Efficient Language Constructs for Large Parallel
Programs -- An Overview of Dino2

Matthew Rosing
and
Robert B. Schnabel

CU-CS-578-92 January 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Efficient Language Constructs for Large Parallel
Programs -- An Overview of Dino2

Matthew Rosing?
and

Robert B. Schnabel?

CU-CS-578-92 January 1992

This research was supported by NSF Grant ASC-9015577, NSF Grant CDA-
8922510, and AFOSR Grant AFOSR-90-0109.

'Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia 23665-
5225 USA

*Department of Computer Science, Campus Box 430, University of Colorado, Boulder, Colorado 80309-0430 USA

Efficient Language Constructs for Large Parallel Programs --

An Overview of Dino2

Abstract

The goal of the research described in this paper is to develop easy-to-use, efficiently implement-
able language constructs for writing large data parallel numerical programs for distributed
memory (MIMD) multiprocessors. Although distributed memory machines show great promise,
they are difficult to program. This arises from the mismatch between the target machine, the
language used, and the underlying model of the data parallel algorithm. Previously, several
models, including explicitly parallel SIMD (Single Instruction Multiple Data) models, explicitly
parallel SPMD (Single Program Multiple Data) models, and sequential programs annotated with
data distribution statements and possibly parallel loops, have been developed to express pro-
grams with simple data parallelism. In this paper, we give an overview of a new language that
combines the two explicitly parallel models, SIMD and SPMD, in a structured and modular
manner such that large, efficient parallel programs can be written. Communications in this
language are also flexibly and modularly defined utilizing a new attribute of distributed vari-

ables, a communications type.

1. Introduction

The goal of the research described in this paper is to develop easy-to-use, efficiently
implementable language constructs for writing large data parallel numerical programs for
distributed memory (MIMD) multiprocessors. By data parallel algorithms we mean those
where identical or similar operations are performed concurrently on different sections of
a typically large data structure. Examples of distributed memory machines include the
Intel and NCUBE hypercubes, Thinking Machine’s CMS5, and networks of workstations

used as multiprocessors.

Although distributed memory machines show great promise, they are difficult to
program. This arises from the low level details the programmer must handle regarding
communications, synchronization, and process control. Raising the level of these opéra—
tions from the message level sends and receives found in many current Systems to the
point where most of these details are handled implicitly will make programming distri-
buted memory machines much easier. Another way of saying this is that the program-
ming model used must be changed to more closely match the types of algorithms imple-
mented. However, the efficiency of the resulting code generated from the model must not
be adversely affected or else few programmers will be interested in using the model. For

example, simulating a uniform shared memory will likely be too inefficient.

The research described here attempts to reduce this mismatch between the target
machine, the languages used, and the underlying model of typical data parallel algo-
rithms. It does this by developing a language model that on the one hand provides the
user an intuitive interface to the target machine, and on the other hand still provides the
compiler with enough information to generate efficient code. A key aspect of the
language model is that it supports the expression of large, modular parallel programs,

which may use different models of parallelism in different portions.

The next section motivates this research more thoroughly, and then describes the
organization of the rest of the paper. This paper provides an overview of the new
language model; more detail is provided in [16] and will be provided in forthcoming

papers.

2. Motivation

Recently, several languages, including the DINO language [14], have been pro-
posed for writing numerical programs on distributed memory machines [3-6, 8,9, 13, 17].
These languages appear to be converging in terms of the underlying model used [15].
This model is primarily a data parallel one with a little support for functional parallelism
in some cases. It has three main parts. First, arrays of virtual processors may be declared
[1,7,8,14] in a shape that best fits the algorithm. Second, arrays of data may be distri-
buted across these virtual processors [3, 8, 14]. This distributed data is usually treated as a
single global object and all accesses are made with respect to the global name space.
Third, some model is used for specifying the computation. Here there appear to be two
classes of approaches, either a annotated sequential program approach or an explicitly

parallel approach. Within each of these classes there appear to be two main options.

Within the annotated sequential program approach, one option is to write entirely
sequential execution statements (along with data distribution annotations) and have the
compiler and run-time system automatically generate all of the communications based
upon data dependency analysis and the data distribution annotations [2, 5,7, 11, 12]. A
second option is to also augment the sequential program with parallel execution annota-
tions, generally parallel loops such as forall statements. These parallel loops generally
follow a "loosely synchronous" or "copy-in copy-out" semantics that allows communica-
tion only at the beginning and end of the loop [8]. The communications are usually impli-
citly specified. The compiler may or may not attempt to extract additional parallelism

beyond what is specified in the parallel statements.

Within the explicitly parallel approach, one option is to use a general SPMD (Single
Program Multiple Data) synchronization model. In this method, parallelism is usually
specified at a per-iask level, and communication is generaily specified with explicit sends
and receives but with the low level details of message typing, buffering, channels and
other aspects handled by the compiler [14]. A second option is to use an SIMD (Single
Instruction Multiple Data) synchronization model in which virtual processors effectively
synchronize at all communications [11]. In this model, parallelism is generally specified
at a fully data parallel level, and all communication is implicitly generated by the com-
piler. Some languages, such as Modula2* [10], combine some aspects of both the SIMD
and SPMD models.

One issue that the languages developed so far do not address is writing very large
programs. This is the main issue addressed in this research. Although most of the above
mentioned languages are suitable for expressing simple algorithms (up to a few hundred
lines), they are less suitable for writing large, modular, multiple-phase parallel programs.
This is partly due to their inability to define and tie together modules that are independent

of the rest of the program.

A large factor that contributes to the inability to express large parallel programs is
the restrictiveness of the programming model. Almost every language follows one of the
models described above. These are the sequential program with data distribution annota-
tions, sequential program with parallel execution annotations, explicitly parallel SPMD,
and explicitly parallel SIMD models. Each of these models has tradeoffs between ease of

use, expressiveness, and efficiency.

If the language follows the explicitly parallel SPMD model, with parallelism
specified at a per-task level, then there are two problems the user must face when writing
large programs. First the user usually must explicitly put in synchronization and com-

munications. Another, more subtle problem, is that each section of code must be written

with the knowledge of how many processors will be available to execute the code. The
number of processes should equal this number. Otherwise, it is difficult for the compiler
to generate efficient code; the compiler may need to multiprogram the processes or use a
similar technique. This will not result in as efficient code as if one explicitly wrote one
process per processor. This constraint makes writing modularly defined, large programs
especially difficult because the context of the module within the entire program must be
understood in order that the number of processors available is known. Therefore, dif-
ferent parallel programs, based on different contexts, may have to be written for the same
algorithm.

On the other hand, if the language follows the explicitly paralle] SIMD model, with
parallelism specified at a fully data parallel level, then the user has the advantages of
simple synchronization and of being able to efficiently specify large numbers of
processes that match the data parallelism and are independent of the target machine. The
SIMD model provides the compiler with enough information to efficiently contract many
virtual processes into fewer real processes, thus overcoming the constraint of knowing
the number of available processors. But this model is significantly limited in its expres-
siveness, due to the lock step execution enforced by the SIMD model, and is therefore

inappropriate for expressing many parallel algorithms.

The sequential model using parallel loops with loosely synchronous communication
semantics has advantages and disadvantages similar to those of the SIMD model. The
difference between these two models is primarily the granularity of the concurrent com-
putation that is done between possible communications; in the SIMD model it is one
operation, whereas in the sequential model with parallel loops it is the body of the loop.
The larger granularity of the latter model makes it more expressive than the SIMD model
in some regards, such as the non-uniformity of parallel tasks, but more restrictive in oth-

ers, such as the placement of communications.

Finally, the sequential model using only distributed data annotations has the advan-
tage that the programmer does not specify any communications or synchronizations, and
the disadvantage that it sometimes may be hard to obtain an efficient parailel program
from the sequential specification. First, it is still an open research question to determine
how effectively and broadly one can derive efficient parallel programs from sequential
specifications, using dependency analysis and data distribution annotations. Second,
there are some efficient parallel algorithms, such as some pipelined algorithms, that
appear to be especially difficult to express in or derive from a sequential program. The
latter disadvantage may apply to the sequential model with parallel loop annotations as

well.

Thus, limiting a language to one of the models described above makes it difficult for
the language to be satisfactory with respect to ease of use, expressiveness, and efficiency
for a broad range of large computations. Furthermore, many large numerical programs
have modules that fit each of these models. For example, the kernels of numerical pro-
grams tend to be highly structured, fine grained computations that fit the explicitly paral-
lel SIMD model or either of the annotated sequential models, while the overall computa-
tion structure as well as selected kernels may be less structured and fit the coarse grained,

explicitly parallel SPMD model.

For these reasons, it appears to us that a language for specifying general large,
modular parallel numerical programs needs to support at least two types of models, an
SPMD model for coarse grained parallel computations, and some model that efficiently
expresses fine grained data parallel computations. It must also provide an easy method
of switching between these models. In addition, it must allow the programmer to write
paralle] modules where the actual available parallelism is unknown to the programmer.

These needs form the main motivation for this research.

This paper gives an overview of a new language, called Dino2, that addresses these
issues. Dino2 is a successor to the DINO language [14], and shares with it the fact that it
is a superset of the C language. The two languages aiso have similar capabilities for
expressing distributed data and arrays of virtual processors, but their methods for for
expressing parallel computations, communications, and synchronizations are very dif-

ferent.

The conflict regarding what type of model of computation to use is resolved in
Dino2 by using a modular approach to designing parallel programs. To readily accom-
modate both coarse and fine grained parallelism in a way that fits well together, the
language is based upon an explicitly parallel computation model. Each module in Dino2
consists of a virtual parallel machine that operates using either a SIMD or SPMD syn-
chronization model, and contains data and code. It is possible to mix the models of com-
putation as needed. For example, a SIMD model could be used to do lower Ievél matrix
operations while a SPMD model could be used to handle load balancing at the higher
levels of a program. Dino2 develops a framework which combines these two models in a
structured fashion, and derives many of the advantages of both. In either model, all com-
munications are implicitly derived from reads and writes of data that can be distributed

across the virtual machine.

Each module in a Dino2 program is consists of a virtual machine, a synchronization
model, and distributed data structures that form the basis of communication between vir-
tual processors. Section 3 describes virtual machines, section 4 describes the SIMD and
SPMD synchronization models, section 5 describes how modules can be combined to
form complex parallel programs, and section 6 describes how virtual Processors com-
municate with each other. More details of the language and potential implementation

issues are provided in [16] and will be available in forthcoming papers.

3. Virtual Machines.

A Dino2 module is built around a parallel virtual machine defined by the user. A
virtual machine consists of a single virtual processor or a structured set of virtual proces-
sors, and defines the parallelism of the module. Conceptually, each virtual processor exe-
cutes in parallel. The virtual machine is used as a framework onto which data, communi-
cations, and code are placed. All virtual processors within a module contain the same

code.

A module consisting of a single virtual processor is described by a normal pro-
cedure. In the more interesting case, where a module consists of a structured set of virtual
processors, a construct called a composite procedure is used to describe the module. A
composite procedure is essentially an array of similar procedures that are called and exe-

cuted concurrently.

Figure 1 is an example program that contains a composite procedure which incre-
ments every element in a matrix by a parameterized amount. Execution starts in pro-
cedure main which contains one virtual processor. The call to brighten creates N2 virtual
processors each of which executes the body of the procedure. The actual parameter A is
distributed across the new virtual machine using the mapping function element; this
results in each virtual processor containing one element of the matrix. Mapping functions
in Dino2 are similar to those found in DINO and in FortranD and are not described in
detail in this paper. Within each virtual processor of brighten , the constants idx and idy
denote the indices of that virtual processor in the structure of processors. These indices
are used in the expression image [idx][idy] to specify the local element of image. At the
end of the call to brighten the N2 virtual processors are destroyed and execution contin-
ues on the virtual processor running main. This process is described more fully in Sec-

tion 5.

#define N 1024
map element() = [block][block];

synch composite brighten(image, intensity)[N:idx][N:idy]
float remote image[N][N] map element(); /*distributed array*/
int remote intensity; /*mapped to all virtual processors*/

{
image[idx][idy] += intensity;
}

main(){

float A[N][N];

read(A); /*stub procedure*/
brighten(A, 1);

display(A); /*stub procedure*/
}

A two-dimensional composite procedure used for image processing
Figure 1

An important aspect of Dino2 is that the virtual machine and the target machine are
independent of each other. In data parallel programs the parallelism generally matches
the size and shape of the major data structures. In Dino2, therefore, the virtual machine is
génerally related to the size and shape of the data as opposed to the size and shape of the
target machine. As an example, in the brighten procedure, there are 10242 virtual proces-
sors declared whereas there are probably many fewer processors available to execute the
code. The pattern of contraction of the virtual processors to the target machine can be
specified by the programmer as well, although if it is omitted as in the brighten example,
the default is to use a block mapping along each axis of the virtual parallel machine.
Thus if the actual parallel machine had 64 processors, each actual processor would con-

tain a 128128 block of virtual processors in this example.

One advantage of specifying the full data parallelism of a program is that it is easier

to write many numerical applications based on one virtual processor per data element

instead of one processor per block of data elements. In the blocked version the user must
explicitly specify how inherently parallel tasks are sequentialized at the processor level.
Inth liel description the user does not need to specify how the paraiiei code
should be transformed into sequential code. The compiler can handle this transformation

automatically.

Another advantage to specifying the full parallelism of a program is that it will be
easier to write modular programs. By describing a virtual machine for each module of a
program, the user does not need to be concerned with how many processors will be avail-
able to execute the module. Without this machine independence each module must be
written based on the context within which it will be used. In this case more than one
module may have to be written for the same parallel algorithm. With a fully data parallel
virtual machine, the compiler will generate the correct module. Generally this requires
the compiler to contract the virtual machine into a smaller number of processes such that
there is one process per processor. Hatcher and Quinn’s compiler, used to translate SIMD

languages to the NCUBE [11], is an example of how this transformation is done.

It should be noted, however, that the programmer can choose to specify that there is
one virtual processor per physical processor. This might be desirable in cases, such as
pipelined computations, where to specify the parallel algorithm correctly one may need
to express the algorithm in terms of the actual parallelism of the machine. This is gen-
erally done in Dino2 in conjunction with the SPMD synchronization model, whereas the
SIMD synchronization model is generally used in conjunction with a fully data parallel

virtual machine.

4. Synchronization Model

The next important aspect of describing a module, after describing the virtual
machine, is to describe how the virtual processors synchronize with each other. In Dino2,

this is done via the synchronization and communication models. A synchronization

involves all virtual processors and is a useful construct for implicitly coordinating the
progress of virtual processors and implicitly generating communications. By communi-
cations we mean transferring data between iwo or more virtual processors.

Dino2 supports two synchronization models, SIMD and SPMD. In a purely SIMD
model, virtual processors synchronize at every operation. Two major advantages of this
model are that the user does not need to explicitly control synchronization and that com-
munication can easily be made implicit. Therefore, it is probably the easiest method of
programming multiprocessor computers. It is not necessary to use send or receive primi-
tives to transmit data: the synchronization is already handled at every operator and there-
fore the distributed data structures, which are used for communication, can be viewed as
shared memory. Another advantage of the SIMD model is related to the parallelism of
the virtual machine. This model makes it easy for the compiler to take a program written

at the maximum level of data parallelism, which is usually the easiest way to write the

program, and contract it to an equivalent, efficient program for the available processors.

The way that the SIMD model is used in Dino2 differs from what is typically
thought of as pure SIMD in two important ways. Both are the result of the fact that the
program will be executed on an MIMD machine. First, we do not assume that the proces-
sors actually synchronize after each operation or even after each communication point,
only that the communications is consistent with this pure SIMD model. Second, a call to
a standard C function or another module within a SIMD module does not force the STMD
semantics onto the execution of the called function or module. Instead, the called func-
tion or module operates under its own synchronization module which can be either
SIMD, SPMD, or totally independent. This flexibility applies to all Dino2 modules and

is a critical aspect of the language.

As an example, Figure 2 shows a SIMD procedure solve_nlinear calling a normal

procedure eigenvalue. This is a shell of a program that computes eigenvalues. For the

10

most part, this algorithm consists of linear algebra to find the intervals containing each
eigenvalue. This is best modeled with the SIMD model. From this point, an independent
comiputation is used to find each eigenvalue. This is most appropriateiy done with a nor-
mal procedure.

The second, more loosely synchronous model that Dino2 supports is the SPMD
model. In this model, tasks only synchronize at the start and end of a module. It is possi-
ble to synchronize at points in between but in these cases the synchronization must be
added via communication constructs as described in section 6. Communications at the
start and end of the SPMD module are supported implicitly by distributing or collecting
data structures at the start or end of the module, respectively. The SPMD model is par-
ticularly useful for expressing irregular or coarse grained parallel algorithms. In practice
it is often most naturally used with a virtual machine whose degree of parallelism
corresponds to the actual machine, but sometimes with a virtual parallel machiﬁe whose

degree of parallelism corresponds to a main data structure.

double eigenvalue(left, right, A)
double left, right, A[N][N];
{
}
synch composite solve_nlinear(A, values)[N:id]
double remote A[N][N] ;

double remote value[N] map Block();

{
double remote left[N], right[NT];

[*compute interval*/

}*compute eigenvalues*/
value[id] = eigenvalue(left[id], right[id], A);

Calling a normal procedure from a SIMD procedure
Figure 2

11

5. Combining Modules to Form Complex Parallel Programs

A Dino2 module, as described above, consists of a virtual machine executing with a
SIMD or SPMD synchronization model, distributed data, and code to operate on that
data. A module is encapsulated by a composite procedure in the case of an array of vir-
tual processors, or a normal procedure in the case where only é single virtual processor

gxecutes.

From this basis, a more complex parallel program can be created through various
combinations of calling SIMD composite procedures, SPMD composite procedures, and
normal procedures. Conceptually, this creates a more complex parallel virtual machine
whose size, shape, and synchronization characteristics describe the parallel nature of the

program.

In the simplest case, a normal procedure can call a SIMD or SPMD composite pro-
cedure. This is the basic mechanism for generating parallelism and results in changing
the virtual machine representing the single procedure into a set of virtual processors, one
for each element of the composite procedure. An example of this was previously shown

in figure 1.

A similar transformation occurs when one composite procedure calls another. That
is, each element of a composite procedure with n virtual processors calls another compo-
site procedure with m virtual processors. This is called nested parallelism , and results in
a parallel virtual machine with nm virtual processors. Nested parallelism is used to refine
parallel operations on complex data structures. A simple example of this is solving a
block diagonal system of equations. At the highest level there is a virtual machine con-
sisting of a virtual processor for each block. At a finer level there may be a virtual pro-
cessor for each row of each block. As in all the combinations, it is permissible for the two

composite procedures to have the same or different synchronization models.

12

Another combination is called phased parallelism. This occurs when an entire vir-
tual machine of n elements is replaced by a virtual machine with either a different
number of elements, or a different synchronization model, or both (and then back again).
An example of this is solving block bordered systems of equations, where the natural
degree of parallelism changes between the phase of the algorithm that operates on the
main diagonal blocks and the phase that operates on the bottom block. Another example
is in solving a system of linear equations by using a parallel LU decomposition followed
by a pipelined backsolve; here the virtual machine changes from a SIMD model for the
LU phase to a SPMD model for the backsolve, and the number of virtual processors may

change from the number of equations to the number of actual Processors.

Phased parallelism, liked nested parallelism, is implemented in Dino2 by having
one composite procedure call another, but with the second composite procedure call
placed within a barrier statement. A barrier statement consists of the keyword barrier
and a C compound statement. When executed within the context of a composite pro-
cedure, a barrier synchronizes all the virtual processors associated with the composite
procedure and temporarily replaces them by a single virtual processor that executes the
compound statement. An example of a language that uses a barrier statement in this
manner for numerical programs is found in the Force [6]. If the statement within the bar-
rier is a call to a composite proceduré, then the net effect is a change in parallelism from
the original composite procedure to that of the called composite procedure, and then back

again after the barrier is exited.

An example of phased parallelism is shown in figure 3, a very simplified version of
a procedure used to solve a block bordered system of equations. In this example, the
main data structures consist of Q+1 diagonal blocks in the system of equations. 0 of
them are contained in A and each are of size NxN, and the lower right block, of size

“MxM , is represented by P . There are also border blocks that are not shown in the exam-

13

synch composite lu_decomp (B, NP) [NP:id]
synch composite modify_P (A, P) [M:id]
synch composite compose_x (A, P) [Q:id]

composite block_solve(A, P)[Q:id]
double private A[Q][N][N] map slice();
double private PIM][M] map wrapcol();
{
lu_decomp(A[id], N);
barrier
{
modify_P(A, P);
lu_decomp(P, M);
| ,

compose_x(A,P);

An Example of Phased Parallelism
Figure 3

ple. The first part of the computation consists of factoring each block in A . This implies
parallelism of degree Q, the number of virtual processors in block_solve . (The call to
lu_decomp invokes nested parallelism and increases the parallelism to QN.) After the
completion of this step, the results are used to modify P (using the border blocks), and
then P is factored. Both of these steps have parallelism of degree M, and therefore the O
virtual processors used to factor A are temporarily transformed into M virtual processors.
This is done with the barrier statement. (Note that lu_decomp is called with a different
number of virtual processors in the second call.) After the barrier statement, the algo-
rithm returns to another phase that has parallelism of degree Q at the high level and ON

at the lower level.

There are other mechanisms for generating complex virtual machines in Dino2 that

we only mention briefly. If a statement inside an SIMD or SPMD composite procedure is

14

a call to a normal C procedure, then the degree of parallelism is unchanged, but while the
normal procedure is executing on each virtual processor there is no synchronization
between the processes. An example where this is used is in a noniinear optimization
algorithm where the outer algorithm is SIMD but includes a finite difference gradient
evaluation where each virtual processor performs a nonlinear function evaluation
independently and asynchronously. A second mechanism consists of taking two virtual
machines and combining them into a single virtual machine. This is implemented with
the ’::” statement and consists of executing two modules (composite or normal pro-
cedure) concurrently. This construct allows for functional parallelism, as opposed to data
parallelism. Generally, when this is used in numerical computation it is at a high level
within a program. An example is a program that uses a master/slave model to service a

set of independent tasks.

6. Communication Model

Another important aspect of Dino2 is the method in which virtual processors com-
municate with each other. Because the language is designed for data parallel computa-
tion, there is strong support for distributing data structures across virtual processor struc-
tures. This distribution provides a natural mechanism for specifying communications.

Communications are based upon reading and writing these distributed data structures.

The distribution of a data structure onto the virtual processors is specified by a map-
ping function. Mapping functions in Dino2 map arrays onto arrays and consist of a small
language describing how elements of one array are mapped onto the other {16]. These

mapping functions are similar to those found in [14] and [5] and are not described here.

An important aspect of making the Dino2 communications model simple is that the
semantics of the communications are entirely embedded in the data type of the distri-
buted structures being read from or written to. Our experience has been that applying

special functions or operators to data structures to generate communications (such as the

15

DINO # operator) is confusing and error prone. Libraries containing send and receive
functions also tend to be difficult to use because the semantics of issues such as when the

be sent, when it will be available, or where it will go are usuaily not very sim-

data will
ple. This is compounded by the fact that there are usually multiple versions of each of the
basic send and receive functions, such as those for synchronous or asynchronous opera-
tions. By limiting the number of operations that can be applied to the data structures via
their data type, the user has less chance of making an error because the semantics of the
operation were misunderstood. In order to match the flexibility and power of the virtual

machine modules, the communications model in Dino2 has also been designed with a

large degree of flexibility and modularity.

The requirement for flexibility and the requirement that there not be any special
operators or functions associated with communications suggest that there be different
types of distributed data that have different semantics with respect to communication. In
response to this we have developed what we call a communication type. A communica-
tion type describes the communication semantics of a variable. This is similar to data
types that are found in all languages and are associated with every variable. The usual
data type describes the semantics of operations on a variable. For example, the divide
operator has different semantics depending on whether the operands are integers or floats.
Similarly, the communication type describes the semantics of the communications asso-

ciated with reads and writes of a variable.

A variable in Dino2 may have one of three communication types: private, remote,
or buffered remote. The semantics of these communication types varies slightly with the
synchronization model that is used. Within the SIMD model, remote variables can be
accessed by any virtual process and are non-buffered, meaning that the most recently
assigned or communicated value is used when the variable is read. Private variables can

only be read or written by the virtual process that contains it. Buffered remote variables

16

are not allowed within SIMD virtual processors. Within SPMD virtual processors all

three communication types are allowed. Private and remote variables have the same

the SPMD model, permit a "chaotic" communication model because, in contrast to the
SIMD model, there is no synchronization between virtual processors. Buffered remote
variables are similar to remote variables except that they have a buffered implementa-
tion. This means writes to a variable are buffered in the order they arrive and reads block
until a value is present in the buffer, at which point that value is used and removed from

the buffer. Within normal C procedures, only private variables can be read or written.

The concept of communication types for variables in parallel programs appears to
be a new contribution of this work. Communication types give the user a great deal of
flexibility in selecting the type of communication semantics to use, and also adds struc-
ture to the communications in a program. The communication types provide the same
flexibility as a communications library with respect to the types of communication para-
digms that can be employed. Just as different communication models are described in the
communication Intel library for the iPSC series of hypercubes, for example, different
communication types are supported in Dino2. The fundamental difference is that in
Dino2, the communication model associated with a specific variable is static, whereas
with a library, multiple communication models can be used dynamically with the same
variable. The static nature of a communication type in Dino2 should be much less error
prone than using a library because it is not possible to accidentally mix communication

models.

In keeping with the goal of supporting modularity for large parallel programs, the
communication type of a variable in Dino2 may be changed in a structured fashion. A
data structure having one communication type may be passed as a parameter to a pro-

cedure where the corresponding formal parameter has a different communication type.

17

As an example, assume that there is a distributed array of remote floats declared within
the body of a composite procedure, and that it is desirable to temporarily turn off any
communications associated with the data structure. This can be done by passing the array
to a procedure where the formal parameter is a distributed array of private floats. Within
the body of the new procedure there will be no communications generated from reads or
writes of the data structure. This ability provides the user with the flexibility to control
the communication semantics of a variable, but in a manner that is structured through the

use of scoping and procedure semantics.

7. Conclusion

The Dino2 language provides several new features for writing large, modular paral-
lel programs. These include : 1) the provision of two synchronization models, SIMD and
SPMD, that can be used in conjunction with parallel computation modules; 2) the ability
to combine SIMD modules, SPMD modules, and normal C procedures using nested and
phased parallelism to obtain complex parallel programs; and 3) the provision of com-
munication types for distributed variables that define the communication semantics asso-
ciated with reads and writes to these variables. These features provide the user with a
flexible and expressive parallel programming language that still should be easy to use
and result in efficient code. By modularizing the degree of parallelism, the synchroniza-
tion model, and the communications, programs can be written using a wide range of tech-
niques that are not possible to combine in other languages without introducing
unmanageable complexity into some portion of the code. This modularity should also
allow large programs to be written because of the independence between modules.
Finally, the characteristics of the modules have been designed to permit efficient execu-
tion. Many implementation considerations associated with the language are discussed in

[16], but a full implementation of the language has not yet been performed.

18

(1]
[2]
(3]

(4]

[3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

[14]

REFERENCES

F. Andre, J. Pazat and H. Thomas, ‘‘Pandore: A System to Manage Data
Distribution”’, Proceedings of ACM ICS, June. 1990.

D. Callahan and K. Kennedy, ‘‘Compiling Programs for Distributed-
Memory Multiprocessors’’, J. Supercomputing 2, 2 (Oct.. 1988), 151-169.

W. Griswold, G. Harmrison, D. Notkin and L. Snyder, ‘‘Scalable
Abstractions for Parallel Programming’’, Proceedings of the Fifth
Distributed Memory Computing Conference, Apr.. 1990.

L. Hamey, J. Webb and I. Wu, ““Apply, A Programming Language for
Low-Level Vision on Diverse Parallel Architectures’, in Parallel
Computation and Computers for Artificial Intellegence, J. Kowalik
(editor), Kluwer Academic Publishers, 1987.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer and C. Tseng, “An
Overview of the Fortran D Programming System’’, Technical Report
CRPC-TR91121, Rice University, Mar. 1991.

H. Jordan, *“The Force”, in The Characteristics of Parallel Algorithms, L.
H. Jamieson, D. B. Gannon and R. J. Douglass (editor), MIT Press, 1987,
ch 16.

K. Kennedy and H. Zima, ‘‘Virtual Shared Memory for Distributed-
Memory Machines”’, Proceedings of the Fourth Conference on
Hypercubes, Concurrent Computers, and Applications, Mar.. 1989, 361-
366.

C. Koelbel, P. Mehrotra and J. V. Rosendale, ‘‘Supporting Shared Data
Structures on Distributed Memory Architectures’”, Conf. on Principles
and Practice of Parallel Processing, March, 1990.

R. J. Littlefield, ‘‘Efficient Iteration in Data-Parallel Programs with
Irregular and Dynamically Distributed Data Structures’’, Technical Report
90-02-06, University of Washington, 1990.

M. Philippsen, W. Tichy and C. Herter, ‘““Modula-2* and its
Compilation”’, Proceedings of the First International Conference of the
Austrian Center for Parallel Computation, Salzburg, Austria, Sep 1991.

M. J. Quinn and P. J. Hatcher, ‘‘Data Parallel Programming on
Multicomputers’’, IEEE Software, Sep. 1990, 69-76.

A. Rogers and K. Pingali, ‘‘Process Decomposition Through Locality of
Reference’’, Proceedings of the SIGPLAN Notices Conference on
Programming Languge Design and Implementation, June. 1989, 69-80.

J. R. Rose and G. L. S. Jr,, ““C*: An Extended C Language for Data
Parallel Programming’’, PL87-5, Thinking Machines Corp., 1987.

M. Rosing, R. B. Schnabel and R. P. Weaver, ‘“The DINO Parallel
Programming Language’, Journal of Parallel and Distributed
Computing, Sep 1991, 30-42.

19

[15]

[16]

(17]

M. Rosing, R. B. Schnabel and R. P. Weaver, ‘‘Scientific Programming
Languages for Distributed Memory Multiprocessors: Paradigms and
Research Issues’’, Tech Report CU-CS-537-91, Univ. of Colorado, Dept.
of Computer Science, 1991.

M. Rosing, Efficient Language Constructs for Complex Parallelism on
Distributed Memory Multiprocessors, PhD Thesis, University of
Colorado, Boulder, Aug 1991.

P. Tseng, A Parallelizing Compiler for Distributed Memory Parallel
Computers, PhD Thesis, Carnegie Mellon, May 1989.

20

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author and do not necessarily reflect the views of the
National Science Foundation.

