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Abstract

The lack of a topology-based information distribution mechanism in wide area networks causes users to waste a
large amount of bandwidth on repeat transfers of widely accessed files. As a first step towards designing such a
mechanism, in this paper we present measurements of the Internet File Transfer Protocol, gathered over two weeks
at the main gateway to the University of Colorado network. We found that nearly 40% of all transfers were dupli-
cate transmissions, accounting for over 54% of the file transmission traffic. A small proportion of files were
significantly larger and more frequently transferred, with 6.30% of the files accounting for 19.30% of the transfers.
8.21% of duplicate file transmissions were caused by user errors when transferring binary data, underscoring the
need to insulate users from such details. We also found that file transfers occurred in only 44% of the FTP connec-
tions. Other connections were probably directory-only requests, underscoring the need for better resource discovery
support in the Internet. We present measurements of a number of other statistics as well, including distributions of
file sizes, file types, peak transfer times, and sources and destinations.






1. Introduction

In recent years the number of hosts on the Internet has increased dramatically, causing concomitant increases in
network traffic. A substantial portion of this traffic is due to the large number of files that are transferred around the
global Internet using the File Transfer Protocol (FTP) [Postel & Reynolds 1985]. Some files get transferred multiple
times between many different sources and destinations, without regard for network topology. We propose that a
topology-based distribution and caching mechanism be provided for the Internet, to more efficiently support dissem-
inating and searching large amounts of widely shared information.

As a motivation, consider the problem of large software releases. When MIT released the latest revision of the
X window system (X11R5), they manually arranged to have the data available by "anonymous FTP" from over 20
sites around the world, to help distribute Internet load. Users then chose among the copies, using simple heuristics
(for example, preferring to retrieve files from geographically nearby sites). Unfortunately, as networks become
increasingly complex, manually chosing where to place and retrieved shared data becomes difficult. Optimizing for
network bandwidth, cost, and other factors will need support from the network layers responsible for routing, flow
control, accounting, and policy considerations. A similar problem arises when distributing widely accessed docu-
ments [Malamud 1991, Postel 1982], directory information [CCITT 1988, Danzig et al. 1991, Schwartz 1990], and
generally in any circumstance where a large volume of information is circulated among many recipients. Caching
becomes particularly appealing if the information contains a moderate sized subset that is required at a large propor-
tion of sites. For example, we conjecture that the popular "Archie" anonymous FTP directory service [Emtage
1991] answers a large proportion of its search requests from a small proportion of its database. If that is the case,
distributing and caching copies of the heavily accessed parts of the database could allow the system to operate much
more scalably than it presently does, without forcing the data to be structured in a way that limits how it can be
searched.

Distributing and caching information according to network topology and usage patterns can potentially reduce
network load substantially, since data transport activities typically account for the majority of bytes transmitted
across operational networks [NSFNET Service Center 1991]. Beyond files and directory information, the mechan-
ism could be used to support other forms of information dissemination, such as network news and mailing lists. As
a longer term goal, the mechanism could underly a network-transparent mode of resource sharing, whereby
resources are named and accessed independently of the particular hosts on which they reside.

The details of the proposed mechanism are still being worked out [Schwartz 1991a]. To help establish the need
for the mechanism and to better understand what types of information access it should optimize for, we have begun
a series of network measurement studies. In the current paper we present measurements of file transfers between
the University of Colorado and the rest of the Internet, to determine the extent of duplicate transmissions. To carry
out this study, we implemented software to monitor Internet packets using Sun Microsystem’s Network Interface
Tap, and tracked the names and access counts of the 10,000 most frequently transferred files from December 6-19,
1991.

The data we collected clearly raise privacy concerns. We treat all of the data as private information, publishing
measurements only in global statistical terms, divorced from the actual sites that make up the underlying data points.

In Section 2 we discuss related work. In Section 3 we discuss our data collection methodology. In Section 4 we
present our results. We offer our conclusions in Section 5.



2. Related Work

A number of studies have measured lower layer network characteristics such as packet traffic and protocol usage
[Heimlich 1990, Horvath 1990, NSENET Service Center 1991]. In contrast, few measurement studies have con-
sidered aspects of operational wide area networks above the level of the network routing and transmission control.
To the best of our knowledge, no measurements have been made of Internet file transfer activity.

A number of studies have passively monitored wide area networks to collect data. Jain and Routhier measured
network traffic to characterize their packet train traffic model [Jain & Routhier 1986). Caceres et al. performed
similar measurements, but monitored particular applications instead of lower level traffic [Caceres et al. 1991]. Pu
et al. developed a methodology called Layered Refinement that measures end-to-end performance and availability in
a wide area internet affected by a large volume of concurrent usage, and by evolution in the underlying hardware
and software [Pu, Korz & Lehman 1991]. Schwartz and Wood collected data about electronic mail traffic, to
analyze the organizational structure that arises naturally when people communicate, and the extent to which one can
derive clues about this structure from a communication graph [Schwartz & Wood 1991].

Several other studies have used directed probes to collect measurements. Lottor used software that recursively
descended the Internet Domain Naming tree, using "zone transfers" to retrieve information about a large number of
Internet hosts, to measure characteristics such as the number and top-level domain distribution of hosts, the number
of hosts running various operating systems, and popular host names [Lottor 1990]. Long et al. probed over 100,000
hosts twice over a period of several months using Sun RPC [Sun Microsystems 1988] and ICMP [Postel 1981] echo
requests, to test standard assumptions about the probabilistic distribution of host failure and repair rates [Long, Car-
roll & Park 1990]. Mills probed over 100,000 hosts to measure the timing accuracy of ICMP, TIME, and the Net-
work Time Protocol [Mills 1990]. Schwartz is carrying out a longitudinal measurement study of changes in
service-level reachability in the global TCP/IP Internet, to uncover changes in how sites resolve the problem of sup-
porting open network usage while ensuring reasonable security [Schwartz 1991b].

3. Measurement Methodology

Several complications arose in gathering the data for this study. The first complication was FTP’s use of
separate communication ports for control and data. Since each file transfer uses a different data port number, the
control packets had to be gathered and parsed from one port while monitoring data on other ports.

The second complication was attempting to limit resource consumption. Keeping track of all file transfers over a
long period of time requires a large amount of storage. Therefore, we used statically allocated tables, and dumped
the information to disk once per hour. While packets can be lost during disk dumps, in practice this turned out not
to be a problem. Moreover, having hourly dumps allowed us to plot various time-series distributions of the meas-
ured data.

The third complication was keeping pace with network traffic. Although the measurements were collected on a
dedicated, reasonably powerful machine (a SparcStation IPC with 24 megabytes of RAM and a local disk), in our
measurement configuration we saw up to 150 FTP packets per second. We used in-memory hash tables to minimize
administrative overhead. Even so, with this traffic rate some packets were dropped because of kernel buffer
overflows. We discuss how dropped packets affect the data in Section 4.

The final complication was keeping track of repeat files. To do this it was necessary to have some way to iden-
tify particular files. It is not possible to use file names, since files are not named uniformly across Internet hosts, and
relative names are not even unique across a single node. Instead, we used the file size and twenty bytes selected
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from throughout each file, sampling every —Q%th byte for a file of size n. This file signature algorithm is more

robust than using file names. Given two files of size n that differ by m bytes! and sampling s bytes from each file,
the probability of incorrectly identifying two files as matching when they actually differ is

n —771)

P (incorrect match)= —3

®

Figure 1 plots this function against the percentage by which two files differ (100%), for n = 10,000 and three

values of s. The curves shift very slowly up as n increases. For example, for 10% file difference and s = 20,
P (incorrect match) = .095, .121, and .122 for n = 100, 10,000, and 1,000,000, respectively. Although the probabil-
ity of an incorrect match with s = 20 is significant for files for which the percentage difference is less than 20%, in
practice it is unlikely that two different files will have the same size and differ by fewer than 20% of their bytes.
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Figure 1: Probability of an Incorrect Match

To test the likelihood that two different files of the same size might differ by fewer than 20% of their bytes, we
compared 5,062 pairs of randomly chosen same size files from one of the authors’ workstation. In 210 (4.15%) of
the cases, the file pairs had different names but identical contents (which would be correctly identified by our signa-
ture algorithm). On average, pairs of non-identical files differed by 86.06% of their bytes. 279 (5.51%) of the non-
identical pairs differed by fewer than 20% of their bytes. 259 of these pairs (5.12% of the total) were UNIX? execut-
able programs (which we found are not transferred very often by FIP; see Table 3). The remaining 0.40% of the
pairs consisted of files that had been copied from one directory to another and modified slightly at some point. This
final category represents the files most likely to be incorrectly indicated as matching by our signature algorithm. As
an interesting side note, the fact that UNIX executable programs differ by so few bytes indicates that a large amount
of disk space is wasted on the average UNIX file system, even though the measured executables used shared
libraries.

1 Bytes must be in the same position and have the same value to be considered the same.
2 UNIX is a trademark of AT&T Bell Laboratories.



4. Results

Raw Data Statistics

Table 1 summarizes the raw data. A non-trivial amount (12.34%) of network traffic was caused by protocols
other than IP. Yet, 75.22% of the total network traffic was caused by TCP/IP packets, of which 18.62% (14.00% of
total packets) were FTP packets. We return to these figures in Section 5, where we use them to extrapolate our
results to the NSFNET backbone.

Execution Time 13.9 days
Total Packets 369,581,096
Number of Packets Dropped by Network Interface Tap 159,206
Number of IP Packets 323,830,604
Number of TCP Packets 277,873,134
Number of FTP Packets 51,735,135
Number of FTP Bytes 8,321,000,202
Number of FTP Connections 89,230
Reset FTP connections 2,595
Average Duration of Connections 83.2 sec.
Number of Files Transferred 39,324
Number of Files Dropped 4,141
Number of Files of Unknown Size 822
Number of Different Hosts Involved in Transfers >2,1254

Table 1: Raw Data Statistics

The Network Interface Tap dropped 0.04% of the packets that passed by the host, because of kernel buffer
overflows while scheduling the application level data collection process. Since 14.00% of the packets were FIP
packets, the percentage of traffic caused by FTP has a maximum error of £0.01%. The lost packets caused the mon-
itoring software to be unable to detect the identities of 4,141 files (10.53%), because it missed some packets needed
by the file signature algorithm described in Section 3. The file loss rate is much higher than the packet loss rate
because bursty traffic can cause several packets in a row to be dropped, increasing the chance that the monitoring
software will miss a needed sampling point (and hence an entire file’s signature). Since running this study we have
modified the software so that it samples 32 bytes, and only requires that a subset of size 20 be present, to increase
resilience to dropped packets. We will use this new algorithm for future measurements. These modifications were
intended primarily for monitoring a network with more traffic (such as the NSFNET backbone). Losing information
about a moderate number of file transfers does not affect the validity of the study, since the collected data is only a
sample of all traffic in any case.

To determine file size, the monitoring software looked in the packet containing the FTP server’s response to a
client’s file retrieval request. Because this is not a standard feature of FTP, the monitoring software was unable to
determine the sizes of 822 files. It might have been possible to determine file size by looking at packet sequence
numbers, but we did not attempt to do that, since our method worked in 97.91% of the cases.

During data collection, 89,230 FTP connections were monitored, the average duration of which was 83.2
seconds. Since the average file transfer size 211,601 bytes (see Table 2), the average throughput was 20.35k

4 For duplicate transfers, only the first source and destination IP addresses were recorded.
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bits/second. Interestingly, only 44% of the FTP connections resulted in a file transfer. Other connections either
experienced network problems, or performed non-file retrieval operations, such as directory retrievals. Since con-
nection resets happened in only 2,595 (2.91%) of the FTP connections, network problems were probably not the
reason for this low average. Directory listing-only requests probably accounted for most of the non-file retrieval
operations. One wonders how much of this traffic is due to "Archie"-like FTP directory services, which automati-
cally and periodically retrieve directory listings of many "anonymous FTP" servers around the Internet [Emtage
1991]. Even if the directory list-only requests were done manually (by users exploring FTP sites), this statistic
underscores the need for better resource discovery support in the Internet.

Duplicate Transmission Measurements

Table 2 presents statistics on duplicate file transfers. Over the monitoring period, 39,324 transfers of 23,622 dif-
ferent files were observed. Of these files, 4,982 (21.10%) files were transferred more than once, resulting in 15,702
(39.93%) transfers of files that had previously been transferred. Looking at duplicate transfers by file size rather
than count, 4,523,742,089 (54.37%) of the 8,321,000,202 total bytes were transmissions for files that had previously
been transferred. Figure 2 shows that these percentages represent steady state averages. Given that FTP accounted
for 14% of the network traffic by packet, duplicate transfers accounted for approximately 7.61% of the packets
transmitted. This is approximate, since not all of FTP’s traffic is caused by file transfers.

Total File Transfers 39,324
Number of Transfers of Files Previously Transferred 15,702
Number of Different Files Transferred 23,622
Number of Files Transferred More Than Once 4,982
Total Bytes Transferred 8,321,000,202
Bytes Transferred of Files Previously Transferred 4,523,742,089
Average Transfer Size over all Transfers [bytes] 211,601
Average Transfer Size for Files Transferred Once Each [bytes] 121,362
Average Transfer Size for Files Transferred More Than Once [bytes] 263,691

Table 2: FTP Duplicate File Transfer Measurements

Since so much of the file transfer traffic consisted of duplicate transmissions, the question that arises is how
much file data should be cached. While the duplicate transmission set is 21% of all files, a small number of files
account for most of the duplicate transfer activity. Figure 3 shows a histogram giving the distribution of repeat
counts for files transferred more than once, with a logarithmic Y axis. (Files transferred exactly once are not
included, even though the X axis starts at 0.) As an example of how caching could reduce network load, of the
4,982 files transferred more than once, only 314 (6.30%) were transferred 10 or more times each, and these files
accounted for 19.30% of the file transfers. By caching a small number of files at strategic network locations, a large
number of repeat transfers could be avoided.

Table 2 also shows that files transferred more than once were significantly larger on average than files
transferred only once. Figure 4 shows that these percentages represent steady state averages. During the first few
days of data collection, the sizes and counts of duplicate vs. other files varied by quite a bit, as can be seen in Fig-
ures 2 and 4. After that point in time, the percentage of duplicate transfers rose significantly, and the curves began
to level off to steady state averages. This change was caused because the first few days of data collection fell during
a relatively low activity period (a weekend; see Figure 6).
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Distributions of Transfer Sizes, Retrieval Times, Transfer End Points, and File Types

Figure 5 shows histograms of transfer sizes, with a log-log scale. The smallest ratio of duplicate to single
transfer counts was for moderate sized (10k-320k) files, ranging from 2.8 to 6.4%. The ratio was highest (and hence
caching would be most effective) for small (0-10k) and large (320k-40.96M) files, ranging from 14 to 28%. Note
also that the smallest files (0-10k) accounted for the largest number of files. This observation is similar to
Ousterhout et al.’s finding that most files are small [Ousterhout et al. 1985], except that the environment we con-

sidered is more heterogeneous than just Berkeley UNIX systems.

Figure 6 plots the number of file transfers as a function of time and day of the week. Interestingly, the time of

5 The X axis is labeled as DayHour, where Hour is either 6 (6 AM) or 18 (6 PM).
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the month had more effect on the peak transfer rate than did the day of the week, with increasing activity as the
Christmas holiday season approached. Also, we were surprised by how pronounced the peaks and valleys were in
this plot. Given the international scope of the Internet, we expected files to be accessed more consistently around
the clock. Probably the spikes would be less pronounced for the corresponding NSFNET backbone data.

Figure 7 shows histograms of the number of sources and destinations of all (not just duplicate) FTP transfers, by
transfer count, with a logarithmic Y scale. These plots show that a relatively small number of sources transferred
files to a relatively large number of destinations. A topology-based distribution and caching mechanism would be
effective in these circumstances.

Table 3 shows the types of the most commonly transferred files, as inferred by file name. To build this table, we
combined the 20 most frequently transferred types with the 20 heaviest users of network bandwidth by file size.
(The table accounts for 65.18% of all file transfers and 82.80% of all the data transferred over the monitoring



Figure 6: Files Retrieved Per Time Period
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Figure 7: Source and Destination FTP Count Histograms

period.) Name comparisons were done insensitive to case. This breakdown of file types is imperfect, since naming
conventions are not standardized. Nonetheless, it is informative. For example, it is interesting to note how high up
in the table graphical images reside, both because image data transfers outstrip text transfers in network usage, and
because of the controversy that arose a few years ago over the transmission of pornographic "gif" files across the
Internet.% Table 3 also clearly indicates that personal computers are making significant use of Internet bandwidth for
transferring executables and other types of data specific to those systems.

6 From browsing the list of file names it is clear that such files are still being transferred. However, many innocuous "gif" files were also in
the list, such as photographs from the Voyager probe.




% by % by Number Average File Name Probable Meaning
File Count  File Size  of Transfers File Size
[bytes]
13.860 10.512 5,450 160,490  *.z, *.z70f*, * z;* Lempel-Ziv Compressed
9.442 28.642 3,713 641,889  *.zip ASCII encoded, compressed
archive (IBM PC)

8.721 5.049 3,430 122,496  *gif*, *.gl, *.jpeg*, Graphical image

* jpg, *.pbm, *.ras*,

* tif*, * ppm, *.pic*,

* icon, *.plot
8.414 3.342 3,309 84,036  *.asc*, *.descrip*, *.doc*,  ASCII document

* guide, *.not*, *.text*,

* txt*
4.018 0.089 1,580 4,664 *c,*cc, *h, C program source

* lex, *.yac, *.yacc
3.939 16.255 1,549 873,207  **dat* Binary data
3.250 2.193 1,278 142,804  **ps* PostScript document
2.584 1.850 1,016 151,489  **hgx ASCII encoded, compressed

archive (Macintosh)

2.357 0.209 927 18,781  *.f, * for, * fortran Fortran program source
2.245 6.552 883 617,405 *.arj Compressed
1.989 0.022 782 2,396  *readme* Description of directory contents
1.541 0.141 606 19,395 **tex*, *.dvi TeX formatting source and output
1.325 0.617 521 98,539  *.me, *.ms, *.tbl, *.troff Troff formatting source (UNIX)
1.101 0.236 433 45,289  *.wp5 Word Perfect formatting source
0.900 0.364 354 85,462  *rtf Microsoft’s Rich Text Format
0.776 0.450 305 122,750 *d Binary data
0.645 0.245 254 80,220  *_uu, .encoded, *.uue* ASCII encoded (UNIX)
0.615 0.521 242 179,073  *.zh Compressed (various PCs)
0.585 0.063 230 22948  *Dbin Executabie program (non UNIX)
0.557 0.667 219 253441 *0 First file in a sequence
0.409 1.140 161 589,351  *.dms Unknown
0.379 0.462 149 258,031  *list Unknown
0.153 2.556 60 3,544,066  *.tar UNIX file archive
0.150 0413 59 582,700 *.a01 Unknown
0.074 0.374 29 1,073,403  *.wv1j77 Unknown
0.003 1.738 1 144601200 *.fzx Unknown

Table 3: Most Commonly Transferred File Types

Looking at file types also gives an indication of the proportion of files that are transferred in compressed form.

If all ".z", ".gif", ".zip", and ".hgx" files are counted as being compressed, only 32.16% by count, and 45.24% by

size, of the listed files were transferred compressed. If all files had been transmitted compressed and compression
reduced data size by an average of 40%, network load caused by FTP could decrease by 27.14%, decreasing the
overall load at the point of measurement by 4.00%. This amount would presumably be magnified on the NSFNET
backbone, since a higher preportion of traffic on the backbone is from file transfers (23.43% as opposed to 14.00%
at the point of measurement).

It is also interesting to note that some very large files were transferred. The last 4 file types listed in Table 3
accounted for 0.38% of the file transfers, but accounted for 5.08% of the data transferred during the monitoring

period. In fact, there was one transfer of a 144.6 megabyte file, singularly accounting 1.738% of the data

7 A typical figure for Lempel-Ziv compression [Welch 1984].
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transferred.

Table 4 lists the types of files transferred multiple times, for which at least 10 different files were multiply
transferred, along with the number of different files with these types that were transferred multiple times. These

files represent the most popular files to be transferred multiple times, and hence the types of files that might benefit
most from a topology-based distribution and caching mechanism.

File Name Number of These Files | File Name Number of These Files | File Name  Number of These Files
Multiply Transferred Maultiply Transferred Multiply Transferred

* 7 595 * dat 64 *s 16

* gif 328 * wp5 62 * makefile 16

* txt 299 * readme 58 *out 15

* zip 208 *h 54 *.dms 14

* hgx 177 * bin 50 * shstat 13

*c 161 *0 38 *v1j77 12

* troff 130 * 1zh 34 *d 12

*f 127 *Jjpg 30 *.au 12

* asc 123 * arj 30 * drw 11

*ps 119 * for 27 *.com 11

* tif 116 * arc 26 *.a 11

* doc 96 * snd 21 *1 11

* tex 80 * index 19 *exe 10

*rtf 72 *cs 17

*.eps 71 *4 17

Table 4: Popular Duplicate Transfer File Types

User Errors With File Data Conversion

A final interesting mote concerns user errors when transferring binary data. We found that 1,892 files
(transferred 4,059 times) had the same names and sizes, but different sampled contents. This surprised us. While it
is possible for two files to have the same name and size but different contents, it is highly unlikely, particularly for
large files. By studying the data we realized that many of these cases were probably caused by the following prob-
lem. FTP supports file data conversion, with the default being to translate data into and out of 8 bit ASCII data as a
"network standard" representation. To transfer a file without this conversion, the user must precede the file transfer
request with a command telling FTP to turn off data conversion. A common mistake is to transfer binary data
without first turning off conversion. When this happens, the file is transferred with garbled data, and must be
retransferred.

We believe this data conversion error is responsible for many of the cases of files with identical names and sizes
but different sampled contents, based on two observations. First, if this error happens, a file will show up with the
same name and size, but exactly two different sets of contents (corresponding to a user retrieving a file first garbled
with improper conversions, and then again with the proper conversion). For 1,850 (97.78%) of the 1,892 files with
identical names and sizes but differing sampled contents this was the case. Second, 1,262 (68.22%) of these 1,850
files contained binary data (based on their file names).

This observation means that 4.70% of all file transfers had to be redone because of user errors when requesting
the file transfer. Put another way, 8.21% of files retrieved more than once were caused by these user errors. This
observation suggests that one way to reduce wasted Internet load would be to make FTP more cognizant of file
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conversion needs. If the file being transferred resides on a typed file system (such as VMS), FTP could check the
file type before selecting a conversion. For non-typed file systems like UNIX, file types could be checked heuristi-
cally (e.g., using the UNIX "file" command, which examines a file’s contents). This check could then be used to
advise users how to set file conversions. The best solution would probably be to integrate file transfer support into
individual applications in a fashion that hides the details from users. A more short term aid might be to check the
host and operating system types of both ends of the transfer, and if compatible (e.g., both are Suns running UNIX),
transfer the file with no conversions. Given the number of data compatible systems in the Internet, this solution
might solve the problem for a large number of cases.

5. Conclusions

As operational networks grow in usage and connectivity, an increasingly important problem is supporting effec-
tive means of disseminating and sharing large amounts of information among many recipients. In applications such
as software distribution, document dissemination, and resource discovery, it is often the case that a small proportion
of all data is required at a large proportion of sites. To support such applications, we propose a topology-based
mechanism for distributing and caching information in response to usage patterns across wide area networks. Such
a mechanism could potentially reduce network load substantially, since data transport activities typically account for
the majority of bytes transmitted across operational networks.

To help establish the utility of such a mechanism and to better understand what types of access it should optim-
ize for, we conducted a measurement study of file transfer traffic between the University of Colorado and the rest of
the Internet. Monitoring traffic for two weeks, we found that 14.00% of the packets were caused by FTP traffic, and
that 39.93% of the files were transferred multiple times, accounting for 54.37% of the file transmission traffic. This
means that duplicate FTP file transfers accounted for 7.61% of the total network load. Moreover, we found that
these duplicate file transfers were significantly larger on average than other file transfers. Duplicate file transfers
consisted of 21.10% of the files that were transferred, with a small (6.30%) proportion of very popular files generat-
ing 19.30% of the file transfers. Because a small number of large files were transferred a large number of times, a
topology-based distribution and caching mechanism could reduce Internet load, and generally contribute to more
effective dissemination of information.

Since 23.43% of NSFNET backbone traffic is caused by FTP traffic [NSFNET Service Center 1991], we extra-
polate our measurements to %* 7.61 = 12.74% of backbone packets being used for duplicate file transmissions.

If other types of data transport are taken into account (such as resource discovery and network news applications),
the packet waste would be higher still.

We also found that 8.21% of duplicate file transmissions were caused because of user errors when transferring
binary data, because of the default ASCII conversion mechanism of FTP. Moreover, only 32.16% of files were
transferred compressed in some form. If FTP were modified to automatically compress files, a reduction of 4.00%
in total network load would result. These two observations indicate that Internet data dissemination could be done
more effectively if support for compression and data conversion were integrated into applications in a fashion that
hides the details from users.

A final interesting statistic is that only 44% of FTP connections resulted in file transfers. Most other connections
appear to have been directory requests. Whether caused by manual requests or "Archie" like directory services, this
statistic underscores the need for better resource discovery support in the Internet.



-12-

Future Work

A future version of this study might incorporate more detailed measurements about the distribution of sites
transferring duplicate files. For example, given the IP network numbers for each file transfer (rather than just one
pair for each file, as we currently recorded) and a map of network topology, we could map out an effective cache
placement scheme. Eventually, it might be possible to use collected data to automate the process, so that the
topology-based distribution and caching mechanism migrates data adaptively, according to FTP access history.
More detailed information could also help to determine the number of different hosts or networks offering each file,
the differential cost of multiple transfers across differing gateways (needed for mapping out cache placement), and
"hot spots” that host or retrieve many copies of particular files.

We are currently exploring the possibility of running this study on the NSFNET backbone. Doing so would give
us a better measurement basis for designing a topology-based distribution and caching and search mechanism.

We are also interested in conducting another study, to determine the validity of our conjecture that the popular
"Archie" anonymous FTP directory service answers a large proportion of its search requests from a small proportion
of its database. If this conjecture is true, distributing the heavily accessed parts of the database could allow the sys-
tem to operate much more scalably than it presently does, without forcing the data to be structured in a way that lim-
its how it can be searched. We believe such a mechanism can form the basis for scalably supporting many forms of
resource discovery, in addition the usual data transport applications.
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