ChemTrains:
A Rule-Based Visual Language
for Building Graphical Simulations
Brigham Bell

CU-CS-529-92 February 1992

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ChemTrains:
A Rule-Based Visual Language
for Building Graphical Simulations

Brigham Bell

CU-CS-529-92 February 1992

This is a manual for the ChemTrains programming language that includes a
historical introduction, advice for programming in the language, and
example working programs.

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309

bell@cs.colorado.edu

Table of Contents

Introduction eerresereesensans veesecsssssensnssacesens 1

ChemTrains Programming Concepts..............2

2.1 Terminologycccovvuirerriireririririreeee e, 2

2.2 Pattern Matching..........ccccoeueicenc. et 5

2.3 Conflict ReSOIUtIONcovvveiiiiiiiiiiiiiicii 6

2.4 Rule Execution ... 7

2.5 User Interaction with the Simulation.................... 7

2.6 Built-in Counting Rules..........ccccoviiviiiiiniiin 9

2.7 Hiding Parts of the Simulation..........cccoceeiviiiinnn, 9

Programming Techniques......cccccceveeierieiiinnnnnn. . 10
3.1 Creating Rules ... 11
3.2 Creating Objects and Containers.........ccccoevvviinnnnnn 14
3.3 Creating Paths.......cccooiiiii, 17
3.4 Supporting End User Commands..........cccceeurnrnne. 20
3.5 Controlling the Execution of Rulesccccccoceuni. 21
3.6 Creating Control Structures..........cccoveviviiviiiiiinninnn, 23
3.7 Creating Container Grids ..., 24
3.8 Creating Attribute-Value Tables..........cccoceiviinnin, 25
3.9 Defining Sets........coocviiiviiiiiiniiiie 27
3.10 Counting Eventscccoeeevivoicininieiiiceci 28
The Programming Environment...................... 29
4.1 Menu Operations.......cceviivvninivnininincnirecnnas 30
4.2 Execute and Edit Mode.........cccoovrviviiviiiiinins 30
4.3 Drawing the Simulation ... 31
4.4 Selecting, Copying, and Moving Objects.................. 31
4.5 Hiding and Unhiding Objectsc.ccceoeririevevinnnnnn, 31
4.6 Creating a Rule.......c.ccoooviinii 32
4.7 Variables ... 32
4.8 Editing an existing Rule ..o, 32
4.9 Rule Ordering and Selection.........ccocoveiviiinvnriinnnnnne, 33
4.10 Creating and Editing Grids.......ccccooviiiiiiinn 33
Example Problems and Solutions..................... 34
5.1 Maze Search ... 34
5.2 A Turing Machine Editor........cc.coonvivinnn, 36
53 Tic TaC TOC ..ot 38
5.4 Grasshopper Lifecycle Simulation ..o 40
References.......cccvveeiiiicnnnnnnneennene. e veeennn 44

1. Introduction

ChemTrains is a visual programming language for describing graphical
simulations that have a qualitative behavior model, such as document flow
in an organization or the phase change of a substance as temperature varies.
ChemTrains models show objects participating in reactions similar to
chemical reactions and moving among places on the screen along paths. The
name “ChemTrains” was suggested by the chemical reactions and the role of
paths, thought of as train tracks.

The ChemTrains family of graphical simulation environments has been
evolving over the past few years. The first discussions of a ChemTrains
language were between Clayton Lewis and Victor Schoenberg in the fall of
1988. They wanted a language that supported simple graphical solutions to
problems with a qualitative rather than a quantitative model. The initial
discussions resulted in two main ideas:

* using a computational model based on chemical reactions, and

* allowing reactants to travel between connected places.
The first prototype was built by Schoenberg and John Rieman in the fall of
-1989. This prototype pointed out some problems with the ideas, most notably
that the resulting language was limited, and that the computational model of
chemical reactions conflicted with a separate computational model for
allowing reactants to travel between places. In the spring and summer of
1990, Lewis, Rieman, and myself began another iteration of ChemTrains
design work. These design discussions focussed on many design issues, most
of which were decisions between simple and powerful computational
features. In the fall of 1990, I built a second prototype. The two biggest
shortcomings of this prototype were that it couldn’t support numeric
computation and decomposition needed in solving larger problems. This
manual describes the language resulting from a third iteration in the
evolution of ChemTrains that was done as part of my thesis work.

The language design goals of ChemTrains are still more or less the same as
they were in 1988:
¢ usable by inexperienced programmers who do not want to spend
a lot of time hacking on the low-level details of a program,
 applicable to problems that have qualitative solutions,
e graphically-oriented, and
¢ domain independent.
The main design ideas also still exist:
* the simulation picture is constructed of graphical icons and
objects;
¢ places and paths are drawn in the simulation picture for the
purpose of computation;
¢ graphical objects may move between places along paths;

2 ChemTrains

* the behavior of the simulation is executed by a computational
model of reaction rules; and
* the reaction rules are described graphically.

Although the ChemTrains environment may be used by two types of people,
graphical programmers, who create simulations, and end users, who use
these simulations, it is suited more for the graphical programmer. The
environment enables a graphical programmer to draw a simulation as it
would initially appear to an end user, and then to specify the behavior of that
simulation by drawing graphical rules. Each rule has two main components:
a pattern picture and a result picture. When a simulation is executed,
ChemTrains uses a rule interpreter to animate the display. When the rule
interpreter recognizes that the pattern of one of the rules is identical to a
portion of the main display, it then replaces that portion of the display with
the picture in the result of the rule. When trying to recognize whether a
_pattern matches a portion of the display, the interpreter decides mainly based
on whether the topology of the pattern matches the display rather than
whether the geometry matches the display. The display will continually
simulate as long as a pattern of a rule matches part of the display. When
none of the rule patterns match the simulation, the rule interpreter stops.

2/. ChemTrains Programming Concepts

This section describes the fundamental concepts useful in understanding and
building ChemTrains simulations, concentrating on features of the language
rather than user interface features of the environment. Where it is necessary,
some details of the supporting environment are described. This section
begins with definitions of terms used to describe ChemTrains simulations.

2.1 Terminology

A simulation display is a window that displays a graphical simulation. Figure
1 is an example simulation display. A simulation display is analogous to
working memory in a production system language. ChemTrains rules
operate on the simulation display similar to the way that productions in a
production system language operate on the working memory.

The simulation environment is the programming environment that enables
users to modify the simulation display and the rules.

An object is a graphical object of the display. An object may either be a
rectangle, an oval, a polyline (a set of connected line segments), a text string
(also called a label), or an icon (a pixel array). The simulation environment
supports creation of each kind of object. '

Figure 1 shows a picture in which each kind of object is used. The mountain
scene is a single icon. Each of the houses are copies of a single icon. The

2. Programming Concepts 3

labels on each of the houses are text strings. The two trees are polylines. Five
boxes are shown, two that are used to group houses, and three that are used to
compose a drawing of a switch at the bottom right side of the picture. Two
ovals are also used in the drawing of the switch. The box surrounding the
whole picture defines the window boundaries.

Two objects are identical if the objects are the same kind (either rectangle,
oval, polyline, icon, or text string) and their displays are identical. Each of the
houses in figure 1 are identical because they are all copies of the same house
icon, even though the text strings overlap the house displays. The two large
rectangles are also identical, because they are both rectangle objects with the
same dimensions. Two objects that look identical may not actually be
identical. For example, the trees in figure 1 would not be identical if one was
drawn as an icon and the other was drawn from line segments, and the two
rectangles may not be identical if one was constructed as a rectangle object and
the other was constructed out of line segments. The best way to make sure
that a set of objects are identical is to copy a single version of an object.

Booth
Bugg
Druyor

on
off O]

Figure 1: Example ChemTrains Simulation Display:
house lighting controlled by a switch.

Objects that are identical are considered to be instances of the same type. In
most programming languages, there is a strong separation between type and
instance, and there is usually a specific syntax for defining types. In
ChemTrains however, there is no mechanism for defining types, and the
distinction between type and instance is hidden from the programmer. In

4 ChemTrains

creating an object on the simulation display that is different from all other
objects, a new type is defined. If the new object happens to be identical to
other objects, it is considered another instance of an existing type. When an
object is changed on the display (e.g. resizing a rectangle or redrawing the
pixels of an icon), the simulation environment recognizes the change as
meaning two possible things, that either

¢ only this object instance is to be changed, defining a new type, or

* all identical object instances are to be changed, redefining the type

definition that all the identical objects share.

When an object is modified and there are other identical objects, the system
asks whether all identical objects or just this single object should be modified.

An obiject is inside another object if its bounding rectangle encloses the

bounding rectangle of the other object. In figure 1, the text strings that label
the houses are each inside of the single houses that they label, because they
are each completely surrounded by the house. The two trees and the “Bell”
and “Druyor” houses along with their labels are each inside one single box.

An object contains another object if the inside constraint is met.

A container object or a place object is an object that is being used in the
simulation to contain other objects. Any object may be a container object.
The houses are considered container objects for their labels. The two small
boxes that contain the “on” and “off” labels and the oval are also container
objects.

A path is a line connecting one object to another object. Paths must be
explicitly created in the simulation environment, and are different from
polyline line segments, which are objects.

A path connects two objects.

A path can either be directed or non-directed. A directed path has an
arrowhead on one end, and a non-directed path has no arrowhead. The path
connecting the “Bugg” house to the “Bell” house is a directed path. The path
connecting the two ovals in the bottom right area is a non-directed path.

An object labels a path if the object is a text string that overlaps the path. A
path can only have one label. The directed path in figure 1 is labeled by the
“blee” text string.

A replacement rule or rule is a mechanism for defining general changes in a
picture. A replacement rule has a name, a pattern picture, and a result
picture. When the objects of the pattern picture of a rule matches objects in
the simulation picture, the matched objects are replaced with objects shown

2. Programming Concepts 5

in the result picture of the rule. Figure 2 shows an example rule called
“house on.”

A variable is an object in either the pattern or result of a rule that may
represent any object in the simulation. When an object is variablized, it is
displayed in italics if it is a text string, or it is otherwise marked with a big
“V.” In figure 2 the “name” text strings are variables, and everything else is
not a variable.

The environment allows the programmer to be in either execute mode or
edit mode. In execute mode, the programmer views the graphical simulation
working as an end user may see it. In this mode, the rule interpreter grabs
control over the simulation whenever a change is made to the simulation,
and then releases control when no rules apply. In edit mode, the
programmer may edit the simulation without the rule interpreter interfering.

Rule Name: [house on|

Pattern Picture Result Picture
REIME REme
B =
B Ea on O - on O
name name
-H. gﬂg

Figure 2: Example simulation rule to turn on house lights.

The rule interpreter of ChemTrains, like other production system, executes a
recognize-act cycle that has three phases:

1. a pattern matching phase,

2. a conflict resolution phase, and

3. a rule execution phase.
After the rule execution phase, the rule interpreter starts a new cycle. If no
rule matches during pattern matching, the 1nterpreter halts. Each of the three
phases are described in detail below.

2.2 Pattern Matching
The ChemTrains pattern matcher does not care that the exact placement of

objects in the pattern of a rule matches the exact placement of objects in the
simulation picture; however, it does care that some very specific types of
graphical constraints are met by matched objects in the simulation. It cares:

6 ChemTrains

* whether objects are inside other objects;

e whether objects are connected to other objects; and

e whether text strings label paths.

Here is a more formal descrlptlon of pattern matching. The pattern p1cture of
a rule matches ob]ects in the simulation if and only if:

1. Every object in the pattern that is not a variable matches an
identical object in the picture.

2. Every variable in the pattern matches an object in the picture.

3. Identical variables in the pattern match identical objects in the
picture. For example, two identical variables in the pattern can
match any two things in the simulation as long as the two things
are identical.

4. For every inside constraint in the pattern, the inside constraint
must also be satisfied by the matched objects.

5. For every nondirected path in the pattern, a nondirected path
must connect the matched objects.

6. For every directed path in the pattern, a directed path must
connect the matched objects and point in the same direction.

7. For every text string object that labels a path in the pattern, the
matched text string must label the matched path.

Any other sort of geometric relationship between objects in the pattern
picture, such as adjacency, of a rule is ignored in pattern matching. For
example, the pattern shown in figure 2 literally means:

e match an unlit house that contains some object, and

¢ match a rectangle identical to the large rectangle that contains:

1. an object identical to the object inside the unlit house, and
2. arectangle identical to the small rectangle that contains:
a. a text string named “on,” and
b. an oval identical to the oval shown.
When the switch in figure 1 is turned on, the pattern of this rule matches the
picture in three different ways, matching the “Bugg,” “Booth,” and “Druyor”
houses. When interpreting the meaning of a pattern, it is useful to think in
terms of the topology of a picture rather than the geometry.

2.3 Conflict Resolution

When more than one rule matches a picture, the rule highest in priority is
chosen. The language environment supports a feature for ordering the rules.
An example of using rule ordering to control a simulation would be in
writing rules to play tic tac toe: a rule to play a win would be placed before a
rule to play a block.

ChemTrains adds one enhancement to the rule ordering feature. Rules in
the ordering may be specified to be at the same level of priority. In the
programming environment, this is referred to as “parallelizing” rules. When
two or more rules are parallelized with respect to each other, it means that it
picks between those rules randomly if the engine cannot match any rules

2. Programming Concepts

higher in priority. When a set of rules is parallelized, the probabilistic
weights of choosing each of the parallel rules can be modified by the
programmer. This feature is used to describe behaviors that happen
randomly with respect to each other, such as grasshoppers jumping and
eating at the same time, but jumping at a higher probability than eating.

When a rule is finally chosen and this rule may match multiple
combinations of objects in the simulation, it chooses between the possible
combinations randomly. Also, the interpreter never executes on the same
unchanged combination of data more than once.

2.4 Rule Execution
When a rule is chosen, the system executes the rule by interpreting actions,
specified by differences between the pattern and result pictures of the rule.
The following kinds of differences are permitted:
* any objects or paths from the pattern may be deleted;
¢ any paths may be added;
* an object may be added if it is placed inside an object that is in
both the pattern and result pictures; or
* an object may be added if it replaces a deleted object from the
pattern picture, as the lit house replaces the unlit house in the
“house on” rule shown in figure 2.
When the control knob is moved to the “on” position, the “house on” rule
executes three times on three consecutive recognize-act cycles, resulting in

7

turning three lights on as shown in figure 3. To enable the house lights to be

turned off when the switch is in the “off” position, the “house off” rule,
shown in figure 4, is added.

The exact placement of the objects in a result does not have to perfectly match

the placement of corresponding objects in a pattern. ChemTrains tries to

figure out the mapping from pattern objects to result objects. When there are

multiple possible mappings (examples shown in later chapters), the system
chooses the mapping that best fits the spatial relationships in the pattern and
result pictures.

2.5 User Interaction with the Simulation

After a rule is executed, ChemTrains begins the recognize-act cycle again. If
no rule matches in the pattern matching phase, the system stops rule
execution and allows the user to modify the simulation. When anything is
changed in the picture (e.g. an object is moved, added, or deleted), the system
re-starts the recognize-act cycle. Because the rule interpreter will execute as a
user interacts with the system, ChemTrains can support construction of
simulations that require interactions with the end user during its execution.

The user can also modify the simulation during the execution of the
recognize-act cycle. When the system recognizes that the user is trying to

8 ChemTrains

move something by clicking on it, the system halts the cycle and permits the
movement of the object clicked by the user. If the user’s action interrupts
pattern matching or conflict resolution, the cycle is simply halted. If the
user’s action interrupts the execution of a rule’s actions, the actions are fully
completed. A rule is never partially executed because this may lead to an
illegal or unwanted state in the simulation. After the user’s action is
completed, the system resumes execution of the recognize-act cycle. Because
ChemTrains allows interaction during a simulation and recognizes these
changes and acts on them, ChemTrains can be considered a general tool for

building user interfaces for bitmap displays.

vacant
| ﬂ |

Bugg =
Eﬂ!ﬂ
s Il o I |
Booth
EHEE

off

Figure 3: Changes to House Lighting Simulation Picture.

Rule Name: |house off

Pattern Picture

Result Picture

=

s I e I
&ne
EHE!

Figure 4

nemre

off O

HE
.

neme

off O

: Example simulation rule to turn off house lights.

2. Programming Concepts 9

2.6 Built-in Counting Rules

ChemTrains provides three built-in rules for counting. The rules can execute
when either a “incr,” “decr,” or “clear” text string object is in the same
container as a text string object that appears as a number, such as “1495” or
“-112.73”. When this situation occurs, the numeric text string object will be
modified appropriately (incremented, decremented, or changed to “0”), and
the operator will be deleted. Since these rules are built into the recognize-act
cycle as the rules with highest priority, a counting operation will execute as
soon as a count operator appears in a container with a number. The
grasshopper simulation discussed in section 5.4 demonstrates the use of
counters. When a counter operator exists inside a layered topology of places
each with numbers, the system picks the number that exists with the operator
in the smallest container. :

2.7 Hiding Parts of the Simulation

Objects and paths may be hidden. The environment provides interface
commands for hiding and unhiding selected objects and paths, and also
provides an interface switch for showing all hidden objects, called “Show
hidden?.” When this switch is on, hidden objects and paths are displayed,
and when the switch is off, hidden objects and paths are invisible. The rule
interpreter matches on hidden objects as if they are not hidden. Whether an
object is hidden or not has no effect on pattern matching. ’

on O
off

Figure 5: House lighting simulation picture with hidden objects not shown.

10 ChemTrains

The “hide” feature was added so that parts of a simulation can be hidden for
some users, such as end users, and displayed to other users, such as graphical
programmers. The feature is most usefully applied to components of a
simulation that are necessary in order to get a simulation working but are
confusing or irrelevant to end users. Figure 5 shows the house lighting
simulation picture as seen when the hidden objects are not displayed. The
names of houses above the on/off switch are hidden. These invisible objects
still exist in the same positions, allowing the simulation to continue working
as before.

The tic tac toe simulation (section 5) also illustrates the use of hidden objects.
The nine cells of the board and the labeling of those cells must be created in
order to get the simulation working, but may be hidden so that the end user
doesn't have to see them. These cells could be considered internal data
structures of the tic tac toe program.

3. Programming Techniques

This section describes advice that may be useful in constructing simulation
displays and in describing the behavior of the simulation. The advice is
broken into individual programming techiques, each of which has four parts:
a name describing its use, an abstract description of the problem-solving
situation in which the technique could be applied, and the actions that should
be taken. Many of the techniques are also illustrated with examples directly
from the house lighting problem already shown or with possible extensions
to the house lighting problem. Here is an example technique:

draw initial picture:
When starting,
draw how the simulation would initially appear to the end user.

The rest of the programming techniques are divided into the following
groups:

Creating Rules

Creating Objects and Containers
Creating Paths

Supporting End User Commands
Controlling the Execution of Rules
Creating Control Structures
Creating Container Grids

Creating Attribute-Value Tables
Defining Sets

0. Counting Events

=0 00N O Ul N

3. Programming Techniques 11

3.1 Creating Rules
This advice describes how to construct rules for animating an existing picture.

create rule: ,

If an object should be moved or deleted or a new object should be created
based on specific conditions that may exist in the picture,

then create a rule, following these steps:

1. copy all of the objects and paths relating to the condition and all the
objects and paths to be modified from the main picture to the pattern
picture of the rule, _
copy these objects and paths also onto the result picture of the rule,
modify the objects in the result picture as desired (advice for describing
rule actions follows), and
4. give the rule a name that is appropriate for the task it does.

(figure 6 through 11)

W

deletion action:
If an object or path is to be deleted when a rule is executed,
then remove that object or path from the result picture. (figure 6 & 9)

Rule Name: [house can't build on Flatirong]

Pattern Picture Result Picture

g 7 e
4 S

Figure 6: Example of a deletion action to delete any house in the Flatirons.

addition action:

If an object or path is to be added when a rule is executed,

then create a new object or path or retrieve an existing one, and add it to the
result picture. (figure 7) ‘

Rule Name: |add ghost to housd] |

Pattern Picture Result Picture
= =
e e Bl e o el
!:IHE:I , Eﬂ%!ﬂ

Figure 7: Example of an addition action in a rule to add a ghost to every house.

12 ChemTrains

replacement action:

If an object is to be replaced with another object when a rule is executed,

then remove the object from the result and replace it with the new object.
(figure 10)

movement action:
If an object is to move from one container to another when a rule is

executed,

then move that object in the result picture from its current container to an
appropriate position in the destination container.
(figure 8)

Rule Name: ‘ghost moves between unlit housesI I

Pattern Picture Result Picture

Figure 8: Example of a movement action in a rule to move
ghosts between unlit houses.

wildcard match:

If an object in the pattern of a rule may match any object regardless of its
display,

then specify that this object is a variable. (figure 7 & 9)

Rule Name: lremove anything from Flatironsl |

Pattern Picture Result Picture

A

/ ey n
A A

Figure 9: The variablized house is an example of a wildcard match, and the rule is an
example of a deletion action. This rule will delete any object in the Flatirons.

3. Programming Techniques 13

identical variable match:

If a set of objects in the pattern of a rule is to match objects with an
identical but unknown display,

then make sure that each of these objects have an identical display
themselves, and then specify that all of these objects are variable.

(figure 10)

Rule Name: Ihouse of] |

Pattern Picture Result Picture
EITE ame
= ()
o I o B OE N
nerre
=] = off O .”ﬁ”"’-

Figure 10: The italicized “names” are an example of an identical variable match,
and the switch from a lit house to an unlit house is an example of a replacement action.

variable addition action:
If an object in the result picture of a rule should be identical to a variable

object existing in the pattern picture,
then create the identical object in the result picture, and specify that this
object is a variable. (figure 11)

Rule Name: lreport haunted housd|

Pattern Picture Result Picture
" haunted: ™ haunted:
n&rre
|l N B -ﬂaame. neme
e -%-

Figure 11: The italicized name is an example of a wildcard match and the new name
in the result is an example of a variable addition action.

14 ChemTrains

3.2 Creating Objects and Containers
This advice describes some principles that can simplify the programming of

the simulation’s behavior.

draw additional container: :
If an object can move or can be placed in a particular area of the interface

that is not drawn,
then draw a container object that is big enough to contain the object.

(figure 12)

Booth
Bugg
Druyor

on O
off

e

Figure 12: The outer rectangle is an example of an additional container needed to
contain the names of houses that can have lighting power.

draw position containers:

If an object or set of objects can move around to different positions,

then draw a container object that is big enough to contain the object and
copy it to all of the positions that it may be moved to.

draw big enough container:

If an object can move or be placed on top of an object that is too small to
contain the object,

then draw an object that is big enough to contain the object.

draw unique identifier:
If an object or set of objects has a significant difference with other objects

that have the same picture, and the difference is not already shown,
then create a new object that can be used to identify these object(s), and place
a copy inside each object. (figure 13)

Figure 13: The “Bell” and “Druyor” labels are examples of unique identifiers.

3. Programming Techniques 15

draw mode description:

If the simulation should behave differently in different modes, and
the modes cannot be determined by pictures on the screen,

then create a container that contains a label defining the current mode.

(figure 14)
(ghost prowling

Figure 14: The “ghost prowling” label and associated container is an example
of drawing a mode description. The connections between
the houses are an example of draw directed path.

vacant
Hﬂ-l '-H-

mode condition:

If a rule can only occur during a mode as drawn,

then put the mode description in the pattern and result of the rule.
(figure 15)

Rule Name: |ghost proW]s at night[I

Pattern Picture Result Picture

-ﬂ-

ghost prowling ghost prowling

Figure 15: Using the “ghost prowling” text string and the oval is an example of a mode
condition in a rule.

16 ChemTrains

draw empty container marker:

If a simulation needs to test for the absence of an object within a
container,

then create an object to show that a container is empty, and place it in every
empty container in the simulation. (figure 16) Follow the absence
testing advice to create rules that use the empty container marker.

Possible Buyers

Lewis
Rieman
Wilde

Figure 16: The “vacant” labels in the two houses are text string objects that signify that a
house is empty. These labels may be used to determine whether a container is empty.

absence testing:

If a rule needs to test for the absence of an object within a container, and
the absence has been represented with empty container markers (from
the previous advice),

then test for the presence of the empty container marker, by placing the
empty container marker in the pattern of the rule. (figure 17)

Rule Name: lbug vacant house |

Pattern Picture Result Picture
Possible Buyers Possible Buyers
neme n
HEN
1281e
| ﬂ ||

Figure 17: This rule tests for the absence of a family in a house by testing for the
presence of the “vacant” string.

hide objects:

If asetof graphical objects and paths has been added only to make the
simulation work, and would be irrelevant to an end user,

then hide the objects.

3. Programming Techniques 17

3.3 Creating Paths
This advice describes the situations for creating paths between places.

draw directed path:

If an object can travel between two container objects and can travel only
in one direction,

then create a directed path connecting the two objects. (Figure 17)

draw non-directed path:
If an object can travel between two container objects and may travel in
both directions under the same conditions,
- then create a non-directed path connecting the two objects. (figure 18)

Figure 18: The three houses are connected with non-directed paths so that objects
may travel between them in either direction.

draw two directed paths:

If an object can travel between two container objects in both directions,
and it travels in the two directions under different kinds of conditions,

then create two directed paths connecting the two objects in both directions,
and give them each a different label. (figure 19)

A /l\{ A

LR e N N
Bell W Bugg w | Booth
lﬂ- Iﬂ- =N

Figure 19: The three houses are connected with two directed paths, so that objects
may travel east or west between the houses on different conditions.

18 ChemTrains

label path:

If two or more paths are connected to the same object, and the paths are
to be used for different purposes,

then create a label for each path with a different name.
(figure 19, 20, 21, & 22)

label common paths:
If a set of paths in the display are all used for a common purpose,
then label each of the paths with the same name. (figure 20)

Figure 20: These paths are labeled based on what may pass between them.
Rules may be created to only allow ghosts to move along
“ghosts” paths, and people to move along “people” paths.
This is an example of labeling common paths.

draw paths for representation:

If a set of objects have an underlying configuration or relationships
between each other, and the simulation needs this representation,

then draw directed or non-directed paths describing the relationships, and
label the paths if more than one kind of relationship is described.
(figure 21)

Figure 21: These houses are connected based on relationships between the families.
This labeling is an example of drawing paths for representation.

3. Programming Techniques 19

draw paths for control:

If one part of the simulation picture is dependent on the state of a control
panel, and there are several of these control panels that look alike,

then connect the main container object of the control panel to the parts of
the picture that they affect. (figure 22)

on

off O

friends

'R B] i HEN on
Bugg relatives Bell o O//o
.ﬂﬂl lﬂ-

Figure 22: The labeled paths between the switches and the houses represent power lines.
These paths are example of paths that may be used for control purposes.

draw path with a stopover:

If an ob]ect can travel between two container ob)ects, and the simulation
requires that objects traveling between these two containers must be
processed in some way, such as being counted or being thrown away,

then create an intermediate container between the two containers, and
create a path from the source to the intermediate container and from
the intermediate container to the destination. (figure 23)

POS “Booth
m W ﬂ L] 5

Bell
] ﬂ L]

Figure 23: The rectangles between the houses and the post office represent intermediate
stopovers in the connection.

20 ChemTrains

3.4 Supporting End User Commands
This advice describes how to build simulations that enable user interaction.

draw control panel:

If the behavior of a simulation can be controlled by a switch,

then draw a set of container objects for each setting of the switch, label each
of the container objects with a description of the switch setting, and
create a container object that holds all of the switches. (figure 24)

on O
off
Figure 24: Control panel with two settings for controlling house lighting.

~o

draw command list:

If the simulation should behave in different ways that can be controlled
by the end user,

then create a label for each type of behavior, and place the labels in a unique
container object. (figure 25)

de-ghost
add ghost
"R R | furnish
'a ant Booth
thd]

Figure 25: The rectangle and the three commands inside it are an example of a
command list. These commands may be dragged into the houses by the end user.

create command rule:

If the end user can control the simulation by dragging an object (a
command) into a specific container object in the display,

then create a rule whose pattern picture includes the object inside of the
container and the other objects to be modified, and whose result
picture shows the appropriate modifications to the objects. If the
modification completes the command, also move the command back
to its source container. (figure 26)

Rule Name: |exorcise ghost on command]

Pattern Picture Result Picture
" de-ghost
O
- .

Figure 26: A command rule to remove one ghost from a house when the “de-ghost”
command is placed in the house. The rule also puts “de-ghost” back in the command list.

3. Programming Techniques 21

3.5 Controlling the Execution of Rules

This advice describes how to have greater control over the way in which rules
execute. The execution of rules can be manipulated by either changing the
relative ordering and priorities of the rules.

reorder rules:

If one rule is executing, causing a more appropriate rule not to execute,

then in the “rule ordering” list place the name of the more appropriate rule
above the rule that shouldn’t be firing.

describe random rule behaviors:

If two or more different types of behaviors may happen during a
simulation in identical circumstances, and can occur randomly with
respect to each other,

then create a rule for each behavior, place the rules next to each other in
order, parallelize them, and define what percent chance each has to
fire. (figure 27)

Rule Name: lletter delivered to Post Office I Rule Priority: ,

Pattern Picture Result Picture

POS POS

m il

Rule Name: lletter lost in delivery to Post OfficeJ Rule Priority:
Pattern Picture Result Picture

POS POS
M Al

Figure 27: These two rules will randomly deliver 98% of the letters sent to the post
office and will lose the remaining letters.

=

&

22 ChemTrains

populate randomly:

If a set of containers must be filled with individual objects of different
‘types,

then write individual rules to create each kind of object within a single
container, place the rules next to each other in the rule ordering,
parallelize them, and define the population percentage with the rule
priority percentage attribute. (figure 28)

Rule Name: [add black ghost| Rule Priority:

Pattern Picture Result Picture
= [}
e I sl e | e e I e
Sﬂﬂ E’E!!
Rule Name:]add white ghdstl Rule Priority:
Pattern Picture Result Picture
= [}
NI=N-R- =N
E!!ﬂﬂ | 1 e

Figure 28: These two rules will populate each house with an individual ghost. Each
house has a 50/50 chance of receiving a white or black ghost.

enable rule to continually fire:

If a rule is not firing on the same objects more than once, and the rule
needs to fire continually,

then create on the display two identical containers and a label inside one of
them, copy these objects onto the pattern and result of the rule, and
move the label from one container to the other in the result, thus
making a superficial change in the display, allowing the rule to fire
again.

3. Programming Techniques 23

3.6 Creating Control Structures

If the description of the high-level behavior a simulation may easily be
described as a sequence of steps or states, then by drawing a description of the
control structure, the rules may use this structure to force behaviors to occur
only in the written sequence.

draw control sequence structure:

If
then

LN e

a sequence of tasks must be accomplished in order,

follow these steps:

create a sequence of identical containers,

connect the sequence with directed paths,

label each container with the name of a task,

create a marker to denote the current task and place it inside the
container of the starting task,

write a rule to move the marker from one container to the next
container along the directed path, (place this rule last in rule priority)
and

if the sequence is a loop, connect the end container to the start
container with a directed path.

(figure 29)

-
=]
B E .
uﬁellu BBE B
U
=S Cam)

Figure 29: The three ovals with named labels represent a looped control sequence of

tasks. The “*” represents the current task.

sequence structure condition:

If

then

a control sequence structure has been built, and the behavior of .each
task needs to be described, '
create a rule that describes the behavior, and place the task name, its
container, and the current task marker in the condition and result of
the rule. (figure 30)

Rule Name: lturn off lights at night I

Pattern Picture Result Picture

™
n
E!ﬂm

Figure 30: This rule forces a house to turn off its lights at night.

24 ChemTrains

3.7 Creating Container Grids

This advice describes how to build a one or two dimensional grid of
rectangular containers. A grid representation is useful when objects of the
simulation may move around the screen, and these positions are regularly
spaced and connected and too numerous to draw by hand.

draw two dimensional grid:

If objects can move around in a two dimensional space,

then create a grid of connected places, using the path creation advice to
decide how the grid of places should be connected. (figure 31)
The “create grid” menu item provides an interface for describing grids.

[}
=L L R I —
Bell
-n-
| [I I
|]
s I e e D — -
Bug
B
I I
(]
a1 == N = N —
Booth
EHE:!

Figure 3 : This is a 3x4 grid of containers that represents lots that houses may be placed
on. Adjacent squares are connected in this grid with non-directed paths.

fill grid:

If one kind of object is to be initially placed in all or most of the cells of an
existing grid,

then create a rule that adds this object to a grid cell, execute the simulation,
delete the rule, and delete any of these objects that are unnecessary.

draw ordered list:

If a list of items has to be processed in a specific order,
then follow these steps:
1. create an ordered list of the items, by using the grid interface (the
“create grid” menu item) to draw a sequence of connected containers;
2. place the items in the grid containers in the appropriate order; and
3. create an object to mark the current position in the list. (figure 32)

I Bugg H Drugor]—é{a Bell H SmithH Riemanl

Figure 32: This is a five element sequence connected by directed paths to show the order
of processing. A marker has been created and currently points to the “Bell” item.

3. Programming Techniques 25

3.8 Creating Attribute-Value Tables

This advice describes how to describe properties of existing objects. The
properties may be described or within the objects themselves (the first advice)
or within a drawn table (the second advice).

draw
If

then

attribute-value pairs:

there are a bunch of objects with a common set of attributes which
have different values, and these objects are big enough to hold the
attributes and values,

draw a container in the object for each attribute-value pair.

(figure 33)

Tot# 1 lot# 2
size 1.5 | |[size .5
I : I
lot®* 3 Tot®* 4
size .5 | {|size .6

Figure 33: The four main containers represent adjacent house lots. Two properties are

draw
If

then

NUTE W=

defined within each lot container, the lot# and the size of the lot in acres.

attribute-value table:

there are a bunch of objects with a common set of attributes which
have different values,

draw an attribute-value table, by following these steps:

draw a row as a rectangle for each data entry,

draw a column as a rectangle for each attribute,

label the top of each column with an attribute name,

if each object is not labeled, give each object a unique label,

label each row with the label of each object, and

fill in the values of the table. (figure 37)

NAME LOCATION PAYS BILLS?
B. Bell Boulder no
G. Bell Boston yes
A. Bugg Boulder yes
I. Druyor Prarie du Chien yes

Figure 34: Each row is drawn as an identically sized rectangle. Each column

is a rectangle labeled by an attribute name. Each row describes one data entry.
The name may be associated with other objects in the simulation (e.g. houses.)

26 ChemTrains

table driven condition:

If the behavior of an object within a rule is described within an attribute-
value table, and the object depends on settings made in the table,

then copy into the pattern and result of the rule: the row and column ,
containers of the table, the label of the appropriate column, the label of
the object, and the appropriate value of the attribute. The row and
column should overlap, the column should contain the column label,
the row should contain object label, and the value should be placed at
the intersection of the row and column. (Figure 35)

Rule Name: |house or| '

Pattern Picture Result Picture
[}]
o N N-])
neme naine
™ ﬂ i on 0 o] H ey
NAME PAYS BILLS? NAME PAYS BILLS?
name yes | | neme yes |

Figure 35: The pattern matches when a button is in the “on” position,
there is an unlit house, there is an entry of the table that has the house name,
and that entry shows that the person is paying the bills.

draw pairing structure:

If there is a one to one mapping between one set of objects and another,

then create an attribute-value table with two columns that describes the
mapping. An example use of pairing structure would be to describe
opposites.

3. Programming Techniques 27

3.9 Defining Sets
This advice describes how to constrain the rules to act only on objects that are

defined within a set.

draw set definition:
If a specific behavior that may occur is restricted to a set of objects,

then create a unique container object in an unused part of the display, and
place a copy of each of the possible objects in the container.
(figure 36)

House Types
] []

e] e R e BN

Figure 36: The rectangle and its contents is an example of a set definition. The rectangle
contains both kinds of houses, defining the set of houses.

set condition:

If one of the objects in the pattern of the current rule is restricted to be
one of a set of objects,

then specify that this object is a variable, define the set of objects, place the
set container in the pattern and result of the rule, and place a copy of
the variable object in the set container in the pattern and result of the
rule. (figure 37)

Rule Name: lde-ghost any kind of house !

Pattern Picture Result Picture
" House Types House Types
: = B =
B -
de-ghost =] Py
Be = []= B= = [] =

Figure 37: This rule removes a ghost from any kind of house, as long as that kind of
house is defined in the “House Types” rectangle. The lit houses in this rule are all
variablized, allowing them to match either type of house.

28 ChemTrains

3.10 Counting Events
This advice describes how to count object populations or event occurrences.

count occurrences:
If a count is needed of particular events happening in the simulation,
then follow these steps to have the event counted:
1. import the rules and the display of the simulation called “counter,”
2. test the ability to increment, decrement, or clear the counter, by copying
the commands into the counter box,
3. resize and label the count container to a size appropriate for the current
simulation, and
4. create a counting rule, whose pattern picture displays the event’s
conditions, the counter and its containing box, and whose result
picture displays the same as the pattern with the addition of an “incr”
label placed in the counter box. (figure 38) The “decr” and
“clear” labels may be used in the same way to decrement or clear.

of letters sent
34 ™
|
.Boothm
POS i A
LR < Baw
Bugg m Bell
IHH 'ﬂﬁ
Rule Name: |count letters being sent I
Pattern Picture Result Picture
of letters sent # of letters sent
incr
=

Figure 38: The simulation display shows a container that displays the number of letters
that have been sent. The rule counts letters by placing the “incr” text string in this
container, whenever a letter appears in the box connecting to the post office.

count multiple occurrences:

If multiple events have to be counted,

then create a unique label within each counter container, and use this
unique label in the pattern of the counting rules.

use bar graph counter:
If asimulation needs to show a count as a bar graph,
then import the rules and display of the bar graph counter simulation.

4.

4. The Programming Environment

The Programming Environment

29

This section describes some of details and idiosyncrasies of the ChemTrains
programming environment. Figure 39 shows the full ChemTrains
environment running the “houses-switch-box” simulation. The “house off”
rule is displayed, and a trace of the rule execution is shown. This section
describes the usage of the commands on the right hand side of this figure.

File Windows

on | off || O Edit Mode (@ Execute Mode
8 0 (Eascuis Single Ruls
b O || OMekeBox @ Select Objects
] i ° 5 (O Make Ovsl (O Meke Peth
] d 5 (O Make Lines (O Make Directed Path
e]
chE (O Make Label (O Make Icon
N O Get Icon
)
) -d-. (Cut){Copy](Paste)
A AN || A - (Hide Objects) (UnHide Objects)
BE5 1. b. ™ L - < Show Hidden Objects?
CHISTIL T .ﬁ- (Edit or Creste Rules] (Hide Rule Editor |
[Save Current Rule] [Abort Current Rule]
(Variablize Selected Rule Objects]
(UnVeriablize Selected Rule Objects |
Rule Name: [house off] Rule Ordering
Pattern Picture Result Picture 'T -
off off
| reeer | O | | [[70e0 | O
A (]
o e N (Edit Rule) (Delete Rule)
B/aw/a ."ﬁf']- (Move Rule Up] (Move Rule Down
I (Parallelize Rule | { UnParallelize Rule |

Rule Trace

Executing: house on

Stopped firing rules.
Executing: house off
Executing: house off
Stopped firing rules.

Figure 39: The ChemTrains Programming Environment.

30 ChemTrains‘

4.1 Menu Operations
The “File” menu contains the following operations:

¢ “New Simulation” creates an empty ChemTrains window.

* “Open Simulation ...” opens up a chosen simulation in a new
ChemTrains window. ’

* “Open Simulation Standalone ...” opens up a chosen simulation,
but does not show or enable the simulation creation actions, so
that the simulation can be viewed solely as an end user may see
it.

e “Close Sifnulation” closes the current ChemTrains window.

¢ “Save Simulation” saves the current ChemTrains window to its
appropriate file.

* “Save Simulation as ...” saves the current ChemTrains window
to a new filename.

¢ “Import Simulation ...” reads the rules and display of a chosen
simulation, appends the rules to the rules of the current
simulation, and outputs the display to a selected location of the
current simulation. Importing simulations is useful when a
general-purpose simulation exists to accomplish a subtask needed
in the current simulation. For example, existing simulations for
doing bar graph display and doing numeric counting are
generally useful and can be imported.

e “Create Grid” displays an interface for creating a grid of places on
the simulation. The grid creation interface is described in detail
in section 3.4.10. ‘

e “Edit Grid ...” displays the grid interface with the grid information
from a previously edited grid.

¢ “ChemTrains Help” displays a text file containing a little help.

¢ “Quit” exits out of ChemTrains.

Existing ChemTrains windows may be selected from the “Window” menu.

4.2 Execute and Edit Mode
“Execute Mode” allows ChemTrains to execute rules whenever anything
changes on the screen. When no rules apply, the rule interpreter stops. The
execution of rules may be interrupted by the user in one of two ways:
1. by typing Command-period (the Macintosh standard way of aborting the
execution of a program), which halts rule execution immediately, or
2. by selecting and moving objects in the simulation, which halts rule
execution after the current cycle of pattern matching and executing a
single rule. The simulation continues with rule execution after the user
action has been made).
The rule interpreter may be restarted, after being stopped, in one of two ways:
1. by reselecting “Execute Mode,” or
2. by changing the simulation in some way, moving, creating, or deleting
an object on the screen.

4. The Programming Environment 31

“Edit Mode” disables the rules from executing. This mode is useful in
creating and editing the simulation before debugging it. Rule execution may
be single stepped in this mode with the “Execute Single Rule” action.

4.3 Drawing the Simulation

Boxes, ovals, polylines, text strings, and icons can be drawn on the display
screen. New icons can be created by selecting “Make Icon.” Old icons can be
retrieved by selecting “Get Icon.” Once an icon is created or retrieved, the
icon can be placed on the simulation by clicking the desired location in the
main display. Likewise, a box can be created by selecting “Make Box” and
clicking the box’s corner positions in the main display.

Whenever objects are expected to exhibit an identical behavior on the screen,
it is best to make their displays identical, so that multiple rules are not needed
to describe a common behavior. The easiest way to create identical objects is
to create one object and copy it.

4.4 Selecting, Copying, and Moving Objects

Objects may be selected by clicking on them. When an object is selected it is
highlighted by eight small surrounding squares. Multiple objects may be
selected by dragging a rectangle around the objects, or by clicking on the
objects with the shift key held down. (Mac standard)

Once an object or set of objects is selected it may be moved by pulling one of
the objects to the desired location. The selected objects may be copied by
holding down the option key, (also Mac standard) and dragging the objects to
a new location. In this case the original objects stay in the original location
and the copied objects are moved. Objects may be moved or copied between
different windows of the ChemTrains interface.

The selected objects' may be moved by one pixel in any direction with the
arrow keys (also Mac standard.)

Another way to copy objects is using the cut and paste commands. Selected
objects may be cut or copied using the “cut” and “copy” commands or the
command-x (cut) and command-c (copy). To paste objects click the desired
location, and select the “paste” command or command-v.

4.5 Hiding and Unhiding Objects

Objects may be hidden by selecting them and executing “Hide objects.”
Objects are only really hidden in the display if the “Show Hidden Objects?”
toggle is off. So if the “Show Hidden Objects?” toggle is on, the “Hide Objects”
command will appear to do nothing.

32 ChemTrains

4.6 Creating a Rule

The command “Edit or Create Rules” opens up the rule editor and permits
new rules to be created and old rules to be viewed and edited. When creating
a rule, there are three parts that must be specified: the rule name, the pattern
picture, and the result picture. Rules are given names so that they can be
referred to easily in a list. The easiest way to create a rule is to copy items
from the simulation to the pattern picture and the result picture, and then
making appropriate changes (additions, deletions, or movements) to the
result picture. Graphic objects may be dragged between the main display, the
pattern picture, and the result picture. A newly created rule or an edited old
rule may be saved with the “Save Current Rule” command.

To decide what graphic objects should be placed in the pattern picture, select
the objects needed to describe the condition and the objects that may be
modified when the rule executes. Copy these objects from the simulation
display to the pattern. For example, when writing a rule to produce steam in
a beaker when a high flame exists, the pattern picture needs: the high flame
because that determines the state of the substance in the beaker, the beaker
because that is where the phase change will occur, and the previous substance
in the beaker because that has to be replaced by steam. In this example, the
programmer would copy these objects also to the result picture, and replace
the beaker's substance with steam. This rule should appropriately execute
when a high flame exists, and replace the substance in the beaker with steam.

4.7 Variables ,

Objects in the pattern or result of a rule may be variablized by using the
“Variablize Selected Rule Objects” command. A variablized object is
displayed in italics if it is a text string, or else it is displayed with an
overlapping big “V.” A good way to incorporate variables into a rule is to
draw the rule first without variables, debug it as a specific case, and then after
the rule is working for this case, generalize it by variablizing objects that may
match any object. ‘

4.8 Editing an existing Rule

An old rule may be edited either by double clicking on a rule listed in the
“Rule Ordering” or “Rule Trace” display, or by using the “Edit Rule”
command. An edited rule can be modified and resaved. If the name of a rule
is changed, the interface asks whether a new rule should be created leaving
the old rule alone, or the rule should replace the old rule. A new rule that is
similar to an existing rule can be created by editing the existing rule and
changing its name.

The “Hide Rule Editor” command will close the bottom half of the
programming environment which shows the rule editor and its associated
commands.

4. The Programming Environment

4.9 Rule Ordering and Selection

The “Rule Ordering” display shows the rules in their order of priority. The

rules may be ordered with the “Move Rule Up” and “Move Rule Down”
commands. A set of rules that are next to each other in ordering may be
“parallelized” with the “parallelize rules” and “unparallelize rules”
command. When a set of rule is parallelized, that means that the rule
interpreter will select randomly among them, if they are applicable. The
chance of selection between them may be set by the “Rule Priority” attribute

of the rule editor.

4.10 Creating and Editing Grids

Sometimes it is necessary to create either a one or two dimensional grid of
places, such as a long row of connected things or a field of objects that move

around. Figure 40 shows the interface as it is used to create the 64 squares of a
checkers board. The interface permits the dimensions and the exact positions
of the grid to be specified, either by filling out the numbers under “grid
dimensions” or by moving and stretching the existing cells of the grid. Paths
connecting the cells either vertically or horizontally may be specified. The
“[Re]Display Grid” action redisplays the grid if there are any changes. The

“Done” action exits from this interface.

33

(TRelDisplay Grid] (Done) [Hide Grid?

Grid Neme: |board display l
Grid Dimensions
hor. vert,

Grid Size: 8 8

Cell Size: 44 | |44

Cell Spacing: 0 0

Start Position: 10 10
Horizontal Paths

(] Undirected? Label:

[] Directed Right? Label:

[Directed Left? Label:
Vertical Paths

] Undirected? Label:

[] Directed Up? Label:

[] Directed Down? Label:

Figure 40: Environment for editing a single grid.

34 ChemTrains

5. Example Problems and Solutions

The suite of target problems were chosen to include a range of qualitative
problems. Small problems are included to test very specific kinds of
computation. Larger problems are included to test scalability of the language.
This section illustrates the use of ChemTrains in solving four simulation
problems: a mouse travelling in a maze, a turing machine, a tic-tac-toe player,
and a simulation of grasshoppers.

5.1 Maze Search
The maze search problem demonstrates the ability to simulate things moving
around on the screen in an organized behavior. Here is the statement of the

problem:

Show a simple maze, with a mouse at its entrance and cheese at some distant point.
The mouse should move through the maze leaving a string behind it as it moves. If it
reaches a dead end, it should backtrack and try a different route. The mouse should
never look in the same place more than once, except to backtrack. When the mouse sees
the cheese it should stop and eat it.

Figure 41 shows a mouse in the process of searching a maze for cheese. The
mouse had started in the lower right hand corner. '

Q 2 & X
1 | [x
X X
2, %,
% X
X % 5

Figure 41: Display of Maze Simulation during execution.

o

5. Example Problems and Solutions 35

The solution to the maze search problem simulation shown in figure 41
requires that hidden rectangles exist for every corner, dead end, and decision
point in the maze. These rectangles are appropriately connected with hidden
paths. Figure 42 shows the maze simulation when the mouse has completed
the search, and shows the hidden places and connections in the maze.

g” u u ?
Sy He R = = X

& K T

X X

X

U ‘é, ‘ 1 X
S = >

Figure 42: Display of Maze with hidden places and paths.

The three rules required in the maze search problem are shown in figure 43.
One rule allows the mouse to consume the cheese if they’re in the same place.
The second rule allows the mouse to go to a connected unseen place leaving
string behind it. And the third rule allows the mouse to reel in a piece of
string, and leave an “X” marker in the previous place. The mouse will
always pursue unseen places before backing up because the second rule takes
precedence over the third rule.

36 ChemTrains

Rule Name: |eat cheesd

Pattern Picture Result Picture

Rule Name: |look for cheese

Pattern Picture Result Picture

N ! i Q

Rule Name: |backtrack

Pattern Picture Result Picture

=, Q1Y X

Figure 43: Maze Searching Rules.

5.2 A Turing Machine Editor

The Turing Machine problem is added to show that the language is Turing
equivalent. The problem involves not just simulating a particular Turing
program but simulating an editor of Turing machine programs. Here is a
statement of the problem:

Show a Turing Machine tape containing blanks, and an input tape containing 3 0’s
followed by 3 1's followed by 3 2’s. Simulate the Turing Machine program that can

recognize any input string that is a sentence in the language 0"1721,

In addition to displaying the Turing tape and the input tape, display the finite state
machine and a table defining each arc (the input symbol & tape symbol needed, the
tape symbol to write, and the direction to move the tape head.) The solution should
allow the end user to draw and simulate any Turing Machine program.

A possible solution to the general Turing Machine shown in figure 44. The
Turing tape and the input tape are displayed as places connected with directed
paths. The meanings of the finite state machine arcs are specified by labels
which are defined by the table to the right of the FSM. The table defines

5. Example Problems and Solutions

under what conditions an arc may be traversed, and defines what actions

should be taken when it is traversed.

37

input symbols

=> output actions

input |tape symbol

tape write {tape move

al 0 # 4 R
b|oO * & R
¢ 1 * * L
d |1 & & L
el 2 * * R
fl2 & 4 R
g | eot # * S

unaccepted

({0 n)(1 n)(2"n))*

Figure 44: General Turing Machine Simulation.

Rule Name: |traverse arc / move head

Pattern Picture Result Picture

Q—«~—>®

input ftape symbol tape write [tape move input [tape symbol

tape write

tape move

Figure 45: Turing Machine Rule to traverse one transition that matches a table row, one
piece of Turing tape, and one input symbol.

38 ChemTrains

For example from the initial state, arc “a” may be traversed if there is a “0” at
the current location in the input tape and a “#” at the current location in the
Turing Machine tape, and in traversing arc “a” a “#” will be written to the
current position of the TM read head and the TM read head will move to the
right, along a path on the TM tape labeled by an “R.” The simulation is
governed by five ChemTrains rules: four rules for two different parameters:
whether an arc connects states or stays in the same state (e.g. arc “b”) , and
whether an arc moves the TM read head right or left or keeps the read head
in a static position; and one rule to recognize when the input should be
“unaccepted.” Figure 45 shows the rule to traverse an arc that goes from one
~state to another and to traverse a cell of the turing machine, when the head of
the Turing tape and the head of the input tape appropriately match the
traversed arc. Note that many of items in the rule are variable: tape symbol,
the input symbol, the arc label, and all of the items in the table row.

5.3 Tic Tac Toe

The tic-tac-toe playing problem is shown becuase the simulation requires
interaction with the end user and requires relatively complex computations
to produce good play. Here is a statement of the problem:

On the screen, show a Tic Tac Toe grid. Allow the user to start a new game at any time,
and to place an “X” marker at any position on the board when it is his/her turn. After
the user places an “X” the machine should respond by placing an “O” on the board. The
machine should be able to play for a win, block a win, play the center, or play a random
place on the board if there are no other alternatives. The machine should detect when
either player has won or there is a draw. Assume the user is honest - don’t worry about
preventing illegal moves.

Computer is “0." Youare "X."

Drag "user starts” into circle to stert first.
X Drag “machine sterts” into circle to start second.

Drag an "X" onto & board position to move.

mechine starts.
user starts.

O o X

Figure 46: The Tic Tac Toe Simulation.

5. Example Problems and Solutions ‘39

Figure 46 shows the desired end user interface needed in tic tac toe. However,
to get this interface to work correctly in ChemTrains other objects are needed.
Figure 47 shows one possible representation that enables a ChemTrains
solution. A cell is needed for each position on the board, so that actions can
take place in them individually. The cells are labeled with a unique name for
each row, column, and diagonal. The rule shown in figure 48 takes
advantage of the cell labeling to match any row, column, or diagonal
containing two O’s and a blank when it is O’s turn. The rule shown in figure
49 changes the turn from being X’s turn to O’s turn and takes out a blank,
when X has made a move. Other rules are needed for a clearing a board when
a game is restarted, and for playing different kinds of moves.

Computer is “0." You are "X."
' o1 " o2 T o3 Drag “user starts” into circle to start first.
Drag "machine starts” into circle to start second.
B B >< Drag an "X" onto a board position to move.
d1 a2 e
maechine starts.
user starts,
hiadfhdbiiinsn
rz2 ct rz c2 rz2 c3
. X .
d1 d2
r3 cl r3 c2 r3 c3
O ; O X
d2 ‘ di '

Figure 47: The Tic Tac Toe Simulation with hidden objects shown.

Rule Name: lplag O win {
Pattern Picture Result Picture

rt ri rt r/ rt rl

OO = | O O] O

0 plays.

Figure 48: Tic Tac Toe Rule to play a win.

40 ChemTrains

Rule Name: {take out blank

Pattern Picture Result Picture

X plays. ><B 0 plays. X

Figure 49: Tic Tac Toe rule to switch turn mode.

5.4 Grasshopper Lifecycle Simulation

In a grasshopper population, the life cycle of a grasshopper (simplified) is as follows:
An egg hatches, producing a juvenile grasshopper. The juvenile competes with other
juveniles for the resources it needs to stay alive. The juvenile turns into an adult, which
competes with other adults for resources it needs to stay alive and produce eggs (assume
these are different resources than those needed by juveniles). The adult lays a number
of eggs. The eggs “compete” with other eggs for the resources they need to stay alive
and eventually hatch (i.e., they compete to see who doesn’t get eaten).

During each stage of competition, the grasshopper may live or die, depending on the
competition and the resource. Some resources, such as ready-made burrows in which to
lay eggs, can be competed for in a scramble situation, something like an Oklahoma land
rush: an individual grasshopper either gets all of the required resource, or it gets none.
Other resources, such as food, can be competed for in a contest situation, where an
individual may get only part of its required amount, or it may get all. In contest, it’s
possible that no grasshoppers get enough of the resource to survive, and the entire
population dies out. During each stage of the grasshoppers life there will be several
critical resources, some of which may be scramble type and some contest.

Figure 50 shows the simulation running in the summer when all the
grasshoppers are feeding. The display shows a population of juvenile
grasshoppers (the small ones), adult grasshoppers (the bigger ones), a single
adult that may lay eggs, and three types of grass, grass for juveniles (thin
blades), grass for adults (thick blades), and poisonous grass (thickest blades).
The simulation display also shows a clock to keep track of seasons, and a
count of the yearly population.

Figure 51 shows the simulation with the underlying representation pictures.
The hidden objects include:
¢ a grid of connected cells that represent locations of a field,
* pieces of food that the grasshoppers have eaten (shown inside the
grasshoppers),
¢ empty place holders for cells that aren’t occupied, and
¢ a sequence of rectangles to hold the yearly population figures.

5. Example Problems and Solutions

% N 3 : Yearly Populaﬁon:

':‘; Juveniles Adults
B A G WS 1 1
S = a@r s 4
17 9

30 12

8&‘&‘% &g y 25 9

SARE OB e PRV NN 27 13
=y =y sy S 269
S ¢ e @ R - 24 "
=Y S S v I
g W
Figure 50: Grasshopper Simulation.
Yearly Population:
I % %é{ Y Juveniles Adults
- IS e 1 1
IS ISHIE™ > 2

17 9

i
:
E

i |
=¥
' AL 30 12
syl || =] | 35 5
| WA
=
S

A SRS W . 27 13
%%% w [J ii [A ?1
O U | e -

R I N

M_ | g—wﬁz'm- e -M

Figure 51: Grasshopper Simulation (hidden objects shown).

41

42 ChemTrains

This solution uses a simplified version of the grasshopper target problem.
Each grasshopper activity occurs only at specific times of the year. The
simulation uses a cyclic state diagram to represent the changing seasons.
¢ In the spring, the three kinds of grass grows, and the eggs hatch
into juvenile grasshoppers. Hatching eggs compete for vacant
cells. Any egg that can’t find a nearby cell will die.
¢ In the summer, juvenile grasshoppers jump around, eat, and
compete for their food. Juveniles with enough food will be
promoted into adults, otherwise they will die.
e Also in the summer, adult grasshoppers jump around, eat, and
compete for their food. Adults with enough food will be
promoted into egg bearing adults, otherwise they will die.
* In the fall, egg bearing adults lay eggs and die.
* In the winter, all remaining grass dies.
There are 31 rules for describing the behavior: eight for spring, sixteen for
summer, one for fall, three for winter, one for changing the seasons, one for
changing the year marker, and one for halting the simulation when the
sequence of years is complete. Here are descriptions of some representative
rules.

Figure 52&53 show two of the eight rules that govern an adult’'s behavior
during the summer: eating food and jumping toward food. When a
grasshopper eats a piece of food, it is moved inside the body of the
grasshopper and is hidden. The grasshopper needs to carry around all of the
food it has eaten, in order to represent its nourishment. The move rule
places an “M” marker on the grasshopper and on the newly vacant cell.
These markers are used by two other rules to carry over the adult’s stomach
food. This behavior cannot be described with one rule because a grasshopper
may hold an arbitrary number of pieces of food. Other rules needed in the
summer include: grasshopper dies from poison, grasshopper dies from
undernourishment, grasshopper fulfills nourishment, and grasshopper
moves two cells to food. Eight more rules are needed to describe the juvenile
grasshopper’s behavior during summer.

Rule Name: |grasshopper eatd

Pattern Picture Result Picture

=N =

Figure 52: Rule for adult to eat piece of grass in the summer.

5. Example Problems and Solutions 43

Rule Name:]grasshopper moves1 to food l

Pattern Picture Result Picture

su)(er g;‘é 3Mer M %é

&

Figure 53: Rule for adult to jump toward grass in the summer.

Figure 54 shows the rule for hatching a single egg in the spring time. This
rule also increments the counter in the currently active “J” counter. This rule
takes advantage of a feature of ChemTrains that didn’t exist for the earlier
counter problems. The new feature is a set of built-in rules that recognize
“incr,” “decr,” and “clear” as commands that can change a numeric label. The
command is applied to the numeric label if they are both inside the same
container. When the command is executed the command label is removed,
similarly to the previous counter solutions. Instead of multiple objects to
represent a single number, only one label is needed.

Rule Name: |egg stays & hatchee{ |

Pattern Picture Result Picture
O
s MG =

Figure 54: Rule for egg to hatch in the spring.

Figure 55 shows the rule for changing from any season to the next season.
This rule is placed last in the rule priority, so that every rule that may apply
in any season has a chance to fire. If no more rules apply in a season, this rule
will fire, moving the current season marker to the next season.

Rule Name: !seﬁson changes|]

Pattern Picture Result Picture

Figure 55: Rule to change seasons.

44 ChemTrains

6.

References

For further information about ChemTrains or the design rationale behind the
language refer to the following publications:

Bell, B., Using Programming Walkthroughs to Design a Visual Language.
Ph.D. Dissertation, Technical Report CU-CS-581-92, University of Colorado,
January 1992.

Bell, B. & Citrin, W., Specifying Network Communication Protocols with a
Graphical Transformation Rules. Submitted to the International
Workshop on Advanced Visual Interfaces, February 1992.

Bell, B., Citrin, W., Lewis, C., Rieman, R., Weaver, R., Wilde, N., & Zorn, B.
The Programming Walkthrough: A Structured Method for Assessing the
Writability of Programming Languages. Technical Report CU-CS-577-91,
University of Colorado, January 1992.

Bell, B., Rieman, J., & Lewis, C., Usability Testing of a Graphical
Programming System: Things we missed in a programming walkthrough.
Proceedings of CHI'91, 7-13, October 1990.

Lewis, C., Rieman, J., & Bell, B. Problem-Centered Design for
Expressiveness and Facility in a Graphical Programming System. Human-
Computer Interaction 6, 319-355, July 1990.

