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Abstract

Novel database applications demand not only high functionality but also high performance. To combine these two
requirements, the Volcano project provides efficient, extensible tools for query and request processing in novel
application domains, particularly in object-oriented and scientific database systems. One of these tools is a new
optimizer generator. Data model, logical algebra, physical algebra, and rules are translated by the optimizer gen-
erator into optimizer source code. Compared with our earliecr EXODUS optimizer generator prototype, the search
engine is more extensible and powerful as it provides direct and effective support for non-trivial cost models and
for physical properties like sort order and partitioning, but at the same time it is much more efficient. Compared
with other rule-based optimization systems, it provides more extensibility and data model independence. The Vol-
cano optimizer generator and its search engine demonstrate the feasibility of a query optimization system that is
highly extensible but also very effective and efficient.

1. Introduction

Numerous database systems are currently being developed, most of them from scratch rather than by using
an extensible toolkit [27], because extensible database technology currently does not combine the required levels
of generality and performance. The basic idea of extensible database systems is to divide DBMS functions into
well-defined components and for cach of them either to generate code from specifications or to provide a toolkit or
"grab bag" of alternative modules. The former approach has been used for parsing and query optimization, while
the latter approach seems particularly suitable for the storage and access mechanisms. Examples of code genera-
tors include parser generators like YACC [15] and optimizer generators like the EXODUS optimizer generator [4];
extensible toolkits include Genesis [1] and the attachment mechanisms in Starburst [13].

While extensibility is an important requirement for database research, performance must not be sacrificed for
two reasons. First, data volumes stored in database systems continue to grow, in many application areas far
beyond the capabilities of most existing database systems [26]. Second, in order to overcome acceptance problems
in novel database application domains, database systems must achieve at least the same performance as the file
systems currently in use. In other words, the additional software layers for database management must be counter-
balanced by database performance techniques normally not used in these application areas. We believe that optim-
ization and parallelization are prime candidates, and that tools and techniques for optimization and parallelization
are crucial for the wider use of extensible database technology.

For a number of rescarch projects, namely the Volcano extensible, parallel query processor [11], the REVELA-
TIoN OODBMS project [2, 7], optimization and parallelization in scientific databases [31], and dynamic query
plans [8], we felt the need for an extensible query optimization system. Our earlier experience with the EXODUS
optimizer generator had been inconclusive as it had proved the feasibility and validity of the optimizer generator
paradigm, but it had been difficult to construct efficient, production-quality optimizers. Therefore, we set out to
design a new optimizer generator, requiring several important improvements over the EXODUS prototype. First,
the new system must be more efficient, both in optimization time and memory consumption for the search.



Second, it must provide effective, efficient, and extensible support for physical properties like sort order, location
and partitioning, compression status, and "assembledness” in object-oriented systems [16]. Third, it must permit
extensive use of heuristics and data model semantics to guide the search and to prune futile parts of the search
space. Fourth, it must learn optimization heuristics, both from observations during the search and from observa-
tions of actual query performance. Finally, it must support flexible cost models that could be used for generating
dynamic plans for incompletely specified queries.

In this paper, we describe the Volcano optimizer generator which fulfills or shortly will fulfill all the require-
ments above. In Section 2, we describe related work on rule-based extensible query optimization. Section 3 intro-
duces the main concepts of the Volcano optimizer generator and details how the optimizer implementor can tailor a
new optimizer., Section 4 discusses the optimizer search strategy in detail. Functionality, extensibility, and search
efficiency of the EXODUS and Volcano optimizer generators is compared in Section 5. We offer our conclusions
from this research in Section 6.

2. Related Work

The EXODUS optimizer generator was a first attempt at extensible query optimization. It was successful in
the sense that it defined a general approach to the problem based on the generator paradigm (data model
specification as input data), separation of logical and physical algebra, extensive use of rules (transformation rules,
implementation rules), and its focus on software modularization [4-6]. Considering the complexity of typical
query optimization software and the importance of well-defined components to conquer complexities of software
design and maintenance, the latter point might be one of the most important contributions of the EXODUS optim-
izer generator research. The generator concept was very successful because the input data (data model
specification) could be turned into machine code; in particular, all strings were translated into integers, allowing
very fast pattern matching. However, the EXODUS generator’s search engine was far from optimal. First, the
modifications required for unforeseen algebras and their peculiarities made it quite a patchwork of code [6].
Second, the organization of the "MESH" data structure (that held all logical and physical algebra expressions
explored so far) was extremely cumbersome, both in its time and space complexities. Third, the almost random
transformations of expressions in MESH resulted in significant overhead in "reanalyzing” existing plans. In fact,
for larger queries, most of the time was spent reanalyzing existing plans.

The query optimization subsystem of the Starburst extensible-relational database management system con-
sists of two rule-based subsystems with nested scopes [3, 12, 13, 20]. The first one, called query rewrite or query
graph model (QGM), covers all operators except select, project, and join. Optimization of query rewrite operators,
e.g., nested SQL queries, union, outer join, grouping, and aggregation, is based entirely on heuristics and is not
cost sensitive. Select-project-join (SPJ) query components are covered by the second optimizer, also called the
join enumerator, which performs rule-based, grammar-like, cost-sensitive expansion of SPJ queries from relational
calculus into access plans. The join enumerator performs exhaustive search within certain structural boundaries.
For example, it is possible to restrict the search space to left-deep trees (no composite inner), to include all bushy
trees, or to set a parameter that explores some but not all bushy trees. However, the optimizer design is focussed
on step-wise expansion of join expressions based on grammar-like rules, and it is not obvious how the existing rule
set would interact with additional operators and expansion rules.

Kemper and Moerkotte designed a rule-based query optimizer for the Generic Object Model [17]. The rules
operate almost entirely on path expressions (¢.g., employee.department.floor) by extending and cutting them to



permit effective use of access support relations [18]. While the use of rules makes the optimizer extensible, it is
not clear to what extent these techniques can be used for different data models and for different execution engines.

In summary, we believe that the extensibility of the EXODUS optimizer generator and its modular software
engineering approach are important for truly extensible systems. On the other hand, the carefully designed search
strategy of Starburst’s join enumerator is probably much more efficient than the EXODUS optimizer generator’s
very general search engine. Therefore, we tried to combine these two key advantages, generality and efficiency, in
our new optimizer generator and its search engine.

3. The Outside View of the Volcano Optimizer Generator

In this section, we provide a general overview of the Volcano optimizer generator. There are three funda-
mental design decisions embodied in the system. First, query processing, both optimization and execution, are
presumed to be based on algebraic techniques. Second, rules are used to specify the data model and its properties.
Third, rules are transformed by an optimizer generator into source code in a standard programming language (C) to
be compiled and linked with the other DBMS modules.

While query processing in relational systems has always been based on relational algebra, it is becoming
increasingly clear that query processing in extensible and object-oriented systems will also be based on algebraic
techniques. Several object-oriented algebras have recently been proposed, e.g. [25, 28-30]. Their common thread
is that algebra operators consume one or more bulk types (e.g., set, bag, array, list) and produce another one suit-
able as input into the next operator. The execution engines for these systems are also based on algebra operators,
i.e., algorithms consuming and producing bulk types. However, the set of operators and the set of algorithms are
different, and selecting the most efficient algorithms will be one of the tasks of query optimization. Therefore, the
Volcano optimizer generator uses two algebras, called the logical and the physical algebra, and generates optimiz-
ers that map an expression of the logical into an expression of the physical algebra using transformations within the
logical algebra and cost-based mapping of logical operators to algorithms.

Second, rules have been identified as a general concept to specify knowledge about patterns in a concise and
modular fashion, and knowledge of algebraic laws as required for equivalence transformations in query optimiza-
tion can easily be expressed using patterns and rules. For an extensible query optimization system, the properties
of the data model and its execution engine must be imported knowledge (input data), suggesting a separation of
rule specification and rule execution as realized in the generator and its associated search engine. Furthermore, in
order to permit extensions of an existing optimizer, all input to the generator must be modular. Considering that
query optimization is one of the conceptually most complex components of any database system, modularization is
an advantage in itself both for initial construction of an optimizer and for maintenance. In our design, rules are
translated independently from one another and are combined only by the search engine.

The third fundamental design decision concerns rule interpretation vs. compilation. In general, interpretation
can be made more flexible (in particular the rule set can be augmented at run-time), while compiled rule sets typi-
cally execute faster. Earlier experiments demonstrated that query optimization is very processing-intensive; there-
fore, we decided on rule compilation similar to the EXODUS optimizer generator. Moreover, we believe that
extending a query processing system and its optimizer is so complex and time-consuming that it is never done on
the fly, making the strongest argument for an interpreter pointless. Nonetheless, we have been using an interpreted
Lisp prototype for preliminary algorithm studies because Lisp offers both powerful pattern matching and algo-
rithmic control. Since these studies were completed about a year ago, we have been developing and working on



the optimizer generator.

3.1. The Optimizer Generator Paradigm

Figure 1 shows the general generator paradigm. While building the DBMS software, a model specification
is translated into optimizer source code which is then compiled and linked with the other software. Some of this
software is written by the optimizer implementor, e.g., cost functions. When the DBMS is used and a query is
entered, the query is passed to the optimizer which generates an optimized plan for it. We call the person who
specifies the data model and implements the DBMS software the "optimizer implementor.” The person who poses
queries to be optimized and executed by the database system is called the DBMS user.

The correctness of the transformation rules as well as their soundness and completeness! cannot be verified
by the optimizer generator since these rules are the only source of knowledge about the data model, its operations,
and its equivalence criteria. However, we plan on complementing the Volcano optimizer generator with an "advi-
sor” that scans the rule set and suggests modifications to the optimizer implementor, e.g., rules that seem redun-
dant, missing implementation algorithms for logical operators, etc. We feel that such a separate advisor is an addi-
tional advantage of the generator paradigm.

After a data model description has been translated into source code for the optimizer, the generated code is
compiled and linked with the search engine (code) that is associated with and part of the Volcano optimization
software. The search engine is compiled each time a new optimizer is built; while this is not strictly necessary, it
was convenient to design the system in this way because a number of constants that are derived from the model
description, e.g., the maximal operator arity, can be compiled into the optimizer. We have considered modifying
the search engine such that it can be compiled only once; while this would make the turn-around time during
optimizer implementation and debugging faster, it would require dynamic space allocation for several data struc-
tures, therefore slowing the generated optimizers to some extent.

Model Specification
‘t Optimizer Generator
Optimizer Source Code
l Compiler & Linker

Query ————> Optimizet ——> Plan

Figure 1. The Generator Paradigm.

! Sound — only correct expressions and plans, i.c., equivalent to the original user query, can be derived.
Complete — all correct expressions and plans can be derived.



3.2. Optimizer Generator Input and Optimizer Operation

Since one major design goal of the Volcano optimizer generator was to minimize the assumptions about the
data model to be implemented, the optimizer generator only provides a framework into which an optimizer imple-
mentor can integrate data model specific operations and functions. In this section, we discuss the components that
the optimizer implementor can define when implementing a new database query optimizer. We discuss parts of the
operation of generated optimizers here, but leave it to the section on search to draw all the pieces together. In
order to ensure a common language, Table 1 summarizes the most important terms used throughout this paper and
introduced in turn in this section.

The user queries to be optimized are specified using an expression (tree) of logical operators. The transla-
tion from a user interface into a logical algebra expression must be performed by the parser and is not discussed
here. The set of logical operators is declared in the model specification and compiled into the optimizer. Opera-
tors can have zero or more inputs; the number of inputs is not restricted. The output of the optimizer is a plan,
which is an algebra expression of algorithms.

Optimization consists of mapping a logical algebra expression into the optimal equivalent physical algebra
expression. In other words, the optimizer reorders operators and selects implementation algorithms. The algebraic
rules of expression equivalence, e.g., commutativity or associativity, are specified using transformation rules. The
possible mappings of operators to algorithms are specified using implementation rules. Notice that these are rules

Query Logical algebra expression.
Logical algebra, operator High-level operators that specify data transformations without specify-
ing the algorithm to be used; for example, relational algebra.

Plan Physical algebra expression.

Physical algebra, algorithm  Algorithms for data transformations, composable into complex query
evaluation plans.

Transformation rules Rules that govern rewriting logical algebra expressions; €.g., join com-
mutativity.

Implementation rules Rules that specify the relationships between logical operators and phy-
sical operators; e.g., (logical operator) join and (physical algorithm) hy-
brid hash join.

Condition code Determines, after a rule pattern match has succeeded, whether or not a

transformation rule, algorithm, or enforcer is applicable to a logical
algebra expression.

Property Description of results of (sub-) queries and (sub-) plans; divided into
logical, system, and physical properties.

Property vector Indicates which physical properties must be enforced during optimiza-
tion of a logical algebra expression, e.g., sortedness.

Enforcer Part of the physical algebra that enforces physical properties like sort
order, location in a network, or decompression.

Applicability function Decides whether an algorithm or enforcer can deliver a logical expres-

sion conforming to a physical property vector, and determines what
physical properties its inputs must satisfy.

Cost, Cost function An abstract data type that captures an algorithm’s or plan’s cost; typi-
cally a number or a record. A cost function estimates the cost of a al-
gorithm or enforcer.

Property function One for each operator and algorithm, they determine logical, system,
and physical properties.

Table 1. Optimizer Generator Concepts.



to allow for complex mappings. For example, a join followed by a projection (without duplicate removal) should
be implemented in a single procedure. Beyond simple pattern matching of operators and algorithms, additional
conditions may be specified with both kinds of rules using condition code attached to a rule to be invoked after a
pattern match succeeded.

The results of expressions are described using properties. Logical properties can be derived from the logical
algebra expression alone and include the schema, expected size, etc., while physical properties depend on algo-
rithms, e.g., sortedness, partitioning, etc. Logical properties are attached to equivalence classes — sets of
equivalent logical expressions and plans — while physical properties are attached to specific plans and algorithm
choices. Since we expect some logical properties to be used in any database query optimizer, we defined them
separately as system properties. We hope to use system properties later for learning search heuristics automati-
cally, for example, the fact that hash join is only worthwhile if the left (build) input is smaller than the right (probe)
input. Currently, only item count (i.e., cardinality) and average item size (equivalent to record size) are system
properties, but we may decide to revisit this design decision.

The set of physical properties is summarized for each intermediate result in a property vector. The property
vector is defined by the optimizer implementor and treated as an abstract data type by the Volcano optimizer gen-
erator and its search engine; in other words, the number of the fields in this vector, their types, and their semantics
can be designed by the optimizer implementor.

There are some operators in the physical algebra that do not correspond to any operator in the logical alge-
bra, for example sorting and decompression. The purpose of these operators is not to perform any logical data
manipulation but to enforce physical properties in their outputs that are required for subsequent query processing
algorithms. We call these operators enforcers; they are comparable to "glue" operators in Starburst. It is possible
for an enforcer to ensure two properties, or to enforce one but destroy another.

Each optimization goal (and subgoal) is a pair of a logical expression and a physical property vector. In
order to decide whether or not an algorithm or enforcer can be used to execute the root node of a logical expres-
sion, a generated optimizer matches the implementation rule, executes the condition code associated with the rule,
and then invokes an applicability function to determine whether or not the algorithm or enforcer can deliver the
logical expression with physical properties that satisfy the property vector. The applicability functions also deter-
mine the physical property vectors that the algorithm’s inputs must satisfy. For example, when optimizing a join
expression whose result should be sorted on the join attribute, hash join does not qualify while merge join qualifies
with the requirement that its inputs be sorted. The sort enforcer also passes the test, and the requirements for its
input do not include sort order. When optimizing the input to the sort, hash join qualifies. There is also a provision
to ensure that algorithms do not qualify redundantly, e.g., merge join must not be considered as input to the sort in
this example.

After the optimizer decides to explore using an algorithm or enforcer, it invokes the algorithm’s cost func-
tion to estimate its cost. Cost is an abstract data type for the optimizer generator; therefore, the optimizer imple-
mentor can choose cost to be a number (e.g., estimated elapsed time), a record (e.g., estimated CPU time and I/O
count), or any other type. Cost additions and comparisons are performed by invoking functions associated with the
abstract data type "cost."

For each logical and physical algebra expression, logical and physical properties are derived using property
functions. There must be one property function for each logical operator, algorithm, and enforcer. The logical
properties are determined based on the logical expression, before any optimization is performed, by the property



functions associated with the logical operators. For example, the schema of an intermediate result can be deter-
mined independently of which one of many equivalent algebra expressions creates it. The logical property func-
tions also encapsulate selectivity estimation. On the other hand, physical properties like sort order can only be
determined after an execution plan has been chosen. As a simple consistency check, generated optimizers verify
that the physical properties of a chosen plan really do satisfy the physical property vector given as part of the
optimization goal.

To summarize this section, the optimizer implementor provides (1) a set of logical operators, (2) algebraic
transformation rules, possibly with condition code, (3) a set of algorithms and enforcers, (4) implementation rules,
possibly with condition code, (5) an ADT "cost” with functions for addition and comparison, (6) an ADT "logical
properties,” (7) an ADT "physical property vector," (8) comparisons for physical properties (equality and cover),
(9) an applicability function for each algorithm and enforcer, (10) a cost function for each algorithm and enforcer,
(11) a property function for each logical operator, and (12) a property function for each algorithm and enforcer.
This might seem to be a lot of code; however, all this functionality is required to construct a database query optim-
izer with or without an optimizer generator. Moreover, considering that query optimizers are typically one of the
most intricate modules of a database management systems and that the optimizer generator prescribes a clean
modularization for these necessary optimizer components, the effort of building a new database query optimizer
using the Volcano optimizer generator should still be significantly less than designing and implementing a new
optimizer from scratch.

The resulting optimizer is extensible in several important dimensions identified as necessary for query
optimization in object-oriented systems, namely (1) the set of logical operators, (2) the set of equivalence rules, (3)
the set of query execution algorithms, (4) the mapping from data model operations to algorithms, (5) the cost meas-
ure and cost estimation, and (6) the selectivity estimation model and statistics. Thus, we hope that the Volcano
optimizer generator will prove to be a useful tool for query processing research in next-generation, extensible and
object-oriented database systems.

3.3. Example Generator Input

Figure 2 shows example generator input. Operators, algorithms, and enforcers are declared with their arity, -

i.e., the number of algebra expressions required as their input. Transformation rules are defined by a pair of logical
algebra expressions and a transfer symbol. Operators can either be explicitly named or can be variables, as in the
example. This permits specification of generic rules, e.g., commutativity and associativity, a feature that was miss-
ing in the EXODUS optimizer generator. The arguments, e.g., join predicates, appear in the expressions to permit
correct transfer of arguments during optimization, e.g., of the two predicates appearing in a join associativity rule.
Condition code can refer to the macro REJECT, which is supplied automatically by the optimizer generator.
Application code is invoked after a rule has been applied, in this case to reverse the roles of left and right join attri-
butes. Implementation rules specify mappings of operators to algorithms, and can be more complex than shown in
Figure 2, e.g., to map the combination of two operators to one algorithm,



-- Define logical operators and their input arities.
9operator JOIN 2
Yooperator INTERSECTION 2

-- Define algorithms and their input arities.
%algorithm HASH_JOIN 2
%algorithm FILE_SCAN 0

-- Define enforcers and their input arities.
Y%enforcer SORT 1

-- Transformation rule: Commutativity rule for join and intersection.
--’->!” indicates the rule should not be applied to expressions

-- which were generated by this rule.

%trans_rule (?opl ?op_argl (71 72)) ->! (2opl 7op_arg2 (72 71))
%cond_code

i

/* Check for correct operators; difference is not commutative. */
if Popl 1=JOIN && ?0pl != INTERSECTION)
REJECT;
1}

%appl_code

{{
/* Reverse the argument if the rule is applied. */

if (?op1 == JOIN)
reverse_argument (?op_arg2, 7op_argl) ;
1)

-- Implementation rule: JOIN can be implemented by HASH_JOIN.
%impl_rule (JOIN ?0p_argl (?1 72)) -> (HASH_JOIN ?al_argl (?1 72))

Figure 2. Example Generator Input.

4. The Search Engine

We consider query optimization to be a planning problem similar to many other planning problems in
artificial intelligence (AI). However, there is no standard formulation or solution to the query optimization prob-
lem in AI because query optimization and Al researchers have traditionally not interacted very much; if at all,
mostly to consider database techniques for knowledge bases rather than Al techniques for database problems. A
second reason is that there is no standard formulation of "the" query optimization problem among database
researchers because data models and query languages differ as well as query execution engines, their facilities and
costs. Furthermore, the separation of logical algebra (like relational algebra with operators like join) and execut-
able algebra (with operators like nested loops, hash join, merge join, and sort) makes this planning problem unique.

4.1. The Search Algorithm

Since our experience with the EXODUS optimizer generator indicated that it is easy to waste a lot of search
effort, we designed the search algorithm for the Volcano optimizer generator to be very goal-oriented and driven
by needs rather than by possibilities. In some sense, while the EXODUS search engine could be described as using
forward chaining (in the sense this term is used in AI), the Volcano search algorithm uses backward chaining since
it explores only those subqueries and plans that truly participate in a larger expression,



Algebraic transformation systems always include the possibility of deriving the same expression in several
different ways. In order to prevent redundant optimization effort by detecting redundant (i.e., multiple equivalent)
derivations of the same logical expressions and plans during optimization, expression and plans are captured in a
hash table of expression and equivalence classes. An equivalence class represents two collections, one of
equivalent logical and one of physical expressions (plans). The logical algebra expressions are used for efficient
and complete exploration of the search space, and plans are used for a fast choice of a suitable input plan that
satisfies physical property requirements. For each combination of physical properties for which an equivalence
class has already been optimized, e.g., unsorted, sorted on A, and sorted on B, the best pian found is kept. Figure 3
shows a simplified diagram of an equivalence class; a network of equivalence classes is created during optimiza-
tion and contains all optimization results.

Figure 4 shows an outline of the search algorithm used by the Volcano optimizer generator. The original
invocation of the FindBestPlan procedure indicates the logical expression passed to the optimizer as the query to
be optimized, physical properties as requested by the user (for example, sort order as in the ORDER BY clause of
SQL), and a cost limit, typically infinity for the original user query until a first plan is found.

The FindBestPlan procedure is broken into two parts. First, if a plan for the expression satisfying the physi-
cal property vector can be found in the hash table, either the plan and its cost or a failure indication are returned
depending on whether or not the found plan satisfies the given cost limit. If the expression cannot be found in the
hash table, or if the expression has been optimized before but not for the presently required physical properties,
actual optimization is begun.

There are three sets of possible "moves" the optimizer can explore at any point. First, the expression can be
transformed using a transformation rule. Second, there might be some algorithms that can deliver the logical
expression with the desired physical properties, e.g., hash join for unsorted output and merge join for join output

Equivalence Logical Logical Logical
Class Expression Expression Expression
I Operator | I Operator I l Operator l
l Input(s) I | Input(s) | I Input(s) I
Plan Plan
| Algorithm |{—{| Algorithm |
Physical Physical
Properties Properties
System
Properties I Cost I l Cost l
Logical Input(s) + Input(s) +
Properties Properties Properties

Figure 3. Data Structure of an Equivalence Class.



FindBestPlan (LogExpr, PhysProp, Limit)
if LogExpr & PhysProp is in the hash table
if cost in hash table < Limit
return plan and cost
else
return failure

else /* optimization required */
create the set of possible "moves" from
applicable transformations
algorithms that give the required PhysProp
enforcers for required PhysProp

order the set of moves by promise

for the most promising moves
if the move uses a transformation
apply the transformation creating NewLogExpr
call FindBestPlan (NewLogExpr, PhysProp, Limit)
else if the move uses an algorithm
TotalCost := cost of the algorithm
for all inputs I while TotalCost < Limit
determine required phys. prop. for I
find cost by calling FindBestPlan
add cost to TotalCost
else /* move uses an enforcer */
TotalCost := cost of the enforcer
modify PhysProp for enforced property
call FindBestPlan for LogExpr w/ modified PhysProp

/* maintain hash table of explored facts */
if LogExpr is not in hash table
insert LogExpr into hash table
insert PhysProp and best plan found into hash table

Figure 4. Outline of the Search Algorithm.

sorted on the join attribute. Third, an enforcer might be useful to permit additional algorithm choices, e.g., a sort
operator to permit using hash join even if the final output is to be sorted.

Both matching and duplicate detection can be time-consuming activities, although the experience with the
EXODUS optimizer generator indicated that expression matching can be done very efficiently after compilation
and resolution of operator names into integers. Nonetheless, since we want to be able to build complex optimizers
with very large rule sets, we decided to use a hashing scheme (hashed on the top-most operator in an expression)
for fast rule matching and duplicate detection.

After generating all possible moves, the optimizer assesses their promise of leading to the optimal plan.
Clearly, good estimations of a move’s promise are useful for finding the best plan fast. Considering that we are
building an optimizer generator with as few assumptions as possible with respect to the logical and physical alge-
bras, it is not possible to estimate a move’s promise without assistance by the optimizer implementor. Thus, the
optimizer implementor can provide estimation functions which will have a significant impact on an optimizer’s
performance.

The most promising moves are then pursued. For exhaustive search, these will be all moves. Otherwise, a
subset of the moves determined by another function provided by the optimizer implementor are selected. Pursuing
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Call moves or only a selected few ones is the second major heuristic that is placed into the hands of the optimizer
implementor. Using this control function, an optimizer implementor can choose to transform a logical expression
without any algorithm selection and cost analysis, which covers the optimizations that in Starburst are separated
into the QGM (Query Graph Model) level [13]. The difference between Starburst’s two-level and Volcano’s
approach is that this separation is mandatory in Starburst while Volcano leaves it as a choice to be made by the
optimizer implementor.

The cost limit is used to improve the search algorithm using branch-and-bound pruning. Once a complete
plan is known for a logical expression (the user query or some part of it) and a physical property vector, no other
plan or partial plan with higher cost can be part of the optimal query evaluation plan. Therefore, it is important
(for optimization speed, not for correctness) that a relatively good plan be found fast, even if the optimizer uses
exhaustive search. Furthermore, cost limits are passed down in the optimization of subexpressions, and tight upper
bounds also speeds their optimization.

If a move to be pursued is a transformation, the new expression is formed and optimized using FindBestPlan.
In order to detect the case that two (or more) rules are inverses of each other, the current expression and physical
property vector is marked as "in progress.” If a newly formed expression already exists in the hash table and is
marked as "in progress," it is ignored because its optimal plan will be considered when it is finished.

Sometimes a new equivalence class is created during a transformation. Consider the associativity rule in
Figure 5. The expressions rooted at A and B are equivalent and therefore belong into the same class. However,
expression C is not equivalent to any expression in the left expression and requires a new equivalence class. In this
case, a new equivalence class is created and optimized as required for cost analysis and optimization of expression
B.

If a move to be pursued is a normal query processing algorithm such as merge join, its cost is calculated by a
cost function provided by the optimizer implementor. The applicability function for the algorithm determines the
physical property vectors for the algorithms inputs, and their costs are determined by invoking FindBestPlan for
the inputs. Finally, all costs are added together using another optimizer implementor function. In this process, the
Limit passed to FindBestPlan is the original Limit minus costs already computed. For example, if the total cost
limit for a join expression is 10 cost units, the join algorithm takes 3 cost units and the left input takes 4 cost units,
the limit for optimizing the right input is 3 cost units.

For some binary operators, the actual physical properties of the inputs are not as important as the consistency
of physical properties of all inputs. For example, for a sort-based implementation of intersection, i.e., an algorithm

R S S T

Figure 5. Associativity Rule.
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very similar to merge join, any sort order of the two inputs will suffice as long as the two inputs are sorted in the
same way. Similarly, for a parallel join, any partitioning of join inputs across multiple processing nodes is accept-
able if both inputs are partitioned using compatible partitioning rules. For these cases, the search engine permits
the optimizer implementor to specify a number of physical property vectors to be tried. For example, for the inter-
section of two relations R and S with attributes A, B, and C where R is sorted on (A,B,C) and § is sorted on
(B,A,C), both these sort orders can be specified by the optimizer implementor and will be optimized by the gen-
erated optimizer, while other possible sort orders, e.g., (C,B,A), will be ignored.

If the move to be pursued is an enforcer such as sort, its cost is estimated by a cost function provided by the
optimizer implementor and the original logical expression with a suitably modified physical property vector is
optimized using FindBestPlan. In many respects, enforcers are dealt with exactly like algorithms, which is not
surprising considering that both are operators of the physical algebra. When optimizing the logical expression with
the modified (i.e., relaxed) physical property vector, algorithms that already applied before relaxing the physical
properties must not be explored again. For example, if a join result is required sorted on the join column, merge
join (an algorithm) and sort (an enforcer) will apply. When optimizing the sort input, i.e., the join expression
without sort condition, hash join should apply but merge join should not. To ensure this, FindBestPlan uses an
additional parameter not shown in Figure 5 called the excluding physical property vector that is used only when
inputs to enforcers are optimized. In the example, the excluding physical property vector would contain the sort
condition, and since merge join is able to satisfy the excluding properties, it would not be considered a suitable
algorithm for the sort input.

At the end of (or actually already during) the optimization procedure FindBestPlan, newly derived interest-
ing facts are captured in the hash table. "Interesting" is defined with respect to possible future use. This can
include both plans optimal for given physical properties as well as failures that prevent future attempts to optimize
a logical expression and physical properties again with the same or even lower cost limits.

This description of the search algorithm used in Volcano does not cover all details for two reasons. First,
further details would make the algorithm description even harder to follow, while the present level of detail
presents the basic structure. Second, the algorithm implementation has only recently become operational, and we
are still experimenting with it and tuning it to make ‘more effective use of the hash table of explored expressions
and optimized plans.

4.2. Current Work

The current operational version of the Volcano optimizer generator uses exhaustive search, i.e., search res-
tricted only by the rule set and the condition code. Note, however, that this already permits implementing the res-
trictions found in the Starburst join enumerator/optimizer, e.g., limiting the number of relations that may comprise
a "composite inner" [21]. We are currently coding the mechanisms required to exploit promise in the search as
described above.

Using promise can limit the search effort in two ways. It prunes the search space indirectly and directly.
First, it can be used to direct the search and to establish upper bounds quickly. Thus, it limits the search effort
indirectly via branch-and-bound. Notice that all branch-and-bound pruning is safe, i.e., the pruned alternatives
cannot be part of the optimal plan. Second, promise can also be used to avoid exploring alternatives which are
unlikely to participate in the optimal plan. As the alternatives with highest promise were executed first, we explore
alternatives with low promise last or not at all. We expect that such pruning can result in significant savings in
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optimization effort, but only so at the risk of missing an optimal plan. If promise is used for such direct pruning,
the promise functions must be very carefully designed. Furthermore, the cutoff value for promise below which
alternatives are pruned (ignored) without any exploration must be carefully tuned, probably differently for ad-hoc
and repetitive queries.

Another way to exploit knowledge of promise is to divide the query optimization effort into multiple phases.
One algorithm based on left-deep vs. bushy trees was explored experimentally in [6]; another strategy called the
"pilot pass approach” based on parameter relaxation was conceptually designed by Rosenthal et al. [23]. We plan
on experimenting with both ideas. After a quick optimization of an entire query expression without established
upper cost bound but with very tight pruning parameters and a limited rule set, another optimization step might
explore the entire query again with more tolerant pruning parameters but a firm upper bound. In fact, it might be
possible to save overall optimization effort by gradually relaxing pruning parameters but tightening upper bounds
in multiple phases.

Since query optimization can be a very time-consuming task, as shown many times for "simple" relational
join optimization [19, 22], all means that can speed the process should be explored. Beyond traditional methods,
we will explore storing logical expressions and their optimal plans for later reuse. While an optimal plan may not
be optimal for an expression if the expression appears later in a different context (query), stored subplans hold
promise for two reasons. First, they provide an upper bound; equivalent plans explored while optimizing the larger
query can be safely abandoned if their cost surpasses that of the known plan. Second, since the optimizer is based
on algebraic transformations, the stored optimal plan can be used as a basis from which to search for an optimal
plan within the new context. Both reasons allow us to speculate that storing optimized plans may be a very useful
concept, and we feel it can be explored most effectively in an extensible context such as the Volcano optimizer
generator.

While dynamic query evaluation plans, global query optimization, and storage and reuse of optimized sub-
plans are interesting and challenging research topics in the context of relational systems, we plan on pursuing them
within an extensible system. There are two reasons for our approach. First, an extensible query optimization
environment modularizes the various components of query optimizers [5], e.g., selectivity estimation, cost calcula-
tion, query transformation, search heuristics, etc. This greatly facilitates change, modification, and experimenta-
tion, and may indeed be a requirement for successful pursuit of our research goals. Second, none of these research
problems is restricted to the relational domain, and we hope that our results will benefit relational, extensible, and
object-oriented systems alike.

5. Comparison with the EXODUS Optimizer Generator

The search algorithm used in the Volcano optimizer generator differs significantly from the one in the
EXODUS optimizer generator in a number of important aspects. We first summarize their differences in func-
tionality and then present a preliminary performance comparison.
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5.1. Functionality and Extensibility

There are several important differences in the functionality and extensibility of the EXODUS and Volcano
optimizer generators. First, Volcano makes a distinction between logical expressions and physical expressions. In
EXODUS, only one type of node existed in the hash table called MESH, which contained both a logical operator
like join and a physical algorithm like hash join. To retain equivalent plans using merge join and hash join, the
logical expression (or at least one node) had to be kept twice, resulting in a large number of nodes in MESH.

Second, the Volcano algorithm is driven top-down; subexpressions are optimized only if warranted. In the
extreme case, it is possible to transform a logical expression without ever optimizing its subexpressions by select-
ing only one move, a transformation. In EXODUS, a transformation is always followed immediately by algorithm
selection and cost analysis. Moreover, transformations were explored whether or not they were part of the
currently most promising logical expression and physical plan for the overall query. Worst of all for optimizer per-
formance, however, was the decision to perform transformations with the highest expected cost improvement first.
Since the expected cost improvement was calculated as product of a factor associated with the transformation rule
and the current cost before transformation, nodes at the top of the expression (with high total cost) were preferred
over lower expressions. When the lower expression were finally transformed, all consumer nodes above (of which
there were many at this time) had to be reanalyzed creating even more MESH nodes.

Third, physical properties were handled rather haphazardly in EXODUS. If the algorithm with the lowest
cost happened to deliver results with useful physical properties, this was recorded in MESH and used in subsequent
optimization decisions. Otherwise, the cost of enforcers (to use a Voicano term) had to be included in the cost
function of other algorithms such as merge join. In other words, the ability to specify required physical properties
and let them, together with the logical expression, drive the optimization process as is done in Volcano was
entirely absent in EXODUS.

The concept of physical property is very powerful and extensible. The most obvious candidate for a physi-
cal property in database query processing is the sort order of intermediate results. Other properties can be defined
by the optimizer implementor at will. Depending on the semantics of the data model, uniqueness might be a physi-
cal property; interestingly, this physical property would have two enforcers, sort- and hash-based. Location and
partitioning in parallel and distributed systems can be enforced with a network and parallelism operator like
Volcano’s exchange operator [9, 10]. For query optimization in object-oriented system, we plan on defining
"assembledness” of complex objects in memory as a physical property and using the assembly operator described
in [16] as the enforcer for this property. Finally, considering the inherent error in selectivity estimation for com-
plex queries [14], plan "robustness" might be a useful physical property that can be enforced by the choose-plan
operator introduced in [8], which permits including several equivalent sub-plans in a single plan and delaying an
optimization decision until query execution time.,

Fourth, cost is defined in much more general terms in Volcano than in the EXODUS optimizer generator. In
Volcano, cost is an abstract data type for which all calculations and comparisons are performed by invoking func-
tions provided by the optimizer implementor. It can be a simple number, ¢.g., estimated elapsed seconds, a struc-
ture, e.g., a record consisting of CPU time and I/O count similar to the cost model in System R [24], or even a
function.

A function offers entirely new possibilities for query optimization. For example, it can be a function of the
size of the available memory, which allows optimizing queries and plans for any run-time situation with respect to
memory contention. Other variables that might change between optimization and execution include the number of
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available processors and program variables still unbound at compilation and optimization time. Of course, func-
tions are not totally ordered, and the cost comparison function provided by the optimizer implementor might not be
able determine which of two functions is "less” than the other. In some situations, it will be possible, e.g., if one
plan dominates another one independently of memory availability. If neither function consistently dominates the
other, we propose using a choose-plan operator.

Finally, we believe that the Volcano optimizer generator is more extensible than the EXODUS prototype, in
particular with respect to the search strategy. The hash table that holds logical expressions and physical plans and
operations on this hash table are quite general, and would support a variety of search strategies, not only the pro-
cedure outlined in Figure 5. We are still modifying (extending and refining) the search strategy, and plan on modi-
fying it further in subsequent years and on using the Volcano optimizer generator for further research.

5.2. Search Efficiency and Effectiveness

In this section, we experimentally compare the efficiency of the mechanisms built into the EXODUS and
Volcano search engines. For the experiments, we specified the data model descriptions as similarly as possible. In
particular, we specified the same operators (scan, select, join) and algorithms (file scan, filter for selections, sort,
merge join, hybrid hash join), the same transformation and implementation rules, and the same property and cost
functions. Sorting was modeled as an enforcer in Volcano while it was implicit in the cost function for merge join
in EXODUS. The transformation rules permitted generating all plans including bushy ones (composite inner
inputs).

As a first comparison between the two search engines, we performed exhaustive optimizations of relational
select-join queries. Figure 6 shows the average optimization effort and, to show the quality of the optimizer out-
put, the estimated execution time of produced plans for queries with 1 to 7 binary joins, i.e., 2 to 8 input relations,
and as many selections as input relations. Solid lines indicate optimization times on a Sun SparcStation-1 deliver-
ing about 12 MIPS and refer to the scale on the left. Dashed lines indicate estimated plan execution times and refer
to the scales on the right. Measurements from the EXODUS optimizer generator are marked with [I’s, Volcano
measurements are marked with O’s. Note that both scales for the y-axis are logarithmic.
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Figure 6. Exhaustive Optimization Performance.
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For each complexity level, we generated and optimized 50 queries. For some of the more complex queries,
the EXODUS optimizer generator aborted due to lack of memory or was aborted because it ran much longer than
the Volcano optimizer generator. Furthermore, we observed in repeated experiments that the EXODUS optimizer
generator measurements were quite volatile. Similar problems were observed in EXODUS experiments reported
in [4]. The measurements in Figure 6 represent only those queries for which the EXODUS optimizer generator
completed the optimization. The Volcano optimizer generator performed exhaustive search for all queries without
problem,

For the queries represented in Figure 6, the plan quality as shown by the estimated execution cost is equal for
moderately complex queries (up to 4 input relations). However, for more complex queries, it is significantly higher
for EXODUS-optimized plans because the EXODUS-generated optimizer and its search engine ran out of memory
(i.e., MESH had grown to 20 MB) and returned the best plan known at that time. The Volcano-generated optimizer
used less than 1 MB for all queries.

The search times reflect Volcano’s more efficient search strategy, visible in the large distance between the
two solid lines. For the EXODUS-generated optimizer, the search effort increases dramatically from 3 to 4 input
relations because at this point, reanalyzing becomes a substantial part of the query optimization effort in EXODUS.
The increase of Volcano’s optimization costs is about exponential, shown in an almost straight line, which mirrors
exactly the increase in the number of possible, equivalent logical algebra expressions [22]. For more complex
queries, the EXODUS’ and Volcano’s optimization times differ by about an order of magnitude.

6. Summary and Conclusions

Novel database applications demand not only high functionality but also high performance. To combine
these two requirements, the Volcano project provides efficient, extensible tools for query and request processing in
novel application domains, particularly in object-oriented and scientific database systems. We do not propose to
reintroduce relational query processing into next-generation database systems; instead, we work on a new kind of
query processing engine that is independent of any data model. The basic assumption is that high-level languages
are and will continue to be based on sets, predicates, and operators. Therefore, the only assumption we make in
our research is that operators consuming and producing sets or sequences of items are the fundamental building
blocks of next-generation query and request processing systems. In other words, we assume that some algebra of
sets is the basis of query processing, and our research tries to support any algebra of sets. Fortunately, algebras
and algebraic equivalence rules are a very suitable basis for database query optimization. Moreover, sets (permit-
ting definition and exploitation of subsets) and operators with data passed (or pipelined) between them are also the
foundations for parallel algorithms for database query processing.

One of the techniques used to achieve this goal is a new optimizer generator, designed and implemented to
further explore extensibility, search, heuristics, and learning in rule-based query optimization, and for research into
extensible query processing in the Volcano and ReVELATION projects, scientific databases, and dynamic query
evaluation plans. Its design goals include extensibility, effectiveness, and time and space efficiency in the search
engine. Extensibility was achieved by generating optimizer source code from data model specifications and by
encapsulating costs as well as logical and physical properties into abstract data types. From a preliminary perfor-
mance comparison with the EXODUS optimizer generator, we concluded that optimizers built with the Volcano
optimizer generator will be far more efficient than with the EXODUS prototype. We hope that the new Volcano
optimizer generator will permit our own research group as well as others to develop more rapidly new database
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query optimizers for novel data models, query algebras, and database management systems.
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