Elements of UNIX make
Carolyn J.C. Schauble

CU-CS-570-92 January 1992

%’University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Elements of UNIX make

Carolyn J. C. Schauble

CU-CS-570-92 January 1992

&

University of Colorado at Boulder

Technical Report CU-CS-570-92
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION

Abstract

Building on fundamental UNIX concepts, this document is a tutorial in-
tended to introduce students to the UNIX make utility. It provides the basic
syntax of a Hakefile and demonstrates the use of make from a simple Fortran
compilation up through the development of a Makefile to compile and run
modular Fortran programs with the additional facility of printing source files
and output.

Elements of UNIX make*

Carolyn J. C. Schauble

January 1992

1 Introduction

This tutorial is intended to introduce you to make, one of the most commonly used
UNIX' utilities [Feldman 86]. The purpose of make is to help maintain files and
keep them current. It can also help reduce keystrokes and eliminate redundant or
repetitious commands.

You will learn first how to use make for a simple Fortran compilation. Later, a
method for performing more complex modular compilation with make will be shown.
Similar techniques can be applied for complhng C programs. Additional uses of make
will also be discussed.

For the examples shown in this document, the commands that you, the reader,
enter are displayed in this font, e.g.,

make myprog
while the computer responses are displayed in this font, e.g.,
£77 -0 myprog.f -o myprog

These examples were run on a DECstation 5000/200 using Ultriz 4.1* The given
responses to the commands may differ slightly on other systems; some of the defaults
may be different as well. However, the basic concepts will be the same.

*This work has been supporied by the National Science Foundation under an Educational
Infrastructure grant, CDA-9017953.

1UNIX is a trademark of AT&T.

?Ultrix is a trademark of Digital Equipment Corporation.

2 An Example of using make

Suppose you have created a Fortran program named myprog.f. Also suppose that
myprog.f is the only file in your current directory.

Naturally, the first thing you’ll want to do is to compile your new program to
check for errors. Normally, you would just type something like

f77 -0 myprog myprog.f

and the linked object or executable file for the compiled program (if it compiled
successfully) would be put in myprog. If you were using make instead, you would type

make myprog

and accomplish the same thing. The full dialogue with make as displayed on the
screen would be as follows:

% make myprog

£77 -0 myprog.f -o myprog
¢,

h

In other words, if you ask make to make a file named myprog, make is clever enough
to know that it has to compile myprog.£ to do it.

Why? What happens? By what magic does make know to compile your program?

2.1 Dependencies

The make utility is basically used for file maintenance; it is mainly concerned with
the dependencies of one file on another. By one file being dependent upon another,
we mean that the first file is generated from the other. For instance, a file with
a .o extension is the result of a compilation and so depends on a file with the
same rootname and an extension which refers to a computer language, such as, .f
for Fortran, .c for C, .p for Pascal, or even .s for assembly languages. In our
example, the linked executable file, myprog, is dependent upon the Fortran source
file, myprog. £.

From these known dependencies, make generates a series of commands to form a
given file, called the target file. These commands use the components of the target
file, also called the dependency files, i.e., those files on which the target is dependent.
This sequence of commands may be known implicitly by make. As mentioned above,
make is aware that a file with a .o extension is the result of a compilation. Or the
commands may be defined in a description file, called a makefile, which specifies the
dependencies of a target and the commands or rules by which to form the target.
Such a description file is usually named Makefile or makefile, and may describe
rules which are unique to the files in your directory.

2.2 How the make Request Works

The command
make myprog

calls the make utility with the argument myprog. In this case, myprog is called the
target for the given make command.

As the first step in the execution of this make request, your current directory is
searched for the file named myprog. If the file were there, it might not need to be
remade. However, in this example, no file of this name exists.

Next, make looks for a file named Makefile or makefile. Such a file might contain
specific instructions to make myprog.

Since there is no makefile in the directory assumed for this example, make must use
the implicit rules of dependency mentioned above. Thus, it looks for a file that can
be used to create the desired file, starting with myprog.o. If there was a myprog.o
file, then make would only need to link that file to create the new executable ﬁle,
myprog. Again no such file exists.

myprog

myprog.f

Figure 1: Derivation of myprog from myprog.£.

However, make finds the file named myprog.f. It knows that this file can be
compiled, using the Fortran compiler, to create the file myprog. And this is what it
does.

Hence, in trying to make the target file named myprog, make finds it must compile
the only file in the directory with the correct rootname, myprog.f. From this
compilation, it can derive the desired file, myprog. A picture of this derivation is
shown in Fig. 1.

2.3 When make Fails

If no files in the directory had the correct rootname, myprog, this make command
would fail. For instance, suppose you had erroneously stored the file as myprg.£. In
response to the command

make myprog
the make utility would produce the error message:
Make: Don’t know how to make myprog. Stop.

This is because it was unable to find anything it could logically convert to myprog; it
was unable to find any files on which myprog could be dependent.

As another example, suppose there was a compilation error. Then, again, make
would not be able to complete its assigned task. This time the error message would
occur in a dialogue much like the following:

% make myprog
£77 -0 myprog.f -o myprog
Error on line 1 of myprog.f: illegal

Stop
%

Any time that make is unable to create the final desired target file, it will print an
error message to that effect. Note that some intermediate files may need to be created
in the process and will be present in your directory when make is done.

3 Some Advantages of make

So, why is the command
make myprog
better than the command
{77 myprog.f

Both commands contain only two words and use about the same number of keystrokes.
At this point, there doesn’t seem to be that much to recommend switching to make.

3.1 Implicit Rules
One interesting point is that the command

make myprog
would have worked just as well if the program in your directory were a C program
(myprog.c), a Pascal program (myprog.p), or an assembly program (myprog.s). The
make utility would have found a compilable program file from which to create myprog.
Similarly, the command

make myprog.o

would create an object file named myprog.o from myprog. £, myprog.c, myprog.p, or
myprog.s. The dialogue with make for this command would be similar to that below.

% make myprog.o
177 -0 -c¢ myprog.f
%

3.2 Avoiding Redundant Work

Now suppose that you had not worked with myprog.f for some time and were not
certain if the copy of myprog in the directory included the last changes to myprog.£.
One way to find out would be to check the creation dates yourself.

% Is -1

total 80
-rwxrwxr-x 1 schauble 80516 Jul 2 11:42 myprog*
-rw-r--r-- 1 schauble 19 Jul 2 11:41 myprog.f

%

In this case, it appears that myprog was created after the latest changes to myprog. £.
If this were not so, you would probably want to recompile the program before reusing
it with the command:

f77 -0 myprog myprog.f

Checking on the validity of myprog could also be done by using make instead. If you
typed

% make myprog
‘myprog’ is up to date.
%

the effect would be the same as examining the 1s -1 output; you would know
that myprog was more recently created than myprog.f, without needing to look
at the creation dates yourself. Further, the recompilation would have been done
automatically if the executable file was not up-to-date. In other words, make will
only recompile the program if it is necessary.

This is another advantage of make. It not only checks to see if the target file
already exists, but also that it is a valid version of that file; that is, make assures that
the target file is current with respect to the file(s) on which it is dependent.

4 The Makefile

Using the implicit version of make has its limitations. For instance, the Fortran
compilations done by make in the examples above used the -0 optimization flag.?
You might prefer a different optimization level. How can you override the implicit
rules of make? By forming your own rules and putting them in a file named Makefile
or makefile.

3The default compilation flags for make differ from system to system.

4.1 Format of a Sample Makefile

A simple description file or makefile for the derivation shown in Fig. 1 might look like
the following:

#

Simple Makefile

make myprog: to compile myprog.f
#

myprog: myprog.f
77 -01 -o myprog myprog.f

This consists of some comments and a rule for making the target, myprog. Let’s look
at the parts of this makefile in more detail.

The first few lines of the makefile are comments. It is useful to include in these
comments all the functions a given makefile performs.

#

Simple Makefile

make myprog: to compile myprog.f
#

Notice that these lines all begin with the special character, ‘4’. Any characters
following an ‘#’ on any line in the makefile are assumed to be part of a comment.
Blank lines are also ignored by make.

The remaining lines of this sample makefile define the rule that this makefile is
providing.

myprog: myprog.f
77 -01 -o myprog myprog.f

The rules of a makefile have two parts: (i) a dependency line which describes the
target file with its dependencies and (ii) one or more command lines which describe
how to form the target file from the dependencies. All commands which form rules
for make are executed in the Bourne shell (/bin/sh).

1. The first of the lines above

myprog: myprog.f

is the dependency line and defines myprog as being the target file and myprog.f
as the file on which myprogis dependent. This means that when the command

make myprog

is given, make should form the desired file myprog according to the rule set in
this makefile, first checking that the file myprog. £ exists. If there should be no
file named myprog.£ in the directory, make will complain appropriately.

i make myprog
Make: Don’t know how to make myprog.f. Stop.
)

Notice how this differs from the earlier example when make was unable to find a
file with the correct rootname. Then it was just looking for any file that could
be used to derive myprog. When it couldn’t find one, it simply responded that
it didn’t know how to make myprog. In the current example, make is told that
the particular file myprog.f is necessary for making the target file. So, when it
can’t find myprog.£,it complains that that particular file, myprog.f,is missing.

2. The last line of this makefile provides the actual commands (in this case a single
command) that make is to follow in creating the target file, myprog.

77 -01 -o myprog myprog.f

This Bourne shell command line tells make to use the Fortran £77 compiler
on the dependency file, myprog.£, with the -01 optimization flag, storing the
resultant executable file as the target file.

Comment: One of the odd rules of make is that the lines
containing the commands for make rules, such as the line discussed
above, must be indented by a Tab; spaces will not work. Using
spaces instead of the Tabis a common error in makefiles.

4.2 Using a Makefile
If we now try the command
make myprog

with only the files makefile and myprog.f in the current directory, we get the
following response:

myprog

myprog.o

myprog.f

Figure 2: Two-Step Derivation of myprog from myprog.£.

i make myprog
£77 -01 -o myprog myprog.f
%

Clearly, the -01 optimization flag is used, as specified in our makefile rule, in contrast
to the earlier examples which used the implicit make rules. The new file myprog will
be in the current directory.

4.3 Another Sample Makefile

An alternate version of the description file would separate the compile step from the
link step, as in the following makefile.

Simple 2-Step Makefile

myprog: myprog.o
77 -o myprog myprog.o

myprog.o: myprog.f
177 -01 -c myprog.f
This makefile has two rules replacing the one of the previous makefile. The derivation
tree for this description file is shown in Fig. 2.

Given the command

make myprog

make sees that myprog is dependent on myprog.o, which is not in the directory.
But it finds that there is a rule for making myprog.o. This rule is dependent on
myprog.£ which does exist. Hence, make would use that second rule to generate the
file myprog.o, which uses the -c option of the Fortran £77 compiler. Once that had
been accomplished, the target file, myprog, would be created using the first rule.

h make myprog

£77 -01 -c myprog.f
£77 -o myprog myprog.o
/4

Notice that each rule is printed out as it is executed by make. After the successful
completion of this invocation of make, the contents of the current workmg directory
would include myprog.£f, myprog.o, myprog, and makefile.

Observe the order of the two rules in this makefile. The dependency file of the
first rule is the target of the second rule. On a few UNIX systems, make appears to
do only one pass through the makefile. Thus, if the order of the rules above were
reversed, make would again look for the dependency file, myprog.o. But when the file
wasn’t found, make would not know how to create it, since the rule for doing so was
higher up in the makefile and could not be found either.

5 Further Examples

Now consider a more complex program consisting of several modules: myprog.f,
subl.f, sub2.f, and mytime.f. Here the convenience of make becomes more ap-
parent. The makefile for the directory containing these modules might contain the
following information:

Simple Makefile for Several Modules

myprog: myprog.f subl.f sub2.f mytime.f
£77 -01 -o myprog myprog.f subl.f sub2.f mytime.f

Notice that all four Fortran modules are components of the target, myprog, and are
listed as dependency files. This is perfectly legal; the executable file indeed depends
upon all of them as shown in Fig. 3. However, this makefile requires that all four
Fortran files be recompiled whenever myprog is to be made, since the *.f version of
each module is listed as part of the £77 command line.

10

myprog

N

myprog.f subi.f sub2.f mytime.f
Figure 3: Derivation of Multi-Modular myprog.

A version taking better advantage of make would separate the compile steps and
have the myprog target dependent on the object versions or *.o files for the given
modules.

Better Makefile for Several Modules

myprog: myprog.o subl.o sub2.o mytime.o
£77 -o myprog myprog.o subl.o sub2.0 mytime.o

myprog.o: myprog.f

£77 -01 -c myprog.f
subl.o: subl.f

£77 -01 -c subl.f

sub2.0: sub2.f

£77 -01 -c sub2.f
mytime.o: mytime.f

£77 -01 -c mytime.f

/myprog\
myprog.o subl.o sub2.o0 mytime.o

myprog.f subl.f sub2.f mytime.f

Figure 4: Alternate Derivation of Multi-Modular myprog.

11

In this way, not all the Fortran files would be recompiled to make myprog. Instead
only those Fortran modules which had been modified since the last make would be
recompiled. The derivation for this description file is shown in Fig. 4.

Suppose you had these four Fortran modules in your current directory along with
the makefile.

% Is -1

total 4

-rw-rw-r-- 1 schauble 293 Jul 5 09:16 makefile
-rw-r--r-- 1 schauble 19 Jul 2 11:41 myprog.f
-rw-rw-r-- 1 schauble 31 Jul 5 09:17 mytime.f
~rw-rw-r-- 1 schauble 29 Jul 5 09:17 subl.f
-r¥-rw-r-- 1 schauble 29 Jul 5 09:17 sub2.f

4

The first time you use make to compile these modules together you might get the
following response.

% make myprog

£77 -01 -c myprog.f

£77 -01 -c subl.f

£77 -01 -c sub2.f

£77 -01 -c mytime.f

77 -o myprog myprog.o subl.o sub2.o mytime.o

4

Again, each rule is printed by make as it is executed. After the command has
completed, the directory will contain the *.o files as well as the final target, myprog.

hls -1

total 94

-rw-rw-r-- 1 schauble 293 Jul 5 09:16 makefile
“IWXIwxr-x 1 schauble 81188 Jul 5 09:20 myprog*
-rw-r--r-- 1 schauble 19 Jul 2 11:41 myprog.f
-rw-rw-r-- 1 schauble 648 Jul 5 09:19 myprog.o
-rw-rw-r-- 1 schauble 31 Jul 5 09:17 mytime.f
-rw-rw-r-- 1 schauble 456 Jul 5 09:20 mytime.o

12

~-rw-rw-r-- 1 schauble 29 Jul 5 09:17 subl.f
~rw-rw-r-- 1 schauble 452 Jul 5 09:19 subl.o
-rw-rw-r-—- 1 schauble 29 Jul 5 09:17 sub2.f
-rw-rw-r-- 1 schauble 452 Jul 5 09:19 sub2.o0
A

If changes were now made to one module, say sub2.f, then the command
make myprog
would merely require that sub2.f be recompiled into sub2.o. Then all the *.o files,

including those unchanged since the last make, would be linked together to form the
new myprog.

i make myprog
£77 -01 -c sub2.f
£77 -o myprog myprog.o subl.o sub2.o mytime.o

%o Is -1

total 94

-rw-rw-r-- 1 schauble 293 Jul 5 09:16 makefile
-rwxrwxr-x 1 schauble 81188 Jul 5 09:20 myprog*
-rw-r--r-- 1 schauble 19 Jul 2 11:41 myprog.f
-rw-rw-r-- 1 schauble 648 Jul 5 09:19 myprog.o
-r¥-rw-r-- 1 schauble 31 Jul 5 09:17 mytime.f
-rw-rw-r-- 1 schauble 456 Jul 5 09:20 mytime.o
-rw~-rw-r-- 1 schauble 29 Jul 5 09:17 subi.f
-rw-rw-r-- 1 schauble 452 Jul 5 09:19 subl.o
-rw-rw-r-- 1 schauble 30 Jul 5 09:20 sub2.f
-rw-rw~-r-- 1 schauble 452 Jul 5 09:20 sub2.0

%

This is because make checks the creation dates of the *.o files against their corre-
sponding *.f files (the dependency files), only recreating the out-of-date files (in this
case, sub2.0).

In this last example, it becomes more obvious how make can save work. It knows
exactly which modules need to be recompiled, and the simple command

make myprog

13

performs only those compilations necessary. Observe that entering a single command
(only two words in length) is all that is needed to do the job, while typing in the
corresponding £77 commands would be considerably longer (and more prone to typing
errors). Of course, the makefile is not short, but it can be used over and over again.

The makefile can also be used as a record of the compilation. By looking at the
rules and macro settings in the makefile, you will know how the executable files in
the directory were compiled. For this reason, it is best to use different target names
for executable files compiled under different flags. For instance, debug can be used
for an executable file compiled under the -g option to be used by the dbx utility, as
shown in Section 9.2.

6 Dynamic Macros

The main problem with this particular makefile is that it is long and repetitious. It
seems that there must be a simpler way to accomplish this. There is, as demonstrated
below. ’

6.1 $@ and $<

Consider the following version of our makefile:

Shorter Makefile for Several Modules using Macros

myprog: myprog.o subl.o sub2.o0 mytime.o
£77 -o $@ myprog.o subl.o sub2.0 mytime.o

.f.0 :
£77 -01 -c $<

There are a few things to notice.

1. First of all, the rule for making myprog now contains the characters, ‘$@’, instead
of the filename, myprog. For the make utility, these characters, ‘$@’, form a
macro symbol which is equivalent to the name of the target. This provides a
shorthand method to repeat the target name. In fact, it would be correct to
modify the rule above to read as follows:

myprog: $$€.0 subl.o sub2.o mytime.o
£77 -0 $0 $Q@.0 subl.o sub2.o0 mytime.o

14

Comment: All make macros begin with a dollar sign ($). When
a dynamic macro, such as ‘$@’, is used in the dependency list, it
must be preceded by an extra dollar sign.

2. The biggest difference in the new and shorter makefile above is that all the
.£-to-.o rules are combined into a single rule. This rule will produce a .o file
from any .f file which exists in the working directory. This is what the .f.o
target means; namely, if a .o file is desired, create it from the corresponding . £
file (the file with the same rootname) according to the given rule. This is called
a make implicit rule format and will override the default rule.

3. The rule itself contains the symbol, ‘$<’, where normally the Fortran filename
would be. This make macro, ‘$<’, should only be used in implicit rules. It
refers to the file which caused the current rule to be invoked. In other words, if
make is looking for the file mytime.o and finds instead the file mytime.f, ‘4<’
is interpreted as mytime.£, the file which invokes the rule to make mytime.o.

Suppose we have modified the subi.f and mytime.f files. Then typing the
command

make myprog

with this new makefile will show the following response:

% make myprog

£77 -01 -c subl.f

£77 -01 -c mytime.f

£77 -o myprog myprog.o subil.o sub2.o mytime.o
h

If our makefile had not redefined the implicit rule, the command above would
invoke the default compilation rule instead. Then the makefile would contain just
one rule, much like the following:

Makefile for Several Modules using Implicit Compilation

myprog: myprog.o subl.o sub2.o mytime.o
£77 -o $Q myprog.o subl.o sub2.o mytime.o

And the previous dialogue with make would change to show that the default -0
optimization flag was used in compiling the individual modules.

15

% make myprog

£77 -0 -c subl.f

£77 -0 -c mytime.f

£77 -o myprog myprog.o subl.o sub2.o mytime.o
A

Replacing the default implicit rule allows us to define things to be done the way we
want.

6.2 $7 and $*

Two other make special dynamic macros are the characters, ‘47’ and ‘$*’. The
first, ‘4§77, refers to a list of filenames which make considers to have been created
earlier than the target. The other, ‘$%", is only used in implicit rules; it refers to the
common rootname of the target and dependent filenames. All the macros are set to
the appropriate values when make first begins to work on a given rule and target.

To illustrate this, consider this modified version of our makefile:

Makefile for Several Modules echoing Macros

OBJECTS = myprog.o subl.o sub2.o0 mytime.o
CFLAGS = -01

myprog: $(OBJECTS)
£77 $(CFLAGS) -o $@ $(OBJECTS)
echo "The target file is " $@
echo "The earlier files are " $7? *

£77 $(CFLAGS) -c $<

echo "The invoking file is " $<
echo "The common rootname is " $x*
echo nn

Executing this version of the makefile will cause the values of all four dynamic macros,
including ‘$?’ and ‘$*’, to be written to the screen:

% make -s myprog
The invoking file is myprog.f
The common rootname is myprog

16

The invoking file is subl.f
The common rootname is subi

The invoking file is sub2.f
The common rootname is sub2

The invoking file is mytime.f
The common rootname is mytime

The target file is myprog
The earlier files are myprog.o subl.o sub2.o mytime.o

%

Observe that the -s option flag has been used in this command. Normally, make
echos each command of a makefile rule as it executes it; this flag turns the echo off.
Otherwise, many more lines would have been printed out, even the ‘echo’ commands.
For more information on this and other options, see Section 8.

7 User-Defined Macros

It is often convenient for the programmer to create his own macros in a makefile.

7.1 A Makefile with User-Defined Macros

Consider the following modifications to our makefile.

Makefile for Several Modules using Macros

OBJECTS = myprog.o subl.o sub2.o mytime.o
CFLAGS = -01 -c

myprog: $(OBJECTS)
£77 -o $@ $(0BJECTS)

f.0 :
£77 $(CFLAGS) $<

This performs the same as the earlier makefile using the -01 optimization. However,
two user-defined macros, $ (OBJECTS) and $ (CFLAGS), have been added.

1. The first of these is just a list of all the object files (*.o files) upon which the

target is dependent. This macro provides a handle for that list of files, which is
used twice in this makefile. We need only type the list once in the definition of

17

the new macro, so we may prevent typing errors. This also makes it easier to
add another object file to the list.

2. The second macro is $(CFLAGS). This provides the compile flags we wish to
use. If we wish to change optimization levels at some time, we could change the
definition of $ (CFLAGS) in the makefile

CFLAGS = -02 -c
or we could call make with the specific parameter:

make myprog "CFLAGS=-02 -c”

Using the second method gives more flexibility. The dialogue with make would be
as follows, provided all the old *.o files have been deleted first:

% make myprog "CFLAGS=-02 -¢”

£77 -02 -c myprog.f

£77 -02 -c subl.f

£77 -02 -c sub2.f

£77 -02 -c mytime.f

£77 -o myprog myprog.o subl.o sub2.o mytime.o
/A

So, by using different parameters for the macro CFLAGS with the same makefile, we
can compile the program under different optimization levels. The value of any user-
defined macro in a makefile may be changed in this manner for a specific run.

The main problem with this method is that you have lost the record of how the
target file was created. If you look at the directory after some weeks, you probably will
not remember whether or not myprog was made with the flags given in the makefile
or with some parameter change. It might be wise to rename the executable file in
this case, myprog2, to indicate that it is not the standard version of the target file.
Or better yet, include a make rule for myprog2 which uses the -02 flag.

7.2 Another Makefile using User-Defined Macros

As another example, we can consider using a different version of the Fortran compiler.
First, we will need to create a macro to define the compiler and add it to the rules,
replacing all the occurrences of £77:

18

FCOMPLR = £77

myprog: $(0BJECTS)
$ (FCOMPLR) -o $@ $(OBJECTS)

$ (FCOMPLR) $(CFLAGS) $<

Now if we remove the old *.o files and remake myprog with a parameter specifying a
different compiler, the dialogue will look like this:

A make myprog "FCOMPLR=f{772.1"

£772.1 -01 -c myprog.f

£772.1 -01 -c subl.f

£772.1 -01 -c sub2.f

£772.1 -01 -c mytime.f

£772.1 -o myprog myprog.o subl.o sub2.o mytime.o
%

Again, it might be best to use different target names for executable files that are
compiled under different compilers. In this way, the makefile would provide a record
of how each executable file was compiled.

7.3 Using User-Defined Macros
There are a few points to be observed concerning the macros.

1. Macro names are strings consisting of letters and digits and are similar to C
identifiers. They can be of almost any length, subject to the system default.
By convention, the letters used in macro names are usually capitalized.

2. User-defined macros should be given a default definition at the beginning of the
makefile. This is to assure that they are defined before they are used.

3. Macros can be redefined by calling make with parameters. More than one
parameter can be included in the make command. For instance, the command

make myprog "FCOMPLR=1772.1" "CFLAGS=-02 -¢”

is perfectly legal and will redefine both the FCOMPLR and CFLAGS macros.

19

4. When used with a make rule, the macro names must be contained within
parentheses and preceded by a dollar sign, .e.g., $(CFLAGS). The exception to
this rule is that macro names of a single letter need not be put inside parentheses,
e.g., $A. So, any single character or parenthesized string which is preceded by a
dollar sign is assumed to be a make macro.

8 Additional Features

We have described above only a few of the features of make in order to get you started.
Many more features are available. There are several option flags that can be used with
the make command. And there are some special (fake) target names and command
prefixes which add flexibility. More of of these features are discussed below; check
the man pages to get a full listing.

8.1 Silent Running

The make utility usually prints out each command (or rule) before it executes it. This
allows the user to see how the process is proceeding. However, it is possible that you
might not wish to have all this output.

There are three ways to reduce this output.

1. The -s option flag requests a silent interaction with make. The commands (or
rules) will not be printed out as they are executed. The dialogue with make
simply becomes as follows:

% make -s myprog
A

Only the command line for make, which you typed in, appears on the screen.
An example of using this option is shown in Section 6.2.

2. If you just want certain rules not printed by make, insert the character, ‘@', at
the beginning of the line. Rules which begin with an ‘@’ will not be printed.
For instance, consider the following makefile rule for a target named help which
describes the functions of the given makefile:

20

help :
@echo "This makefile supports the following:"
@echo "make run - runs the program'
Qecho "make myprog - creates executable program'

Typing the command to make help will give the following response:

% make help

This makefile supports the following:
make run - runs the program

make myprog - creates executable program

/

If the command lines had not begun with the character ‘@’, the response would

have been as follows:

% make help

echo "This makefile supports the following:"
This makefile supports the following:

echo "make run - runs the program"

make run - runs the program

echo "make myprog - creates executable program"
make myprog - creates executable program

[/

With each echo command printed as it is executed, the output becomes confused

and is not as helpful as the target name would suggest.

. If you always want to run in a silent mode, you should add the special (or fake)
target name, .SILENT, to your makefile. For example, consider the following

makefile:

Makefile with silent responses

OBJECTS = myprog.o subl.o sub2.o mytime.o
CFLAGS = -01

.SILENT:

myprog: $(OBJECTS)
£77 $(CFLAGS) -o $@ $(OBJECTS)

.f.0 :
£77 $(CFLAGS) -c $<

21

Notice that .SILENT is given as a target with no dependencies and no rules. If
we use this makefile to produce the executable file, myprog, the dialogue will
not show the actions of make while they are being performed. The contents of
the directory are shown before and after the make command; otherwise, you
might wonder if anything was indeed done.

hIs

makefile mytime.f subl.f
myprog.f specprog.f sub2.f

A

A make myprog

/A

4 Is

makefile myprog.f mytime.f
myprog* myprog.o mytime.o
specprog.f subl.o sub2.0
subl.f sub2.£

%

8.2 Error Handling

If any rule results in an error while make is executing, the error is printed and the
make command stopped. Sometimes, this is not appropriate for the given makefile.
Consider, for instance, a rule which might remove some files from the working direc-
tory to clean up after running some process. If one of more of the files to be removed
does not exist, the rule will return an error and make will stop.

There are three ways to avoid this.

1. The first is the use of the special character, ‘~’, at the beginning of a rule. If
an error is encountered while executing such a rule, it is ignored and the make
continues.

2. The second method is to include the fake target, .IGNORE, as part of the
makefile. This is similar to using the .SILENT fake target in Section 8.2 and
instructs make to ignore ALL the errors found during its execution.

3. The final method is to call make with the -i option flag, which tells make to
ignore all error codes for this particular invocation.

22

8.3 -n Option Flag

Suppose you want to make myprog, but first you want to know what files will be made
(and which are already up-to-date) as well as the commands that will be executed.
Of course, you could study the makefile and look at the creation dates of all the files
you believe will be used. But an easier way would be to use the -n option flag for
make, as follows:

% make -n myprog

£77 -01 -c myprog.f

£77 -01 -c sub2.f

£77 -o myprog myprog.o subl.o sub2.o0 mytime.o

’

This appears to act just like the make command without the -n option flag. However,
the n stands for no ezecute mode; so the commands that normally would be executed
are merely listed without any of them being done. The example above shows that the
object files, myprog.o and sub2.o, must be missing from the directory or out-of-date
and so need to be created before the whole program can be linked together. In a like
fashion, we can see that the object files, subl.o and mytime.o, must be present and
up-to-date.

8.4 -t Option Flag

The -t option flag requests that certain files be touched. When a file is touched, its
creation date is changed to the current date and time. This may be used to avoid
remaking files dependent upon files which have have been changed in a way which
should not affect the dependent files.

For example, suppose we make a minor change to the comments in the file,
sub2.f. This will cause the current version of the object file, sub2.o, out-of-date.
Consequently, the executable file for the whole program, myprog, will also be out-of
date. Touching those two files will update their creation dates. Meanwhile, the make
utility knows that the other object files are still current.

% Is -1
total 89
~rw-rw-r-- 1 schauble 192 Jul 5 17:03 makefile

23

~ITWXIWXIr—-X
“IrW=Ir~=-r-—-
“IW-IW-I~--
“XW-IW~—I~—-—
“rN-IW-I—-
“IN-IwW-Ir~—-
“IrW-IW~Xr—-
“IrW-Irw—-Ir—-—
“I'RN-Iw—-Ir~-

1
1
1
i
1
1
1
1
1

schauble 81188 Jul 31

schauble
schauble
schauble
schauble
schauble
schauble
schauble
schauble

% make -t mytime.o
‘mytime.o’ is up to date.
% make -t subl.o
‘subl.o’ is up to date.
% make -t myprog

touch(sub2.0)
touch(myprog)

% Is -1
total 89
-IW-IW-T~~
~TWXIWXT~X
~IR-r==r~=
-rW-rW-Ir~-
~IH-IW~T~-
-IW-IW-T~~
~TH-IW-T——
~IrW-IW-T~—
~ITH-TW-T~~
-IW-Iw-r--

%

Notice that touching the final executable file, myprog, causes the out-of-date object
file, sub2.o0, to be touched as well. This is because sub2.o is one of the files on which
myprog is dependent.

8.5

The -d option flag permits debugging of the makefile by generating more detailed
information on each command (or rule) that is executed. For instance, typing the

command

S = N ™ Y SO W TN

schauble
schauble
schauble
schauble
schauble
schauble
schauble
schauble
schauble
schauble

-d Option Flag

% make -d myprog

19
648
31
456
29
452
30
452

192
81188
19
648
31
456
29
452
30
452

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul
Jul

24

2
31
5
31
5
31
31
31

31

31

31

31

31
31

i6:

11

i85

17:
147
11:
16:
09:

i6

15

15

38

:41
16:
09:
i5:
09:
:40
i6:
i6:

38
17
40
17

46
38

03

41
38
17

:40
09:
:40
16:
i6:

17

46
47

myprogx*
myprog.f
myprog.o
mytime.f
mytime.o
subl.f
subl.o
sub2.f
sub2.0

makefile
myprogx*
myprog.f
myprog.o
mytime.f
mytime.o
subl.f
subl.o
sub2.f
sub2.0

results in a great deal of output, only some of which is included here.

A make -d myprog

setvar: = noreset = 0 envilg = 0 Mflags = 040101

Reading "=" type args on command line.

Reading intermal rules.

setvar: MACHINE = mips noreset = 0 envflg = O
Mflags = 040101

Reading makefile

setvar: 0OBJECTS = myprog.o subl.o sub2.o mytime.o
noreset = 0 envilg = 0 Mflags = 040001

setvar: CFLAGS = -01 -c noreset = 0 envflg = 0
Mflags = 040001

Warning: CFLAGS changed after being used

doname (myprog,0)

TIME (myprog)=681000472

TIME (mytime.o)=680996426
look for implicit rules. O
‘myprog’ is up to date.

OBJECTS = myprog.o subl.o sub2.o0 mytime.o
MACHINE = mips
$ =3

MAKEFLAGS = bd

mytime.f done=2

sub2.f done=2

subl.f done=2

myprog.f done=2

mytime.o done=2

sub2.o0 done=2

subl.o done=2

myprog.o done=2

done=2 (MAIN NAME)

depends on:myprog: myprog.o subl.o sub2.o0 mytime.o
commands:

$ (FCOMPLR) -o $@ $(OBJECTS)

25

specprog

mytime.o specprog.o

mytime.f specprog.f
Figure 5: Derivation of specprog.

markfile done=0
YA

As you can see, this option provides a lot of information. It lists all the environment
settings used by make, the steps to determine the date of each target, and the rules,
implicit or explicit, to make each target.

8.6 -f Option Flag

The -£f option flag for the make utility allows a file named something other than
makefile or Makefile to act as a makefile.

Suppose we have an additional program in our current directory, specprog.f.
And assume this program also uses one of the subroutines in the directory named
mytime.f. The derivation for specprog is shown in Fig. 5. We can create an
additional makefile which will make the executable file, specprog, as follows:

' # A Special Makefile

OBJECTS = specprog.o mytime.o
CFLAGS = -01 -c
FCOMPLR = £77
specprog: $(OBJECTS)

$ (FCOMPLR) -o $@ $(OBJECTS)
f.0 :

$ (FCOMPLR) $(CFLAGS) $<

26

We can name this new makefile any legal filename; in this case, we will call it special.
To make the executable file, specprog, type the following:

make -f special specprog

and the dialogue with make will appear as below:

% make -f special specprog

£77 -01 -c specprog.f

77 -o specprog specprog.o mytime.o
A

The -f special portion of the command tells make to use the file named special
to find the rules for the target specprog. Thus it is possible to keep more than one
makefile in your directory. Notice that the object file mytime.o had been compiled
previously and was up-to-date, probably from being used with the other program,
myprog, and so did not need to be recreated.

Of course, we could have included all the rules for both targets in a single makefile,

Combined Makefile

OBJECTS = myprog.o subl.o sub2.0 mytime.o
SOBJECTS = specprog.o mytime.o

CFLAGS = -01 -c

FCOMPLR = £77

myprog: $(0OBJECTS)
$ (FCOMPLR) -o $@ $(OBJECTS)

specprog: $(SOBJECTS)
$ (FCOMPLR) -o $@ $(SOBJECTS)

.f.0 :
$ (FCOMPLR) $(CFLAGS) $<

simply by renaming the 0BJECTS macro used by one of the target rules. The combined
derivation graph for this more complex makefile is shown in Fig. 6. Observe that the
module, mytime.o, is used by both main targets.

27

myprog specprog

N

myprog.o subl.o sub2.0 mytime.o specprog.o
y

myprog.f subl.f sub2.f mytime.f specprog.f

Figure 6: Alternate Derivation of specprog.

9 Other Examples

The examples we have used above all relate to compiling modular Fortran programs.
But there are a number of other things can be done with make as well. It is not
restricted to program compilation.

9.1 Program Execution

It is easy to include a run target in your makefile. This will execute a program,
compiling and linking modules, if necessary.

run: myprog
myprog > myprog.output

In this case, typing the command
make run

will execute the program, myprog, causing the output to be redirected to the file
named myprog.output. Observe two points about this makefile rule:

1. The target, run, is not a file; that is, the execution of this rule does not create
a file named run. Since the target run is never created, the command

make run

28

will always execute. This is legal and at times desirable.

It would have been quite logical to have the target be myprog. output, the name
of the output file for the program, instead of run. However, this output file,
myprog.output, would need to be removed or renamed before each execution.

2. The target is dependent on the executable file, myprog. If myprog is unavailable
or out-of-date with respect to myprog.£f or myprog.o, make will perform what-
ever steps are necessary to create a current version of myprog before executing
it.

9.2 Compiling for dbz

If you are having trouble getting your program to run, you may wish to recompile it
with the -g option flag; this will provide an executable file which can be used with
the dbx debugging utility. To do so, you should include the following statements in
your makefile:

SOURCES = myprog.f subl.f sub2.f mytime.f

debug: $(SOURCES)
$ (FCOMPLR) -g -o debug $(SOURCES)

Here we have added a macro named SOURCES which lists all the source files involved
with the program, myprog.f. We cannot use the macro OBJECTS because that contains
the *. o files which were compiled without the -g option. This new rule recompiles all
the modules together with the -g option and creates an executable file named debug,
(so named to avoid confusion with the regular executable file, myprog). Since the -g
option turns off all optimizations, there is no need to include $(CFLAGS) in this rule.

9.3 Printing Files

The makefile can include rules to print out the source files as well as the output.

prints: $(SOURCES)
enscript -2rG $(SOURCES)

printo: myprog.output
lpr myprog.output

29

By referring to the macro SOURCES, all the modules related to myprog.f will be
printed. Again, no target file is created when either of these rules is executed.

Notice that the enscript command in rotated, two-column format to reduce
paper usage, since the source listings are usually used for debugging and then thrown
away. Replacing ‘enscript -2rG’ by ‘lpr’ would produce the source listings in the
more usual format.

9.4 Cleaning up

The makefile might include a rule to clean up the directory, deleting any core or *.0
files.

clean:
- rm core debug *.o

This version also removes the executable file, debug, which was created for use with
dbx and is probably no longer needed. You might also wish to remove the file myprog,
as that can be generated whenever needed by the makefile.

Notice that the rule begins with the special character, ‘-’. If no core file happened
to exist in the directory when the command make clean was done, the rule would
stop when it couldn’t find a file named core. But because of the special ignore errors
character, ‘-’, at the front of the rule, make will continue onto the next file after
printing out an error message.

h make clean

rm core

rm: core nonexistent

** Error code 1 (ignored)
rm debug

rm: debug nonexistent
** Error code 1 (ignored)
rm *.0

Here you can see that the files listed on the rm statement are handled individually.
And the error messages for non-existent files are printed but ignored. Also, the
commands for a rule can include wild card characters, as in *.o.

30

9.5 A Complete Makefile

A full makefile, containing all the rules in this section, is given in Appendix A. You
may wish to use it as a model. Eventually, you will develop your own style. For
instance, you might use myprog.x as the target name of the executable file in place
of the filename myprog. Also, myprog.out might have replaced the target run.

10 A Makefile for C

Designing a makefile for program maintenance in other languages should be straight-
forward, based on the previous example. For instance, with C programs, you may
want to add a list of the header (*.h) files to the dependencies. An example of such
a makefile is given in Appendix B.

There are a few things to notice in this example:
1. The macro, LIBS, is used to include the math.h library in the compile-and-link

command. This library is commonly used by C programs. Other library names
can be added or substituted here.

2. The command
make help

will result in a listing of all the functions of this makefile. This is a very useful
and recommended procedure, as one often forgets what one has done some
months ago.

This is the very first target in the make file. So if you should just type
make

the list will still appear. In other words, the make command with no target will
attempt to make the first target in the makefile.

3. The echo commands under the target help are preceeded by the character ‘@’.
This is to prevent the echo command from being printed out in addition to the
string it is printing.

4. References to header *.h files have been added.

5. Targets entitled by macro names will substitute any of the files defined by that
macro as the target file. For instance,

31

make mainprog
will activate the $ (EXECFIL) rule.
6. Target need have no commands in the rule. The target
$(FILES) : $(HEADERS)

merely declares that $ (HEADERS) are dependency files for $ (FILES). This rule
has no other purpose.

11 Creating Your Own Makefile

Try creating a simple makefile in one of your directories. As you begin to use make,
you will find more and more things that you will want to do with it. As a result, your
makefile will begin to grow.

You may need a separate makefile in each directory, but this means that each one
can be individualized to meet the requirements of its own directory.

Some points to remember when creating your own makefiles:
1. Remember that the rules in a makefile are interpreted as Bourne shell com-

mands. Among other things, this means that it is best to use absolute path-
names when referring to other directories; the value of the tilde character, ‘7,

is not recognized by the Bourne shell.

2. The environment variables, such as $HOME and $HOST, are known by make as it
executes and are treated as macros of the same names. In the same way, make
assumes a macro named $SHELL which is equivalent to /bin/sh by default. On
some of the newer UNIX operating systems, it is possible to change this, by
redefining the macro variable:

SHELL = /bin/csh

12 Further Information

For more information on make, you may refer to the Feldman paper [Feldman 86]
or the man pages. This utility is discussed in some C and UNIX textbooks, e.g.,
[Kay & Kummerfeld 88] and [Sobell 84]. And books, such as Managing Projects
with Make [Talbott 90], provide a more thorough discussion of the use of make with
examples in other areas.

32

References

[Feldman 86] FELDMAN, S. I. [Nov 1986]. Make — a program for maintaining
computer programs. In GROUP, COMPUTER SYSTEMS RESEARCH, editor,
Uniz Programmer’s Manual Supplementary Documents 1, pages PS1:12-1
to PS1:12-9. USENIX Association.

[Kay & Kummerfeld 88] KAY,JUDY AND BOB KUMMERFELD. [1988]. C Programming
in a UNIX Environment. Addison-Wesley Publishing Company.

[Sobell 84] SOBELL, MARK G. [1984]. A Practical Guide to the UNIX System.
Benjamin/Cummings Publishing Company, Inc.

[Talbott 90] TALBOTT, STEVE. [1990]. Managing Projects with Make. Nutshell
Handbooks. O'Reilly & Associates, Inc., Sebastopol, CA.

33

Appendix A: A Makefile for Fortran Modules

Final Complete Makefile

to initialize user-defined macros
SOURCES = myprog.f subl.f sub2.f mytime.f
OBJECTS = myprog.o subl.o sub2.0 mytime.o
CFLAGS = -01 -c

FCOMPLR = £77

]

[}

to execute myprog
run: myprog
myprog > myprog.output
to link and compile myprog
myprog: $(0BJECTS)
$ (FCOMPLR) -o $@ $(OBJECTS)

to compile fortran modules

$ (FCOMPLR) $(CFLAGS) $<

to compile myprog for dbx
debug: $(SOURCES)
: $ (FCOMPLR) -g -o debug $(SOURCES)

to print myprog source files
prints: $(SOURCES)
enscript -2rG $(SOURCES)

to print myprog output file
printo: myprog.output
lpr myprog.output

to remove unnecessary files

- rm core debug *.o

34

Appendix B: A Makefile for C Modules

#
Makefile for C modules
.

FILES = mainprog.c submod.c
HEADERS = mainprog.h submod.h
OBJECTS = mainprog.o submod.o
EXECFIL = mainprog

LIBS = -1m

FLAGS =

help :
Qecho "This makefile supports the following:"
Qecho "make run - runs the program"
Qecho "make mainprog - creates executable program'
Qecho "make lint - run lint on the program"
Qecho "make debug - provides dbx executable"
Cecho "make clean - deletes *.o, debug, core files"

run : $(EXECFIL)
$ (EXECFIL)

$ (EXECFIL): $(0OBJECTS
)

3\
cc $(FLAGS) $(OBJECTS) -o $(EXECFIL) $(LIBS)

.c.o : $3¢.c 3$30.1n
cc $(FLAGS) -c $<

lint : $(FILES)
lint $(FILES)

debug : $(FILES)
cc -g $(FLAGS) -o debug $(FILES)

$ (FILES): $(HEADERS)

clean :
-~ rm *.0 core debug

35

