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ABSTRACT

It has been suggested that process programming can improve
the effectiveness of software development. The basic idea is
simple: describe development processes using programming
language constructs. In this paper we present a process pro-
gram for the formal design process developed by Dijkstra and
Gries. This method takes as input a pre- and post-condition
specification written in predicate logic, and through a
sequence of steps transforms it into an algorithm written
using guarded commands. Our process program uses a
library of cliches describing solutions to common program-
ming problems. We have constructed a prototype implemen-
tation written in Prolog and used it to generate a design for

Kemmerer’s Library Problem.

1. Imtroduction

Despite years of effort by both researchers and
practitioners the production of software remains both
difficult and expensive [8]; software developments
remain notoriously difficult to manage and are rou-
tinely completed late and/or over budget [11]. There
are many opinions as to the essential (or accidental)
causes of this problem, and many suggestions for its
solution [3]. One interesting way that solutions stra-
tegies may be arranged is along the spectrum from pro-
duct centered to process centered.

A commercial software release contains many
different products emeshed in a web of extremely com-
plex relationships. The processes used to produce
software systems are also complex, as they must pro-
duce and maintain components in the correct relation-
ships. A product centered strategy focuses attention on
the products produced by the software process, while a
process centered strategy focuses on the process itself.
Currently, there is significant interest in process cen-
tered strategies [1,12,13].

One approach being pursued is process program-
ming [16,17,23]. The initial idea is simple: describe
software processes using programming language con-
structs and notations. Ultimately, this should allow
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software development to become automated; unfor-
tunately, an engineer wishing to automate software
development is met with an immediate obstacle: typi-
cally, the processes being used are not well defined or
understood. Fortunately, process programming can
also enhance process understanding. Describing tech-
niques in enough detail to even approach automation
should dramatically increase comprehension and possi-
bly even improve the processes themselves.

In this paper, we present a process program for
the formal design method developed by Dijkstra and
Gries [6,7,10]. This method takes a pre- and post-
condition specification written in first-order predicate
logic and produces an algorithm design written in
guarded commands. The process uses a library of
cliches describing solutions to common programming
problems. The process consists of a sequence of steps,
each of which applies a pre-verified cliche to the
current partial design. Since each cliche only generates
correct transformations, the final design satisfies the
original specification.

The undertaking just described is somewhat
similar to work performed in the artificial intelligence
community under the title automatic programming
[2,9,18,20-22]. According to [19], an ideal automatic
programming system would be general purpose, com-
pletely automatic, and end user oriented. While this is
unrealistic, there are a number of workable approaches.
For example, a very high-level language sacrifices
end-user orientation, but is general purpose and com-
pletely automatic. The process program described in
this paper can be thought of as a translator for a very
high-level language: the specifications extend conven-
tional programming languages with quantifiers and
high-level data types. The process is also non-
interactive: design derivation proceeds with no inter-
vention from the programmer.

In the remainder of this paper, we describe this
process program in detail. In section two we give some
background on the Gries/Dijkstra design method, and
in section three we present our process program and
argue for its correctness. In section four we present
some cliches used by the process, and in section five



we show how the program generates a design for
Kemmerer’s Library Problem from a formal
specification. In section six we briefly discuss a proto-
type implementation of this process written in Prolog,
and finally, in section seven we summarize and draw
some conclusions from our experience.

2. Gries/Dijkstra Design

The process we are considering was developed
by Dijkstra and Gries [6,7,10]. The method is in some
sense general, but is most applicable to problems in
algorithm design. The Gries/Dijkstra process is an
example of the general class of methods described by
Figure 1. Processes of these types have two levels. At
the lower level, a derivation process transforms a prob-
lem specification into a solution using a library of
cliches that represent solutions to common problems.
Since the correctness of the final solution depends on
the correctness of the cliches used in its derivation, the
upper level uses verification rules (either formal or
informal) to certify that the cliches in the library are
correct.

In the Gries/Dijkstra process, the problem
specifications are pre- and post-condition specifications
written using first-order predicate logic, the verification
rules are formal proof rules for programming

Verification

Rules

Cliche Problem
Derivation Specifications

Solution
Derivation

Correct
Solutions

Figure 1. Cliche Driven Development Process

constructs, the cliches are transformations from
specifications to partial programs, and the correct solu-
tions are programs that are totally correct with respect
to their specifications. For example, the following
specification is for a code fragment to compute the sum
of the elements of an array.

var b : array[0..n-1] of integer ;
var s : integer ;

{Q: true}

< S >(s:out integer) ;

{R: s = (Zk:0<k<n:blk])}

The post-condition "R" states that s is equal to the sum
of the array elements from zero through "p-1".

Using the Gries/Dijkstra method, design might
proceed as follows, First, we notice that the summation
operator is not built into our programming language;
therefore, we must use a loop to iterate over the array.
We will construct this loop and formally verify its
correctness simultaneously. We will specify the loop
using a predicate called the invariant, which must be
true both before and after each iteration of the loop,
and an integer function called the bound, which must
remain greater than or equal to zero, but be decreased
by each execution of the loop body.

We can develop an invariant by weakening the
post-condition; in other words, the invariant is an easier
to satisfy version of the post-condition. There are at
least three ways to weaken a post-condition: delete a
conjunct, replace a constant by a variable, and enlarge
the range of a variable. In this case, we can replace the
constant "n" with the variable "j" to obtain the follow-
ing invariant.

{inv P: 0<3jSn A s=(Zk:0<k<3j:b[k])}

It can be initialized with the simultaneous assignment
"s,j:==0,0". Since we replaced a constant by a variable
to obtain the invariant from the post-condition, the loop
guard is just that the variable is not equal to the con-
stant ("j#n"), and the bound function is just the differ-
ence between the constant and the variable ("n-j"). We
therefore have the following design.

var j : integer ;

{Q: true}

s,3:=0,0 ;

{inv P: 0<j<n A s=(Zk:0<k<j:b[k])}
{bnd t: n-3j}

do j#n — < 8§ > od

{R: s = (Zk:0%k<n:blk])}

To complete the design, we must construct a
body for the loop that maintains the invariant and



decreases the bound. We can decrease the bound with
the statement "j:=j+1", but to maintain the invariant we
must also adjust the value of "s". This can be accom-
plished with the  simultaneous  assignment
"s,j:=s+b[jl,j+1". The combination of the loop invari-
ant ("0<j<n) and guard (j#n) guarantees that "b[j]" will
always have a valid value.

We have now produced the following design,
which can be proven correct using standard rules.

{Q: true}

s8,3:=0,0 ;

{inv P: 0<jSn A s=(Zk:0<k<j:b[k])}
{bnd t: n-j}

do j#n - s,j:=s+b[j],j+1 od

{R: 8 = (Zk:05k<n:b[k])}

We believe that the Gries/Dijkstra process is a
good subject for process programming. It is formal and
reasonably well defined; therefore, it should be reason-
ably easy to either construct a program for the process,
or determine why it can not be done. We have under-
taken this exercise and determined that a process pro-
gram can be written. We will now describe that pro-
gram in some detail.

3. Process Program

In this section, we present the design for our pro-
cess program using a guarded command style notation.
First, we describe the basic types used in the process,
then we present some routines that support the pro-
gram, and then finally we present the two main rou-
tines: "derive_design” and "derive_subs". We then
argue for correctness of the process assuming the
correctness of the cliches it uses. While our argument
does not constitute a fully formal proof, it does
significantly increase our confidence in the correctness
of the design.

Figure 2 shows the declarations for the basic
types used in the design process. The most fundamen-
tal is the design ("dsgn") record. Each "dsgn" contains
a pre- and post-condition, both of which are boolean
expressions; a symbol table ("st"), defining the context
in which the design is to be interpreted; and an abstract
syntax tree for the command. The structure of the tree
depends on the statement represented. For example,
the record representing an assignment statement has a
"cmd" field of "asgn", and its variant record part
includes a list of the expressions to be computed and
the variables they are to be assigned to.

The record representing a loop has a "cmd" field
of "do" and a field for each sub-component of the loop.
The "init"” field is a design for the loop’s initialization,
while the "inv" field holds the predicate that is the
loop’s invariant. The "bnd" component is an integer

type dsgn = record
pre,post : bool expr;
st : symtab ;
case cmd of
asgn: ( v : seqg(sym) ;
e : seqg(expr) )
if : ( emds : seq(gemd)):
do : ( init : dsgn :
inv : pred ;
bnd : int_func ;
grd : bool_expr ;
dec : dsgn ;
body : dsgn Yy
seq : ( sl,s2: dsgn )y
skip, undef : ( Yy 2
end dsgn ;
type spec = dsgn where
s:spec => sg.cmd=undef ;
type gcmd = record
grd : bool expr ;
cmd : dsgn ;

end gcmd ;

type cliche = record
function
pre(s:spec) : boolean;
function
apply (s:spec) : dsgn ;

end cliche
where c:cliche,s:spec =>
(c.pre(s) => refines(s,c.apply(s)));

var all cliches : seq(cliche) ;

Figure 2. Design Process Type Definitions

function that serves as the loop’s bound function, while
the "grd" field holds the boolean expression that is the
loop guard. The "dec" component is a design for code
that decreases the bound, while "body" is a design for
the remainder of the loop body.

The record representing an if statment has a
"cmd" field of "if" and holds a list of guarded com-
mands. Each "gcmd" record includes both a boolean
expression (the guard) and a design (the command).
The record representing a null statement has a "cmd"
field of "skip" and its variant part is empty. A design
record with a "cmd" field of "undef' represents a
specification ("spec'"): pre- and post-conditions with no
statement in between.



The records representing cliches consist of two
functions. "Pre" takes a specification as an argument
and retums a boolean result, while "apply" takes a
specification and retums a design. "Pre" evaluates to
true if the cliche is applicable to the specification in
question, while "apply" returns the result of applying
the cliche in the proper manner. Cliches are con-
strained to maintain the "refines” relation; specifically,

function dsgneq(dl,d2:dsgn) tboolean;
post dsgneq =
( dl.st=d2.st A
dl.pre=d2.pre A
dl.post=d2.post A
dl.cmd=d2.cmd ) ;

function refines(dl,d2:dsgn) :boolean
where
d,dl : dsgn =>
( dsgneqg(d,dl) A
d.cmde {asgn, skip,undef}
refines(d,dl) ) A
( dsgneg(d,dl) A d.cmde€ {do} A
refines(d.body,dl.body) =>
refines(d,dl) ) A
( dsgneqg(d,dl) A d.cmde€ {seq} A
refines(d.sl,dl.sl) A
refines(d.s2,dl.82) =>
refines(d,dl) ) A
( dsgneqg(d,dl) A d.cmde {if} A
(Vj:0<j<|d.cmd] ¢
refines (d.cmds[j],
dl.cmds[j])) =>
refines(d,dl) ) ;

Il
\%

function optimize (d:dsgn)
where d:dsgn =>
refines (d, optimize(d))

: dsgn ;

function complete(d:dsgn) : boolean ;
post complete = (
d.cmde {skip,asgn} V
d.cmde {1if} A
(Veced.cmds:
complete (c.cmd) ) V
d.cmde {do} A
complete (d.body) V
d.cmd€ {seq} A
complete (d.sl) A
complete (d.s2) ) ;

Figure 3. Design Process Support Routines

for any cliche "c", if "c.pre(s)" evaluates to true, then
the value returned by "c.apply(s)" refines "s". There is
a global variable "all_cliches" that holds all the cliches
currently known to the system.

Figure 3 shows some support routines for the
design process. "Dsgneq” is true if two designs are
equivalent at the top-level; more precisely, if they have
the same symbol table, pre- and post-condition, and
command. "Refines” is used to define the correctness
of the design process. For the purposes of this paper,
the function is not precisely defined; however, the pro-
perties it must satisfy for the process to be correct are
enumerated.

For example, if two designs are equal at the top-
level and have a "cmd" of "undef”, "skip", or "asgn"
then they refine one another. This implies that any
specification refines itself. If the designs of two loops
are equal at the top-level and the body of the second
refines the body of the first, then the second design
refines the first one. If the designs of two statement
sequences are equal at the top-level, and the sub-
statments refine each other, then so do the designs. If
the designs of two if statments are "dsgneq" and the
guarded commands of the second refine those of the
first, then the second design is a refinement of the first.

"Optimize" is a function that takes a design as
input and returns a new one that has improved perfor-
mance characteristics. At this point, we will specify
nothing about it except that it preserves the "refines"
relation. The function "complete" returns true if all the
unknowns in a design have been filled in; in other
words, if the design is for an assignment or null state-
ment, or if it is for a loop and the body is completed, or
if it is for a sequence and the sub-statements are done,
or if it is for an if statement and all the guarded com-

mands have been completed.
Figure 4 shows the code for the design process
itself. The function “derive_design" takes a

specification and if possible produces a complete
design. In some cases it may not be able to produce a
finished program, but it always preserves the "refines"
relation. The body of "derive_design” consists of a sin-
gle loop with an embedded conditional. Each iteration
of the loop is concemed with a different cliche. If the
current cliche is applicable to the specification, then it
is applied and the result passed to "derive_subs" and
then "optimize". If the cliche is not applicable then
nothing is done. The loop terminates when a complete
design is produced, or when all the cliches have been
tried.

The function "derive_subs" takes a design and, if
necessary, derives sub-designs to produce a complete
program. The body consists of an if statment with an
alternative for each command type. If the top-level
design is for an if statement, then "derive_subs" loops



function derive_ design(s:spec):dsgn is

{Q: true}
var d : dsgn := s ; k : integer := 0 ;
{inv P: 0sk<|all cliches| A refines(s,d)}
{bnd t: |all cliches|-k}
do k#|all cliches]| A —complete(d) —
¢,k := all cliches[k], k+l ;
if c.pre(s) —
d := optimize (
derive_ subs (c.apply(s))):;
[ —c.pre(s) — skip
£i ;
ed ;
derive_design := d ;
{R: refines(s,derive_design)}
end derive_design ;
function derive subs(d:dsgn) : dsgn is
{Q: true}
var ds : dsgn := d ;
if d.cmde {if} —
var k: integer := 0 ;
{inv P: 0<k<|d.cmds]| A
dsgneg(d,ds) A
(V§:085<k:
refines(d.cmds[j],
ds.cmds[j]))}
{bnd t: |d.cmds]|-k}
do k#|d.cmds| —
ds.cmds[k], k :=
derive design(d.cmds[k]l), k+1;
od ;
I d.cmde{do} —
ds.body := derive_ design(d.body) ;
[ d.cmde {seq} —
ds.sl := derive_design(d.sl) ;
ds.s2 := derive_design(d.s2) ;
[ ds.cmde {asgn, skip,undef} — skip ;
£i ;
derive_ subs := ds ;
{R: refines(d,derive_subs)}
end derive subs ;

Figure 4. Design Process Code

through all the guarded commands generating a design
for each one. If the top-level design is for a loop, then
a design for the body is generated. If the top-level
design is for a sequence of statements, then a design is
generated for each one. If the top-level design is for an
assignment statement, a null command, or an unknown,

then nothing is done.

3.1. Proof of Process Code

We can now argue that the design process
degcribed in Figure 4 ig correct in the gensge that it
always creates designs that refine their specifications.
The argument is reasonably straight forward, but fairly
lengthy. First we will demonstrate that "derive_subs"
is correct with respect to its specification, then we use
this result to show that "derive_design" is also correct.
In both cases, the demonstrations will be in terms of the
"refines” relation that must be maintained by applica-
tion of the cliches. Therefore, the process will function
correctly as long as it uses correct cliches.

Since "derive_design" and "derive_subs" are
mutually recursive, to be extremely formal we should
really perform an induction on the number of recursive
calls, or a structural induction on the "dsgn" data type.
For the purposes of this paper, suffice it to say that the
base case is when "derive_subs” is called with an
assignment, null or unknown statement, and that the
induction step then assumes that only n recursive calls
are needed and that they will execute correctly.

For the present, we will proceed less rigorously,
performing a detailed check on the process design
rather than a fully formal proof. We will begin by
assuming that

d:dsgn => refines(d,derive_design(d))
and using this to show that
d:dsgn => refines(d,derive_subs(d)).

The latter implied by the pre- and post-conditions for
"derive_subs"; therefore, we will prove the following
theorem.

Theorem 1: {Q} derive_subs.body {R}
{Q} ds:=d {Q1} IF {R1} derive_subs:=ds {R}
where Q1: dsgneq(d,ds), R1: refines(d,ds)
1) {Q}dsi=d {Ql}
true => dsgneq(d,d)
2) {Q1}IF {R1} bylemmal
3) {R1} derive_subs:=ds {R}
refines(d,ds) => refines(d,ds)
therefore, {Q} derive_subs.body {R}.
Lemma 1: {Q1} IF {R1}
where Q1: dsgneq(d,ds), R1: refines(d,ds)
1) Q1 => d.cmde{if} Vv
d.cmde {do} V d.cmde {seq} V
d.cmde {asgn,skip,undef}
2.1) {Ql Ad.cmde {if}} S1 {R1}
lemma 1.1



22) {Q1Ad.cmde{do}}S2 {R1}
dsgneq(d,ds) A d.cmde {do} A
refines(d.body,ds.body) =>
refines(d,ds)
23) {QlAd.cmde({seq}}S3 {R1}
dsgneq(d,ds) A d.cmde {seq} A
refines(d.s1,ds.s1) A
refines(d.sl,ds.d1) =>
refines(d,ds)
24) {Q1 Ad.cmde {asgn,skip,undef} } skip {R1}
dsgneq(d,ds) A
d.cmde {asgn,skip,undef} =>
refines(d,ds)
therefore {Q1} IF {R1}.

Lemma 1.1: {Q1 Ad.cmde {if}} S1 {R1}
where Q1: dsgneq(d,ds), R1: refines(d,ds)

1) {Ql Ad.cmde{if}} k:=0 {P}
{Q1 Ad.cmde {if}} => P§
=> 0<0<|d.cmds | A dsgneq(d,ds) A
(V}:0gj<0:
refines(d.cmds[j],ds.cmds[j1))
2) {PAk#|d.cmds]|} S {P}
PAk#|dcmds]| A
refines(d.cmds[k],ds.cmds[k])
=> Pk,
=> 0<k+1<|d.cmds| A dsgneq(d,ds) A
(Vj:05<k+1:
refines(d.cmds[j],ds.cmds{j]))
3) PAk=|d.cmds| =>R
dsgneq(d,ds) A
(Vj:0sj< | d.cmds | ;
refines(d.cmds[j],ds.cmdsfj])) =>
refines(d,ds) ;
4) k#|d.cmds| => |d.cmds|-k>0
5) {PAk#|d.cmds]}tl:=t; S {t<tl}
PAk#|d.cmds| =>
| d.cmds | -(k+1)<| d.cmds | -k
therefore, {Q1 A d.cmde {if}} S1 {R1}

The proof of "derive_subs" is now complete. We
can now use this result to prove the following.

s:spec => refines(s,derive_design(d))

This is implied by the pre- and post-conditions for
"derive_design" therefore, we will prove the following
theorem.
Theorem 2: {Q} derive_design.body {R}
{Q} S1{P} DO {PA—B} S2 {R}
1) {Q}dk:=s,0 {P}
Q =>Pj
=> (<0< all_cliches | A refines(s,s)
2) {P}DO {PA—B} bylemma?2
3) {PA—B} derive_design:=d {R}
refines(s,d) => refines(s,d)

therefore, {Q} derive_design.body {R}.
Lemma 2:; {P} DO {PA—B}

1) {PAB}S{P}

let Q1: —complete(d) A c=all_cliches[k-1] A

0=k<all_cliches |

{PAB} ck:=all_cliches[k],k+1 {PAQ1}

{PAQL}IF {P} by lemma 2.1
2) PAk#|all_cliches| A —complete(d) =>

| all_cliches | -k=0

3) {PAB}tl:=t; S {t<t1}

PAB=>

| all_cliches | -(k+1)<| all_cliches |-k
therefore, {P} DO {PA—B}.
Lemma 2.1: {PAQ1} IF {P}
1) PAQI =>c.pre(s) V —c.pre(s)
2.1y {PAQIlAcpre(s)} S1{P}
P A Q1 A c.pre(s) A refines(s,d) =>
0<k<|all_cliches | A refines(s,d)
22y {PAQLA—c.pre(s)} S2 {P}
PA QL A—c.pre(s) =>P

therefore, {P A Q1} IF {P}.

The proof of "derive_design" is now complete,
and with it the proof of the entire process. We have not
been extremely formal, but we have significantly
increased our confidence that the program preserves the
"refines” relation, assuming it is maintained by the
"apply” function of each cliche. In other words, we
have argued that this process will produce correct
designs if it uses correct cliches. We will now turn to
an examination of cliches and their correctness.

4, Cliches

The number of cliches that can be used in the
design process is infinite; for the purposes of this paper,
we will limit ourselves to three: the
"simple_assignment" cliche generates (multiple)
assignment statements, the "simple_if then_else"
cliche generates two branch if-then-else statements
where the conditions are the negation of each other,
and the "conditional_iteration_on_set" cliche generates
loops with an embedded conditional.

We will discuss each cliche in turn, and argue
that its application preserves the "refines" relationship.
For the purposes of this paper, we will assume that
"refines” holds when the design produced by applica-
tion of a cliche is totally correct with respect to the
specification from which it was produced. We will
therefore show that application of each cliche produces
designs that can be proven totally correct using stan-
dard proof rules [10, 15]

4.1. Simple_ Assignment

The following is a simplified representation of
the "simple_assignment" cliche.



cliche simple assignment is

{Q} Vari..Vary := Solni..Solny {R}
if
Q => R[[Var;..Vary / Soln;..Solnyll

end simple assignment ;

The cliche states that "{Q} Var;..Vary := Soln;..Solny
{R}" is true if "Q" implies "R" with "Soln;..Solny"
substituted for "Var;..Vary". This representation
makes understanding the cliche simple, and we can see
that its correctness follows directly from the proof rule
for assignment statements [10, 15].

if Q =>RZ then {Q} x:=e {R}

However, the above representation does not give much
detail about how the cliche is implemented

Figure 5 shows a more detailed description of the
"simple_assignment” cliche. To discuss this cliche
description, we must first present some of the infras-
tructure on which our process program is built. A
fairly standard symbol table underlies much of the pro-
gram. We will not describe it in detail; however,
understanding of the following routines is necessary.

funotion modlist (s:symtab) : seg(sym);
function uselist (s:symtab) : seq(sym);
function newsym(ss:seq(sym)) :seg(sym);

The function "modlist" takes a symbol table as an
argument and returns a list of the modifiable symbols in
the current context. Similarly, "uselist” returns a list of
the usable or accessible symbols. The function
"newsym" takes a sequence of symbols and produces a
new sequence that is identical to the original, except
that the names of all symbols in the new list are unique,
in other words they match no other symbol.

To apply a general cliche for assignment state-
ments, we must somehow find a list of expressions that
make a boolean expression true. Specifically, to gen-
erate an assignment "{Q} x:=e¢ {R}" we must find a list
of expressions, "e", that make "Q => RZ" evaluate to
true. In general this problem is undecidable [15]. Our
purpose is not to consider the difficulties and technol-
ogy of theorem proving; therefore, we will encapsulate
the problem by defining the following routines.

cliche simple assignment is

function pre (s:spec) : boolean is
{Q: true}
var m :seq(sym) := modlist(s.st);
var u :seq(sym) := uselist(s.st);
var ss:seqg(sym) := newsym(m) ;
pre := can_solve(ss,u
bool_ expr(s.pre =>
subst (ss,m,s.post)));
{R: pre = asgn_able(s)}
end pre ;

function apply (s:spec)
{Q: asgn able(s)}
var m :s;é(sym) :
var u :seq(sym) :
var ss:seq(sym) :
var np:bool expr:=
subst (ss, m,s.post) ;

: dsgn is

modlist(s.st);
uselist (s.st);
newsym(m) ;

tonn

apply.e :=
solve (ss,u,
bool expr(s.pre => np));
apply.st, apply.pre, apply.post :=
s.st,s.pre,s.post;
apply.cmd, apply.v := asgn,m ;
{R: asgn_rule(apply}}
end apply ;

end simple assignment ;

Figure 5. Simple Assignment Cliche

predicate solvable (m,u:seq(sym);
f:bool expr) is
(dss:seg(expr(u)):
findable(ssg,m,u, £) A
provable (subst (ss,m,£f)));

function can solve (m,u:seq(sym);
f:bool_expr) :boolean;
can_solve (m,u,f) =
solvable (m,u, £f) ;

post

function solve (m,u:seq(sym) ;
f:bool_ expr) :seq(expr);
pre solvable (m,u, £f) ;
post provable (subst (solve,m, f)) ;

A boolean expression "f" is "solvable" for modifiable

symbols "m" by terms in the usable symbols "u" if
there exists a list of expressions "ss" such that "f" with



" "

ss" substituted for "m" is provably correct, and "ss"

can be found by the solution generation routine. The
function "can_solve" returns true if and only if "solv-
able" is true, while "solve" is called with a solvable
problem and returns a solution.

We can now translate the proof rule for assign-
ments and the conditions necessary to apply the
"simple_assignment” cliche into our programming
notation.

function asgn_rule(a:dsgn) :boolean;
post asgn_rule =
(a.cmd = asgn A
provable (
bool expr(a.pre =>
subst (a.e,a.v,a.post))));

function asgn_able(s:spec) :boolean;

post asgn_able =
solvable(ss,u,
bool expr(s.pre =>
subst (ss,m, s.post)))});
where gs= newsym(modlist(s.st)) A

modlist (s.st) A
uselist (s.st) ;

o B
nn

The predicate "asgn_rule” is true if the design in ques-
tion is for an assignment statement, and the formula
"a.pre => (a.post)2y" is provably correct. The predi-
cate "asgn_able" holds for a specification if the formula
required to prove the correctness of an assignment
which would satisfy the specification is solvable.

The specification of "pre" requires that it return
true if and only if "asgn_able(s)" is true. We can argue
for this as follows.

Lemma 1: {Q} pre.body {R}
where Q: true, R: pre=asgn_able(s)
let ss’= newsym(modlist(s.st)),
u’ = uselist(s.st),
m’ = modlist(s.st),
f* = bool_expr(s.pre => subst(ss’,m’,s.post))
1) wp("pre:=can_solve(st ...)",R) =
Q3: can_solve(
$8,u,8.pre => subst(ss,m,s.post)) =
asgn_able(s)
2) wp("m:=modlist(s.st);
u:=uselist(s.st);
ss:=newsym(m)",Q3) =
Q1:  can_solve(ss’,u’,f’) = asgn_able(s)
HQ =>Q1
=> golvable(ss’,u’,f’) =
solvable(ss’,u’ f*)

therefore, {Q} pre.body {R}.

Lemma 2: {Q} apply.body {R}
where Q: asgn_able(s), R: asgn_rule(apply)

let ss’=newsym(modlist(s.st)),
u’ = uselist(s.st),
m’ = modlist(s.st),
f’ = bool_expr(
s.pre => subst(ss’,m’ s.post)),
slv = solve(ss’,u’,f")
ff* = bool_expr(
s.pre => subst(slv,m’ s.post)),
ass = dsgn(s.pre,s.post,s.st,asgn,m’,slv)
1) wp(apply.body,R) = Q1: asgn_rule(ass)
2) asgn_able(s) =>Ql1
=> (asgn=asgn) A provable(ff’)
solvable(ss’,u’,f") => provable(ff’)
therefore, {Q} apply.body {R}.

Lemmas one and two can be rewritten as follows.

Lemma 1: pre(s) = asgn_able(s)
Lemma 2: asgn_able(s) => asgn_rule(apply(s))

Therefore, it directly follows that

simple_assignment.pre(s) =>
asgn_rule(simple_assignment.apply(s))

We will take this as proof that "simple_assignment"
preserves the "refines” relationship.

4.2. Simple_If Then_ Else

The following is a simplified representation of
the "simple_if then_else" cliche.

cliche simple if then else is
{Q}
if B1 - {Q A Bl} < 81 > {Bl1 A El1}
I B2 = {Q A B2} < 82 > {B2 A E2}
fi
{R: B1 A E1 V B2 A E2}

if
is_negation(B1,B2) ;

end simple if then_else ;

The cliche says that the statement
"if Bl - S1 [ B2—>S2f"

is correct with respect to any pre-condition "Q" and
post-condition "B1 A E1 VB2 AE2" if "B1" is the logi-
cal negation of "B2", "S1" is correct with respect to
pre- and post-conditions "Q A B1" and "B1 A E1"
respectively, and "S2" is correct with respect to "Q A
B2" and "B2 A E2".

This representation is easy to understand, and
allows a simple demonstration of correctness from the
corresponding proof rule [10, 15].
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Figure 6 shows a more detailed description of the
"simple_if_then_else" cliche. To discuss this figure,
we must first describe a little more about how our pro-
cess program is implemented. It is written in Prolog
and makes significant use of the language’s unification
facility. Since our purpose is not to delve deeply into
the theory or practice of logic programming, we will

cliche simple if then else is

function pre(s:spec) : boolean is
{Q: true}
pre := simple if able(s) ;
{R: pre = gimple if able(s)}
end pre ;

function apply(s:spec) : dsgn is
{Q: simple if able(s)}
var ql,q2,rl,r2 : bool expr ;
var Bl,B2,El1,E2 : logic_var ;
unify (s.post,
bool epxr(
Bl A E1 V B2 A E2)));

gl := bool expr(s.pre A Bl);
g2 := bool expr(s.pre A B2);
rl := bool expr (Bl A El) ;
r2 := bool expr(B2 A E2) H

apply.pre,apply.post :=
s.pre,s.post;

apply.st, apply.cmd := s.st,if ;

apply.cmds :=

[gomd (B1,dsgn(ql, rl, s.st,undef)),

gomd (B2, dsgn(q2,r2,8.st,undef) ) ];

{R: if rule(apply)}

end apply :

end simple if then else ;

Figure 6. Simple If Then_Else Cliche

describe this facility very roughly as follows.

operator unify(
el,e2:inout expr) :boolean;
pre el=El A e2=E2
post unify=true A el=e2 A
only logic_vars changed(el,E1l) A
only logic_vars changed(e2,E2) V
unify=false A el=El A e2=E2 ;

If "unify" returns true, then expressions "el" and "e2"
are structurally identical. "Unify"” modifies the expres-
sions only by assigning values to logical variables; no
changes to other structures are allowed. If "unify"
returns false, then the the expressions are unchanged.

We can now translate the proof rule for if-then-
else statements into our programming notation.

predicate if rule(f:dsgn) is
f.cmd=if A
(f.pre => (Jcef.cmds:c.grd)) A
(Vce f.cmds:
(f.pre A c.grd => c.cmd.pre) A
(c.cmd.post => f.post) A
correct (c)) ;

function simple if able(
s:spec) :boolean is
var B1,B2,El,E2 : logic_var ;
simple if able :=
unify( s.post,
bool epxx(
B1 A E1 V B2 A E2)) A
is _negation(Bl,B2)) ;

The predicate "if_rule" is true of a design "f" if
"f" satisfies the rule for if statements. More precisely,
"if_rule" is wue if: "f' is an if statement; the pre-
condition of "s" implies that at least one of the guards
is true; and for each guarded command "c" in "f", "s"’s
pre-condition and "c"’s guard imply "c"’s statement’s
pre-condition, "c"’s statment’s post-condition implies

s"’s post-condition, and "c"’s statement is correct with
respect to its specification.

The function "simple_if able" is true if a
specification can be implemented with a simple if-
then-else. More precisely, "simple_if_able(s)" is true if
"s"’s post-condition is a boolean expression of the form
"B1 AE1V B2 AE2" and "B1" is the negation of "B2".
With these definitions in hand, we can turn our atten-

tion to the cliche itself.

The application condition for
"simple_if_then_else” is simply that the function
"simple_if_able" evaluates to true. We can argue for
the correctness of the "pre” function as follows.



Lemma 1: {Q} pre.body {R}
where Q: true, R: simple_if_able(s)

1) simple_if_able(s)=simple_if_able(s)
therefore, {Q} pre.body {R}.

Application of the cliche involves a single
unification and a number of assignments. The local
variables "q1", "q2", "rl", and "r2" are used to hold the
pre- and post-conditions for the branches of the if state-
ment, while the logical variables "B1", "B2", "E1", and
"E2" are used in the unification with the post-condition.
The result of the application has the same pre-
condition, post-condition, and symbol table as the
specification, as well as a list of guarded commands
constructed from the above. We can argue for the
correctness of "apply" in the following way.

Lemma 2 : {Q]} apply.body {R}
where Q: simple_if_able(s), R:if _rule(apply)
let q1’ = bool_expr(s.pre A Bl),
q2’ = bool_expr(s.pre A B2),
rl’ = bool_expr(B1 A El),
12’ = bool_expr(B2 A E2),
s1’ = dsgn(q1’,rl’,s.st,undef),
§2° = dsgn(q2’,12’ s.st,undef),
gcl = gemd(B1,s1°),
gc2 = gemd(B2,52°),
if’ = dsgn(s.pre,s.post,s.stif,[gc1,gc2]),
post’ = bool_expr(B1 AE1V B2 AE2))

1) wp(apply.assignments,R) = Q1: if_rule(if’)
2) {Q} unify(s.post,post’) (Q1}
Q => unify(s.post,post’)= true A
is_negation(B1,B2)
{unify(s.post,post’)= true A is_negation(B1,B2)}
unify(s.post,post’)
{is_negation(B1,B2) A s.post=post’ }
by specification of unify
s.post=post’ Ais_negation(B1,B2) => Q1
=> if=if A
(s.pre =>B1VB2)A
(s.pre AB1 =>spre ABI)A
(B1 AE1 =>post’) A
correct(s1’) A
(s.pre AB2 =>s.pre AB2) A
(B2 AE2 => post’) A
correct(s2’)
correct(s1’) A correct(s2’) by assumption
therefore, {Q} apply.body {R}.

Lemmas one and two can be rewritten as follows.

Lemma 1: pre(s) = simple_if_able(s)
Lemma 2: simple_if able(s) => if_rule(apply(s))

Therefore, it directly follows that

simple_if_then_else.pre(s) =>
if_rule(simple_if then_else.apply(s))
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We will take this as proof that "simple_if_then_else"
preserves the "refines" relationship.

4.3. Conditional_Iteration_on_Set

Figure 7 shows a simplified representation of the
"conditional iteration_on_set" cliche. Application of
this cliche can solve problems that require the use of a
loop with an embedded conditional. In such cases,
computation of the desired result involves processing
each element of a set in turn. In the completed design,
a local set variable holds all the items still to be pro-
cessed, while a local scalar holds the item currently
under examination. The result variable is initialized to
the identity element before the loop begins, and each
iteration modifies the result depending on whether the
item under examination satisfies a certain property.

The post-condition of the cliche states that "Var"
is equal to the value of "Iop(Set,Cond)"; in other
words, to the value of an iteration operator applied to a
set with a certain condition. Many different concrete
post-conditions can be unified with this abstract one.
For example, the following post-conditions occur in
our specification of Kemmerer’s Library Problem [26].

cliche conditional iteration on set is

{Q}
var Lset : set (Stype):= Set;
var Lvar : Stype = Id ;

{inv P:LsetgSet A
Var=Iop (Set-Lset,Cond) }
{bnd t:|Lset]}
do Lset#{} —
choose (Lset,Lvar) ;
Lset:=Lset~Lvar ;
{Ql:Var=VAR}
< 81 >( Var:inout Rtype ) ;
{R1l:—Cond (Lvar) A Var=VAR V
Cond (Lvar) A
Var=0Op (VAR, Lvar) }
od
{R: Var

Iop (Set,Cond) } ;
if
(Id,Op (Var, Lvar), Iop(Set,Cond)}
€ iop_table ;

end conditional iteration_on_set ;

Figure 7. Conditional_Iteration_on_Set Cliche




nout = (Nc€checks:c.name=u)

is_out = (Bueusers:checked_put(u,b)))
active = (Ebebooks:checked_put(u,b)))
by author = {b€books:b.author=a}
on_subject= {b€boccks:kb.subject=ck}
what_out = {be€books:corec(u,b)€Echecks}
who_has = {u€users:corec(u,b)echecks}

Each of these matches the post-condition for the
"conditional_iteration_on_set" cliche. More
specifically, the first unifies with "Var" equal to "nout”,
"Iop" equal to "number_of", "Set" equal to "checks",
and "Cond" equal to "c.name=u". The second matches
with "Var" equal to "is_out", "Iop" equal to
"there_exists”, "Set" equal to "users", and "Cond"
equal to "checked_out(u,b)". The others are similar.

The body of "conditional iteration_on_set"
declares two local variables. "Lset" is a set containing
all the items still to be considered, while "Lvar” is the
item currently being processed. In this case, our pro-
gramming notation is polymorphic in that "Stype" is
deduced from the context. "Lset" is initialized to "Set"
and the result to "Id". The loop interates over all the
items in "Set". If the item in question satisfies "Cond"
then the result ("Var") is set to "Op(Var,Lvar)". When
all items have been considered, the correct result has
been calculated.

In general, knowing when this cliche can be
applied is difficult: how can we determine which opera-
tors are allowed and what the identity elements are? In
practice, checking for applicability is simple: the cliche
can be applied if the operator unifies with one of the
elements in a pre-computed table. Each entry in
"iop_table" satisfies the following properties.

1 Id = Iop({ },Cond)
2.1) (sess A Cond(s) =>

Top(ss,Cond) = Op(Iop(ss-s,Cond),s))
2.2) (sess A—=Cond(s) =>

Top(ss,Cond) = Iop(ss-s,Cond))

These properties are exactly those necessary to prove
the correctness of the cliche body and ensure that all
the designs produced from the cliche will be correct.

The implementation this cliche is quite lengthy;
for the sake of brevity, we will not describe it here.
Rather, we will now prove the cliche’s correctness
using the simplified representation. Towards this pur-
pose, Figure 8 shows a fully annotated version of the
cliche body. The top level structure of the proof is as
follows.

{Q}T{Q’} DO {R’} {R}

To prove the cliche is correct, we must prove that the
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{Q}

var Lset : set (Stype) := Set;
var Lvar : Stype = Id ;
{Q’ : Lvar=Id A Lset=Set}

{inv P: LsetcSet A
Var=TIop (Set-Lset,Cond) }
{bnd t: |Lset]}
do Lset#{} —
{Q1’: P A Lset#{} A
Lset=LSET A Var=VAR}
choose (Lset ,Lvar);
Lset i=Lset-Lvar ;
{Ql: Var=VAR A
Q2: LSETcSet A
VAR = Iop (Set-LSET,Cond) A
Lset=LSET-Lvar A

LvareLSET}
< 81 >( Var:inout Rtype ) ;
{R1: Q2 A

—Cond (Lvar) A Var=VAR V
Cond (Lvar) A
Var=0p (VAR, Lvar) }

od
{R’: P A Lset={}}
{R: Var = Iop(Set,Cond)} ;

Figure 8. Fully Annotated Cliche Body

initialization sets up the loop in the proper manner
({Q} I {Q’}), that the loop is correct ({Q’} DO {R’}),
and that correct termination of the loop ensures the
post-condition for the routine is satisfied (R’ =>R).

The proof of the initialization uses two applica-
tions of the assignment rule and relys on property one
of "iop_table" ("Id=Iop({},Cond)"). We can see that
R’ implies R by simply expanding their definitions.

R’ =>R

PALset={} =>R

Var=Iop(Set-Lset,Cond) A Lset={} =>
Var=Iop(Set,Cond)

The proof of the loop is reasonably straight for-
ward, but a bit more complicated. It uses two lemmas
that we will prove before proceeding and assumes that
the unknown in the loop body is completed correctly.



Lemma 1: {Q1’} S1° {Q1}
{Q1’} choose(Lset,Lvar) {Q1’ ALvareLset}
{Q1’ A Lvare Lset} Lset:=Lset-Lvar {Q1}
Q1’ ALvareLset
=> Var=VAR A
LSETcSet A
VAR = Iop(Set-LSET,Cond) A
Lset-Lvar=LSET-Lvar A
Lvare LSET
therefore, {Q1°} S1° {Q1}.
Lemma 2: R1 =>P
R1 => Q2
=> LSETcSet A
T1:(Lset=LSET-Lvar A Lvare LSET)
=> P1:LsetcSet
R1 =>Q2
=> T2: (VAR = Iop(Set-LSET,Cond))
R1 => T3:(Cond(Lvar) A Var=Op(VAR,Lvar)) V
T4:(—Cond(Lvar) A Var=VAR)
T1 AT2 AT3 => P2:(Var = Iop(Set-LsetCond))
by prop 2.1 of iop_table
TIAT2AT4=>P2
by prop 2.2 of iop_table
PIAP2=>P

therefore, R1 =>P

Using these two lemmas, we can prove the
correctness of the loop.

1) Q =>P
Lvar=Id A Lset=Set => PLg=
Q’ => SetcSet A
1d = Iop(Set-Set,Cond)
Id = Iop({ },Cond) by prop 1 of iop_table

2) {PAB}S {P}
{PAB} {Q1’} SI” {Q1} S1 {R1} {P}
P ALset#{} =>Ql’
{Q1’} S1 {Q1} bylemmal
{Q1} S1 {R1} by assumption
R1=>P bylemma?2

3) PA—-BB =>R’
P A —(Lset#{ }) =>P A Lset={}

4) P =>(20)
P=> |Lset|>0

5) {PAB}tl:=t; S1’; S1 {t<t1}
{PAB}tl:=t {t1=t} S1° {t<tl} S1 {t<tl}
{PAB}tl:=t {t1=t}
{t1=t} choose(Lset,Lvar) {t1=t A Lvare Lset}
{t1=t A Lvare Lset} Lset:=Lset-Lvar {t<tl}
{t<tl} S1 {t<t1}
S1 modifies only Var

therefore, {Q’} DO {R’}.

The proof of the loop is now complete, and with
it the proof of "conditional_iteration_on_set". We will

take this as a demonstration that application of the
cliche preserves the "refines" relation. We have now
described three cliches and argued for their correctness.
We will now turn to an example of design derivation
using the framework we have constructed.

5. Example Design Derivation

Kemmerer’s Library problem has received con-
siderable attention in the software engineering litera-
ture and has been formally specified a number of times
[14,27,28]. Using the cliches described in section
four, the process program presented in section three
can generate a complete design for the Library Problem
from our formal specification [26]. The problem is
concerned with a small library database that provides
both query and update transactions to library staff and
users. The architectural design for our solution consists
of a single module that encapsulates the database and
provides an entry routines for each transaction. The
state of the module is modeled abstractly using high-
level data types, and the entry routines are specified
using pre- post-conditions.

In the derivation performed by our process pro-
gram, the designs of the entry routines fall into two
categories. The simple routines can all be implemented
with a single assignment statement, while the complex
routines require a loop with an embedded conditional.
In other words, the simple routines can be designed
with a single application of the "simple_ assignment"
cliche, while the complex routines require first an
application of "conditional_iteration_on_set", then an
application of "simple_if_then_else", and finally two
applications of "simple_assignment”.

We will present the derivation of one routine
from each class in reasonable detail and leave it to the
reader to infer how the other routines are derived.

5.1. Simple Routines

Let us begin with the design of the "add_book"
routine.

procedure add book( s:in vuser;
b:in book) ;
pre s.staff A
bé¢books A books=BOOKS ;
post books=BO0OKS+b ;

modify books ;

The specification of "add_book" references the global
variable "books", which is declared as follows.

var books : set (book) ;

The procedure takes two arguments. The first is the
user performing the transaction, while the second is the



book being added to the library. The pre-condition
states that the transaction is being invoked by a staff
member, that the book being added is not already in the
library, and that the initial value of "books" is
represented by the constant "BOOKS". The post con-
dition states that the current value of "books” is equal
to the initial value with the addition of the new book.

If we rewrite the specification, we can easily see
that the "simple_assignment” cliche is applicable.

{Q: s.staff A b¢gbooks A BOOKS=books}
< 8 >(books:inout set (book))
{R: books=BOOKS+b}

To determine that the cliche is applicable to this prob-
lem, "simple_assignment.pre” calls "can_solve” to see
if the system can solve the following formula for "e".

s.staff A bgbooks A BOOKS=books =>
e=BOOKS+b

It can, so when "apply" is invoked "solve" generates
the solution "books+b”, and the following complete
design is produced.

{Q: s.staff A bg¢books A BOOKS=books}
books := books+b ;
{R: books=BOOKS+b}

All of the other simple routines have similar
derivations. The designs of the complex routines are
considerably more difficult to produce.

5.2. Complex Routines

Consider the "who_has" function, which returns
the user who currently has a book checked out.

function who_has( s:vuser ; b:vbook
) : set (vuser):;
pre s.staff ;
post who has
{u€users:corec(u,b)echecks};

This specification uses the type "corec" and variable

"checks" which are declared as follows.
type corec = record

name : wvuser ;

item : vbook ;

end corec ;

var checks set (corec) ;

A "corec" records the fact that a book is checked out
from the library. It contains both the book and the
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patron who borrowed it. "Checks" holds a check out
record for each book currently on loan from the library.

The "who_has" function takes two arguments.
The first is the user performing the transaction, and the
second is the book in question. The pre-condition
states that the transaction is being invoked by a staff
member, while the post-condition states that the return
value is the set of all users who have the book checked
out.

If we rewrite the specification of "who_has", we
can see that the "conditional_iteration_on_set" cliche is
applicable.

{Q: s.staff}

< 8 >( who_has:out set (user) );

{R: who_has
{u€users:corec(u,b)echecks}}

{Q}
< conditional iteration_on_set >
{R: Var Iop(Set,Cond) }

The specification and cliche unify as follows.

Var = who_has

Iop = "set_of_all"

Set =users

Cond = corec(u,b)e checks

Figure 9 shows the result of applying the
"conditional_iteration_on_set" cliche to
specification. The overall structure of the design is
now evident. The loop iterates over all the users in the
library. For each user, the body checks if the user has
the book in question checked out. If so, then the user is
added to "who_has", if not then nothing is done. The
variable "usrs" holds the set of all users still to be con-
sidered, while "ust" holds the user currently being
examined.

The loop body must still be completed before the
design is finished. It has the following specification.

{Ql:who_has=WHO HAS}
< 81 >( who_has:inout set (user) ) ;
{Rl:corec (usr,b)echecks A
who_has=WHO_HAS+usr V
corec (usr,b)échecks A
who_has=WHO_HAS}

We can see that the "simple_if_then else" cliche is
applicable.

{Q}
< simple_if then else >
{R: B1 A E1 V B2 A E2}

The specification and cliche unify as follows.



{Q: true}
var usrs : set(user) ;
var usr : user ;

who_has,usrs:={},users ;
{inv P:usrscusers A
who_has
{u€eusers—usrs:
corec(u,b)echecks}}
{bnd t: |usrs]}
do usrs#{} —
choose (usrs,usr) ;
usrs:=usrs-usr ;
{Q1l: who_has=WHO_HAS}
< 81 >(who_has:inout set (user));
{R1l:corec(usr,b)echecks A
who_has=WHO HAS+usr V
corec (usr,b)gchecks A
who_has=WHO HAS}

od
{R: who_has
{ueusers:corec(u,b)echecks}}

Figure 9. Instantiated Loop Cliche

B1 = corec(usr,b)e checks

B2 = corec(usr,b)échecks

E1l = (who_has=WHO_HA S+usr)
E2 = (who_has=WHO_HAS)

Application of the "simple_if_then_else" generates the
following design for the loop body.

if corec(usr,b)echecks —
{Q2:who_has=WHO HAS A
corec (usr,b)echecks}
< 82 >(who_has:inout set (user));
{R2: corec (usr,b)echecks A
who_has=WHO_ HAS+usr}
[ corec(usr,b)gchecks —
{Q3:who _has=WHO HAS A
corec(usr,b)échecks}
< 83 >(who_has:inout set (user));
{R3:corec (usr,b)géchecks A
who_has=WHO_ HAS}
£i

We can complete the design of the loop body by apply-
ing the "simple_assignment” cliche twice. As a final
flourish, the "optimize" routine transforms the assign-
ment "who_has : =who_has" into "skip" producing the
following.
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if corec(usr,b)echecks —
who has:=who_has+usr ;
[ corec(usr,b)¢checks — skip ;
£i

Figure 10 shows the entire design for the "who_has"
routine.

This completes our description of the derivations
automatically performed by our process program. We
will now turn to a very brief description of its imple-
mentation.

6. Implementation Status

The prototype implementation of the process
program described in this paper is written in Prolog
[4, 5] and makes significant use of the language’s tree
data structures and unification facilities. The prototype
very closely follows the design given in section three;
the implementation can be generated from the design
using methods similar to [24,25].

For example, Figure 11 shows the Prolog imple-
mentation of the "derive_design" routine. The relation
"all_cliches" stores the cliches known to the system.
The procedure "applicable" obtains the pre-condition

{Q: true}
var usrs : set (user) ;
var usr : user H

who has,usrs:={},users
{inv P:usrscusers A
who has
{u€users-usrsa:
corec(u,b)€checks}}
{bnd t: |usrs]|}
do usrs#{} —
choose (usrs,usr) ;
usrs:=usrs—-usr ;
if corec(usr,b)echecks —
who has:=who has+usr ;
[ corec(usr,b)é¢checks —

~

skip ;
£i
od
{R: who_has =
{u€users:

corec(u,b)echecks}}

Figure 10. Completed Who Has Design




derive design(8,D) :-
all cliches(C),
applicable (C,S),
apply(C, s, T1),
derive_subs (T1,T2),
optimize (T2,D) .

applicable(C,8) :-
C cliche (_,pre(S,Pbody),_),
Pbody.

apply(C,S,D) :-
C cliche(_, ,apply(S,D,Abody)),
Abody.

Figure 11. Prolog Code for Derive_Design

for the cliche and executes it, while "apply" does the
same for the cliche application function. The pro-
cedure "derive_subs" generates all the sub-designs for
a construct, while "optimize" produces equivalent
designs with enhanced performance characteristics.

Our prototype includes representations of all the
cliches described in section four of this paper. For
example, Figure 12 shows the Prolog implementation
of the "simple_if then_else" cliche. The cliche data
structure is

cliche (simple if then_else,

pre( ((Q,

(B1 A E1 V B2 A E2) ),

st),

ln negation(Bl1l,B2) ),

apply( ((Q,_,R},St), ((Q,S,R),St),
( R (B1L A E1 V B2 A E2),

o1 (Q A B1), R1 (B1 A El),
02 (0 A B2), R2 (B2 A E2),
S=if ([gc(B1l, ((Q1,S81,R1),8t)),
gc (B2, ((Q2,82,R2),5t))1))))).

Figure 12. Prolog Code for Simple_If Then Else
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cliche(N,pre(S,Pbody),apply(S,D,Abody),

where "N" is the cliche name, "S" is the specification to
which the cliche is applied, "D" is the design produced,
"Pbody" is the body of the pre-condition, and "Abody"
is the body of the application function.

The design data structure is "((Q,S.R),St)",
where "Q" is the pre-condition, "S" is the command,
"R" is the post-condition, and "St" is the symbol table.
The if data structure is "if(GCLIST)", where
"GCLIST" is a list of guarded commands. Each
guarded command has the structure "gc(B,S)", where
"B" is the guard and "S" is a command design.

The pre-condition of "simple_if then_else" is
true if the specification’s post-condition unifies with
"B1 AE1V B2 A E2" and "B1" is the negation of "B2".
The body of "apply" produces a design for an if state-
ment with two alternatives from the specification. The
first alternative has guard "B1" and an undefined com-
mand with pre-condition "Q A B1" and post-condition
"Bl A E1". The second is similar, but with "B2" and
"E2" substituted for "B1" and "E1" respectively.

The current prototype automatically generates a
complete design for Kemmerer’s Library Problem from
our formal specification [26]. The implementation is
somewhat sketchy, especially the logic manipulation
and theorem proving routines; however, it does demon-
strate that the design in this paper is basically correct
and definitely implementable.

7. Summary and Conclusions

It has been suggested that process programming
can improve the effectiveness of software development
[1,12,13,16,17,23]. Describing development
processes using programming language constructs
should provide a better understanding of the activities
and products involved. In addition, these concrete
models may provide a basis for process automation. In
this paper, we have presented a process program for the
algorithm design technique developed by Dijkstra and
Gries [6,7,10].

This method takes a pre- and post-condition
specification written in first-order predicate logic and
produces an algorithm design written in guarded com-
mands. The process uses a library of cliches describing
solutions to common programming problems. The pro-
cess consists of a sequence of steps, each of which
applies a pre-verified cliche to the current partial
design. Since each cliche only generates correct
transformations, the final design satisfies the original
specification.

The Gries/Dijstra design method is an example
of a two level, cliche driven process. At the lower
level, a derivation process transforms a problem
specification into a solution using a library of cliches.



Since the correctness of the final solution depends on
the correctness of the cliches used in its derivation, the
upper level uses verification rules (either formal or
informal) to certify that the cliches in the library are
correct.

We have presented the design for our process
program using guarded commands and argued for its
correctness assuming the correctness of the cliches it
uses. We have also described three cliches that can be
applied by the process and demonstrated that they only
produce designs that are totally correct with respect to
their specifications.

We have constructed a prototype implementation
of the process in Prolog and used it to automatically
generate a complete design for Kemmerer’s Library
Problem from our formal specification [26]. The
implementation is somewhat sketchy, especially the
logic manipulation and theorem proving routines; how-
ever, it does demonstrate that our description of the
process is basically correct and definitely implement-
able.

The process program can be thought of as a
translator for a very high-level language: the
specifications extend conventional programming
languages with quantifiers and high-level data types.
The process functions as a black box: specifications
come in and designs go out with no intervention from
the programmer. We do not believe that this extreme
prescription and lack of interaction represent the
optimal description of this process; however, we do
feel that the program as written defines the design tech-
nique in reasonable detail and represents a solid step in
the right direction.
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