture Notes in Computer Science 303 (April 1988), 364,
Springer Verlag.

S. Cluet, C. Delobel, C. Lecluse and P. Richard, ‘‘Reloops, an Algebra Based Query Language for an
Object-Oriented Database System’’, Proc. First Int'l. Conf. on Deductive and Object-Oriented Databases,
Kyoto, Japan, December 4-6, 1989.

D. Comer, ‘“The Ubiquitous B-Tree’’, ACM Computing Surveys 11,2 (June 1979).

G. Copeland, W. Alexander, E. Boughter and T. Keller, ‘‘Data Placement in Bubba’’, Proc. ACM SIGMOD
Conf., Chicago, IL, June 1988, 99.

G. V. Cormack, ‘““Data Compression In a Database System’’, Communications of the ACM 28, 12
(December 1985), 1336.

D. Daniels and P. Ng, ‘‘Distributed Query Compilation and Processing in R**’, IEEE Database Eng. 5, 3
(September 1982).

S. Daniels, G. Graefe, T. Keller, D. Maier, D. Schmidt and B. Vance, ‘‘Query Optimization in Revelation,
an Overview’’, IEEE Database Eng. 14,2 (June 1991).

D. J. DeWitt and P. B. Hawthorn, ‘‘A Performance Evaluation of Database Machine Architectures’’, Proc.
Int'l. Conf. on Very Large Data Bases, Cannes, France, September 1981, 199.

D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker and D. Wood, ‘‘Implementation Techniques for
Main Memory Database Systems’’, Proc. ACM SIGMOD Conf., Boston, MA, June 1984, 1.

D. J. DeWitt and R. H. Gerber, ‘‘Multiprocessor Hash-Based Join Algorithms’’, Proc. Int’'l. Conf. on Very
Large Data Bases, Stockholm, Sweden, August 1985, 151.

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar and M. Muralikrishna, “GAMMA - A
High Performance Dataflow Database Machine”, Proc. Int'l. Conf. on Very Large Data Bases, Kyoto,
Japan, August 1986, 228. Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-Kaufman,
San Mateo, CA, 1988.

D. J. DeWitt, S. Ghandeharizadeh and D. Schneider, ‘A Performance Analysis of the GAMMA Database
Machine’’, Proc. ACM SIGMOD Conf., Chicago, IL, June 1988, 350.

D. J. DeWitt, S. Ghandeharadizeh, D. Schneider, A. Bricker, H. I. Hsiao and R. Rasmussen, ‘‘The Gamma
Database Machine Project”’, IEEE Trans. on Knowledge and Data Eng. 2, 1 (March 1990), 44.

D. J. DeWitt, ‘“The Wisconsin Benchmark: Past, Present, and Future’’, in Database and Transaction
Processing Systems Performance Handbook, J. Gray (editor), Morgan-Kaufman, San Mateo, CA, 1991.

D. DeWitt, J. Naughton and D. Schneider, ‘‘An evaluation of non-equijoin algorithms’’, Proc. Int’l. Conf. on
Very Large Data Bases, Barcelona, Spain, 1991.

78

74.
75.

76.

1.
78.
79.
80.

81.
82.
83.
84.
8s.
86.
87.
88.
89.
90.

91.
92.
93.

94.

9s.

96.
97.
98.

A. Deshpande and D. Van Gucht, ‘‘An Implementation for Nested Relational Databases’’, Proc. Int’l. Conf.
on Very Large Data Bases, Long Beach, CA, August 1988, 76.

V. Deshpande and P. A. Larson, An Algebra for Nested Relations With Support for Nulls and Aggregates,
Computer Science Dept., Univ. of Waterloo, Waterloo, Ontario, Canada, April 1991.

D. Dewitt, J. Naughton and D. Schneider, ‘‘Parallel Sorting on a Shared-Nothing Architecture using
Probabilistic Splitting’’, Proc. Int'l. Conf. on Parallel and Distributed Information Systems, Miami Beach,
Fl, December 1991.

P. Drew, R. King and S. Hudson, ‘‘The Performance and Utility of the Cactis Implementation Algorithms™’,
Proc. Int’ l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 135.

W. Effelsberg and T. Haerder, ‘‘Principles of Database Buffer Management’’, ACM Trans. on Database
Systems 9,4 (December 1984), 560.

R. Elmasri, G. T. Wuu and Y. G. Kim, *“The Time Index - An Access Structure for Temporal Data’’, Proc.
Int'l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 1.

S. Englert, J. Gray, R. Kocher and P. Shah, ‘‘A Benchmark of NonStop SQL Release 2 Demonstrating
Near-Linear Speedup and Scaleup on Large Databases’’, Tandem Computer Systems Technical Report 89.4
(May 1989).

R. Epstein, ‘“Techniques for Processing of Aggregates in Relational Database Systems’’, UCB/Electronics
Research Lab. Memorandum M79/8 (February 1979), University of California.

R. Epstein and M. Stonebraker, ‘‘Analysis of Distributed Data Base Processing Strategies’, Proc. Int’l.
Conf. on Very Large Data Bases, Montreal, Canada, October 1980, 92.

R. Fagin, J. Nievergelt, N. Pippenger and H. R. Strong, ‘‘Extendible Hashing: A Fast Access Method for
Dynamic Files’’, ACM Trans. on Database Systems 4, 3 (September 1979), 315.

C. Faloutsos, R. Ng and T. Sellis, ‘‘Predictive load control for flexible buffer allocation’’, Proc. Int’l. Conf.
on Very Large Data Bases, Barcelona, Spain, 1991.

M. T. Fang, R. C. T. Lee and C. C. Chang, ‘‘The Idea of Declustering and Its Applications™, Proc. Int’l.
Conf. on Very Large Data Bases, Kyoto, Japan, August 1986, 181,

S. J. Finkelstein, M. Schkolnick and P. Tiberio, ‘“DBDSGN - A Physical Database Design Tool for System
R’’, IEEE Database Eng. 5, 1 (March 1982).

S. Finkelstein, M. Schkolnick and P. Tiberio, ‘‘Physical Database Design for Relational Databases’, ACM
Transaction on Database Systems 13, 1 (March 1988).

M. Fontenot, ‘‘Software Congestion, Mobile Servers, and the Hyperbolic Model’’, IEEE Trans. on Software
Eng. 15, 8 (August 1989), 947.

J. C. Freytag and N. Goodman, ‘‘On the Translation of Relational Queries into Iterative Programs’’, ACM
Transaction on Database Systems 14, 1 (March 1989), 1.

S. Fushimi, M. Kitsuregawa, M. Nakayama, H. Tanaka and T. Moto-oka, ‘‘Algorithm and Performance
Evaluation of Adaptive Multidimensional Clustering Technique’’, Proc. ACM SIGMOD Conf., Austin, TX,
May 1985, 308.

S. Fushimi, M. Kitsuregawa and H. Tanaka, ‘‘An Overview of The System Software of A Parallel Relational
Database Machine GRACE”’, Proc. Int'l. Conf. on Very Large Data Bases, Kyoto, Japan, August 1986, 209.
H. Garcia-Molina and K. Salem, ‘“The Impact of Disk Striping on Reliability’’, Princeton University
Computer Science Technical Report, January 1988.

R. Gerber, ‘‘Dataflow Query Processing using Multiprocessor Hash-Partitioned Algorithms’’, PA.D. Thesis,
October 1986.

R. H. Gerber and D. J. DeWitt, ‘‘The Impact of Hardware and Software Alternatives on the Performance of
the Gamma Database Machine’’, Computer Sciences Technical Report 708 (July 1987), University of
Wisconsin — Madison.

S. Ghandeharizadeh and D. J. DeWitt, ‘‘Hybrid-Range Partitioning Strategy: A New Declustering Strategy
for Multiprocessor Database Machines’’, Proc. Int'l. Conf. on Very Large Data Bases, Brisbane, Australia,
1990, 481.

S. Ghandeharizadeh and D. J. DeWitt, ‘“‘A Multiuser Performance Analysis of Alternative Clustering
Strategies’’, Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1990, 466.

S. Ghandeharizadeh, L. Ramos, Z. Asad and W. Qureshi, ‘‘Object Placement in Parallel Hypermedia
Systems’’, Proc. Int’l. Conf. on Very Large Data Bases, Barcelona, Spain, 1991.

G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz and D. A. Patterson, ‘‘Failure Correction Techniques
for Large Disk Arrays’’, Third Int'l Conf. on Architectural Support for Programming Languages and
Operating Systems, April 1989, 123.

79

99.

100.
101.

102.

103.
104.
105.
106.
107.
108.

109.

110.
111.
112.

113.

114.

115.

116.
117.
118.
119.
120.
121.
122.
123.

124.

J. R. Goodman and P. J. Woest, ‘“The Wisconsin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor’’, Computer Sciences Technical Report 766 (April 1988), University of Wisconsin —
Madison.

M. G. Gouda and U. Dayal, ‘‘Optimal Semijoin Schedules for Query Processing in Local Distributed
Database Systems’’, Proc. ACM SIGMOD Conf., Ann Arbor, M, April-May 1981, 164.

G. Graefe and D. J. DeWitt, ““The EXODUS Optimizer Generator’’, Proc. ACM SIGMOD Conf., San
Francisco, CA, May 1987, 160.

G. Graefe and D. Maier, ‘‘Query Optimization in Object-Oriented Database Systems: A Prospectus’, in
Advances in Object-Oriented Database Systems, vol. 334 , K. R, Dittrich (editor), Springer-Verlag,
September 1988, 358.

G. Graefe and K. Ward, ‘‘Dynamic Query Evaluation Plans’’, Proc. ACM SIGMOD Conf., Portland, OR,
May-June 1989, 358.

G. Graefe, ‘‘Relational Division: Four Algorithms and Their Performance’’, Proc. IEEE Conf. on Data Eng.,
Los Angelos, CA, February 1989, 94.

G. Graefe, ‘‘Parallel External Sorting in Volcano™, submitted for publication, 1990. Also CU Boulder
Computer Science Technical Report 459,

G. Graefe, ‘‘Encapsulation of Parallelism in the Volcano Query Processing System’’, Proc. ACM SIGMOD
Conf., Atlantic City, NJ, May 1990, 102.

G. Graefe, ‘‘Heap-Filter Merge Join: A New Algorithm for Joining Medium-Size Inputs’’, IEEE Trans. on
Software Eng. 17,9 (September 1991), 979.

G. Graefe and L. D. Shapiro, ‘‘Data Compression and Database Performance’’, Proc. ACM/IEEE-CS Symp.
on Applied Computing, Kansas City, MO, April 1991.

G. Graefe and D. L. Davison, ‘‘Encapsulation of Parallelism and Architecture-Independence in Extensible
Database Query Processing’’, submitted for publication, 1991. Also CU Boulder Computer Science
Technical Report 559.

G. Graefe and W. J, McKenna, ‘‘The Volcano Optimizer Generator’’, submitted for publication, 1991. Also
CU Boulder Computer Science Technical Report 563.

G. Graefe and R. L. Cole, ‘““Fast Algorithms for Universal Quantification in Large Databases’, in
preparation, 1992.

G. Graefe, A. Linville and L. D. Shapiro, Sort versus Hash Revisited, Also CU Boulder Computer Science
Technical Report 534, July 1991, 1992,

G. Graefe, ‘‘Volcano, An Extensible and Parallel Dataflow Query Processing System”’, to appear in IEEE
Trans. on Knowledge and Data Eng., 1992. A more detailed version is available as CU Boulder Computer
Science Technical Report 481, July 1990.

G. Graefe and H. L. Bremers, ‘‘Exploiting Skew to Improve Hybrid Hash Join Performance’, in
preparation, 1992.

G. Graefe and S. S. Thakkar, ‘‘Tuning a Parallel Database Algorithm on a Shared-Memory Multiprocessor’’,
to appear in Software—Practice and Experience, . Also CU Boulder Computer Science Technical Report
470, 1990.

J. Gray, ““‘A Census of Tandem System Availability Between 1985 and 1990°°, Tandem Computers
Technical Report 90.1, January 1990.

J. Gray, B. Horst and M. Walker, ‘‘Parity Striping of Disc Arrays: Low-Cost Reliable Storage with
Acceptable Throughput’’, Proc. Int’l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 148.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques, Morgan-Kaufman, San Mateo,
CA, 1991.

O. Guenther and J. Bilmes, ‘‘Tree-Based Access Methods for Spatial Databases: Implementation and
Performance Evaluation’’, IEEE Trans. on Knowledge and Data Eng. 3,3 (September 1991), 342.

L. Guibas and R. Sedgewick, ‘‘A Dichromatic Framework for Balanced Trees’’, Proc. 19th Symp. on the
Foundations of Computer Science, 1978. '

H. Gunadhi and A. Segev, ‘‘A Framework for Query Optimization in Temporal Databases’’, Proc. Fifth
Int'l. Conf. on Statistical and Scientific Database Management, April 1990,

O. Gunther and E. Wong, ‘A Dual Space Representation for Geometric Data’’, Proc. Int’l. Conf. on Very
Large Data Bases, Brighton, England, August 1987, 501.

O. Gunther, ‘‘The Design of the Cell Tree: An Object-Oriented Index Structure for Geometric Databases’”,
Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1989, 598.

A. Guttman, ‘“R-Trees: A Dynamic Index Structure for Spatial Searching’’, Proc. ACM SIGMOD Conf.,
Boston, MA, June 1984, 47. Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-

80

125.

126.

127.

128.

129.
130.

131
132,

133.
134,
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

151.

Kaufman, San Mateo, CA, 1988.

L. M. Haas, P. G. Selinger, E. Bertino, D. Daniels, B. Lindsay, G. Lohman, Y. Masunaga, C. Mohan, P. Ng,
P. Wilms and R. Yost, R*: A Research Project on Distributed Relational DBMS, IBM Research Division,
San Jose CA, October 1982.

L. Haas, J. Freytag, G. Lohman and H. Pirahesh, ‘‘Extensible Query Processing in Starburst”, Proc. ACM
SIGMOD Conf., Portland, OR, May-June 1989, 377.

L. Haas, W. Chang, G. Lohman, J. McPherson, P. F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. J. Carey
and E. Shekita, ‘‘Starburst Mid-Flight: As the Dust Clears’’, IEEE Trans. on Knowledge and Data Eng. 2, 1
(March 1990), 143.

T. Haerder and A. Reuter, ‘‘Principles of Transaction-Oriented Database Recovery’’, ACM Computing
Surveys 15, 4 (December 1983). Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-
Kaufman, San Mateo, CA, 1988,

R. B. Hagmann, ‘‘An Observation on Database Buffering Performance Metrics’’, Proc. Int’l. Conf. on Very
Large Data Bases, Kyoto, Japan, August 1986, 289.

M. Hammer and A. Chan, ‘‘Index Selection in a Self-Adaptive Data Base Management System’’, Proc.
ACM SIGMOD Conf., 1976, 1.

R. W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ, 1977.

E. N. Hanson, “‘A Performance Analysis of View Materialization Strategies’’, Proc. ACM SIGMOD Conf.,
San Francisco, CA, May 1987, 440.

L. Harada, M. Nakano, M. Kitsuregawa and M. Takagi, ‘‘Query Processing Method for Multi-Attribute
Clustered Relations’’, Proc. Int’l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 59.

A. Henrich, H. W. Six and P. Widmayer, ‘‘The LSD tree: spatial access to multi-dimensional point and
non-point objects’’, Proc. Int’l. Conf. on Very Large Data Bases, Amsterdam, The Netherlands, 1989, 45.
W. Hong and M. Stonebraker, ‘‘Optimization of Parallel Query Execution Plans in XPRS”’, Proc. Int'l.
Conf. on Parallel and Distributed Information Systems, Miami Beach, F1, December 1991.

W. Hou, G. Ozsoyoglu and B. Taneja, ‘‘Statistical Estimators for Relational Algebra Expressions’’, Proc.
SIGACT News-SIGMOD Symp. on Principles of Database Systems, Austin, TX, March 1988, 276.

W. C. Hou, G. Ozsoyoglu and E. Dogdu, ‘‘Error-Constrained COUNT Query Evaluation in Relational
Databases’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 278.

W. C. Hou and G. Ozsoyoglu, ‘‘Statistical Estimators for Aggregate Relational Algebra Queries’”, ACM
Transaction on Database Systems 16, 4 (December 1991), 600.

H. I. Hsiao and D. J. DeWitt, ‘‘Chained Declustering: A New Availability Strategy for Multiprocessor
Database Machines’’, Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1990, 456.

H. Hsiao and D. DeWitt, “‘A Performance Study of Three High Availability Data Replication Strategies”’,
Proc. Int'l. Conf. on Parallel and Distributed Information Systems, Miami Beach, Fl, December 1991.

K. A. Hua and C. Lee, ‘‘An Adaptive Data Placement Scheme for Parallel Database Computer Systems’’,
Proc. Int'l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 493.

K. Hua and C. Lee, ‘‘Handling Data Skew in Multicomputer Database Systems Using Partition Tuning”’,
Proc. Int' 1. Conf. on Very Large Data Bases, Barcelona, Spain, 1991.

S. E. Hudson and R. King, ‘‘Object-Oriented Database Support for Software Environments’’, Proc. ACM
SIGMOD Conf., San Francisco, CA, May 1987, 491.

S. E. Hudson and R. King, ‘‘Cactis: A Self-Adaptive, Concurrent Implementation of an Object-Oriented
Database Management System’’, ACM Transaction on Database Systems 14,3 (September 1989), 291.

A. Hutflesz, H. W. Six and P. Widmayer, ‘‘The Twin Grid File: A Nearly Space Optimal Index Structure’’,
Lecture Notes in Computer Science 303 (April 1988), 352, Springer Verlag.

A. Hutflesz, H. W. Six and P. Widmayer, ‘“Twin Grid Files: Space Optimizing Access Schemes’’, Proc.
ACM SIGMOD Conf., Chicago, IL, June 1988, 183.

A. Hutflesz, H. W. Six and P. Widmayer, ‘‘The R-File: An Efficient Access Structure for Proximity
Queries”’, Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1990, 372.

Y. E. Ioannidis and S. Christodoulakis, ‘‘On the Propagation of Errors in the Size of Join Results™, Proc.
ACM SIGMOD Conf., Denver, CO, May 1991, 268.

H. V. Jagadish, ‘“A Compression Technique to Materialize Transitive Closure’’, ACM Transaction on
Database Systems 15,4 (December 1990), 558.

H. V. Jagadish, ‘A Retrieval Technique for Similar Shapes’’, Proc. ACM SIGMOD Conf., Denver, CO,
May 1991, 208.

M. Jarke and J. Koch, ‘‘Query Optimization in Database Systems’’, ACM Computing Surveys 16, 2 (June
1984), 111.

81

152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.

164.

165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.

178.

A. Jhingran, ‘‘Precomputation in a Complex Object Environment”’, Proc. IEEE Conf. on Data Eng., Kobe,
Japan, April 1991.

S. Kao, “‘DECIDES: An Expert System Tool for Physical Database Design’’, Proc. IEEE Conf. on Data
Eng., Los Angeles, CA, February 1986, 671.

R. H. Katz and E. Wong, ‘‘Resolving Conflicts in Global Storage Design Through Replication’’, ACM
Trans. on Database Systems 8, 1 (March 1983), 110.

T. Keller, G. Graefe and D. Maier, ‘‘Efficient Assembly of Complex Objects’’, Proc. ACM SIGMOD Conf.,
Denver, CO, May 1991, 148.

T. Keller, G. Graefe and D. Maier, ‘‘Revealing Encapsulated Behavior for Query Optimization in Object-
Oriented Databases™, in preparation, 1992.

A. Kemper and M. Wallrath, ‘‘An Analysis of Geometric Modeling in Database Systems’’, ACM Computing
Surveys 19, 1 (March 1987), 47.

A. Kemper and G. Moerkotte, ‘‘Access Support in Object Bases’’, Proc. ACM SIGMOD Conf., Atlantic
City, NJ, May 1990, 364.

A. Kemper and G. Moerkotte, ‘‘Advanced Query Processing in Object Bases Using Access Support
Relations’’, Proc. Int'l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 290.

A. Kemper, C. Kilger and G. Moerkotte, ‘‘Function Materialization in Object Bases’’, Proc. ACM SIGMOD
Conf., Denver, CO, May 1991, 258.

W. Kim, ‘A New Way to Compute the Product and Join of Relations’’, Proc. ACM SIGMOD Conf., Santa
Monica, CA, May 1980, 179.

M. Kitsuregawa, H. Tanaka and T. Motooka, ‘‘Application of Hash to Data Base Machine and Iis
Architecture’’, New Generation Computing 1,1 (1983).

M. Kitsuregawa, M. Nakayama and M. Takagi, ‘“The effect of bucket size tuning in the dynamic hybrid
GRACE hash join method’’, Proc. Int'l. Conf. on Very Large Data Bases, Amsterdam, The Netherlands,
1989, 257.

M. Kitsuregawa and Y. Ogawa, ‘‘Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash Join
Method for Skew in the Super Database Computer (SDC)*’, Proc. Int’l. Conf. on Very Large Data Bases,
Brisbane, Australia, 1990, 210.

A. Klug, ‘‘Equivalence of Relational Algebra and Relational Calculus Query Languages Having Aggregate
Functions’’, Journal of the ACM 29, 3 (July 1982), 699.

D. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching, Addison-Wesley, Reading,
MA, 1973,

C. P. Kolovson and M. Stonebraker, ‘‘Segment Indexes: Dynamic Indexing Techniques for Multi-
Dimensional Interval Data’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 138.

R. P. Kooi, ‘“The Optimization of Queries in Relational Databases’’, Ph.D. Thesis, Case Western Reserve
University, September 1980.

R. P. Kooi and D. Frankforth, ‘‘Query Optimization in Ingres’’, IEEE Database Eng. 5,3 (September 1982),
2.

H. P. Kriegel and B. Seeger, ‘‘Multidimensional Dynamic Hashing Is Very Efficient for Nonuniform Record
Distributions’’, Proc. IEEE Conf. on Data Eng., Los Angeles, CA, February 1987, 10.

H. P. Kriegel and B. Seeger, ‘‘PLOP-Hashing: A Grid File without Directory’’, Proc. IEEE Conf. on Data
Eng., Los Angeles, CA, February 1988, 369.

R. Krishnamurthy, H. Boral and C. Zaniolo, ‘‘Optimization of Nonrecursive Queries’’, Proc. Int’l. Conf. on
Very Large Data Bases, Kyoto, Japan, August 1986, 128.

M. S. Lakshmi and P. S. Yu, ‘‘Effectiveness of Parallel Joins’’, IEEE Trans. on Knowledge and Data Eng. 2,
4 (December 1990), 410.

M. S. Laksmi and P. S. Yu, ““Effect of Skew on Join Performance in Parallel Architectures’, Proc. Int’l.
Symp. on Databases in Parallel and Distributed Systems, Austin, TX, December 1988, 107.

S. Lanka and E. Mays, ‘‘Fully Persistent B+-trees’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991,
426.

P. Larson and H. Yang, ‘‘Computing Queries from Derived Relations’’, Proc. Int'l. Conf. on Very Large
Data Bases, Stockholm, Sweden, August 1985, 259.

D. A. Lelewer and D. S. Hirschberg, ‘‘Data Compression’’, ACM Computing Surveys 19, 3 (September
1987), 261.

J. Li, D. Rotem and H. Wong, ‘A New Compression Method with Fast Searching on Large Data Bases”’,
Proc. Int'l. Conf. on Very Large Data Bases, Brighton, England, August 1987, 311.

82

179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.

D. B. Lomet and B. Salzberg, ‘“The hB-Tree: A Multiattribute Indexing Method with Good Guaranteed
Performance’’, ACM Transaction on Database Systems 15,4 (December 1990).

R. A. Lorie and J. F. Nilsson, ‘““An Access Specification Language for a Relational Database Management
System™’, IBM Journal of Research and Development 23,3 (May 1979), 286.

R. A. Lorie and H. C. Young, ‘‘A low communication sort algorithm for a parallel database machine’’, Proc.
Int'l. Conf. on Very Large Data Bases, Amsterdam, The Netherlands, 1989, 125.

C. A. Lynch and E. B. Brownrigg, ‘‘Application of Data Compression to a Large Bibliographic Data Base’’,
Proc. Int’l. Conf. on Very Large Data Bases, Cannes, France, September 1981, 435.

L. F. Mackert and G. M. Lohman, ‘‘Index Scans Using a Finite LRU Buffer: A Validated I/O Model”’, ACM
Transaction on Database Systems 14, 3 (September 1989), 401.

D. Maier and J. Stein, ‘‘Indexing in an Object-Oriented DBMS™’, Proc. Int'l Workshop on Object-Oriented
Database Systems, Pacific Grove, CA, September 1986, 171.

M. V. Mannino, P. Chu and T. Sager, ‘‘Statistical Profile Estimation in Database Systems’’, ACM
Computing Surveys 20, 3 (September 1988).

C. Medeiros and F. Tompa, ‘‘Understanding the Implications of View Update Policies’’, Proc. Int'l. Conf.
on Very Large Data Bases, Stockholm, Sweden, August 1985, 316.

B. Mitschang, ‘‘Extending the relational algebra to capture complex objects’’, Proc. Int’l. Conf. on Very
Large Data Bases, Amsterdam, The Netherlands, 1989, 297.

A. Motro, ‘“‘An Access Authorization Model for Relational Databases Based on Algebraic Manipulation of
View Definitions’’, Proc. IEEE Conf. on Data Eng., Los Angelos, CA, February 1989, 339.

M. Nakayama, M. Kitsuregawa and M. Takagi, ‘‘Hash-Partitioned Join Method Using Dynamic Destaging
Strategy’’, Proc. Int'l. Conf. on Very Large Data Bases, Long Beach, CA, August 1988, 468.

P. M. Neches, ‘‘Hardware Support for Advanced Data Management Systems’’, IEEE Computer 17, 11
(November 1984), 29.

P. M. Neches, ““The Ynet: An Interconnect Structure for a Highly Concurrent Data Base Computer
System’’, Proc. 2nd Symp. on the Frontiers of Massively Parallel Computation, Fairfax, October 1988.

L. Neugebauer, ‘‘Optimization and Evaluation of Database Queries Including Embedded Interpolation
Procedures’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 118.

R. Ng, C. Faloutsos and T. Sellis, ‘‘Flexible Buffer Allocation Based on Marginal Gains™’, Proc. ACM
SIGMOD Conf., Denver, CO, May 1991, 387.

F. Olken and D. Rotem, ‘‘Rearranging Data to Maximize the Efficiency of Compression”, Journal of
Computer and System Sciences 38, 2 (1989), 405.

E. Omiecinski, ‘‘Incremental File Reorganization Schemes’’, Proc. Int'l. Conf. on Very Large Data Bases,
Stockholm, Sweden, August 1985, 346.

E. Omiecinski and E. Lin, ‘“Hash-Based and Index-Based Join Algorithms for Cube and Ring Connected
Multicomputers’’, IEEE Trans. on Knowledge and Data Eng. 1,3 (September 1989), 329.

E. Omiecinski and P. Scheuermann, ‘‘A Parallel Algorithm for Record Clustering’’, ACM Transaction on
Database Systems 15, 4 (December 1990), 599.

E. Omiecinski, ‘‘Performance Analysis of A Load Balancing Relational Hashing Join Algorithm for a
Shared- Memory Multiprocssor’’, Proc. Int’l. Conf. on Very Large Data Bases, Barcelona, Spain, 1991.

K. Ono and G. M. Lohman, ‘‘Measuring the Complexity of Join Enumeration in Query Optimization’’,
Proc. Int'l. Conf. on Very Large Data Bases, Brisbane, Australia, 1990, 314.

J. Ousterhout, ‘“Why Aren’t Operating Systems Getting Faster as Fast as Hardware?’’, Dec. WRL Technical
Note TN-11, Palo Alto, CA, October 1989.

M. T. Ozsu and P. Valduriez, ‘‘Distributed Database Systems: Where Are We Now?”’, IEEE Computer 24,
8 (August 1991), 68.

M. T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1991.

M. Palmer and S. Zdonik, ‘‘FIDO: A Cache that Learns to Fetch’’, Proc. Int’l. Conf. on Very Large Data
Bases, Barcelona, Spain, 1991.

D. A. Patterson, G. Gibson and R. H. Katz, ‘A Case for Redundant Arrays of Inexpensive Disks (RAID)"’,
Proc. ACM SIGMOD Conf., Chicago, IL, June 1988, 109.

H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu and P. Selinger, ‘‘Parallelism in Relational Data Base Systems:
Architectural Issues and Design Approaches’, Proc. Ini'l. Symp. on Databases in Parallel and Distributed
Systems, Dublin, Ireland, July 1990, 4.

X. Qian and G. Wiederhold, ‘‘Incremental Recomputation of Active Relational Expressions’’, IEEE Trans.
on Knowledge and Data Eng. 3,3 (September 1991), 337.

83

207.

208.
209.
210.
211.
212.
213.

214,

215.
216.
217.
218.
219.
220.
221.
222.

223.
224.

225.
226.
2217.
228.
229.

230.
231.
232.
233.

R. K. Rew and G. P. Davis, ‘‘The Unidata netCDF: Software for Scientific Data Access’’, Sixth Int'l. Conf.
on Interactive Information and Processign Systems for Meteorology, Oceanography, and Hydrology,
Anaheim, CA, February 1990.

J. P. Richardson, H. Lu and K. Mikkilineni, ‘‘Design and Evaluation of Parallel Pipelined Join Algorithms™,
Proc. ACM SIGMOD Conf., San Francisco, CA, May 1987, 399.

J. E. Richardson and M. J. Carey, ‘‘Programming Constructs for Database System Implementation in
EXODUS”’, Proc. ACM SIGMOD Conf., San Francisco, CA, May 1987, 208.

J. T. Robinson, ‘“The K-D-B-Tree: A Search Structure For Large Multidimensional Dynamic Indices™,
Proc. ACM SIGMOD Conf., Ann Arbor, MI, April-May 1981, 10.

A. Rosenthal and D. S. Reiner, ‘‘Querying Relational Views of Networks’’, in Query Processing in
Database Systems, W. K. D. S. R. D. S. Batory (editor), Springer, Berlin, 1985, 109.

A. Rosenthal, C. Rich and M. Scholl, ‘“‘Reducing Duplicate Work in Relational Join(s): A Modular
Approach Using Nested Relations’’, ETH Technical Report, Zurich, Switzerland, June 1991.

D. Rotem and A. Segev, ‘‘Physical Organization of Temporal Data’’, Proc. IEEE Conf. on Data Eng., Los
Angeles, CA, February 1987, 547.

J. B. Rothnie, P. A. Bemstein, S. Fox, N. Goodman, M. Hammer, T. A. Landers, C. Reeve, D. W. Shipman
and E. Wong, ‘‘Introduction to a System for Distributed Databases (SDD-1)"’, ACM Trans. on Database
Systems 5, 1 (March 1980).

N. Roussopoulos, ‘“View Indexing in Relational Databases’’, ACM Trans. on Database Systems 7, 2 (June
1982), 258.

N. Roussopoulos, ‘‘An Incremental Access Method for ViewCache: Concept, Algorithms, and Cost
Analysis’’, ACM Transaction on Database Systems 16, 3 (September 1991), 535.

N. Roussopoulos and H. Kang, ‘‘A Pipeline N-way Join Algorithm Based on the 2-way Semijoin Program’’,
IEEE Trans. on Knowledge and Data Eng. 3, 4 (December 1991), 486.

S. S. Ruth and P. J. Keutzer, ‘‘Data compression for business files’’, Datamation 18 (September 1972), 62.
G. M. Sacco and M. Schkolnik, ‘‘A Mechanism for Managing the Buffer Pool in a Relational Database
System Using the Hot Set Model”’, Proc. Int'l. Conf. on Very Large Data Bases, Mexico City, Mexico,
September 1982, 257.

G. M. Sacco and M. Schkolnik, ‘‘Buffer Management in Relational Database Systems’’, ACM Trans. on
Database Systems 11,4 (December 1986), 473.

G. Sacco, “‘Index Access with a Finite Buffer’’, Proc. Int'l. Conf. on Very Large Data Bases, Brighton,
England, August 1987, 301.

K. Salem and H. Garcia-Molina, ‘‘Disk Striping’’, Proc. IEEE Conf. on Data Eng., Los Angeles, CA,
February 1986, 336.

B. Salzberg, File Structures: An Analytic Approach, Prentice-Hall, Englewood Cliffs, NJ, 1988.

B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren and B. Vaughan, ‘‘FastSort: An Distributed
Single-Input Single-Output External Sort”’, Proc. ACM SIGMOD Conf., Atlantic City, NJ, May 1990, 94.

B. Salzberg, ‘‘Merging Sorted Runs Using Large Main Memory”, Acta Informatica 27 (1990), 195,
Springer.

H. Samet, ‘‘The Quadtree and Related Hierarchical Data Structures’’, ACM Computing Surveys 16, 2 (June
1984), 187.

H. J. Schek and M. H. Scholl, ‘‘The relational model with relation-valued attributes’’, Information Systems
11,2 (1986), 137.

D. Schneider and D. DeWitt, ““A Performance Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment’’, Proc. ACM SIGMOD Conf., Portland, OR, May-June 1989, 110.

D. A. Schneider and D. J. DeWitt, ‘‘Tradeoffs in Processing Complex Join Queries via Hashing in
Multiprocessor Database Machines”, Proc. Ini'l. Conf. on Very Large Data Bases, Brisbane, Australia,
1990, 469.

D. Schneider, ‘‘Complex Query Processing in Multiprocessor Database Machines’’, Ph.D. Thesis, Computer
Sciences Technical Report 965, 1990.

D. A. Schneider, ‘‘Bit Filtering and Multi-Way Join Query Processing”’, unpublished manuscript, Palo Alto,
CA, 1991.

B. Seeger and P. A. Larson, ‘‘Mulii-Disk B-trees’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991,
436.

A. Segev and H. Gunadhi, ‘‘Event-join optimization in temporal relational databases’’, Proc. Int’l. Conf. on
Very Large Data Bases, Amsterdam, The Netherlands, 1989, 205.

84

234.

235.

236.
237.
238.

239.
240.

241.

242,

243.
244,
245.
246.
247.
248.

249.

250.
251.
252.
253.
254,
255.
256.
257.
258.
259.
260.

A. Segev, ‘‘Query Processing Algorithms for Temporal Intersection Joins’’, Proc. IEEE Conf. on Data Eng.,
Kobe, Japan, April 1991.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price, ‘‘Access Path Selection in a
Relational Database Management System’’, Proc. ACM SIGMOD Conf., Boston, MA, May-June 1979, 23.
Reprinted in M. Stonebraker, Readings in Database Systems, Morgan-Kaufman, San Mateo, CA, 1988.

T. K. Sellis, ‘‘Efficiently Supporting Procedures in Relational Database Systems’’, Proc. ACM SIGMOD
Conf., San Francisco, CA, May 1987, 278.

S. Seshadri and J. F. Naughton, ‘‘Sampling Issues in Parallel Database Systems’’, Proc. Int'l. Conf. on
Extending Database Technology, Vienna, Austria, March 1992.

D. Severance and G. Lohman, ‘‘Differential “Files: Their -Application to the Maintenance of Large
Databases’’, ACM Trans. on Database Systems 1, 3 (September 1976).

D. G. Severance, ‘‘A practitioner’s guide to data base compression’’, Information Systems 8, 1 (1983), 51.

L. D. Shapiro, “‘Join Processing in Database Systems with Large Main Memories’’, ACM Trans. on
Database Systems 11,3 (September 1986), 239.

G. Shaw and S. Zdonik, ‘‘A Object-Oriented Query Algebra’’, IEEE Database Eng. 12,3 (September 1989),
29.

G. M. Shaw and S. B. Zdonik, ‘‘An object-oriented query algebra’’, in Proc. of the 2nd Intl. Workshop on
Database Programming Languages, R. H. R. M. D. Stemple (editor), Morgan Kaufmann, Gleneden Beach,
Oregon, June 1989, 103.

G. M. Shaw and S. B. Zdonik, ‘A Query Algebra for Object-Oriented Databases’’, Proc. IEEE Conf. on
Data Eng., Los Angelos, CA, February 1990, 154.

E. J. Shekita and M. J. Carey, ‘‘A Performance Evaluation of Pointer-Based Joins”, Proc. ACM SIGMOD
Conf., Atlantic City, NJ, May 1990, 300.

J. Shemer and P. M. Neches, ‘“The Genesis of a Database Computer’’, IEEE Computer 17, 11 (November
1984), 42.

S. W. Sherman and R. S. Brice, ‘Performance of a Database Manager in a Virtnal Memory System’’, ACM
Trans. on Database Systems 1,4 (December 1976), 317.

A. P. Sheth and J. A. Larson, ‘‘Federated Database Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases”’, ACM Computing Surveys 22, 3 (September 1990), 183.

A. Sikeler, ‘““VAR-PAGE-LRU: A Buffer Replacement Algorithm Supporting Different Page Sizes™,
Lecture Notes in Computer Science 303 (April 1988), 336, Springer Verlag.

A. Silberschatz, M. Stonebraker and J. Ullman, ‘‘Database Systems: Achievements and Opportunities’,
Communications of the ACM, Special Section on Next-Generation Database Systems 34, 10 (October 1991),
110.

H. W. Six and P. Widmayer, ‘‘Spatial Searching in Geometric Databases’’, Proc. IEEE Conf. on Data Eng.,
Los Angeles, CA, February 1988, 496.

J. M. Smith and P. Y. T. Chang, ‘‘Optimizing the Performance of a Relational Algebra Database Interface”’,
Communications of the ACM 18, 10 (October 1975), 568.

R. Snodgrass, ‘“Temporal Databases: Status and Research Directions’’, ACM SIGMOD Record, Special
Issue on Directions for Future Database Research and Development 19, 4 (December 1990), 83.

R. Snodgrass and K. Shannon, ‘‘Semantic Clustering’’, Fourth Int'l Workshop on Persistent Object Systems,
Martha’s Vineyard, MA, September 1990, 361.

J. A. Solworth and C. U. Orji, ‘“Write-Only Disk Caches’’, Proc. ACM SIGMOD Conf., Atantic City, NJ,
May 1990, 123.

V. Srinivasan and M. Carey, ‘‘On-Line Index Construction Algorithms”’, Computer Sciences Technical
Report 1008, March 1991.

V. Srinivasan and M. J. Carey, ‘‘Performance of B-Tree Concurrency Control Algorithms™, Proc. ACM
SIGMOD Conf., Denver, CO, May 1991, 416.

J. W. Stamos and H. C. Young, ‘‘A Symmetric Fragment and Replicate Algorithm for Distributed Joins’’,
Technical Report RI7188 (December 5, 1989), IBM Almaden Research Lab.

M. Stonebraker, ‘‘Implementation of Integrity Constraints and Views by Query Modification”, Proc. ACM
SIGMOD Conf., San Jose, CA, June 1975.

M. Stonebraker, ‘‘Operating system support for database management’’, Communications of the ACM 24,77
(July 1981).

M. Stonebraker, ‘“The Design and Implementation of Distributed INGRES™’, in The INGRES Papers, M.
Stonebraker (editor), Addison-Wesley, Reading, MA, 1986, 187.

85

261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
271.
278.
279.
280.
281.
282.
283.
284.

285.

286.
287.

288.

M. Stonebraker, ‘“The Case for Shared-Nothing’’, IEEE Database Eng. 9, 1 (March 1986).

M. Stonebraker, ‘‘“The Design of the POSTGRES Storage System™’, Proc. Int'l. Conf. on Very Large Data
Bases, Brighton, England, August 1987, 289. Reprinted in M. Stonebraker, Readings in Database Systems,
Morgan-Kaufman, San Mateo, CA, 1988.

M. Stonebraker, R. Katz, D. Patterson and J. Ousterhout, ‘“The Design of XPRS"’, Proc. Int’l. Conf. on Very
Large Data Bases, Long Beach, CA, August 1988, 318.

M. Stonebraker, P. Aoki and M. Seltzer, ‘‘Parallelism in XPRS’’, UCB/Electronics Research Lab.
Memorandum M89/16, Berkeley, February 1989.

M. Stonebraker, L. A. Rowe and M. Hirohama, ‘‘The Implementation of Postgres’’, IEEE Trans. on
Knowledge and Data Eng. 2,1 (March 1990), 125.

M. Stonebraker and G. A. Schloss, ‘‘Distributed RAID — A New Multiple Copy Algorithm”’, Proc. IEEE
Conf. on Data Eng., Los Angelos, CA, February 1990, 430.

M. Stonebraker, A. Jhingran, J. Goh and S. Potamianos, ‘‘On Rules, Procedures, Caching and Views in Data
Base Systems’’, Proc. ACM SIGMOD Conf., Atlantic City, NJ, May 1990, 281.

M. Stonebraker, ‘‘Managing Persistent Objects in a Multi-level Store’’, Proc. ACM SIGMOD Conf., Denver,
CO, May 1991, 2.

D. D. Straube and M. T. Ozsu, ‘‘Query transformation rules for an object algebra’’, Univ. of Alberta, Dept.
of Computing Sciences Tech. Rep. 89-23, August 1989.

S. Y. W. Su, Database Computers: Principles, Architectures and Techniques, McGraw-Hill, New York, NY,
1988.

S. Su, ““An Association Algebra for Processing Object-Oriented Databases’’, Proc. IEEE Conf. on Data
Eng., Kobe, Japan, April 1991.

K. Subieta, ‘‘High-Level Navigational Facilities for Network and Relational Databases’’, Proc. Int'l. Conf.
on Very Large Data Bases, Florence, Italy, October-November 1983, 380.

Teradata, DBC/1012 Data Base Computer, Concepts and Facilities, Teradata Corporation, Los Angeles, CA,
1983.

F. W. Tompa and J. A. Blakeley, ‘‘Maintaining materialized views without accessing base data’,
Information Systems 13,4 (1988), 393.

I. L. Traiger, J. Gray, C. A. Galtieri and B. G. Lindsay, ‘‘Transactions and Consistency in Distributed
Database Systems’’, ACM Trans. on Database Systems 7, 3 (September 1982), 323.

1. L. Traiger, ‘‘Virtual Memory Management for Data Base Systems”’, ACM Operating Systems Review 16,
4 (October 1982), 26.

J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, MA, 1977.

A. Unnikrishnan, P. Shankar and Y. V. Venkatesh, ‘‘Threaded Linear Hierarchical Quadtrees for
Computation of Geometric Properties of Binary Images’’, IEEE Trans. on Software Eng. 14, 5 (May 1988),
659.

P. Valduriez, ‘‘Join Indices’’, ACM Transaction on Database Systems 12,2 (June 1987), 218.

S. L. Vandenberg and D. J. DeWitt, ‘“Algebraic Support for Complex Objects with Arrays, Identity, and
Inheritance’’, Proc. ACM SIGMOD Conf., Denver, CO, May 1991, 158.

C. B. Walton, “‘Investigating Skew and Scalability in Parallel Joins’’, Department of Computer Sciences
Technical Report Tech. Rep.-89-39 (December 1989), University of Texas.

C. Walion, A. Dale and R. Jenevein, ‘A Taxonomy and Performance Model of Data Skew in Parallel
Joins™’, Proc. Int’l. Conf. on Very Large Data Bases, Barcelona, Spain, 1991.

G. Weikum, P. Zabback and P. Scheuermann, ‘‘Dynamic File Allocation in Disk Arrays’’, Proc. ACM
SIGMOD Conf., Denver, CO, May 1991, 406.

P. Williams, D. Daniels, L. Haas, G. Lapis, B. Lindsay, P. Ng, R. Obermarck, P. Selinger, A. Walker, P.
Wilms and R. Yost, ““R*: An Overview of the Architecture’’, in Readings in Database Systems, M.
Stonebraker (editor), Morgan-Kaufman, San Mateo, CA, 1988.

J. L. Wolf, D. M. Dias and P. S. Yu, ‘‘An Effective Algorithm for Parallelizing Sort Merge in the Presence
of Data Skew’’, Proc. Int'l. Symp. on Databases in Parallel and Distributed Systems, Dublin, Ireland, July
1990, 103.

J. Wolf, ““‘An Effective Algorithm for Parallelizing Hash Joins in the Presence of Data Skew”’, Proc. IEEE
Conf. on Data Eng., Kobe, Japan, April 1991.

R. Wolniewicz and G. Graefe, ‘‘Automatic Optimization and Parallelization in Scientific Databases’’, in
preparation, 1992,

E. Wong and K. Youssefi, ‘‘Decomposition - A Strategy for Query Processing’’, ACM Trans. on Database
Systems 1,3 (September 1976), 223.

86

289.
290.
291.
292.
293.
294.
295.

296.

E. Wong and R. H. Katz, ‘‘Distributing a Database for Parallelism’’, Proc. ACM SIGMOD Conf., San Jose,
CA, May 1983, 23.

H. Yang and P. A. Larson, ‘‘Query Transformation for PSJ-queries’’, Proc. Int'l. Conf. on Very Large Data
Bases, Brighton, England, August 1987, 245.

K. Youssefi and E. Wong, ‘‘Query Processing in a Relational Database Management System’’, Proc. Int'l.
Conf. on Very Large Data Bases, Rio de Janeiro, October 1979, 409.

C. T. Yu, C. M. Suen, K. Lam and M. K. Siu, ‘‘Adaptive Record Clustering’’, ACM Trans. on Database
Systems 10, 2 (June 1985}, 180.

L. Yu, “An Evaluation Framework for Algebraic Object-Oriented Query Models’’, Proc. IEEE Conf. on
Data Eng., Kobe, Japan, April 1991.

C. Zaniolo, ‘‘Design of Relational Views Over Network Schemas’’, Proc. ACM SIGMOD Conf., Boston,
MA, May-June 1979, 179.

H. Zeller and J. Gray, ‘‘An Adaptive Hash Join Algorithm for Multiuser Environments’’, Proc. Int’l. Conf.
on Very Large Data Bases, Brisbane, Australia, 1990, 186.

H. Zeller, ‘‘Parallel Query Execution in NonStop SQL’’, Digest of Papers, 35th CompCon Conf., San
Francisco, CA, Feb-Mar 1990, 484.

87

