Awesime/Cthreads Library

David B. Wagner

CU-CS-567-91 December 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Awesime/Cthreads Library
User’s Manual

David B. Wagner
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

CU-CS-567-91 December 1991

&

University of Colorado at Boulder

Technical Report CU-CS-567-91
Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309

Awesime /Cthreads Library
User’s Manual

David B. Wagner
Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

December 1991

Abstract

The Awesime/Cthreads library is a software package that provides a Mach Cthreads [1]
interface on top of the Awesime thread library. The library allows Cthreads programs to be
written and debugged on machines that do not support the Mach operating system. Such
programs typically run in the Mach environment with no changes required. The underlying
runtime system, Awesime [2], is very portable and currently runs on the DECstation, Sparc
(including multiprocessors such as the Solbourne), Sequent, and Encore architectures.

The Cthreads interface is simple and is ideal for educational use. It has been used as the im-
plementation environment for programming assignments in CSCI 5573, a graduate-level operat-
ing systems course at the University of Colorado. It should also be suitable for an undergraduate-
level operating systems course, or a course in parallel programming.

1 Introduction

The Cthreads lightweight process interface, first developed for the Mach operating system [1], is a
set of extremely simple, easy-to-use parallel programming primitives. A thread is an independent
stream of execution (a “lightweight process”). The interface allows threads to be created and waited
for, and allows threads to return values to other threads. For additional flexibility the interface also
provides monitor and condition variable primitives. It is well known that such primitives provide
a complete foundation on which other synchronization mechanisms (such as semaphores) can be
constructed.

The Awesime/Cthreads library is a software package that provides a Cthreads interface on
top of the Awesime [2] thread library. The library allows Cthreads programs to be written and
debugged on machines that do not support the Mach operating system. Such programs typically
run in the Mach environment with no changes required. The underlying runtime system, Awesime,
is very portable and currently runs on the DECstation, Sparc (including multiprocessors such as
the Solbourne), Sequent, and Encore architectures.

Although the Awesime library is written in C++, the Cthreads interface works in both C and
C++ programs.

2 The Interface

2.1 Primitive Types
The types defined in cthreads.h are:

any.t — anything that will fit in four bytes, e.g., an integer or a pointer (but not a double).
cthread_any t — a pointer to a function that takes an any_t as a parameter and returns an any_t.
cthread_t — a pointer to a cthread.

mutex.t — a pointer to a mutex, i.e., a lock or monitor.

condition_t — a pointer to a condition variable.

string_t — a pointer to a character string.

2.2 Initialization

void cthread_init(); According to the standard Cthread interface, a Cthread program must
call cthread_init() before using any other Cthreads routine. In this implementation, this
routine does nothing. However, you should call it in order to make your code portable.

In this implementation, the actual initialization is done before the users’s code runs. To
accomplish this, it is required that you declare your main routine as _CTHREAD__MAIN_ rather
than main. (Note that there are two underscores between the D and the M.) _CTHREAD_ _MAIN_
will be called by the runtime system with the usual parameters (argec and argv).

2.3 Thread Management

cthread_t cthread fork(cthread fn_t func, any_t parm); This routine is used to create a
new thread. Note that there are only two parameters: the name of the function to be executed
by the new thread and one parameter to be passed to the function. If the function requires
more than one parameter, or if the parameter won’t fit into four bytes, then the function
should be rewritten to take a pointer to a struct containing the multiple parameters, and
parm should be that pointer.

It is usually necessary to explicitly coerce the parameters to be of the appropriate types.

any.t cthread_join(cthread t child); This routine is called by a thread to receive a value
returned by some other thread. The parameter is the value returned by a previous call to
cthread fork. The return value should fit in four bytes; if it won’t, it should be pointer to
the value rather than the value itself.

Note that a call to cthread_join does not return until the thread begin joined terminates.
void cthread_exit(any.t result); This call returns a value that can be retrieved using

cthread_join. The same effect can be achieved simply by executing the statement “return
result” in the function executed by the thread.

void cthread detach(cthread.t child); This tells the runtime system that child will never
be the subject of a cthread_join; it is necessary only for efficiency, not correctness.

It is an error to attempt to join a thread that has been detached. (The probable result is a
core dump.)

void cthread yield(); This causes the calling thread to yield the processor to the Cthreads
scheduler. This implementation of Cthreads does not incorporate timer interrupts, so if you
want your threads to take turns running on only a single processor, you must insert calls to
cthread_yield in strategic places.

2.4 Synchronization

mutex_t mutex.alloc(); Creates a mutex and returns a pointer to it.
void mutex_free(); Deallocates a mutex.

void mutex lock(mutex_t m); Locks a mutex. If the mutex is unavailable, the thread may be
blocked or it may spin indefinitely: the exact behavior is a function of the particular version
of the library in use and is not guaranteed to be either one way or the other in the future. A
spinning lock primitive can always be achieved by using mutex_try.lock (described below)
inside a looping construct. A blocking lock primitive can always be achieved by using a mutex
and a condition variable to implement a binary semaphore.}

int mutex_try lock(mutex.t m); Attempts to lock the mutex, but does not block the thread.
The return value indicates whether the mutex was acquired (1) or not (0).

void mutex unlock(mutex_t m); Self-explanatory.
condition t condition.alloc(); Creates a condition variable and returns a pointer to it.
void condition_free(); Deallocates a condition variable.

void condition wait(conditiont ¢, mutex_t m); Causes the calling thread to block until
some other thread signals the condition variable. Assumes that the caller already has locked
m; m will automatically be released before blocking and re-acquired before returning.

void condition_signal(condition_t ¢); Wakes up exactly one thread that is waiting on this
condition variable (if any). If several threads are waiting for the same condition variable,
there is no way to specify which one will be awakened.

void condition broadcast(conditiont ¢); Wakes up all threads that are waiting on this
condition variable (if any).

Note that condition variables have no memory. In other words, condition_signal or
condition broadcast operations that are performed while no threads are waiting do not have
any effect on subsequent calls to condition wait.

! A blocking lock can also be achieved by combining mutex_try_lock, cthread yield, and a looping construct, but
this may cause unnecessary context switches.

2.5 Unsupported Routines

The following routines are part of the standard Cthreads interface but are UNSUPPORTED by
this implementation:

void mutex_clear(mutex_t m);
void condition_init(condition_t ¢);

void condition_clear(condition_t ¢);

This is a consequence of the fact that the implementation does not allow declaration of a mutex
or a condition variable statically; you must dynamically allocate them using mutex_alloc() and
condition_alloc().

2.6 Extensions

The Awesime/Cthreads library supports the type barrier_t, which is not part of the standard
Cthreads interface. The following operations are supported on objects of this type:

barrier_t barrier_alloc(int n); Creates a barrier of height n (see below) and returns a
pointer to it.

void barrier_free(); Deallocates a barrier.

void barrier_rendezvous(barrier_t); For a barrier of height n, this call blocks the first n-1
callers. When the n-th call is made, all n callers are released, and the barrier is reset to its
original state.

2.7 Miscellaneous

The following routines are useful for printing debugging or error messages; their use should be
self-explanatory:

cthread_t cthread_self();

void cthread_set_name(cthread_t, string_t);
string_t cthread_name(cthread_t);

void mutex_set_name(mutex_t, string_t);
string_t mutex_name(mutex_t);

void condition_set_name(condition_%t, string_t);

string_t condition_name(condition_t);
void cthread_set_data(cthread_t, any_t);

any_t cthread_data(cthread_t);

3 Compiling, Linking, and Running

The program must include the definition file cthreads.h.

Because the Awesime/Cthreads library is written in the GNU C++ programming language, the
GNU C++ compiler must be used to link a program to the library. Libaries should be linked into
the application in the following order: -lcthread -lawe2 -lg++.

A sample GNUmakefile is given in Appendix A. The locations of all relevant files on machines
at the University of Colorado are given in Appendix B.

The number of processors to be used by the program is specified by the UNIX environment
variable CTHREAD_CPUS (default: 1). Unfortunately, it is not possible for the user to specify this
number programmatically; it needs to be known before the main thread is created.

4 An Example

The code shown in Figures 1-3 illustrates a solution to the producer-consumer problem with mul-
tiple buffers.
There are several noteworthy features of this example:

o The program source must include the file cthreads.h before any Cthreads constructs are
used.

¢ The implementation requires that the main routine be declared _CTHREAD__MAIN_ rather
than main. (Note that there are two underscores between the D and the M.) The Cthreads
library will provide the main routine expected by the UNIX linker; this will in turn call
.CTHREAD__MAIN_ with the usual parameters (argc and argv).

o Although the mutex_t and condition_t types provide the functionality of monitors and
conditions variables, there is no syntactic support for monitors. The Cthreads equivalent of
the monitor, the mutex._t, must be explicitly acquired and released by calls to mutex_lock
and mutex_unlock.

e waiting for a condition variable automatically releases the associated mutex_t, and the
mutex_t is automatically re-acquired after being signaled but before proceeding. Note, how-
ever, that the associated mutex_t must be supplied explicitly in the call to condition wait;
there is no way to permanently bind a particular mutex_t to a particular condition_t’

¢ The combined semantics of the mutex_t and condition t types are those of Mesa moni-
tors [4]. In contrast to a Hoare monitor [3], there is no guarantee that a signaled thread
will run immediately, or even that it will be the next thread to acquire the mutex_t. The
ramification of this is that every call to condition wait should be enclosed in a loop that
checks for the boolean condition that is implicitly associated with the given condition_t.

#include “cthreads.h"

mutex_t themonitor;
condition_t full, empty;
#define BUFSZ 1

int buffer[BUFSZ];

int first_empty = O;

int first_full = 0;

_CTHREAD__MAIN_(argc, argv)
int argc;

char **argv;

{ cthread_t child;

themonitor = mutex_alloc();

full = condition_alloc();

empty = condition_alloc();

child = cthread_fork(consumer, 0);
cthread_detach(child);

child = cthread_fork(producer, 4);
return O;

Figure 1: Global declarations and the main routine.

int producer (dummy)

int dummy; /* not used */

{ int i;

while (/* not done */)
mutex_lock(themonitor);
while ((first_empty+1)%BUFSZ == first_full)
condition_wait(empty, themonitor);

buffer[first_empty] = /* data */;
first_empty = (first_empty+1)YBUFSZ;
condition_signal(full);
mutex_unlock(themonitor);

Figure 2: The producer.

int consumer (dummy)

int dummy; /* not used */

{ int b;

while(/* not done */) {
mutex_lock(themonitor);
while (first_empty == first_full)
condition_wait(full,themonitor);

b = buffer[first_fulll;
first_full = (first_full+1)},BUFSZ;
condition_signal(empty);
mutex_unlock(themonitor);

Figure 3: The consumer.

A big advantage of Mesa monitor semantics, assuming the programmer is sufficiently disci-
plined, is that a condition_signal or condition broadcast is never an incorrect thing to

do.

“Unorthodox Behavior”

The library does not perform preemptive scheduling. Thus, failure to use enough processors
can cause a deadlock if busy waiting is used.

The program will exit silently when all C-threads are dead or blocked. This includes the
thread that runs _CTHREAD__MAIN_. There are two ramifications of this:

— If the program deadlocks, it will exit without printing any diagnostic. This can be
confusing the first time it happens, since the natural expectation is for a deadlocked
program to “hang.”

In the event that this happens, the recommended course of action is to insert print state-
ments (to stderr) immediately before every call to a blocking primitive (cthread_join,

mutex.lock, condition wait) in the program. This can give you the identity of the last
thread to block.

— Since the main thread is a Cthread, not a UNIX thread, the program may not exit
after the main thread exits (assuming there are other ready threads). On some other
implementations, notably the NeXT machine, the entire program exits if the main thread
exits.

The library creates one UNIX process per processor. In the case of multiple processors, the
library also creates a large temporary file (approximately 2 megabytes) into which shared
memory is mapped. This file will go away when all UNIX processes associated with the
program have exited. However, it can occasionally happen that if the program terminates

abnormally, some of the UNIX processes may become orphans. If this happens, the temporary
file will not go away until they are hunted down and killed. Failure to notice this situation
when it happens can cause your disk space to fill up very quickly.

e A corollary of the previous point is that core files, when dumped, can be very large.

6 Troubleshooting

Table 1 points out some common problems and what to do about them.

A Sample GNUmakefile

The directory pathnames shown in this makefile are valid on tramp, a Sequent Symmetry multi-
processor owned by Computing and Network Services of the University of Colorado. This makefile
should be used only with the gnumake utility.

TARGET - program to build

0BJS ~ object modules ending in .o
##

C++ program sources should end in .cc
C program sources should end in .c
TARGET = main

COBJ = main.o

AWE2 = [fusers/csci/grunwald/Awe2
AWESIMELIB = -L$(AWE2)/1ib -lawe2-g++

CTHREAD = /users/csci/wagner/Cthreads
CTHREADINC = -I$(CTHREAD)

CTHREADLIB = -L$(CTHREAD) -lcthread

INCL = -I. $(CTHREADINC)

LIBS = $(CTHREADLIB) $(AWESIMELIB) -lg++
C =gcc

CFLAGS := ${CFLAGS} ${INCL} -g

C++ =g++

C++FLAGS := ${C++FLAGS} ${INCL} -0 -g

$ (TARGET) : $(COBJ)
$(C++) $(C++FLAGS) -o $(TARGET) $(COBJ) $(LIBS)

Symptom l

Possible cause/solution

Program won’t link

Are you using Gnu g++ to compile and link?

Program dies as soon as it uses
any library primitive

Failure to initialize properly. Is your main
routine declared _CTHREAD__MAIN_?

Core dump using mutex or
condition primitives

Did you remember to call mutex_alloc() or
condition_alloc(), as appropriate?

Core dump using | Tried to join on a detached thread, or tried to
cthread_join join on the same thread more than once.
Return value from | Trying to return something that doesn’t fit

cthread_join is nonsense

in 4 bytes, e.g., a double. Return a pointer
instead.

I am returning a pointer, and
it’s still nonsense

You probably returned a pointer to a value
inside the stack of the now-dead thread. Allo-
cate space using malloc() for values that are
returned by reference.

Program terminates mysteri-
ously without apparent error

Probably a deadlock; see Section 5 for sug-
gestions. Busy waiting with fewer processors
than threads will almost surely cause a dead-
lock, unless a cthread_yield is placed inside
every busy wait loop.

Program fails immedi-
ately with the following error:
Assertion bytesWritten
oldData failed:...

Can’t write the temporary file. Is the cur-
rent directory writable? Is there enough disk
space? If disk space is tight, try doing a cd
to another file system (e.g., /tmp) before run-
ning the program.

Program won’t execute in par-
allel on a multiprocessor

Are you setting the CTHREAD_CPUS environ-
ment variable?

Disk space is steadily leaking
away

You have orphaned processes. Hunt them

down and kill them.

Table 1:

Troubleshooting guide.

B Location of Software at the University of Colorado

Persons associated with the University of Colorado may be able to access the library on the following
machines:

tramp: This is a 6-processor Sequent Symmetry owned by Computing and Network Services. The
relevant pathnames are:

/users/csci/grunwald/Awe2/1ib
/users/csci/wagner/Cthreads

Tramp is currently running a slightly older version of the library because it has an older
version of the Gnu software.

srlnet: This is a group of DECStations owned by the Systems Research Laboratory of the Depart-
ment of Computer Science; it includes bullwinkle, coco, foobar, goober, mumble, and tile.
The relevant pathnames are:

/srl/Awe2/1lib
/srl/Awe2/Cthreads/include
/srl/Awe2/Cthreads/lib

CS sun-4’s: This includes anchor as well as eclipse, a 3-processor Solbourne multiprocessor. (Users
must sign a non-disclosure agreement in order to get an account on eclipse.) The pathnames
are the same as on the srlnet machines.

References

[1] CoopPER, E., AND DRrRAVES, R. C-Threads. Tech. Rep. CMU-CS-88-154, Carnegie-Mellon
University, Feb. 1988.

[2] GRUNWALD, D. A user’s guide to Awesime, an object oriented parallel programming and
simulation system. Tech. Rep. CMU-CS-88-154, Carnegie-Mellon University, Feb. 1988.

[3] HoARrE, C. Monitors: An operating system structuring concept. CACM 21, 8 (Aug. 1978),
666677,

[4] LaMpsoN, B., AND REDELL, D. Experience with processes and monitors in mesa. CACM 19,
5 (Feb. 1980), 105-117.

10

