LEARNING FACTORIAL CODES BY
PREDICTABILITY MINIMIZATION

JURGEN SCHMIDHUBER
CU-CS-565-91 December 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

LEARNING FACTORIAL CODES BY
PREDICTABILITY MINIMIZATION
Technical Report CU-CS-565-91

Jirgen Schmidhuber
Department of Computer Science
University of Colorado
Campus Box 430, Boulder, CO 80309, USA

yirgan@cs.colorado.edu

Dec. 18, 1991

Abstract

I present a novel general principle for unsupervised learning of dis-
tributed non-redundant internal representations of input patterns or in-
put sequences. With a given set of representational units, each unit tries
to react to the environment such that it minimizes its predictability by
an adaptive predictor that sees all the other units. This encourages each
unit to filter ‘abstract concepts’ out of the environmental input such that
these concepts are statistically independent of those upon which the other
units focus. I discuss various simple yet potentially powerful implemen-
tations of the principle which aim at finding binary factorial codes [1],
i.e. codes where the probability of the occurrence of a particular input is
simply the product of the probabilities of the corresponding code symbols.
None of these implementations requires the explicit maximization of the
determinant of the output covariance matrix. Unlike the latter method,
however, and unlike the more conventional linear methods for principal
component analysis the principle allows for removing not only linear but
also non-linear output redundancy. Methods for finding non-redundant
codes automatically embed Occam’s razor for finding codes using a min-
imal number of units. The final part of this paper describes an entirely
local algorithm that has a potential for learning unique representations
of extended sequences. Experiments show that algorithms based on the
principle of predictability minimization are practically feasible.

1 INTRODUCTION

Consider a perceptual system being exposed to an unknown (usually dynamic)
environment. The system has some kind of internal ‘state’ to represent exter-
nal events. We consider the general case where the state is an n-dimensional
distributed representation y* (a vector of real-valued or binary code symbols)
created in response to the p-th input vector #?. Later I will address the case of
input sequences.

Typical questions asked in the context of unsupervised learning are: Are
there any useful goal-independent internal representations reflecting environ-
mental ‘regularities’? What is a ‘regularity’? How can the system detect and
represent it?

Strictly speaking, the answer to the first question is no —if the system’s goals
do not depend on the environmental input, then there is no point in searching
for regularities there. But in all realistic and interesting cases, reasonable goals
have something to do with the input. Experience tells us that the achievement
of many typical goals in typical environments (like emission of target values
at certain times, or reinforcement maximization) is facilitated by building upon
the same internal representations of inputs (or more generally speaking, of input
histories). This experience flows into the models that we build. It lets us define
the kind of regularities we are looking for.

Usually, the term ‘regularity’ is approached from a statistical perspective®.
Various performance criteria and algorithms for capturing statistical regularities
have been defined, most of them essentially implementing principal component
analysis in the case of linear units, e.g. [8][11]{10].

A more ambitious and potentially more useful objective of unsupervised
learning, however, is to represent the environment such that the various parts
of the representation are statistically independent of each other. In other words,
we would like to have methods for decomposing the environment into entities
that belong together and do not have much to do with other entities?. This
notion is captured by the concept of ‘factorial codes’ [1].

The aim of ‘factorial coding’ is the following: Given the statistical properties
of the inputs from the environment, find invertible internal representations such
that the occurrence of the i-th code symbol y; is independent of any of the
others [1]. Such internal representations are called factorial codes because they
have a remarkable and unique property: The probability of the occurrence of a

1However, the notion of a ‘regularity’ comes in many forms. To appreciate that there is
no single accepted approach to defining ‘regular structure’, note that algorithmic information
theory [6][4] defines regular patterns in a way different from statistical information theory [17].
The algorithmic information of a pattern is essentially the length of the shortest program to
generate it, Since there is no general way to find such a program (essentially because there is
no upper limit for its run-time), algorithmic information theory is usually not considered as
a practical tool for detecting regularities.

2The G-Max algorithm [9] aims at a related objective: It tries to discover features that
account for input redundancy. G-Max, however, is designed for single output units only.

particular input is simply the product of the probabilities of the corresponding
code symbols.

Among the advantages of non-redundant codes are as follows: As Barlow,
Kaushal, and Mitchison point out [1], with such codes the detection of depen-
dence between two symbols indicates hitherto undiscovered associations (novelty
detection). As Becker observes [2], if a representation with uncorrelated compo-
nents is used as the input to a higher-level linear supervised learning network,
then the Hessian of its error function is diagonal, thus allowing efficient meth-
ods for speeding up learning (note that statistical independence is a stronger
criterion than the mere absence of statistical correlation). Non-linear networks
ought to profit as well. But there is more to non-redundant codes: An eflicient
method for discovering mutually independent features would have consequences
for many segmentation tasks. For instance, consider the case where the inputs
are given by retinal images of various objects whose positions are independent
of each other. At any given time, the activations of nearby ‘pixels’ caused by
the same object are highly dependent on each other. Therefore a factorial code
would not represent them by different parts of the internal storage, thus filtering
‘abstract objects’ out of the input.

Finally, any method for finding factorial codes automatically implements
Occam’s razor (see section 9) which prefers simpler models over more complex
ones, where simplicity is defined as the number of storage cells necessary to
represent the environment in a factorial fashion. This implies storage efficiency,
as well as a potential for better generalization capabilities.

Since factorial codes have to meet the invertibility criterion, in noise-free en-
vironments they have to obey Linsker’s Infomax principle [7]. The latter aims
at maximizing the mutual information between input and internal representa-
tion. Let P(z?) denote the probability of input 2?. Given a finite number of
distinguishable internal representations y?, the mutual information is given by
P(y? | =?)

Pl)

where < ... > denotes the ensemble average. In the case of single output cells,
there are efficient and straight forward rules for minimizing R when binary out-
puts are used and, under appropriate Gaussian assumptions, when real-valued
outputs are used [7][3]. With high-dimensional internal representations, howev-
er, the situation becomes more complicated. For instance, assuming simplifying
and often not very realistic Gaussian distributions of the output and input sig-
nals, maximization of the Shannon information rate implies maximization of the
determinant D of the n X n-covariance matrix of the output activations [16]. In
the absence of noise, this method decorrelates the output activations. It tends
to remove linear dependencies between the output units, but not necessarily
non-linear ones. In different contexts, previous approaches explicitly calculated
the derivatives of D [7][20]. For high-dimensional internal representations, this
is clumsy and biologically rather implausible.

R=<log

Neither Linsker nor Zemel and Hinton present an efficient general method for
maximizing information in the case of multi-dimensional outputs, and Barlow
et al. do not present an efficient general method for finding factorial codes.

The main contribution of this paper is a simple but general principle useful
for finding such codes. There are a number of straight forward ‘neural’ imple-
mentations of the principle that do not involve the explicit calculation the deriva-
tives of D. Due to the presence of non-linearities, the methods described above
go beyond previous work which applies only to linear units [8][11][5][10][7][18].

I would not be surprised, however, if the general problem of finding factorial
codes turned out to be NP-hard. In that case, gradient-based procedures as
described herein could not be expected to always find factorial codes. The
paper at hand focuses on the novel basic principle without trying to provide
solutions for the old problem of local maxima. Also, the purpose of this report
is not to compare the performance of algorithms based on the novel principle to
the performance of existing sequential ‘non-neural’ heuristic methods [1]. The
experiments described below are merely for illustrative purposes.

2 OUTLINE OF PAPER

Section 3 states the problem by formulating three criteria that qualify a code
as a binary factorial code: The invertibility criterion, the binary criterion and,
most notably, the mutual independence criterion. Section 4 contains the central
idea of this paper: It describes the fundamental predictor-based architecture for
removing intra-representational redundancy. This architecture forms the basis
for all following sections. The essential idea is: For each unit in the internal
representation (‘representational unit’) there is an adaptive predictor that sees
all the other units. Each predictor is trained to predict the current activation
of a representational unit from the current activations of the other units. In
turn, all representational units try to transform the environmental inputs such
that they take on values that make them as unpredictable as possible, while at
the same time conveying maximal information about the input. With the help
of the predictors one can define various objective functions for achieving this
idea of mutual predictability minimization; various possibilitites are discussed
in sections 5, 6, and 7: Section 5 defines three objective functions, each designed
for achieving one of the three criteria, the most notable being a predictor-based
function for minimizing mutual dependence. Section 6 discusses various com-
binations of these three particular functions as well as a non-predictor-based
error function for minimizing the sum of bit-entropies (as opposed to explicit
predictability minimization). A parameter tuning problem is identified, which
leads to section 7. In section 7 an objective function designed for ‘local con-
ditioned variance maximization’ is described which appears not to suffer from
the disadvantage mentioned in section 6. With local conditioned variance max-
imization the internal state is trained to maximize exactly the same function

the predictors try to minimize. Section 8 describes a ‘meural’ gradient ascen-
t based algorithm for predictability minimization. This section also considers
modifications that become necessary if binary stochastic units instead of semi-
linear units are employed. Section 9 comnsiders the relationship between factorial
codes and Occam’s razor. Section 10 discusses a local algorithm for learning
unique representations of extended sequences based on intra-representational
predictability minimization, as well as the relationship of this algorithm to re-
cent sequence-chunking methods. Section 11 mentions how goal-directed learn-
ing and unsupervised intra-representational predictability minimization can be
made compatible. Section 12 describes a number of experiments which demon-
strate the practical applicability of the basic principle.

3 FORMULATING THE PROBLEM

Let us assume n different adaptive input processing modules which see a single
input at a time. The output of each module can be implemented as a set of
neuron-like units. Throughout this paper I focus on the simplest case: One
output unit (also called a representational unit) per module. The i-th module
(or unit) produces an output value y¥ € [0, 1] in response to the current external
input vector zP. In what follows, P(A) denotes the probability of event A4,
P(A | B) denotes the conditional probability of event 4 given B, ¥; denotes the
mean of the activations of unit 7, and E denotes the expectation operator.

The methods described in this paper are primarily devoted to finding binary
or at least quasi-binary codes. Each code symbol participating in a quasi-binary
code is either 0 or 1 in response to a given input pattern or emits a constant
value in response to every input pattern. Therefore, binary codes are a special
case of quasi-binary codes. Most of our quasi-binary codes will be created by
starting out from real-valued codes.

Recall that there are three criteria that a binary factorial code must fulfill:

1. The binary criterton: Each code-symbol should be either 1 or 0 in response
to a given input pattern.

2. The invertibility criterion: It must be possible to reconstruct the input
from the code. In cases where the environment is too complex (or too noisy) to
be fully coded into limited internal representations (i.e., in the case of binary
codes where there are more than 2%™¥) input patterns), we want to relax the
invertibility criterion. In that case, we still want the internal representations
to convey maximal information about the inputs. The focus of this paper,
however, is on situations like the ones studied in [1]: Noise-free environments
and sufficient representational capacity in the representational units.

3. The independence criterion: The occurrence of each code symbol ought to
be independent from all other code symbols. For binary codes we may rewrite
this criterion by requiring that

E(yi [{yr, e #1}) = Plyi =1 [{yr, k # i}) = P(ys = 1) = E(wi).

The latter condition implies that y; does not depend on {yx,k # i}. In other
words, E(y; | {yx,k # i}) is computable from a constant. With real-valued
codes this criterion does not necessarily imply that the y, are independent (see
also section 6.1).

4 THE BASIC PRINCIPLE AND
ARCHITECTURE

For each representational unit i there corresponds an adaptive predictor P,
which, in general, is non-linear. With the p-th input pattern «?, P;’s input is
the concatenation of the outputs ¢} of all units k # i. P;’s one-dimensional
output P/ is trained to equal the expectation E(y; | {4}, k # i}). It is well-
known that this can be achieved by letting P; minimize

Y (PP -4 (1)

With the help of the n predictors one can define various objective functions
for the representational modules to enforce the 3 criteria listed above. Common
to these methods (to be described in the following sections) is that all units
are trained to take on values that minimize mutual predictability via the pre-
dictors: Each unit tries to extract features from the environment such that no
combination of n — 1 units conveys information about the remaining unit. In
other words, no combination of n—1 units should allow better predictions of the
remaining unit than a prediction based on a constant. I call this the principle
of intra-representational predictability minimization or, somewhat shorter, the
principle of predictability minimization.

A major novel aspect of this principle which makes it different from previous
work is that it uses adaptive sub-modules (the predictors) to define the objec-
tive functions for the subjects of interest, namely, the representational units
themselves.

Following the principle of predictability minimization, each processing mod-
ule tries to use the statistical properties of the environment to protect itself
from being predictable. This forces each processing module to focus on aspects
of the environment that are independent from environmental properties upon
which the other modules focus.

3Cross-entropy is another objective function for achieving the same goal. In the exper-
iments, however, the mean squared error based function above led to satisfactory results.

5 OBJECTIVE FUNCTIONS FOR THE
THREE CRITERIA

The only novel objective function presented in this section is the one of sub-
section 5.3 - sections 5.1 and 5.2 present nothing new.

5.1 AN OBJECTIVE FUNCTION FOR THE
BINARY CRITERION

An objective function V for enforcing binary codes is given by
V=22~
i P

Maximizing this term encourages each unit to take on binary values. The con-
tribution of each unit i is maximized if E(y;) is as close to 0.5 as possible. This
implies maximal entropy for unit ¢ under the binary constraint, i.e., i wants to
become a binary unit that conveys maximal information about its input.

5.2 AN ERROR FUNCTION FOR THE
INVERTIBILITY CRITERION

The following is a simple, well-known method for enforcing invertibility: With
pattern p, a recomstructor module receives the concatenation of all Y as an
input and is trained to emit as an output the reconstruction z? of the external
input «?. The basic structure is an auto encoder. The auto encoder’s objective
function, to be minimized, is defined as

I= Z(z” — 2P)T (2P — 2P). (2)

5.3 AN ERROR FUNCTION FOR THE
INDEPENDENCE CRITERION

For the sake of argument, let us assume that at all times each P; is as good as it
can be, meaning that P; always predicts the expectation of y; conditioned on the
outputs of the other modules, E(y; | {v},k # i}). (In practice, the predictors
will have to be retrained continually.) In the case of quasi-binary codes the
following objective function H is zero if the independence criterion is met:

i = ZZ Pl (3)

This term for mutual predictability minimization aims at making the outputs
independent — similar to the goal of a term for maximizing the determinant

of the covariance matrix under Gaussian assumptions [7]. The latter method,
however, tends to remove only linear predictability, while the former can remove
non-linear predictability as well (even without Gaussian assumptions), due to
possible non-linearities learnable by non-linear predictors.

6 COMBINING ERROR TERMS

A straight forward way of combining V, I, and H is to maximize the total

objective function
T=aV -pBI —-~H, (4)

where a, 3,7 are positive constants determining the relative weighting of the
opposing error terms. Maximization of (4) with non-zero « tends to force the
representational units to take on binary values that mazimize independence in
addition to minimizing the reconstruction error.

6.1 REMOVING THE VARIANCE TERM:
REAL-VALUED CODES

If with a specific application we want to make use of the representational ca-
pacity of real-valued codes and if we are satisfied with decorrelated (instead of
independent) representational units, then we might remove the V-Term from
(4) by setting & = 0. In this case, we want to minimize

BI +~H.

Note that with real-valued units the invertibility criterion theoretically can be
achieved with a single unit. In that case, the independence criterion would force
all other units to take on constant values in response to all input patterns. In
noisy environments, however, it may turn out to be advantageous to code the
input into more than one representational unit. This has already been noted by
Linsker in the context of his Infomax principle [7].

6.2 REMOVING THE GLOBAL INVERTIBILITY
TERM

Theoretically it is sufficient to do without the auto encoder and set 3 = 0 in
(4). In this case, we simply want to maximize

T=aV —-+H.

The H-Term counteracts the possibility that different (near-) binary units con-
vey the same information about the input. Setting § = 0 means to maximize
information locally for each unit while at the same time trying to force each

unit to focus on different pieces of information from the environment %. Unlike
with auto-associators, there is no global invertibility term.

Note that this method seemingly works diametrically opposite to the sequen-
tial, heuristic, non-neural methods described by Barlow et al. in [1], where the
sum of bit entropies is minimized instead of being maximized. How can both
methods pursue the same goal? One may put it this way: Among all invertible
codes, Barlow et. al. try to find those closest to something similar to the in-
dependence criterion. In contrast, among all codes fulfilling the independence
criterion (ensured by sufficiently strong v), the above methods try to find the
invertible ones.

6.3 AN APPROACH TO FINDING BINARY FACTO-
RIAL CODES WITHOUT USING PREDICTORS

In passing I would like to mention another ‘neural’ possibility for finding factorial
codes based on a procedure for finding minimum entropy codes. If the code is
represented by a set of storage cells that can take on either the value 1 or 0 then
the sum of the bit entropies of code b, e(b), is given by

e(8) = = 3 B(w)logB(u) — 3 (1 - Blui)log(t — B(w).
? 1

As pointed out in [1], if there are one or more factorial codes then finding the
minima of e(b) over the set of all possible codes b is equivalent to finding one of
them. Barlow et al. give some (non-neural) heuristics for minimizing sums of
bit-entropies, but do not present an efficient general method. I propose start-
ing with continuous-valued units and maximizing the following total objective
function:

T= O‘ZZ(yf - gi)z _ﬁZ(zp - wp)T(zp —zP) + Z(gi — %)2

4LOCAL INFOMAX FOR REAL-VALUED CODES. A linear real-valued unit with a Gaus-
sian output distribution also conveys maximal information if it has maximal variance, as noted
by Linsker in [7]. In the course of describing a more complex system for maximizing mutual
information between neighbouring modules, Hinton and Becker {3] maximize variance in the
case of non-linear mappings between input and output. In the general case, however, such
procedures seem to be at least questionable, because Gaussian assumptions are not very re-
alistic in practical applications. And, of course, telling the learning system about Gaussian
constraints has the effect of supplying it with a priori knowledge. It is important to realize
that variance maximization usually does not implement the Infomax principle in the general
case of units with real-valued outputs.

This footnote is based on the assumption of a hypothetical, efficient method for maximizing
mutual information between two one-dimensional real-valued variables, Instead of using mean
squared error terms in the application of the basic principle, we simply use terms for mutual
information between single units. Define I(a,b) as the mutual information between units a
and b. Each predictor P; with output unit o* is trained to maximize I(i,0;). In turn, each
unit 4 is trained to take on values that minimize I(i,0;) while at the same time mazimizing
i's entropy.

Here 27 is defined as in the section 5.2 on auto encoders (again, a and 3
are positive constants). The first term forces each unit to be either on or off
in response to a given input pattern. The second term enforces invertibility.
The third term forces the mean of each unit to be close to either 0 or 1, thus
enforcing minimal bit-entropy.

A problem with this approach is that the first term and the third term try
to enforce contradictory objectives — this creates a need for parameter tuning
and makes the method less attractive than, say, the method of section 7.

Again, it makes sense to use cross-entropy instead of mean squared error.

6.4 A DISADVANTAGE OF THE ABOVE METHODS

Note that a factorial code causes non-mazimal V and therefore non-mazimal T
for all methods with a > 0 except for rare cases (such as if there are 2™ equally
probable different input patterns). This means that with a given problem there
is some need for parameter tuning of the relative weighting factors (with all
methods of section 6, only H is predictor-based). The method in the next section
avoids this necessity for parameter tuning by replacing the term for variance
maximization by a predictor-based term for conditioned variance maximization.

7 LOCAL CONDITIONED VARIANCE
MAXIMIZATION

This is the author’s preferred method for implementing the principle of pre-
dictability minimization. It does not (presumably) suffer from the parameter
tuning problems involved with the V-term above. It is extremely straight for-
ward and reveals a striking symmetry between opposing forces.

Let us define
Vo= Y (7 -4 (5)

Recall that P? is supposed to be equal to E(y; | {v}, k # i}), and note that (5)

is formally equivalent to the error function of the predictors (equation (1)).
Like in section 6.2 we drop the global invertibility term and redefine the

total objective function T to be maximized by the representational modules as

T=Vg—~vH. (6)

I conjecture that if there exists a quasi-binary factorial code for a given
pattern ensemble, then among all possible (real-valued or binary) codes T' is
maximized with a factorial code, even if y = 0.

If this conjecture is true, then we may forget about the H-term in (9). In
this case, all representational units simply try to mazimize the same function
that the predictors try to minimize, namely, V. In other words, this generates

10

a symmetry between two forces that fight each other — one trying to predict,
the other one trying to escape the predictions.

Although the conjecture above seems to be intuitively plausible (see the
following footnote), it remains unproven for all possible real-valued codes®.
However, algorithms based solely on Vg-maximization performed well in the
experiments to be described below.

8 ‘NEURAL’ IMPLEMENTATIONS
8.1 STARTING WITH REAL-VALUED UNITS

In a realistic application, of course, it is implausible to assume that the errors of
all P; are minimal at all times. After having modified the functions computing
the internal representations, the P; must be trained for some time to assure that
they can adapt to the new situation.

Each of the n predictors, the n modules, and the potentially available auto-
associator can be implemented as a feed-forward back-propagation network (e.g.
[19]). There are two alternating passes:

5Note that
E[E(y: | {yrs k # i}) — wi]* < E[B(w:) —wi]®, (7)
and that equality holds only if the following equality always holds: E(y; | {yr, k # i}) = E(vi)-
Maximizing V¢ is equivalent to maximizing Q¢ = Ei E? P(w?)(Pf — yf)z, where p ranges
over all different patternsinstead of all patterns. In the quasi-binary case Q ¢ can be rewritten
as

Qo= Y Plah)B(uila})(1- Byl ()
i binary, J

Here oc§ is the j-th different event {yr, k # :}. In the case of a factorial code this becomes

> B - Bw)) ®)

t binary

(Interestingly, if we define a very similar objective function Q¢ = Ei ZP P(zP) | PP — 47 |
based on absolute values instead of mean squared error then we find that Q¢ = 2Qg¢, in
the case of a binary factorial code.) The maximization of Q¢ encourages quasi-binary codes.
Let us consider a quasi-binary factorial code F. It is QF = E‘. binary EF (y:)(1 - BEF (w)),

where additional superscripts denote correspondence to a particular code. Every code B
for which Z'. binary EB(y;)(1 — EB(y;)) < QF cannot cause greater total error than F,
s H : By, .. By,,. F
essentially because of equations (7) and (9). But what if Ei binary EB(yi)(1-E%(w)) > Q&?
Intuitively, this seems to imply that the code-capacity exceeds the information containedin the
input ensemble, which in turn causes intra-representational redundancy, which in turn causes
. Plally;=1
smaller Qg I tried to put this formally, using the fact that E(y; | a;.) = ——(—%—)———)—E(y;),
)

but I did not arrive at the desired general conclusion. Perhaps I am just too blind to see the
obvious.

Finally, it should be noted that D. Prelinger (personal communication) has made some
progress towards proving the conjecture, by observing what happens if (with a given binary
code) a single unit changes its response to a single input pattern.

11

PASS 1 (minimizing prediction error): Repeat for a “sufficient” number of
time steps: Select an input pattern &P according to input probability distribu-
tion. Compute all yf . Compute all PY. Train all P; to predict the yf, using
conventional back-propagation. Change only the weights of the P; during this
pass.

PASS 2: Select an input pattern 2P according to its probability. Compute
all yf . Compute all PF. If an auto-associator is involved, compute zP. Change
each non-predictor weight w in proportion to ;2=T(x?), where T(2?) is the con-
tribution of the current presentation of P to the global objective function T.
The weights of the P; do not change during this pass, but all other weights do
change. Note that PASS 2 requires back-propagation of error signals through the
predictors (without changing their weights) and then through their n — 1 input
units (which are the output units of the representational modules) down to the
wetghts of the representational modules.

As with all gradient ascent procedures, the method is subject to the problem
of local maxima.

It should be mentioned that some or all of the representational modules
may share hidden units. The same holds for the predictors. Predictors sharing
hidden units, however, will have to be updated sequentially: No representational
unit may be used to predict its own activity.

What does the word ”suflicient” in PASS 1 mean? To be on the safe side, an
?off-line” procedure would sweep a few times through the entire set of training
patterns. This solution is perhaps not as appealing as one where computing
time is distributed evenly between PASS 2 and PASS 1.

Near-simultaneous updates of the representations and the predictors, how-
ever, will introduce on-line effects: Both the predictors and the representational
modules will perform gradient descent (or gradient ascent) in changing func-
tions. Given a particular implementation of the basic principle, experiments
are needed to find out how much on-line interaction is permittable. With the
experiments reported below, on-line learning did not cause major problems.

8.2 BINARY STOCHASTIC UNITS

A binary stochastic unit is a unit that can adopt only two output activations,
namely 1 or 0. At any given time, it sums its weighted input, passes it through
a squashing function, and interprets the result as the probability of adopting
the output value 1.

To what extent can the ideas of the last subsection be transferred to binary
stochastic units?

Each predictor P; can still be trained to model E(yf | {1}, k # i}), us-
ing essentially the same old error function (the only difference being that the

12

same pattern may cause different outputs at different presentations, due to the
randomness inherent in the stochastic units).

However, care has to be taken if we want to transfer PASS 2 of section 8.1 to
modules with binary stochastic units. Only in the linear case is the expectation
of the output of the predictors (and the auto encoder) equal to the weighted
sum of the expectations of the outputs of the representation units. In the linear
case we may apply PASS 2 without much modification, interpreting o;(t) as the
probability that unit ¢ is active at time t.

In the general case, however, back-propagation of errors through random
number generators with discrete (in this case binary) outputs does not ensure
proper gradient descent.

9 FACTORIAL CODES AND
OCCAM’S RAZOR

Any method for finding factorial codes automatically implements Occam’s razor
which prefers simpler models over more complex ones, where simplicity is de-
fined as the number of storage cells necessary to represent the environment in a
factorial fashion. If there are more storage cells than necessary to implement a
factorial code, then the independence criterion is met by letting all superfluous
units emit constant values in response to all inputs.

It is interesting to note that with non-factorial codes predictability min-
imization prefers to follow Occam’s razor instead of minimizing the sum of
bit-entropies ¢ la [1]. This can be seen by looking at an example described by
Mitchison in the appendix of [1]. This example shows a case where the mini-
mal sum of bit-entropies can be achieved with an expansive local coding of the
input. Local representations, however, maximize mutual predictability: With
local representations, each unit can always be predicted from all the others. Pre-
dictability minimization tries to avoid this by creating non-local, non-expansive
codings.

In the case of logistic activation functions, it would be nice if all unused
units emitted 0.5 as a constant value in response to all input patterns. Then
these units would become more sensitive to new unseen patterns than the other
(near-) binary units, due to the maximal derivative of the activation function
at 0.5. I define an additional error term M to be

M=8Y (@3 (10)

where § is another positive constant. This term penalizes mean output values
E(y) # % With sufficiently small 8, this term tends to pull unused units with
constant activations towards the point in their activation functions where the
derivative is maximal. In the lucky case where the number of input patterns is
a power of 2 and all patterns are equally probable, M can be zero.

13

In some experiments it was found that M can also help to escape certain
cases of local minima of T'.

10 PREDICTABILITY MINIMIZATION
AND TIME

Let us now consider the case of input sequences. This section describes an
entirely local method designed to find unambiguous, non-redundant, reduced
sequence descriptions.

The initial state vector 3?(0) is the same for all sequences p. The input at
time ¢ > 0 of sequence p is the concatenation 2?(t) o y”(¢t — 1) of the input 2?(t)
and the last internal state y?(t — 1). The output is ¥ (¢) itself.

We minimize and maximize essentially the same objective functions as de-
scribed above. That is, for the i-th module which now needs recurrent connec-
tions to itself and the other modules, there is again an adaptive predictor F;
which need not be recurrent. P;’s input at time ¢ is the concatenation of the
outputs y?(t) of all units k # i. P;’s one-dimensional output Pf(t) is trained
to equal the expectation of the output y;, given the outputs of the other units,
E(y; | {yx(2), k # i}), by defining P;’s error function as

PPN EAOER A0S
P t
In addition, all units are trained to take on values that mazimize
E=)"T(@)
t

where T'(t) is defined analoguously to the respective stationary cases.

The basic lines of reasoning in sections 5, 6, 7, 8, and 9 hold for this time-
processing architecture as well. The only way a unit can protect itself from
being predictable from the other units is to store aspects of the input sequences
that are independent of aspects stored by the other units. In other words, this
method will tend to throw away redundant temporal information much as the
systems in [13], [14], and [15]. For computing weight changes, each module looks
back only to the last time step. In the on-line case, this implies an entirely local
learning algorithm. Still, even when there are long time lags, the algorithm
theoretically may learn unique representations of eztended sequences — as can
be seen by induction over the length of the longest training sequence:

1. y can learn unique representations of all beginnings of all sequences.

2. Suppose all sequences and sub-sequences with length < k are uniquely
represented in y. Then, by looking back only one time step at a time, y can
learn unique representations of all sub-sequences with length k.

The argument neglects all on-line effects and possible cross-talk.

14

10.1 PREDICTABILITY MINIMIZATION AND
CHUNKING

The chunking systems described in [13] and [15] are based on the following
principle: If, at a given time step, it is possible to predict the new input from
the combination of the last input and the last state, then the new input conveys
no non-redundant information and therefore is not incorporated into the new
state. This principle allows for bridging long time lags, because only unexpected
events are stored.

This principle can be readily applied to the system above. The only modi-
fication necessary is the following:

P;’s input at time ¢ is the concatenation of the outputs ¥} (¢) of all units
k#iand yf(t—1)oah(t—1).

Maximization of T'(¢) will force y not to represent and store aspects of the
inputs that are predictable from previous inputs. This may speed up learning
and reduce the minimal necessary dimension of y.

In noisy environments y will prefer to store events that are not noise-like.
This is opposed to the history compression technique of [13] which considers
noise as having high information.

11 PREDICTABILITY MINIMIZATION
AND GOAL-DIRECTED LEARNING

Any reinforcement or supervised learning system can receive y? (t) or 2?(t)oy? (1)
as an input and can be trained in the standard way to complete the task at
hand. For instance, a supervised feed-forward net can be trained to emit desired
outputs whenever an external teacher so requires. A reinforcement learner with
a non-Markovian interface to its environment [12] will be potentially able to
build a Markovian interface with the method of section 10.

In some cases we want to make sure that a goal-directed learning system
does not only depend on the internal representations generated by the process
of predictability minimization (sometimes these representations might carry less
information than the input, due to local minima encountered during their for-
mation). In this case we may simply use the conventional input as an additional
input for the goal-directed learner, thus reducing the role of the representational
modules to merely an assisting role.

Note that goal-directed learning algorithms, based on unique history repre-
sentations learned by the local, unsupervised systems of section 10 are entirely
local, also. This represents an important potential of the method, which has
not yet been experimentally exploited.

15

12 EXPERIMENTS

All experiments described below were based on T defined as in section 7, with
4 = 0. In other words, the representational units try to maximize the same
objective function Vi that the predictors try to minimize. All representational
modules and predictors were implemented as 3-layer back-propagation networks.
All hidden and output units used a logistic activation function and were con-
nected to a bias-unit with constant activation. Parameters such as learning
rates and number of hidden units were not chosen to optimize performance —
there was no systematic attempt to improve learning speed.

An on-line system based on section 8 was implemented and tested Daniel
Prelinger (a student at the Technische Universitat Miinchen). Jeff Rink (a
student at the University of Colorado at Boulder) independently implemented
and tested an off-line version. The purpose of this section is not to compare off-
line and on-line versions but to show that both can lead to satisfactory results.

With the off-line version, PASS 1 was slightly modified. There were 5 con-
secutive ‘epochs’ during which each pattern of the whole training ensemble was
presented to the system. Weight changes for the predictors were executed after
each epoch. With PASS 2 there was 1 epoch after which weight changes for
the representational units were executed. The learning rates of all predictors
were 0.2, the learning rates of all representational modules were 0.3. Within
the representational modules there were direct connections from the input units
to the representational units. There were no direct input-output connections in
the predictors. Weights were initialized randomly between -0.5 and 0.5.

With the on-line system, at any given time, the same input pattern was
used in both PASS 1 and PASS 2; the ”sufficient” number of time steps for
PASS 1 was assumed to be 1. There were direct connections between the input
and output units of the representational modules and the predictors. Prelinger
introduced an additional method for escaping certain cases of local minima:
The activations of the output units of the representational modules were forced
to lie between 0.05 and 0.95. With pattern p each predictor P; locally tried to
minimize

(PP — (4 +0.1(0.5 — 7))? (11)
instead of simply minimizing (P? — y?)?. The effect of this was that the pre-
dictors were trained to ‘overshoot’ a little bit, which caused the expectations
of the representational units to tend to move away from the ‘corners’ of their
range. With the experiments reported below, it was found that during PASS 2
no back-propagation through the predictors’ input units down to the represen-
tational units was necessary. The learning rates of all predictors were 1.0, the
learning rates of all representational modules were 0.1. Weights were initialized
randomly between -0.3 and 0.3.

With all experiments, a unit was considered to be binary if the absolute
difference between its possible activations and either the maximal or the minimal

16

activation permitted by its activation function never exceeded 0.05. A code was
considered to be quasi-binary if each unit was either binary or the absolute
difference between its possible activations and its expectation never exceeded
0.05.

The next subsections list some selected experiments with both the on-line
and the off-line method. In what follows, the term ‘local input representation’
means that there are dim(z) different binary inputs, each with only one non-zero
bit. The term ‘distributed input representation’ means that there are 2%™(=)
different binary inputs.

12.1 UNIFORMLY DISTRIBUTED INPUTS

With the experiments described in this subsection there are 24™¥) uniformly
distributed input patterns. This means that the desired factorial codes are the
full binary codes.

Ezperiment 1: off-line, dim(y) = 2, dim(z) = 4, local input representation,
3 hidden units per predictor, 4 hidden units shared among the representational
modules. 10 test runs with 20,000 epochs for the representational modules were
conducted. In 8 cases this was sufficient to find a binary factorial code.

Ezperiment 2: on-line, dim(y) = 2, dim(z) = 2, distributed input repre-
sentation, 2 hidden units per predictor, 4 hidden units shared among the rep-
resentational modules. 10 test runs were conducted. Less than 3,000 pattern
presentations (equivalent to ca. 700 epochs) were always sufficient to find a
binary factorial code.

Ezperiment 3: on-line, dim(y) = 3, dim(z) = 3, distributed input repre-
sentation, 4 hidden units per predictor, 6 hidden units shared among the rep-
resentational modules. 10 test runs were conducted. Less than 20,000 pattern
presentations (equivalent to ca. 2,000 epochs) were always sufficient to find a
binary factorial code. In fact, in most cases less than 4,000 pattern presentations
(ca. 500 epochs) were sufficient.

Ezperiment {: off-line, dim(y) = 4, dim(x) = 16, local input representation,
3 hidden units per predictor, 16 hidden units shared among the representational
modules. 10 test runs with 20,000 epochs for the representational modules were
conducted. In 1 case the system found an invertible factorial code. In 4 cases it
created only 15 different output patterns in response to the 16 input patterns.
In 3 cases it created only 13 different ouput patterns. In 2 cases it created only
12 different ouput patterns.

Ezperiment 5: on-line, dim(y) = 4, dim(z) = 4, distributed input represen-
tation (16 patterns), 6 hidden units per predictor, 8 hidden units shared among
the representational modules. 10 test runs were conducted. In all cases but one
the system found a factorial code within less than 4,000 pattern presentations
(corresponding to less than 300 epochs).

17

12.2 OCCAM’S RAZOR AT WORK

The experiments in this section are meant to verify the effectiveness of Occam’s
razor mentioned in section 9.

Ezperiment 1: off-line, dim(y) = 3, dim(z) = 4, local input representation,
3 hidden units per predictor, 4 hidden units shared among the representational
modules. 10 test runs with 10,000 epochs for the representational modules were
conducted. In 7 cases the system found a binary factorial code: In the end, one
of the output units always emitted a constant value. In the remaining 3 cases,
the code was at least binary and invertible.

Ezperiment 2: off-line, dim(y) = 4, dim(z) = 4, local input representation,
3 hidden units per predictor, 4 hidden units shared among the representational
modules. 10 test runs with 10,000 epochs for the representational modules were
conducted. In 5 cases the system found a binary factorial code: In the end, two
of the output units always emitted a constant value. In the remaining cases, the
code did not use the minimal number of output units but was at least binary
and invertible.

Ezperiment 3: on-line, dim(y) = 3, dim(z) = 2, distributed input rep-
resentation, 2 hidden units per predictor, 4 hidden units shared among the
representational modules. 10 test runs with 100,000 pattern presentations {cor-
responding to 25,000 epochs) were conducted. This was always sufficient for
finding a quasi-binary factorial code. After training, the unused unit always
emitted a value close to 0.5. This is because minimization of (11) has an effect
similar to the one caused by minimization of (10).

Ezperiment {: on-line, dim(y) = 4, dim(z) = 2, distributed input rep-
resentation, 2 hidden units per predictor, 4 hidden units shared among the
representational modules. 10 test runs with 250,000 pattern presentations were
conducted. This was sufficient to always find a quasi-binary factorial code: In
the end, two of the output units always emitted a constant value. In 7 out of 10
cases, less than 100,000 pattern presentations (corresponding to 25,000 epochs)
were necessary.

12.3 NON-UNIFORMLY DISTRIBUTED INPUTS

The input ensemble considered in this subsection consists of four different pat-
terns denoted by ., #», ., and #4, respectively. The probabilities of the
patterns were :

a 1 2 . 2 4
This ensemble allows for binary factorial codes, one of which is denoted by the

following

code F: y* = 00, y* = 01, y° = 10, y* = 11.

With code F, the total objective function VC‘F becomes V(f = g. A non-
factorial but invertible (information-preserving) code is given by

18

code B: y* = 01, y* = 00, y°* = 10, y* = 11.

With code B, VZ = %g, which is only Z—lg below V£ . This already indicates
that certain local maxima of the internal state’s objective function may be very
close to the global maxima. This is reflected in the experiment described next.

Ezperiment 1: off-line, dim(y) = 2, dim(z) = 4, local input representation,
3 hidden units per predictor, 4 hidden units shared among the representational
modules. 10 test runs with 10,000 epochs for the representational modules were
conducted. Here one epoch consisted of the presentation of 9 patterns — 2¢
was presented once, z® was presented twice, #° was presented twice, ¢ was
presented four times.

In 5 cases, the system found a global maximum corresponding to a factorial
code. In 2 remaining cases the code was invertible, and in 3 remaining cases it
was not. Similar results were obtained with the on-line method.

Ezperiment 2 (Occam’s Razor): Like experiment 1, but with dim(y) = 3. In
2 out of 10 test runs the system found a factorial code (including one unused
unit). In-the remaining 8 test runs it found always invertible codes. This
reflects a trade-off between redundancy and invertibility: Superfluous degrees
of freedom among the representational units increase the probability that an
invertible (information-preserving) code is found, but decrease the probability
of finding a factorial code. '

12.4 EXPERIMENTS WITH STOCHASTIC
UNITS

Predictability minimization with stochastic representational units (section 8.1)
led to similar results as predictability minimization with deterministic units.
An approximation to proper gradient descent was used: It was possible to ob-
tain satisfactory results without propagating through the input units of the
predictors down to the representational modules. Here is just one example:
Ezperiment: on-line, dim(y) = 3, dim(z) = 2, distributed input represen-
tation, 2 hidden units per predictor, 4 hidden units shared among the rep-
resentational modules. A unit was considered to be ‘near-deterministic’ if its
probability of being switched on was either less than 0.05 or higher than 0.95 for
any given input pattern. 10 test runs with 100,000 pattern presentations (cor-
responding to 25,000 epochs) were conducted. This was always sufficient for
finding a ‘near-determininstic’ binary factorial code. After training, an unused
unit was either always switched on or always switched off with high probability.

12.5 RECURRENT SYSTEMS

On-line variants of the system described in section 10 were implemented by
Daniel Prelinger. Preliminary experiments were conducted with the resulting
recurrent systems. These experiments demonstrated that entirely local methods
based on section 10 allow for learning unique representations of all subsequences

19

of non-trivial sequences (like a sequence consisting of 8 consecutive presentations
of the same input pattern). It is intended to elaborate on sequence learning by
predictability minimization in a separate paper.

13 CONCLUDING REMARKS, OUTLOOK

Although gradient methods based on the principle of predictability minimization
can not always be expected to find factorial codes — due to local minima and
the possibility that the problem of finding factorial codes may be NP-hard —
they have a potential for removing kinds of redundancy that previous linear
methods were not able to remove. This holds even if the conjecture in section
7 ultimately proves to be false.

In many realistic cases, approximations of non-redundant codes should be
satisfactory. It remains to be seen whether predictability minimization can be
useful to find nearly non-redundant representations of real-world inputs, such as
retinal images. In ongoing research it is intended to apply the methods described
herein to problems of unsupervised image segmentation (in the case of multiple
objects), as well as to unsupervised sequence segmentation.

There is a relationship of predictability minimization to more convention-
al ‘competitive’ learning schemes: In a certain sense, units compete for rep-
resenting certain ‘abstract’ transformations of the environmental input. The
competition is not based on a physical ‘neighbourhood’ criterion but on mutual
predictability. Unlike with most previous schemes based on ‘winner-take-all’
networks, output representations formed by predictability minimization may
have multiple ‘winners’, as long as they stand for independent features extract-
ed from the environment.

One might speculate about whether the brain uses a similar principle based
on ‘representational neurons’ trying to escape the predictions of ‘predictor neu-
rons’. Since the principle allows for entirely local sequence learning algorithms
(in space and time), it seems to be biologically more plausible than methods
such as ‘back-propagation through time’ etc.

Predictability minimization also might be useful in cases where different rep-
resentational modules see differentinputs. For instance, if a binary feature of one
input ‘patch’ is predictable from features extracted from neighbouring ‘patches’,
then representations formed by predictability minimization would tend to not
use additional storage cells for representing the feature.

The paper at hand adopts a general viewpoint on predictability minimiza-
tion by focussing on the general case of non-linear nets. In some cases, however,
it might be desireable to restrict the computational power of the representa-
tional modules and/or the predictors by making them linear or semi-linear. For
instance, a hierarchical system with successive stages of computationally lim-
ited modules may be useful for reflecting the hierarchical structure of certain
environments.

20

14 ACKNOWLEDGEMENTS

Thanks to Daniel Prelinger and Jeff Rink for conducting the experiments.
Thanks to Daniel Prelinger, Mike Mozer, Radford Neal, Luis Almeida, Sue Beck-
er, Rich Zemel, Peter Dayan, and Clayton McMillan for valuable comments and
suggestions which helped to improve the paper. This research was supported
by NSF PYI award IRI-9058450, grant 90-21 from the James S. McDonnell
Foundation, and DEC external research grant 1250 to Michael C. Mozer.

References

[1]

2]

(3]

[10]

(11]

H. B. Barlow, T. P. Kaushal, and G. J. Mitchison. Finding minimum
entropy codes. Neural Computation, 1:412-423, 1989.

S. Becker. Unsupervised learning procedures for neural networks. Interna-
tional Journal of Neural Systems, 2(1 & 2):17-33, 1991.

S. Becker and G. E. Hinton. Spatial coherence as an internal teacher for a
neural network. Technical Report CRG-TR-89-7, Department of Computer
Science, University of Toronto, Ontario, 1989.

G.J. Chaitin. A theory of program size formally identical to information
theory. Journal of the ACM, 22:329-340, 1965.

F. Foldidk. Forming sparse representations by local anti-hebbian learning.
Biological Cybernetics, 64:165-170, 1990.

A.N. Kolmogorov. Three approaches to the quantitative definition of in-
formation. Problems of Information Transmission, 1:1-11, 1965.

R. Linsker. Self-organization in a perceptual network. IEEE Computer,
21:105-117, 1988.

E. Oja. Neural networks, principal components, and subspaces. Interna-
tional Journal of Neural Systems, 1(1):61-68, 1989.

B. A. Pearlmutter and G. E. Hinton. G-maximization: An unsupervised
learning procedure for discovering regularities. In J. S. Denker, editor,
Neural Networks for Computing: American Institute of Physics Conference
Proceedings 151, volume 2, pages 333-338, 1986.

J. Rubner and K. Schulten. Development of feature detectors by self-
organization: A network model. Biological Cybernetics, 62:193-199, 1990.

T. D. Sanger. An optimality principle for unsupervised learning. In D. S.
Touretzky, editor, Advances in Neural Information Processing Systems 1,
pages 11-19. San Mateo, CA: Morgan Kaufmann, 1989.

21

[12]

(15]

[16]

[17]

(18]

[19]

[20]

J. H. Schmidhuber. Reinforcement learning in markovian and non-
markovian environments. In D. S. Lippman, J. E. Moody, and D. S. Touret-
zky, editors, Advances in Neural Information Processing Systems 3, pages
500-506. San Mateo, CA: Morgan Kaufmann, 1991.

J. H. Schmidhuber. Learning complex, extended sequences using the prin-
ciple of history compression. Accepted for publication in Neural Computa-
tion, 1992.

J. H. Schmidhuber. Learning unambiguous reduced sequence description-
s. In J. E. Moody, S. J. Hanson, and R. P. Lippman, editors, Advances
in Neural Information Processing Systems §, to appear. San Mateo, CA:
Morgan Kaufmann, 1992.

J. H. Schmidhuber, M. C. Mozer, D. Prelinger, R. Blumenthal, and D.
Mathis. Continuous history compression. Technical report, Dept. of Comp.
Sci., University of Colorado at Boulder, 1992.

C. E. Shannon. A mathematical theory of communication (part III). Bell
System Technical Journal, XXVII:623-656, 1948.

C. E. Shannon. A mathematical theory of communication (parts I and II).
Bell System Technical Journal, XXVI1:379-423, 1948.

F. M. Silva and L. B. Almeida. A distributed decorrelation algorithm. In
Erol Gelenbe, editor, Neural Networks, Advances and Applications. North-
Holland, 1991, to appear.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

R. S. Zemel and G. E. Hinton. Discovering viewpoint-invariant relation-
ships that characterize objects. In D. S. Lippman, J. E. Moody, and D. S.
Touretzky, editors, Advances in Neural Information Processing Systems 3,
pages 299-305. San Mateo, CA: Morgan Kaufmann, 1991.

22

