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The increase in performance of microprocessors in recent years has far outpaced that of
supercomputers, and this trend shows no signs of abating: recent microprocessors, such as the MIPS
R4000, IBM RIOS, Intel i860, and National Semiconductor Swordfish have claimed performance
in the range of 20-100 MIPS. More importantly, many of these microprocessors are the latest in
a line of architectural families. Thus, computers that take advantage of these new micros can be

A Parallel Execution Evaluation Testbed

Dirk Grunwald  Gary J. Nutt

David Wagner  Benjamin Zorn

Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

November 1991

Abstract

It is difficult to design and use high-performance parallel architectures because little data is
available about their performance.

The goal of the Parallel Ezecution Evaluation Testbed (PEET) project is to develop and
validate a set of tools that allow for very detailed analyses of the performance of parallel programs
on parallel architectures. The PEET tools can be thought of as an “architectural microscope” to
study the execution of parallel programs and can be used to simulate the execution of a parallel
program on a variety of execution architectures with different hardware, operating systems or
runtime system structures. The data can be used directly, to understand the application, or
by architectural simulators, to understand complete systems. The tools work on uniprocessor
computers, simplifying the study of novel or proposed architectures. The tools are also efficient,
making it possible to measure long-running applications. This work will allow architectural
researchers and developers to examine a wider design space, and to have more confidence before
implementing a specific design.

Building such tools is also a challenging research area. If their efficiency is sacrificed, they
become expensive to use, limiting their use as a research tool. If their accuracy is questionable,
they become useless. The PEET project is producing specific tools for evaluating parallel
program performance and general knowledge about effective means for constructing such tools.

Project Description

designed very quickly, and manufactured very economically.

based on these high-performance microprocessors. The performance of these architectures scales
in two dimensions: by increasing the speed of each processor, or by adding processors. This has
resulted in multiprocessor systems rivaling the computational performance of traditionally more

Some manufacturers, such as Intel and Alliant, have introduced medium-scale multiprocessors

expensive supercomputers.



In spite of this trend in hardware technology, there are several obstacles to the effective use of
such multiprocessors. There is inadequate architectural and operating systems support for parallel
programming constructs; the tools to observe the performance of architectural and operating
systems constructs are not up to the task. In today’s systems it is difficult to determine which
mechanisms (e.g., synchronization hardware, scheduling policies or multiple processor contexts),
contribute most significantly to system performance. This is due in part to a lack of data concerning
parallel program behavior at the hardware, operating system, and runtime system levels. We know
of no inexpensive, effective way to compare design alternatives.

We call the combination of machine architecture, operating system, and runtime system the
ezecution architecture of a system. System designers commonly use trace-driven simulation, or
TDS [32], to evaluate execution architectures. Traditionally, traces have been used to evaluate
cache organizations [3, 28, 16, 33, 35|, page reference traces have been used to evaluate paging
policies [4, 26], and file system-call traces have been used to evaluate file system designs [29].

Traces can be used to measure applications as well as systems. For example, Zorn [37] used
traces to understand the impact of cache designs on the performance of different garbage collection
algorithms. Zorn and Grunwald are currently investigating the effect of memory locality and
lock contention in memory allocation for parallel programs. Data from traces provides more
detail on the dynamics of the interaction between the system and the application than is possible
through standard program instrumentation. This information is particularly critical when designing
applications for non-uniform memory architectures (NUMA), where reference locality is critical to
performance.

Other approaches to evaluating performance exist, but have drawbacks. Analytic models
simplify many details of an execution architecture: phenomena that may have large impacts on the
performance of parallel programs (e.g., cache behavior and process synchronization) are difficult to
model analytically. Prototyping can faithfully represent any level of detail, but is much less cost
effective than simulation when exploring a wide design space.

Due to the complexity of gathering actual traces, synthetic traces, or statistical profiles of
program behavior, are often used to drive a simulation. However, a detailed simulation is only as
accurate as its inputs; thus, using actual traces increases the credibility of simulation results.

Increasingly, TDS has been used to study parallel systems; traces have been used to represent
memory references in parallel programs (e.g., to compare distributed cache algorithms [2] and to
investigate cache performance on distributed computers [34]). Despite the need to understand the
issues surrounding parallel program design and effective execution architecture organization, there
are few tools for quantitatively comparing execution architectures using parallel traces. Part of the
problem can be related to questions about the validity and usefulness of parallel traces (see §2.1),
and part is due to the lack of research in performance tools for such programs and systems.

Complications arise from the fact that a trace is typically specific to one particular execution
of the traced program. For example, if one extracts a trace stream for each processor on which the
traced program is executed, then the data are not generally useful for simulations of an execution
architecture with a different number of processors.

As a more subtle example, even different executions on the same number of processors may
produce markedly different traces, due to nondeterministic aspects of execution behavior exhibited
by nearly all parallel programs.

The Parallel Ezecution Evaluation Testbed (PEET) is envisioned as an environment to study
the change of an execution architecture — hardware, operating systems, and runtime systems —



so that it is well-matched to a body of well-behaved parallel application programs. Because of the
relative success of TDS in cache studies, PEET uses the technique as a fundamental methodology.

The heart of PEET is the Symbolic Parallel Abstract Ezecution tool, SPAE,! which has been
designed to be a general purpose tracing tool for parallel systems. It is used to create an
instrumented parallel program that will produce an abstract trace of its execution. The abstraction
eliminates selected details of the specific instance of an execution architecture (such as the number
of processors, the synchronization mechanisms, scheduling policies, memory allocation policies and
operating system behavior) on which the traces are gathered. When the abstract trace is used, the
resulting abstractions are instantiated to a particular target execution architecture. Thus, we call
such abstract traces execution architecture independent traces.

An early version of SPAE has been constructed [13], and has been used for the analysis of
a shared-bus multiprocessor memory system [9]. One of us (Nutt) is using SPAE to generate
predicate/transition net models of a program on a particular execution architecture so that tools
can be used to observe the performance of the program on related execution architectures (here,
SPAE is used to generate the model, and to specify a high-level description of the load as represented
by token flow in the net).

We do not claim that execution architecture independent tracing is a panacea: any trace of
a program contains an implicit set of assumptions about the execution architecture for which the
program was written. While the program’s specification typically is independent of the execution
architecture, the design depends on the execution architecture to some degree. The programs’s
implementation depends to an even larger extent on certain features on the execution architecture,
e.g., the instruction set, the number of registers or the compiler technology used. Moreover,
many programs are specifically written to optimize their performance on a particular execution
architecture. For example, an algorithm may be designed for a particular cache structure to enhance
performance [10, 19, 37].

The important point is that many of these problems are inherent limitations of program tracing
itself, rather than an artifact of parallel execution, or of our approach. The objective of PEET/SPAE
is to make traces as independent of the execution architecture as possible, subject to these inherent
limitations. We are confident that we will be able to characterize a number of architectural
equivalence classes within which traces can be generalized. This has already been applied in very
restricted cases, such as using traces from an execution architecture with one cache organization
to simulate one with a different cache organization.

2 Background

In this section we provide more background on the TDS technique in general (including its
uses, its limitations, and experience of other researchers), we describe how execution architecture
independent tracing addresses several of these shortcomings, and we include a simplified example
illustrating the use of SPAE.

2.1 Trace-Driven Simulation

When a parallel program exhibits unacceptable performance, the blame may lie with its
specification, design, implementation, or the execution architecture on which it runs. One might

! Spae (spi) is also a fourteenth century Scottish term, meaning to spy or foretell.



System Instrumentation Execution
Name Point Dilation Comments
AE [21] Compiler 14 sequential; compressed traces
CARA [27] Compiler unknown | sequential; intermediate code
representation
Titan Trace [5] | Compiler, kernel 8-12 sequential; traces OS activity
ATUM (3] Microcode 20 parallel; not portable
MPtrace [8] Instrumented 2-3 parallel; execution-driven;
assembly code compressed traces
RPPT [6] assembly language, | 1.3-20 parallel; simulation-driven®
runtime
Tango [7] compiler, runtime | 1-18000° | parallel; simulation-driven;
variable level of detail
TRAPEDS [34] | assembly code 10-30 parallel; execution-driven
SPAE [13] compiler, runtime | 1-4 parallel; simulation-driven;
variable level of detail

“In a limited sense; RPPT does not support dynamic mapping of simulated execution streams to simulated
Processors.

®Tt is difficult to distinguish the program execution dilation from the simulation overhead in Tango using available
references. The dilation factor for Tango includes the time for simulation, which is not reflected in the other values.

Table 1: Current trace collection systems.

choose to achieve a better match of specification to execution architecture by changing the design
or implementation (program tuning), or by changing the execution architecture (system tuning).
Although trace-driven simulation is a powerful tool for accomplishing either of these objectives, it
has traditionally been used only for system tuning.

While trace-driven simulation appears to be straightforward, the sheer volume of data involved
can slow program execution by many orders of magnitude and results in excessive storage
requirements. Tracing parallel programs suffers from the additional difficulty that the program
may exhibit different instruction interleavings each time it is run. The difficulty of gathering traces
has led to a variety of collection techniques (Table 1). In the table, ezecution dilation refers to the
ratio of execution time of a traced program to that of an identical, untraced program. The tools
shown have dilation factors ranging over four orders of magnitude, depending upon the program
behavior or the tool.

This has led us to consider several issues: What should be traced? How should trace data be
collected? How should the data be managed? How do we address parallelism in the trace data?
How should events be represented?

What events should be represented? The trace might contain a record of high-level events
(e.g., operating system calls), medium-level events (e.g., synchronization primitives), and/or low-
level events (e.g., address references). Although many instrumentation systems trace only user-level
execution, some (e.g., Titan Trace) also trace the operating system activity. We believe that each
of these event levels are important for understanding different aspects of the execution architecture,
and that correlating the events across levels can provide a more complete picture of the behavior



of the program on the execution architecture. Address level tracing presents the most serious
challenge because the large volume of data slows program execution and makes heavy demands on
storage space.

How to trace? The systems listed in Table 1 represent a variety of software techniques.? The
ATUM (Address Tracing Using Microcode) system instruments the microcode of the machine on
which the traces are captured; this obviously limits flexibility severely. The remaining systems all
instrument the traced program itself, either by modifying the compiler (AE (Abstract Execution),
CARA (Compiler-Aided Research on Architectures), Titan Trace, Tango, SPAE) or by post-
processing the output of the compiler (MPtrace, RPPT (Rice Parallel Processing Testbed)). This
is much more flexible than microcode modification and need be no more costly, as can be seen from
the execution dilation factors in the table.

A key idea of the instrumented-executable approach is called ezecution-driven simulation (EDS).
The idea behind EDS is that emulation of the majority of instructions in the traced program can
be avoided by executing them directly on the architecture that is being used to generate the trace.
(This is only realistic if the instruction set architectures of the tracing and target architectures are
similar.) The only instructions that are explicitly emulated by the simulation code are those that
are not properly represented by any instructions of the tracing architecture. The instrumentation
step involves breaking the code into basic blocks® and calculating the expected execution time of
all of the instructions in each basic block. Then, at runtime, the only action needed to track the
execution of many basic blocks is to update a virtual clock.

This scheme works especially well for sequential programs. However, a number of new issues
arise when trying to trace parallel programs that make this technique applicable in only very limited
circumstances. These issues, and a technique for addressing them, will be discussed shortly.

How to manage the data? Tracing parallel production programs generates more data than
can be stored on many systems. Furthermore, long traces identify program behavior that is not
captured by shorter traces, as observed by Borg et al. [5]. This problem has two aspects: execution
time is excessively dilated by I/O activity, and an enormous amount of secondary storage is required
to store the traces. These problems are exacerbated in a parallel environment, since there are many
streams of execution to trace simultaneously.

Some systems, such as AE, CARA, and MPtrace, generate compressed traces which are
later expanded using information obtained from a static dataflow analysis of the program.?
Unfortunately, compression is often insufficient: our measurements show that some interesting
applications still produce many gigabytes of data [13].

The problem of storing huge traces can be avoided by consuming traces as they are generated.
This implies that the measured application is re-executed each time a simulation is run. We feel
it is reasonable to trade the extra processor time of re-executing the application in exchange for
the savings of large amounts of secondary storage; we recognize that a small execution dilation is
critical, since it dramatically affects the trace generation time.

*Hardware instrumentation can also be used; see [35] for a comprehensive survey of both software and hardware
techniques.

3 A basic block is a sequence of instructions with a single entry and exit.

*CARA also translates the program to be traced into an intermediate representation (U-code) before simulating.
A U-code trace can then be translated into a trace from one of many supported instruction set architectures, thus
eliminating dependence of the trace on instruction set architecture and compiler technology.



How to deal with parallelism? A number of new issues arise when using TDS techniques to
evaluate parallel programs and architectures. Unlike sequential programs, most parallel programs
will yield different process or task instruction interleavings each time they are executed [17]. This
interleaving is likely to be dependent not only on characteristics of the execution architecture, but
also on subtle timing perturbations introduced by the tracing software [24, 25].

As an example of the dependence of instruction interleaving on the execution architecture,
consider the effect of different implementations of synchronization operations. Since differences in
the outcome of synchronization operations in dynamically scheduled programs can result in different
assignments of tasks to processors over time, the end result can be dramatic variations in cache
behavior, bus traffic, load balance, and so on. Quite possibly this could lead to totally erroneous
conclusions about the system being simulated.

As another example, very few parallel execution architectures exhibit sequentially-consistent
memory semantics [20, 11]. The ramification of this is that the value returned from a read of a
shared variable can be affected by slight variations in program timing, which may in turn affect
program dynamics. If the effects of the memory consistency model of the target architecture are
not taken into account, the validity of the trace for simulating that architecture is questionable.

An obvious consequence of nondeterminism is that no single trace is completely representative
of a program’s behavior; one can gain confidence in observation only by tracing a program many
times, then computing an “average behavior” from the traces. A more subtle consequence is that
tracing may make it impossible to observe representative program behavior. Tracing dilation slows
the execution of a program; some tracing techniques have a larger dilation than others, but none
are entirely free from it. Since dilation is not perfectly uniform across all processors, it perturbs the
program instruction interleaving. Just as minor events such as cache misses can perturb program
behavior, this tracing-induced perturbation can affect the program dynamics.

As a practical matter, nondeterminism also makes it essentially impossible to reproduce a
particular trace of a program — an obvious problem if traces are not saved.

Thus, the probability of obtaining meaningful results from a trace-driven simulation of a parallel
program could be increased substantially if certain properties of the target execution architecture
could actually change the execution path of the program being traced. One can conclude that at
certain points in the traced program the program must stop and wait for the outcome of a “micro-
simulation” of the target architecture. This requires a tight integration between the simulator, the
program instrumentation, and the runtime system.

This strategy is used by RPPT, Tango, and SPAE. We call this strategy simulation-driven
ezecution (SDE) to distinguish it from execution-driven simulation, in which the simulation cannot
affect the dynamic behavior of the traced program. Put another way, the difference between
execution-driven simulation and simulation-driven execution is that, in the former, information
flows strictly in one direction: from the traced program to the simulator. In the latter, there is
a two-way flow of information. It should be noted that both RPPT and Tango are considered
by their authors to be instances of execution-driven simulation; however, we believe that the
distinction described here is important enough to justify the additional nomenclature. Using SDE,
a parallel program can be simulated on a uniprocessor, using a specially modified runtime system
that multiplexes simulated threads of execution onto the cpu in response to directives from the
simulator.

Holliday and Ellis [15] also have pointed out that the operations and control paths that are
executed in a parallel program depend on the target execution architecture rather than the execution



architecture used to generate the traces. They call this the “global trace problem.” They propose
identifying a program’s “address change points,” which are places where differences in the control
paths of the program can occur. Having identified these points, they then construct an abstract
version of a process trace (the intrinsic trace) that allows them to generate the correct global
trace for a particular execution architecture. Their approach has several drawbacks. The proposed
framework does not appear to have been fully developed: the authors have not built a simulation
system using their proposed solution nor have they used it to characterize a body of parallel
programs. By comparison, the SDE technique allows the simulator to directly control the behavior
of the program generating the trace, allowing it to create any global trace required.

A fair criticism of the SDE technique is that it has not as yet been systematically validated
against untraced program execution (but note that this criticism applies just as well to any TDS
technique). Usually, the system being simulated does not actually exist, making this impossible;
however, proper performance analysis methodology suggests that a tracing tool should be validated
against a set of existing architectures before being applied to nonexistent ones. As we elaborate in
84.5, this is much more difficult than it might appear.

In the next section we discuss SPAE, a simulation-driven execution mechanism that provides
trace data rivaling the accuracy of traditional traces for a limited class of parallel programs. The
overall goal of our research is to create a very flexible, modular, and efficient simulation-driven
execution environment by completing the PEET architecture, of which SPAE is only one component.
Our strategy for this will be discussed in detail in §4.

How to represent events? Conceptually, an execution architecture independent trace is an
address-level trace of the execution of a program on an unbounded number of processors, with a
separate trace per thread. Since there are conceptually as many processors available as are required
by the program, there is no scheduling information in the trace other than precedence constraints
between the threads. Furthermore, the traces contain no absolute timing information. Finally,
selected events, such as synchronization primitives (e.g., fork, join, lock, or barrier), operating
system calls, and runtime system operations (e.g., memory allocation and garbage collection), are
represented in the traces as abstract events rather than as sequences of lower-level events (e.g.,
address references). We will use simulation-driven execution to generate execution architecture
independent traces on a uniprocessor.

Abstract events permit the simulation to explicitly represent events in a way that is
representative of the target execution architecture, rather than the tracing architecture. Thus, one
can model different methods for obtaining a lock or reaching a barrier, different virtual memory
or garbage collection algorithms, and even different operating system organizations. In particular,
traces with abstract events enable one to consider large-scale reorganization of the division of
function between operating and runtime systems.

Note that obfuscation of small-scale events is no longer a concern, because the traces are
recorded on a virtual time scale unrelated to real time; effects at any scale can be explicitly
simulated. The power of execution architecture independent traces threatens to complicate the
construction of simulations, since they must now represent more detail in the target architecture.
However, unimportant events can be intentionally excluded; contrast this with current measurement
technology, where these effects are always present, even when not representative of the execution
architecture being simulated.



3 Previous Experience: SPAE

Our implementation of simulation-driven execution tracing, SPAE[13], is an extended version of
the AE (Abstract Execution) tool [21]. Using SPAE, a subject program is compiled by a modified
compiler that generates an executable and a schema file. The schema file is an abstract version of
the assembly code of each basic block in the subject application. The combination of executable
and schema file produce a full trace with little execution dilation; see [21] for more information.®

We modified AE to support a separate program context for each independent execution stream
in the program, such as an iteration of a doall loop or a parallel thread. When data is delivered to
the simulator it is tagged with its context identifier; logically each context has its own trace. Data
for each context is “decoded” by functions that reconstruct data and instruction references using
the schema file. We can reconstruct references for multiple contexts, simulating an interleaving of
the contexts active in the subject application.

In addition to recording events specific to each context, we also must record interactions between
contexts. In particular, we provide abstract events for process synchronization. At the present time,
the only abstract events supported by SPAE besides context creation and destruction are those
having to do with doall and doacross (e.g., POST/WAIT) synchronization. In order to extend
SPAE to handle more general types of synchronization, it will be necessary to integrate SPAE more
tightly with the runtime system. We discuss simulation-driven execution techniques in detail in §4.

3.1 Using SPAE

This section employs a simple parallel tasking library to describe how SPAE is used. The library
traces programs using doall and doacross loops, providing a “simulated parallelism” similar to
Fortrace [36].

Recall that SPAE traces parallel applications on uniprocessor computers. The semantics of doall
and doacross are satisfied by sequential execution. Simulating parallel doall on P processors
involves storing the references of P iterations, then interleaving those references at simulation time.
There are a multitude of possible interleavings of the iterations corresponding to the scheduling
policy, the underlying simulated execution architecture and so on. The simulator of a parallel
computer architecture must be able to select the interleaving applicable to the simulated hardware
or scheduling policy. Each doall iteration is a separate context in SPAE. The simulation program
can map different contexts to specific simulated processors.

When simulating the parallel execution of a doall, the order of the instructions issued within a
particular context is specified because it is intrinsic to the execution of the program. However, the
global trace[15] of the executed instructions is not known, because it depends on memory latency
or contention for resources in the simulated parallel architecture.

The following example demonstrates the actual program instrumentation needed by SPAE. The
original FORTRAN program locates the maximum element of an array. The program in Figure 1(a)
has S independent iterations, and has been mapped to a two-processor system. We convert the

®This strategy is not unique to AE; both MPTrace and TRAPEDS use a similar technique. However, AE, like
CARA([27], uses dataflow information produced by the compiler to limit the amount of dynamic information needed.
Furthermore, AE has been ported to a variety of processor architectures.



ae_special_event (FORK_DOALL, 2);
for (p = 0; p < S; p++) {

C$DOALL ¢t P
~ int 1i;
DO P=1,8 ae_special_event (START_DOALL_ITER, p);
M[P1 = 0.0 N
M[p]l = 0;
DO I = P*N, (P+1)*N

for (i =p * N; i < (p + 1) * N; i++)

END DO ae_special_event (FINISH_DOALL_ITER, p);
END DO }
ae_special_event (JOIN_DOALL, 0);
(a) Original doall Code (b) Converted DOALL Code

Figure 1: doall Example

code fragment to the C program, shown in Figure 1(b), using a FORTRAN to C translator, and
hand-instrument it to indicate the doall loop.®

The subroutine calls to ae_special_event are recognized by a modified compiler (no actual
subroutine call is performed). The first argument (e.g., FORK_DOALL) is used to decode the events
specific to the parallel library, i.e., the doall loops in this example. The raw trace contains
unwanted information, including the outer loop setup, increment and termination. In the example,
the dynamic data for both contexts are buffered by the SPAE context management interface.
Extraneous events, such as those following the FINISH_DOALL_ITER are removed from the trace
by the library-specific interface. Similarly, this interface informs the simulator of the doall loop
and the implicit barrier synchronization. The simulator translates the START and FINISH events
into more elaborate scheduling activity; likewise, the barrier synchronization is translated into
activity specific to the simulated architecture; see [14].

We have used SPAE to trace a FORTRAN program from the National Center for Atmospheric
Research based on models of the shallow-water equation [30]. The traces were used by a
multiprocessor cache simulator [9] to predict the program’s performance on a cache-coherent
multiprocessor using the Berkeley cache consistency protocol. The program generates over seven
million instruction references and over two million data references; simulating the system for a
particular configuration takes from two to six minutes, depending on the number of processors and
the cache size simulated.

Figure 2(a) shows the total execution time as a function of the number of processors; different
data sets show the peformance of varying the cache and line size. Figure 2(b) shows the bus
utilization over the entire execution of the program. Initially, we were puzzled by the low bus
utilization, but Figure 2(c) illustrates the reason; bus utilization is only high during the four doall
loops in the program, and significantly lower during the sequential portion of the program. This
example shows the scope of the data we can currently collect; we are also using this example to
verify the accuracy of the generated traces.

We can generate similar traces for more general doacross loops; there, additional events
corresponding to POST and WAIT synchronization events are added to the event stream.
Furthermore, we can rearrange memory addresses, performing a virtual-memory to virtual-memory

When SPAE is extended to trace more general models of parallelism, the associated runtime library will be
instrumented to generate abstract events automatically. (Refer to Figure 3 in §4.)
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remapping; this is used in the multiprocessor cache simulator to examine the effect of array layout
on cache behavior.

Our modifications affect both the instrumented application (trace producer) and the simulation
(trace consumer). The instrumented application is slowed by less than 1% over a regular AE trace;
this in turn is about one to four times slower than uninstrumented application execution time. Our
initial measurements have shown that for large traces (e.g., portions of the Perfect Club suite) it
is faster to simply rerun the application than to read the trace from disk. Currently, SPAE slows
event decoding two-fold over AE. We expect to reduce this overhead, but in this example, SPAE
generates more than five million references per second, and the time spent decoding events is only
a part of the total simulation time.

SPAE is unique in that it provides both data and instruction traces while maintaining high
efficiency. This use of SPAE suggests the value of PEET: it is possible to design simulation programs
that interact with SPAE as it executes (rather than only using trace files generated by SPAE).
Further, PEET will include libraries to model various implementations of abstract events that can
be used at the interface between the trace consumer (the simulation program in the example) and
SPAE.

4 Current Research

The goal of our research is to provide PEET — a modular, extensible and easy to use environment
for studying changes to execution architectures. To accomplish this, we will

o Extend the SPAE tool to manage more complex control and synchronization mechanisms,
such as threads, and different memory models, such as weakly consistent memory.

e Build an architectural toolkit to simplify the construction of architectural models.

e Develop techniques to validate the data provided by SPAE and other tools.

It is worth noting that the nature of PEET is such that much of the research can be conducted on
a uniprocessor computer, although we are modeling and studying computers with radical, emerging
execution architectures. The validation work will require that we compare SPAE predictions with
observed results on available multiprocessor systems.

4.1 The Architecture of PEET

A major component of PEET is the SPAE tool; Figure 3 shows the overall architecture of PEET. SPAE
is represented by the boxes labeled “compiler” and “event decode/context demux.” The program
to be traced (the subject) is at the top of the diagram. The compiler produces an instrumented
executable file as well as the static schema file. When the subject executes, the instrumentation
causes it to produce a compact data stream that can be used to reconstruct a full address trace of
the subject’s execution.

The subject is linked to a specially instrumented runtime system that supports the model of
parallel programming in use by the subject (e.g., PARMACS, FORCE, C-THREADS). The runtime
system instrumentation inserts abstract events, such as the start of a new doall iteration, the
creation or destruction of a thread of execution, or the use of a synchronization primitive, into the

11
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Figure 3: The PEET Architecture

trace. The SPAE event decoder keeps track of each context (thread of execution) in the subject. The
combination of the subject, runtime system and decoding interface is termed the trace producer.

Since the subject is being executed on a single cpu, a single context is active at any one
time, regardless of how many contexts are logically executing simultaneously. The instrumentation
inserted by the compiler causes the active context to relinquish control to the runtime system at
the end of the current basic block or generation of an abstract event, depending on the event
granularity requested.” At that point, the runtime system waits for instructions from the ezecution
stream mapper (described below) telling it which context to run next. This protocol is used to
simulate scheduling policies as well as to resolve contention for synchronization primitives. It also
reduces the amount of data that needs to be buffered by the context manager module.

The bottom of the diagram describes the trace consumer, including the simulator itself, written
by a user of PEET. In our study, the function of the simulator is unimportant, save that it conform
to certain interfacing conventions. Software contexts are mapped to a number of hardware contexts
specified by the simulator. Each hardware context represents an independent instruction stream at

" Assuming a sequential memory consistency model; see §4.3 for a discussion of different consistency models.
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the hardware level; for example, it might represent the number of simulated cpus in a conventional
architecture, or it might be larger than the number of cpus for a multi-stream architecture.

The execution stream mapper provides the interface between the simulator and SPAE,
multiplexing the N software contexts it is receiving from the trace producers onto the n hardware
contexts expected by the simulator. The simulator repeatedly requests the next event (which may
be a simple address reference or an abstract event) from the execution stream mapper for all
hardware context(s) that are currently ready. “Readiness” is determined by the simulator, and
may depend on simulated cache and memory delays, hardware multiplexing of contexts (e.g., on a
multi-stream architecture), and whatever else the user decides is germane to the experiment.

4.2 Tracing General Thread Applications

Explicit, independent streams of control (threads) are a general parallel programming mechanism.
A thread library (e.g., Mach C-THREADS), consists of routines to create and destroy threads,
acquire and release locks, enter and leave monitors, signal condition variables, join at a barrier, etc.
There are also transparent operations that schedule the threads on the physical processors. While
doall and doacross programs have limited dependence relations, thread-based computations can
have arbitrary precedence constraints between the individual threads. This complicates program
tracing, because thread behavior is time-dependent; for example, acquiring a lock in differing orders
can present different program behaviors. Although many thread libraries exist, most provide similar
abstract functionality; SPAE is designed to integrate with different thread libraries. To create
execution architecture independent traces of a thread-based computation, we modify the runtime
thread library.

Some changes to the thread library simply insert events into the trace, using ae_special_event
as in §3. Consider thread creation: when a thread is created in the traced program, the thread
library calls the SPAE context management routines to create a new context for the thread and
inserts an event in the dynamic data indicating the creation of a new context to the simulator. This
is similar to the DOALL_FORK operation in the previous example. Likewise, thread library routines
that schedule threads must inform the simulator of their activity, and must indicate the current
context to the SPAE context management routines.

If threads did not interact, this process would be similar to the doall loops of §3; however,
consider acquiring a spinlock. Spinlocks can be implemented in a variety of ways, and this is an
important variable in simulations of cache and system design. We want an execution architecture
independent representation of the spinlock acquisition. In other words, we do not want an attempt
to acquire a spinlock to generate a multitude of low-level events; instead, a single event, indicating
the attempt to acquire the lock, should be generated. The simulator interprets this abstract
event in a mechanism appropriate for the simulated architecture. Interpretation of abstract events
may require the simulator to modify the control flow of the application. Figure 4 illustrates the
information flow in this more general environment. In this example, several threads are contending
for a mutual exclusion lock; the simulator selects the specific hardware context that successfully
acquired the lock and uses the stream mapper to transform the hardware context to a software
context (thread). The runtime system waits for the thread to be identified, and then executes that
thread until an appropriate stopping condition has been reached. The resulting trace data for the
thread is sent to the simulator.
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There are several instances, such as lock acquisition, in which the simulator must direct
thread scheduling. Other examples include interleaving thread execution to expose unsynchronized
behavior, reducing the amount of data buffered for executing threads; see [13] for more details.

These modifications require extensive coordination between the simulation and thread libraries,
via the feedback interface depicted in Figure 3. This work will define standardized interfaces
between the event decoding and context demultiplexing interfaces of Figure 3 and the actual
simulation. Our goal is to provide an environment in which trace producers and trace consumers
can be shared. The interface with the thread scheduling system is the most difficult, because it
makes tacit assumptions about the capabilities of the thread library.

We will initially integrate SPAE with the AWESIME thread library [12]. AWESIME is an
object oriented parallel programming environment written in C++. It runs on several commercial
multiprocessors and uniprocessors. We have considerable experience with the library, reducing the
complexity of developing the feedback interface. Because few programs using the native AWESIME
interface are available, we have built compatibility libraries to support more common parallel
programming libraries, including C-THREADS, PARMACS and a draft version of Posix threads.

4.3 Modeling Weak Memory Consistency Models

SPAE is a central component of the PEET system, and is designed to provide efficient trace generation
without excessive communication between the trace producer and the trace consumer. Part of this
efficiency is gained by having a single address space, implemented by a single Unix process, for all
user contexts. However, this enforces a sequentially consistent memory model [20, 11] in which each
store operation is atomic, i.e., immediately following a store to a location, all contexts “see” the
same value when loading from that location.
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Increasingly, computer architects are investigating systems with different memory consistency
models [1, 22] because the semantics of strong consistency are difficult to implement efficiently for a
large number of processors. These models require the issuance and performance of store operations
to be separate; in effect, each store operation must be controlled by the simulation consuming the
trace. Some simulators manage this by placing each context in a distinct address space, resulting
in considerable overhead®.

One advantage of the PEET architecture is that it provides an efficient simulation environment
when sequential consistency suffices. We plan to extend SPAE to allow PEET to efficiently support
maultiple consistency domains, or multiple views of memory that are not mutually consistent. The
state of each consistency domain is controlled by the memory system simulation. Each context
is associated with a specific consistency domain; consistency domains represent the boundaries
between different views of a common memory space. The challenge is to model this efficiently,
greatly expanding the number of simulations that can be run; furthermore, less accurate models
should take less time to process.

Since SPAE traces the execution of a program by instrumenting the compiler output, each load
and store is identified and may cause information to be written to a trace consumer. Notice that
the reported load or store address can differ from the actual address, as long as control-flow is not
disturbed; that is, the instrumented program can reference one memory location but report the use
of another. We use this observation to implement multiple consistency domains.

Our initial design assumes each consistency domain is allocated a copy of the shared region
of memory. Rather than modify the “actual” shared area, the copy is modified. For example, if
a variable is mapped to a specific memory address in the shared data, each consistency domain
allocates storage for the variable. When the program is executed, it reports the address of the
variable to the trace consumer as the primary location of that variable; however, loads and stores
actually access the shadow copies in the different consistency domains.

The simulator must provide modules responsible for maintaining the various domains in
accordance with the consistency model of the simulated architecture. The simulator must also
indicate when it needs to make the consistency domains consistent. This is usually done for each
shared load or store, or when synchronization events are encountered. By using the latter, the
simulation overhead is reduced, and the results may be accurate enough for detailed simulations
[7]. When tighter control is needed, overhead can be reduced slightly by triggering interaction with
the simulator only on shared references. The interaction points are indicated by the compiler, where
it is possible to distinguish between local references (say, those relative to the stack) and shared
references. This greatly reduces the total amount of interaction between the tracer consumer and
trace producer.

Although our approach uses the compiler to reduce the number of operating system processes
needed to manage multiple consistency domains, synchronization between the simulator and the
traced application will introduce delay. We expect such detailed simulations to be run on small-
scale shared memory multiprocessors. Because a limited number of operating processes are used,
the interaction can be mediated via a shared memory segment: the simulator and application
will execute simultaneously, and the simulator will directly manipulate the memory images of the
different consistency domains. If a multiprocessor is not available, a uniprocessor can provide an

8E.g., [7] cites a slow-down of between one-hundred and eighteen-thousand fold depending on the level of detail
needed.
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equivalent, albeit slower, interface. With two processors devoted to the tracing and simulation
processes, we expected PEET to be significantly faster than comparable systems.

4.4 Simplifying Simulation Construction

SPAE provides considerable detail about program execution. Some simulation methodologies require
only a fraction of the available information; furthermore, there are many applications for the raw
data produced by the traced application. By disregarding the underlying execution architecture, we
can construct precedence graphs of the parallel activity, measure maximal parallelism and determine
the volume of data shared between tasks.

Beyond architecture-independent uses of the data, simulators can model cache and page
references, simulate complex architectures or record the mobility of data in a network. Building
such simulators requires communication with the feedback interface and the thread libraries. For
example, the simulator may assume threads are scheduled in first-come-first-served order; this is
such a common assumption that a standardized module providing an interface to the runtime system
would simplify simulator construction. Likewise, a simulator may wish to run data through a cache
simulator to determine miss rates, and thus, the data exposed to an interconnection network; again,
the use of a few particular cache models is so common that a set of standardized modules seems
useful.

Both the architecture independent and dependent information is represented by a series of
modules in the simulation (see Figure 3). We have constructed some of these modules [9].
The current simulation environment is built using C++ modules running under the AWESIME
environment. We plan to construct additional modules; since our uses of the trace data are varied,
the modules are designed with reuse in mind.

Many details of architectural simulation are beyond the scope of such a library. PEET will
not provide a completely general architecture simulator; rather, it will provide several modules
that simplify the construction of such simulators, freeing the architect to concentrate on the novel
aspects of an architecture. The bulk of these modules, derived from our own studies, will serve as
templates for others to follow.

Other filters assist in data interpretation. For example, in our studies of parallel memory
allocation we require the detailed information enabled by the general version of SPAE; we can
only measure execution time and locking contention in actual systems, and deduce the reasons
allocation strategies exhibit their behavior. However, with SPAE we are awash in data; we need
tools to manage and present the data, allowing us to interpret it in a meaningful manner. Our
goal is not a generalized data visualization system. As before, we plan to build tools that are
primarily of interest to ourselves, and have others use these as guidelines when implementing their
own tools. For example, the presentation module for the memory allocation study simply displays
spatial and temporal memory references using standard graphics; more complex presentation is
certainly possible.

4.5 Validation of Multiprocessor Traces

Given that we are constructing a testbed for system performance evaluation, it is important that
we understand the accuracy and the limits of our evaluations. This section describes the issues
related to validating results from our simulation system and points out the research that still needs
to be performed to make validation a more scientific process. This section does not attempt to
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Figure 5: Example of Comparing Predicted and Actual Event Streams

describe the potential sources of error in our simulations. Instead, given that we have performed a
particular simulation, this section describes how we evaluate how close that simulation was to the
observed behavior of an actual system. For an informative overview of the issues associated with
trace validation and the problem of trace distortion, see Stunkel, Janssens and Fuchs [35].

The Data Reduction Problem To understand what we are validating, it is important to
understand the structure of the output of our simulation system. Conceptually, the output of a
particular PEET simulation is a collection of event streams, each of which corresponds to a sequence
of events performed by a simulated hardware processor (see Figure 3). For each event in each stream
there is an associated time (as measured by some global clock).

Naturally, this representation of a simulation is particularly cumbersome and uninformative.
For this reason, system evaluators prefer to reduce this large volume of information to a performance
measure that is intuitive and informative to a wide audience, such as time-to-completion or cache
miss ratio. While this data reduction results in measures that are easy to understand, a large
amount of data is lost in the process. When attempting to validate the result of a simulation
against measured performance, data reduction can result in incorrect conclusions. Consider the
trace of events from a single thread as indicated in Figure 5.

The figure illustrates a stream of events (el through e7) that occurred in a program both as
predicted through some simulation and as actually measured. Assume for now that the events
in the observed event stream represent an unperturbed execution of the program. Suppose that
one of the events (in this case €7) represents the end of the program. This example illustrates
that by reducing the event stream to a single number (like time-to-completion), we lose significant
information about the validity of the simulation. In particular, in this example we would conclude
that the simulation was completely accurate, when in fact there are large differences between the
behavior predicted by simulation and the observed behavior.
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The fact that data reduction can void any attempt at validation is well known; consider
attempting to compare two probability distributions having the same mean. We are unaware,
however, of any attempts to validate simulations at any level other than at the level of the reduced
data. In particular, we see the problem of comparing event streams as an interesting and promising
area of open research. Needless to say, we also plan to validate our methodology at the level of the
reduced data.

Comparing Event Streams If we want to understand how accurate a particular simulation
is, we need to compare the event stream from the simulation with an unperturbed event stream
of an uninstrumented program. Such an unperturbed stream is difficult to obtain because the
perturbation of information collection may significantly change the behavior being observed.
We plan to reduce the problem of perturbation in two ways. First, we will use low-dilation
instrumentation to record the observed event streams from programs. We envision collecting a small
set of events, such as thread creation, destruction, and synchronization using a fast mechanism such
as a hardware microsecond timer. Second, we plan to apply proven techniques for recovering actual
performance from perturbed performance as described by Malony [23].

Assuming that we have a sufficiently accurate observed event stream, the problem of finding the
distance between two long sequences is not a new one: Sankoff and Kruskal provide an excellent
summary of the field [31]. A similar problem arises in both DNA sequence analysis and in speech
recognition. We plan to evaluate the appropriateness of the existing algorithms for this problem
and adapt them as necessary.

The two broad categories of techniques for finding the distance between sequences depend on
whether the sequence is discrete or continuous. Because our event streams include both discrete
events and the times at which they occurred, either of these approaches or some combination might
prove fruitful.

Discrete sequences are commonly studied in the comparison of DNA sequences. Levenshtein
introduced two widely used metrics for distance between two sequences based on the smallest
number of substitutions, insertions, and deletions needed to make the sequences the same. Efficient
dynamic programming algorithms to compute the Levenshtein and other distance metrics exist
and are widely used [31]. In DNA sequence analysis, differences in sequences are expected to arise
through mutation. In our case, we expect most events to be present but for the times of the events
to differ, perhaps significantly. Discrete sequence comparison methods can be used effectively by
viewing each (event, time) as a discrete unit. In determining the distance between any two such
pairs, we expect the events most commonly to coincide, leaving us to determine a proper distance
function for differing time values.

Because the time values are continuous, comparisons of sequences using continuous techniques
may also be valuable. Of particular interest is the concept of time-warping, which defines a
transformation in the time domain that minimizes the distance between two sequences. Time
warping techniques are discussed at length in [18].

Given that we have a measure of distance between two event streams, we can compare a number
of event streams from actual executions to determine how much variation exists in the actual
program. We can also use sequence comparison techniques to create an “average” stream from a
group of such streams. Moreover, we can compare the behavior predicted by the simulator against
the observed event stream. Having determined the variation among different executions of the
same program, we can see how close or far the predicted execution is from the observed execution.

18



Given that we have a metric of closeness to the observed behavior, we can used this metric to
attempt to improve the closeness of fit between the predicted and observed behavior by changing
the simulation parameters.

All of these efforts will provide a much more detailed understanding of the behavior of a program
as represented by an event stream.

5 Summary

Our previous experience with SPAE has shown it to be a valuable tool for gathering data about an
architecture or application. The construction of PEET will provide similar data for more general
programs and a wider variety of architectures. We believe the PEET system will increase the
quantity and quality of information about parallel systems. We also believe it will be efficient
enough to measure actual programs rather than application kernels or small benchmarks. The
tools will be flexible and modular; we intend to make the tools available to other researchers.

Data at this resolution, akin to an architectural microscope, is unavailable to most researchers,
limiting the scope of possible research. Accurate information on program dynamics will aid
architectural researchers and developers. SPAE is based on a portable compiler that executes on a
variety of architectures. The actual collection of data from parallel programs can be accomplished
on a uniprocessor. This makes the technique widely applicable.

Our tools use uniprocessors to simulate parallel programs, but validation of these tools requires
use of a parallel system. We plan to compare data from simulated and actual architectures, using
conventional shared-memory multiprocessors and novel architectures.

We are currently using the data from our first tool, SPAE, for a variety of projects. Research
projects now under way or planned include the simulation of shared-bus cache architectures,
distributed cache architectures, memory management policies, and simulation of latency-tolerant
architectures, and performance visualization. The abstract traces are also being used to characterize
and understand parallel program behavior. These concurrent projects will provide us with valuable
feedback into the design of the tools and the interfaces between them, and PEET is an enabling
technology for these studies.
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