The OPUS User Manual
Alex Repenning
CU-CS-556-91 October 1991

%‘University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

The OPUS User Manual

Alex Repenning

CU-CS-556-91 October 1991

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

(303) 492-7514
(303) 492-2844 Fax

The OPUS User Manual

Alex Repenning

October 28, 1991

Department of Computer Science
Campus Box 430
University of Colorado, Boulder CO 80309
492-1218, ralex@cs.colorado.edu
&
Asea Brown Boveri Research Center
Artificial Intelligence Group
Baden, AG 5405
Switzerland

Make it as simple as possible, but not simpler
- Albert Einstein

1. Abstract

Object-oriented programming techniques have proven to be a powerful paradigm to overcome many
problems addressed by software engineering. Issues like fast prototyping, fast implementation, ease of
maintenance and ease of modification are well supported in systems providing highly interactive user
interfaces. The programming language Common Lisp is an ideal platform on which to build object-
oriented tools because its environment supports the incremental development of software.

OPUS is an object-oriented system based on Common Lisp influenced by Smalltalk. It consists of a very
compact kernel being easily portable to different Common Lisp environments. In contrast to most object-
oriented systems based on Lisp, OPUS treats classes as real objects, i.e., classes have their own methods
and variables. Rather than exploiting many different concepts in a hybrid fashion, OPUS employs few
concepts and applies them consistently.

3.1.
3.1.1.
3.1.2.
3.1.3.
3.2
3.2.1.
3.2.2
3.2.3.
3.24.
3.2.5.
3.2.6.
3.2.7.
3.2.8.
3.2.9.
3.2.10.
3.2.11.
4.
4.1.
4.2.

Abstract .o.ooviinenens e e eaeenienteeiseteaesaebettoasatsrennantteestoseoriorttenttenone . |
Introduction.....cieviiiiiiiiiiiiiiiiiiiiorenieceensiiennenes Cerererenisisraes R)
Philosophy of OPUS....ciiiiiiiiiiiiiiiiiniiinnns Ceeereressseesstrentatenasiriessnnen 2
Objects are Data plus Behavior.......occcviieveiiciiie it 2
Procedural ADSITACHON. ...ceiiriiiiiiic e 3
Data ADSITACLON ..uuuieiirieeeieiiiie ettt e e et et eese e ee e ieeesbaeseeraraesssteeranaes 4
Merging the tWO ASPECES......ieivireieeeeeiieerrtiaeeerereerieeretteeeestinaaeerrntesreesnarrennessans 5
The Model 0f OPUSottt ee v ee vt ee e ee et e e se st sssaa s 5
Classes and INSLANCESvevevevrrereeriieerereeriuienerereniinseessessninieseeeeeessessesssnnnssnennnnenes 5
Class DefiMitioN....uuieiiiiieeniiiiiieiinireireiresie s eseesse e eeesrnrabeeeeees e s snsssseseesanssanes 6

R T 13) TP 6
MELROGS ceeuvreiriereriniaersereeeeerreerrerreiisereraerarseseesassnsassesssetennnanessesesessssssssnneesennns 10
Sending MesSSages t0 ODJECLS...uuiiviiiiiiiiieeieiirreieestreererereeeireeerireeenteeeeeseessrernneness 15
Relationships among ODJECES .vvuvu.uiieiiiiiriiie it eeeiireeiieere e eeertieneevnnbes e e snes 16
INREIIANCE ..cevevtciiir e ee et iesee e e s e ee e e ee vt e s eeaeeetteeeeeseseaeresessaasesrennnans 16
PSEUAO ODBJECES .ceeiieiiiiieiiee it bbb ae e e 24
InitialiZation Of ObBJECES...uuuriiiiriiiieiiiiiieee e er e ee vt e ee b e eerateesebb s erraesaes 27
Error HANAING ...covviiiiiii e s e ettt sr e ee e s aneees 28
DEDUZZINZ . ..ceeriiiiereeerieerreriiiier s e e ee ettt s s e ettt s eeeeaetattanessaesesesessssntnnsresnnnns 30
The Built-in Class OBJECTiuiiiiiiiiiiiieeiiereiaserescssessncecosssascresnes 32
CIaSS MEthOdS . ceeuuiie i ieie et e ee e e e e eere e s e e e s eeserebereab e eeebeaneaes 32
InStance MethodS....covviiiiiiii i erarrraae et as 35
1 1 G . 39

References..... Ceeeeesneastetnesecneatarecentbentatecneseonaes Ceteeecsestrcenearacecnne 40

2. Introduction

This report is intended as a user's manual . It is intended to help programmers to exploit the OPUS system
efficiently. All important concepts and features introduced in this report are augmented with sample source
code in order to ease the process of understanding. However, general object-oriented programming issues are
only covered as required. This report is by no means a replacement for a theoretical introduction to object-
oriented programming.

A good preparation before reading this report is the paper of Stephik [1] and a basic understanding of
Common Lisp.

The concepts of object-oriented programming are highly intertwined and non orthogonal. Object variables,
methods, inheritance, etc. cannot be explained easily without referencing each other. This report reflects this
property intrinsic to object-oriented programming. Rather than providing a large set of shallow explanations
this report is organized into a few sections describing properties of OPUS, or object-oriented programming
in general, in depth. To prevent too much redundancy, references between sections in form of footnotes are
included. The reader is encouraged to follow these pointers and to read this report in a non scquential
fashion.

During the carly design and implementation phase of the KEN expert system shell [2] in 1985 the need for
a compact, highly portable and efficient object-oriented subsystem based on Common Lisp was expressed.
The very ambitious perception of portability embodied a hard constraint (in terms of memory) on the
evaluation process to choose an existing object-oriented system. We had to cope with the weakest element
of the chain - in our case an IBM PC. The need of large flexibility in the graphics domain led us to the
implementation of an object-oriented system.

Not surprisingly from today's view, our system very quickly migrated from a specific graphic tool to a
full-size generic object-oriented system. Still, we believe that the development of OPUS was of crucial
importance and helped us to overcome significant software engineering problems involved in large projects.

3. Philosophy of OPUS

It is the philosophy of OPUS to provide a small set of concepts sufficient to provide a powerful tool for
software design and implementation. Furthermore, OPUS is intended as a very efficient implementation
platform for many portable tools. The portability aspect is emphasized by the explicit distinction between
the specification and implementation parts of a system and by furnishing a mechanism to enforce
compatibility between the two parts.

3.1. Objects are Data plus Behavior

On a low level of abstraction, programs can be viewed as an aggregation of bits and bytes. Slightly more
interesting, they could be perceived in terms of Turing machines. Neither perception is indeed very helpful
in coping with the complexity of today's software projects. Wirth [3] points out that programs are the sum
of algorithms and data structures. This model exhibits the very important separation of programs into two

separate views. However, the notion of programs is quite abstract. What is a program? How can it be
2

composed from smaller pieces? What kind of pieces? The object-oriented paradigm provides a partial answer
[4]. In the designer's model of functionality to be achieved, the basic terms are objects and the relationships

among them.

il A A abhcoinnl akliaate e
i1, C.8., yh_ymwu OUjCCis OF CO

nceptual objects, with software object
on a computers appears to be quite “natural”. Each software object consists of data and behavior (Figure 1).
The data representing the state of an object can be further separated into variables (also called slots) while

the behavior is given as a set of methods (also called procedures or functions).

Object
Variables Methods

Figure 1. Objects = Variables + Methods

Depending on the context, object-oriented design either focus on the data aspect or the behavior aspect. We
speak of procedural abstraction or data abstraction. Despite the fact that there is a grey zone between the two
aspects we believe that the distinction is a very important one.

3.1.1. Procedural Abstraction

Frame systems, semantic nets and databases belong to the procedural abstraction family. Slots and their
associated values are the primary interest to a user. These values represent declarative knowledge. The
procedural part is kept in the background. Accessing and manipulating slots may or may not invoke
procedures attached to slots. These types of procedures are often called triggers or demon functions.
Typically they are used to maintain the consistence of a system. It is very unlikely that they are invoked by

the application directly.

Visible Part Invisible Part

bject
/ Variables © lec

Figure 2. Procedural Abstraction

Figure 2 shows a possible mapping from an object variable to a set of methods. The object variables are
known to the application whereas the methods are only invoked indirectly via access to the variables. In this
situation methods are often called demon functions.

3.1.2. Data Abstraction

OPUS as well as programming languages like Smalltalk concentrate on the data abstraction aspect.
Applications communicate with objects by means of sending messages to them. Each message is matched
against a set of so called methods representing the procedural aspect of the object. The data abstraction
concept decouples behavior from implementation specific issues regarding internal data structure. In other

words, the specific representation of the state of an object should not affect the behavior of the object.

Invisible Part Visible Part

Methods

Figure 3. Data Abstraction

In Figure 3 the methods belong to the visible part of the object. Abstraction of data is accomplished by
hiding details of the data structure by providing an interface to the object consisting of a set of methods.

3.1.3. Merging the two Aspects

Because the mapping between variables and methods is not generally a bijection, i.e., a variable might
invoke several methods and a method might alter several variables, the two aspects cannot be casily
transformed to each other. However, both aspects can coexist in one system, €.g., the Units concept of KEE
[5]. We believe that these hybrids do not necessarily represent the best of both worlds, instead they
exemplify a compromise. Many existing systems implement the alternate aspect on top of the already
existing one. This often leads either to performance decreases or the lack of flexibility.

In the KEN expert system shell both aspects are furnished as separate sub-systems. An initial attempt to
implement a graphic interface for KEN using the existing frame system exhibited undesirable overhead in
terms of execution time cased by unneeded consistency checks. Furthermore, the fact that graphic-objects
require to be drawn by modifying a frame slot such that a "draw" demon function gets triggered instead of
simply sending a "draw" message to the object, appeared rather absurd to us.

3.2. The Model of OPUS

The OPUS model captures syntactic and semantic issues involved in the definition of object variables and
methods. Furthermore, the model reveals a means to express relationships among objects, to handle errors
and to debug OPUS programs.

3.2.1. Classes and Instances

A class specifies the procedural aspect as well as the declarative aspect of a set of objects - the instances of
the class. Classes are expressed in terms of other classes, i.e., instead of defining functionality in an
absolute fashion, object-oriented programming furnishes a general framework to reuse existing building
blocks, to compose them together, and to extend them.

OPUS Classes are Real Objects

In contrast to many class-oriented languages including C++ and Flavors, OPUS treats classes as real
objects [6]. Messages can not only be sent to instances but also to classes. Classes own class variables
which can be viewed as shared variables of all instances of this class, and they have class methods. Methods
and variables of classes and instances respectively, are completely disjoint, i.e., they can have the same
name without disturbing cach other.

Creating Named Instances

The create-instance function creates a named instance of a class:
create-instance Class-Name &optional Instance-Name [Function]

where Class-Name and Instance-Name are symbols. If Instance-Name is not provided, then a unique
symbol is generated. However, the direct use of create-instance is not recommended. The section "The Built-
in Class QBJECT" will show how instances are created using the NEW method. That technique has the
advantage of supporting incremental refinement of instances creation. For example, the instantiation of sub

5

classes of the class called Object frequently includes the initialization of object variables based on additional
parameters defined to the extended NEW method.

Creating Anonymous Instances

It is often necessary to create composite objects containing other objects. Especially when the number of
these objects is large, then the overhead associated with naming can become significant. The creation of an
anonymous instance helps to minimize this overhead. Anonymous instances are not attached to a symbol
and the creation of an anonymous instance will not create a send function.

create-anonymous-instance Class-Name [Function]

Create-anonymous-instance will return a handle to the object different to a symbol

(create—anonymous—instance 'object) => #<OPUS instance, ancnymous instance, a OBJECT>

3.2.2. Class Definition
Procedural as well as data structure aspects of objects are covered with the class definition. The following

object components are defined in the class:

o class documentation

s super classes

¢ class/instance variables
= class/instance methods

The class definition in OPUS is expressed with the create—-class macro:

(create-class Class-Name
[Doc-String]

[(sub-class~of {Super-Class-Name}*)]

[(class-variables {Variable-Definition}*)]

[(class-methods {Method-Definition}*)]

[(instance-variables {Variable-Definition}*)]

[(instance-metheds {Method-Definition}*)])

where Class—-Name and Super—-Class—Name are symbols. The Doc-Stringisused by browsing

tools in order to provide a brief description for each class typically explaining the basic semantics of the

class. All create-class entries are described in detail in the following sections.

A class is created by either evaluating a class definition or loading a file containing uncompiled or
compiled class definitions.

3.2.3. Variables

The aggregation of all variables of an object is also called the state of the object. For the sake of
abstraction, the state of an object is completely hidden from applications. The only way to access object
variables is via methods. Any method of a class or sub classes may access the object variables freely. From
the viewpoint of a method, all object variables are defined locally to the method.

Defining Variables
Class variables as well as instance variables in OPUS are defined in the create-class form. An object
variable definition has the following syntax:

(Variable-Name [Initform [Doc-Stringll])

Names

The variable name is a general Common Lisp symbol.

Initforms

Initforms are required by OPUS in order to determine the initial value of object variables. Note that
initforms are evaluated, i.e., constant expressions (e.g. a list of symbols) which are not self evaluating
need to be quoted. The resulting values of the evaluation are bound to the object variables. Conceptually,
initforms are evaluated in parallel; they may not refer to other object variables because they are not bound
yet at the time of initform evaluation.

References to global variables within initforms are detected by OPUS; they generate warnings without
affecting the functionality of the code!l.

Object variables of object definitions not containing an initform are bound to nil.

Instance Initforms

The instance initforms are evaluated at instance creation time. They are allowed to refer to class variables.
This property can be used to initialize instance variables depending on the state of the variables of its class.
An example will illuminate this concept:

(create-class instance-variables-refering-to-class-variables
(class-variables
(Instance-List nil
"List of all created instances of this class™)))
{instance-variables
(My-Index (length Instance-List)
"A unigue number for an instance.")))

At the instance creation time (length Instance-List) isevaluated. Instance-Listisaclass
variable which can be freely accessed in instance initforms and in class methods or instance methods,
respectively.

OPUS furnishes a function called name-of-instance returning the name of the instance owning the
variable. The value returned by this function is only defined during the instance creation. For example the
built-in object class Object makes use of this function by assigning its value to a variable called "self".

Class Initforms

Class variables are persistent in the sense that their initforms are only evaluated once. Re-¢valuating the
class definition does not re-evaluate the:initforms. This behavior is similar to the defvar concept of
Common Lisp.

IThis warnings can be suppressed by assigning a nil value to the wvariable
Wam-if-Reference-to-free-Variable exported in the code-walker package.

7

Similar to instance initforms, class initforms provide a function to determine the name of the created
object called name-of-class.

Doc-String

It is very important to ease the maintenance of an object system by providing a documentation string for
each variable. The intentions, warnings and underlying ideas concerning an object variable are ideally
captured in a brief documentation string. The documentation string is utilized by OPUS' inspector and
browsing tools.

Accessing and Modifying Variables

Object variables are lexically scoped, i.c., functions being called (not lexically nested) within the body of a
method may not access the object variables of the class defining them. However, the scope of instance
variables is nested in the scope of their class variables. All instance methods perceive the variables of their
class as global. The modification of class variables by one instance is visible to all other instances of the
same class. On the other hand, the only way to change instance variables within a class method is to send
messages to the corresponding instance object.

Example: A taxi is a thing able to move. Each individual taxi has a meter to measure its mileage.
Furthermore, a class defining taxis keeps track of the total mileage of all taxi instances.

(create-class Taxi
"Taxis are vehicles keeping track of their traveled distance."
(sub-class-of Object)
(class-variables
(Total-Mileage 0 "The mileage of all taxis.™))
{class-methods
(MILEAGE (&optional New-Mileage)™
in: &optional New-Mileage
out: Current-Mileage
Set and return the total mileage."
(1f New-Mileage
(setq Total-Mileage New-Mileage)
Total-Mileage)))
(instance-variables
(Mileage 0 "Individual mileage of a taxi."))
{instance-methods
(MOVE (Number-of-Miles)"
in: Number-of-Miles
out: New-Number-of-Miles
Move the taxi a certain distance."
(incf Total-Mileage Number-of-Miles)
(incf Mileage Number-of-Miles))
(MILEAGE (&optional New-Mileage)™
in: &optional New-Mileage
out: Current-Mileage
Set and return the individual mileage."
(1f New-Mileage
(setq Mileage New-Mileage)
Mileage))))
=> TAXI

The Taxi class is defined as a sub class of Object in order to inherit all system methods (e.g. the method
NEW to create an instance of the class). We create two instances:

(taxli ‘new 'taxil) => TAXI1
(taxl 'new 'taxi2) => TAXI2

move the taxis around,

(taxil ‘move 10) => 10
(taxi2 'move 20) => 20
(taxil '‘move 25) => 35

check their individual mileage,

(taxil 'mileage) => 35
(taxi2 ‘mileage) => 20

and the total mileage
(taxl 'mileage) => 55
Having identical names for instance methods and class methods does not lead to ambiguity. The selection
of the appropriate Millage method is determined by the type of the receiver object (class object or instance
object). The desired functionality is achieved by incrementing not only the instance variable describing the
mileage of each individual taxi, but also by incrementing the class variable denoting the total mileage of all
taxi instances being moved.

Adding Variables

In some situations it is helpful to define variables in addition to those defined in the create-class form. As
we will see in the Methods section, the so-called unique methods are used to represent implementation
specific behavior. They often require additional variables to refine the state representation of an object. We
highly recommend not using this kind of variable definition within a specification part. Two variable
definition forms are furnished by OPUS:

definstancevar Class-Name &rest Variable-Definition [Macro]

defclassvar Class-Name &rest Variable-Definition [Macro]

Evaluation of either of these forms causes the replacement of the own variables V,, with the result of the

extended union! of the current own variables and the variables defined with the definstancevar form or the
defclassvar form Vpew:

V=V, uV ..
Furthermore, the set of total variables Vi, of the modified class and all subclasses of it will be updated:

Vlotzvoovin

where Vip is the set of inherited variables. Shadowing existing object variables by (re)evaluating create-
class, definstancevar, and defclassvar forms will overwrite initforms and documentation strings of existing
variables. However, the value of existing class variables will not be modified by these operations. Object
variables, and methods as well for that matter, get never never deleted unless they get explicitly removed
from a class by the user.

IThe extended union is described in detail in the Inheritance section. It is represented by the symbol O

9

3.2.4. Methods

Methods often operate on the state of an object by exerting side effects to the variables of the object. They
also may be of more functional character computing new values based on the current state of the object and
simply returning them to the sender of a message.

In the following sections we use the distinction of method specification and method implementation. The
method specification consists of the parameter (lambda) list and the documentation string of the method,
whereas the method implementation consists of the method body.

Each method is either defined as part of the create-class form utilizing the class-methods and
instance-methods slots,
(Name Lambda-List {Declaration | Doc-String}* {Form}*
or in a separate defmethod form:

(defmethod Name Lambda-List
(class—method-of | instance-method-of Class-Name)
{Declaration | Doc-String}*
{Form}*

=> Type-and-Name-of-Method
where Name and Class-Name are symbols and Lambda—Li st is conforming to the lambda list
definition of Common Lisp.

The OPUS method classification scheme breaks methods up into three types depending on the degree of
implementation dependence: generic, specific, and unique.

Generic Methods

All methods defined within a create-class form providing a body are of type generic. Generic methods are
supposed to be completely implementation invariant. The example below of a Number class provides a
generic method called '+

(create-class Number
(sub-class-of Object)
(instance-variables
(X 0 "A scalar number."))
{instance-methods
(+ (Delta-X)"
in: Delta-X. out: New-X.
Increment the number.®
(incf X Delta-X))))

The documentation string exhibits the input and output parameter and explains the semantics of the
method.

A generic method can be shadowed by redefining the method using the defmethod form. The lambda list of
the defmethod form needs not by any means to match the one defined in the create-class form. The method
documentation string is overwritten with the new one, i.c., all inspectors and browsing tools exploit the

documentation string provided in the defmethod form. In our Number example we shadow the '+ method:

IThe documentation string is not considered part of the body.

10

{defmethod + (Dx)
"Slightly changed method implementation.™
(setg X (+ X Dx)))

=> “GENERIC method: +"

Specific methods consist of the method specification (a bodiless method definition) in the create-class form
and a separate method implementation defined with a defmethod form. In contrast to generic methods, the
evaluation of a defmethod form defining a specific method does not overwrite the documentation string and
the lambda list definition. The documentation string employed by inspectors and browsers always remains
the one defined in the create-class form.

The parameter list of the defmethod form is matched against the parameter list of the method definition
within the create—class form. This OPUS feature is especially suited to maintain large object-oriented
systems.

Method definitions being part of the create-class form of specific methods are slightly restricted to:
(Name Lambda-List [Doc-String))

where Name is a symbol and Lambda~Li st conforms to the lambda list definition of Common Lisp.

In order to introduce a specific *' method in our Number example we first have to extend our class
definition with a specification for the *' method:

(create-class Number
(sub-class-of Object)
(instance-variables
(X 0 "A scalar number."))
(instance-methods
(+ (Delta-X)"
in: Delta-X. out: New-X.
Increment the number."
(incf X Delta-X))
(* (Times)™
in: Times. out: New-X
Multiply the current number with Times.™
1))

Furthermore, we state the method implementation:

(defmethod * (Multiplier)
(instance-method-of Number)
(setg X (* Multiplier X)))

=> ":S8PECIFIC method: *"

Despite the fact that different symbols have been used for the parameter in the lambda list of the *' method
in the defmethod form and the create-class form respectively, the two lambda lists still match.

The semantics of matching create-class and defmethod lambda lists in general is defined as follows:

* both lambda lists must have the same number of elements.

» the lexicographic orders of the lists have to be identical, e.g., all lambda list keywords must match
exactly.

« the names of parameters may vary.

» if a parameter of a lambda list is a symbol then the corresponding parameter must also be a symbol.

» if a parameter of a lambda list is given as a list (e.g. &optional parameters having an initform) then
the corresponding parameter must also be a list having the same number of elements.

11

Examples of valid create-class defmethod lambda list pairs:

(X Y &optional 2), (Parameter-1 Parameter-2 &optional Parameter-3)

(A &rest B &key (C (f Q P) Bound-C)), (U &rest V gkey (W (g O) B-W))
invalid examples:

{X &rest Y skey 2}, {Pl &rest P2 P3) different lambda list keyword structure

(U goptional (V (f Q) S)), (I &optional (J (f Q))) wrong number of elements of the

&optional argument.

Unique Methods

Some implementations require methods in addition to the ones defined in the create-class form. These
methods are only used internally and do not have any impact on the definition of a class. A typical use of
these methods is to provide extra features for certain implementation platforms. Still and all, users are
warned not to use unique methods too frequently. Large unique/specific methods ratios are often good
indicators of a design flaw. In order to gain some control over unique methods, OPUS provides a switch to
enable and disable their creation:

allow-unique-methods &optional (Disable t Suppliedp) [Function]

Calling allow-unique-methods without the Disable argument simply returns the current state of the
enable/disable unique methods flag. Otherwise, the flag is set. The Disable argument is of boolean type (nil
or non-nil).

In our Number example we subjoin a unique method called '/

(defmethod / (Divisor)
{instance-method-of Number)
"A method not mentioned in the create-class form."
(setqg X (/ X Divisor)))

=> "UNIQUE method: /"

Specification and Implementation Part

OPUS supports the model of having a separate specification and implementation part. The interface
between both parts is embodied with the lambda list (argument list) of the method definition. These parts
are typically kept in separate files and are also created by separate programming teams. OPUS matches each
implementation part with its specification. Similar concepts can be found in languages like Ada and
Modula-2 [7]. Per contra, these languages provide this concepts as a means of abstraction but they do not
support inheritance.

The separation of a method into a specification part and an implementation part provides a powerful
abstraction. The specification part furnishes a means to capture invariant, constant and organic properties of
the behavior of objects. On the other hand, the implementation part is the place to cope with changing,
temporary and accidental object properties.

We use an example of the graphics domain to illuminate this abstraction mechanism. The KEN expert
system shell provides a simple graphic editor similar to the MacDraw package available for Macintoshes.
KEN is delivered for many different hardware platforms such as VaxStations, Apollos, IBM-PCs, and
Macintoshes. Unfortunately the Common Lisp standard does not include a generally accepted windowing
package. Each hardware provides its own windowing software and unique interfaces between the windowing

12

software and Common Lisp. For the sake of simplicity we focus our attention on one graphic object class
called Circle. From the data structural aspect, we require for our design that a circle is described with a
coordinate of its mid point, and a radius. Furthermore, because graphic objects have to be attached to a
window we also need a link from the circle object to a window. The behavior of the object is limited to
attaching a circle to a window and drawing the circle. Consider the following class definition belonging to
the specification part:

(create~class Circle
{sub-class-of Object)
(instance-variables
(X 0 "The horizontal coordinate of the circle.™)
(Y 0 "The vertical coordinate of the circle.")
(Radius O "Circle radius.")
(Window nil “Link from .circle to a window."))
(instance-methods
(ATTACH-TO-WINDOW (A-Window)™
in: Window.
Attach the circle instance to a window."™
(setq Window A-Window))
(DRAW () "
Draw the circle in the window.")))

Note that within this specification part no assumptions are made concerning what windows really are, and
how a circle is physically drawn. Because of its generality, the attach-to-window method is defined as a
generic method providing a body.

In the worst case, one has to provide as many different implementations as hardware platforms are
supported. In the real world the worst case is actually very likely. One way to cope with different
implementations is to apply Common LISP's read macros! [8]. However, because of the substantial
differences in windowing packages the granularity of necessary read macros is typically very large. Many
times, entire method bodies have to be encapsulated for each implementation with a read macro. This
intensive use of read macros leads to severe problems:

» Source files grow by a factor equal to the number of underlying packages supported.
» The maintainability suffers; it is impossible to work with multiple implementation teams on the
same piece of software in parallel.

Our experience manifested that there is a high risk that an implementation team accidentally (or sometimes
even deliberately) changes parts of the implementation not belonging to them. After a small number of
modifications by independent teams the implementation tends to be in complete disorder.

It is of great advantage to keep implementation invariant elements in a separate file, the specification part,
and to spread each implementation part to its own file. In our example the implementation part specific
to the Macintosh could look like:

(defmethod DRAW ()
(instance-method-of Circle)
"Draw the circle."
(mac-toolbox:draw-circle Window X Y Radius))

=> "SPECIFIC method: DRAW"

Ig+ and #- read time conditionals

13

Even for this simple application the DRAW method could be much more complex, e.g., it could request to
transform the coordinates first before calling an appropriate function to draw circles, or it could request to
initialize the window first or to refresh it after the circle has been drawn. All these details, however, are very
implementation specific and therefore do not belong to the specification part.

The table below shows what the different types of methods define, and whether they belong to the
specification or the implementation part:

create-class defmethod
genetric specification + implementation shadowed create-class implementation
specification part specification part
specific specification implementation
specification part implementation part
unique - specification + implementation
- implementation part

For example, a generic method defined using the defmethod form is shadowing the one defined in the
create-class form.

Evaluation Order and Consistency
The effects of evaluating and reevaluating create-class forms and defmethod forms is analogous to those of
evaluating a defun form. If, for example, a method is defined which is identical in name, class and class type

to an existing one, then the old one will be overwritten with the new one.

Reevaluating a create-class form will not only overwrite all methods previously defined in the create-class
form, but it will also overwrite the generic methods previously defined using defmethod for this. Specific
methods behave differently: method-specification and method-implementation do not overwrite each other,
i.c., reevaluating a create-class form containing the method specification of a specific method will not delete
the method implementation defined in a defmethod form.

There are basically six types of nonexclusive changes to a create-class form:

« adding variables: the variables are added to the class and all its sub classes. The initforms of added!
class variables are evaluated. Existing instances are not updated.

» removing variables: no effect. Variables defined before continue to exist.

= adding methods: the methods are added to the method dictionary of the class, they are inherited by
all sub classes.

e removing methods: no effect. Methods defined before continue to exist.

nitforms of already existing variables do not need to be evaluated.

14

+ adding super classes: the class precedence list! is redetermined. Existing instances are not updated
with newly inherited variables.

« removing super classes: the class precedence list is redetermined. Existing instances are not
updated; they keep possessing variables which are possibly no longer inherited.

3 nding Maessages 6 Objects

Defining variables and methods is of little use as long as there is no way to invoke methods. The
technique exploited to invoke methods is called message sending. The actors involved in the sending of a
message are the sender object and the receiver object. Each message consists of a selector and arguments.
The selector is matched against the method dictionary of the receiver. Is there is no match but the receiver
has super classes, then the dictionaries of the super classes will be searched for a method matching the
selector. The search starts at the most specific super class and works towards the least specific one. In case
that none of the super classes provides a matching method an error is signaled.

In OPUS class objects and named instance objects are function objects, i.e., the symbol function of
symbols representing the name of objects are bound to lambda expressions. Sending a message has the
syntax of an ordinary function call:

(Receiver Selector {Argument}¥*)
In cases where the receiver needs to be an evaluated entity apply or funcall can be bestowed:

(funcall Receiver Selector {Argument}*)
(apply Receiver Selector {Argument}* More-Arguments-List)

The fact that objects act like functions can be brought into play to trace messages using the Common
Lisp trace macro.

A symbol can only be attached to either a class object or an instance object. Depending on the type of
object to which a receiver symbol is attached, a message will either invoke a class method or an instance
method. Consider the earlier mentioned Number class. Assume that the class Object provides a message
called NEW to create instances. Because Number is defined as a sub class of Object it will inherit? the
NEW class method. The following script makes use some of the introduced concepts:

(number 'new 'numberl) => numberl
Create an instance called numberl. Note that the receiver called
number 1s a class. Therefore, the selector, new, 1s matched
against the class methods of the Number class. The initform for x
has been evaluated and has bound x to zero.

{numberl '+ 13) => 13
Because numberl is an instance the '+' selector of this message
1s matched against the instance methods of the Number class. x
assumes a new value 13 which is also returned by the method

(numberl '+ 17) => 30
x 1s set to the new total of 30.

IThe class precedence list is discussed in detail in the "Multiple Inheritance" section.

2For information concerning inheritance see the section on inheritance.

15

Messages are sent to anonymous instances using either the function apply-instance-message, or the

macro aim:
apply-instance-message Instance Selector Arguments [Function]
aim Instance Selector &rest Arguments [Macro]

To create a taxi from our taxi example and make it move we do the following:

(setg A-Taxl (create-anonymous-instance 'taxi))
=> #<OPUS instance, anonymous instance, a TAXI>

(apply-instance-message A-Taxi 'move '(10)) => 10

(aim A-Taxi 'move 10) => 20

3.2.6. Relationships among Objects

In order to support concepts known from semantic networks like generalization, aggregation and grouping
relationships among objects [9], these relationships need to be expressed explicitly. In OPUS we have three
types of relationships:

» relationships among classes
» relationships among instances
 relationships between instances and classes.

SUB-CLASS-OF

The specializing concept of semantic networks, which is a very important relationship among classes, is
embraced by the sub-class-of link in OPUS. A class may have multiple super classes. The primary purpose
of the sub-class-link is to support inheritance. The immediate super classes of a class are defined in the
sub-class-of slot of the create-class form.

INSTANCE-OF
Each instance is an exemplar of its class. The link between an instance and its class is called the

instance-of link.

User Defined Relationships

Any kind of user defined relationship between objects can be specified with instance variables or class
variables respectively. A sample of a relationship between instances can be found in the section "An
Example: Grouping of Graphic Objects".

3.2.7. Inheritance

Instead of defining a set of classes from scratch, classes may be defined incrementally by reusing existing
classes and refining them. A new class C2 may be defined by saying something like “..C2 is essentially
like C1 except that..”. Inheritance provides a means to express to incrementally define new software
artifacts.

A class specializing another class refining any aspect of it is a sub class. In terms of semantic nets, a sub
class is-a class. The is-a relation is transitive, i.e., if A is-a B and B is-a C then A is-a C.

16

A subclass inherits all properties! of the data and the behavioral aspects of its super class(es). Sub classes
basically have three ways to render the functionality of their super classes:

 introduce new variables and/or methods
» shadow existing variables and/or methods

- tand 41 thad in th £ +3
= CXIChna CXlSuﬂg mcthod in their LdﬁCuGﬁadLJ

Shadowing is achieved by defining a variable or a method in a sub class that has the same name as one of
its super classes. Shadowing does overwrite a definition of a property completely rather than merge the
property being shadowed with the new one. If we create a sub class called Number defining an own variable
X, then the initform and the doc-string of the super class are replaced with the ones from the sub class.

The concept of extending properties is limited to methods. A method of class is extended by reusing
methods with identical names from super classes.

Single Inheritance

In a single inheritance scheme a class is allowed to have zero or one immediate super class, which in turn
may have one immediate super class again. A class inherits all properties of its super classes, i.e.,
properties defined in any super class of a class also belong to the class. The total set of properties of a class
is the union of its own properties and the ones inherited from its super classes. The union operation required
is not symmetrical. That is, if the two to-be unified property sets share properties with the same name, then
the ones from the more specific class have precedence. In cases like this we say that the properties of the
more specific class shadow the properties from the less specific class. We call this union operation of own

properties and inherited properties the extended union:
F)tot = F)O Y F)in
where Pyqy is the set of all properties of a class, Pjp is the set of inherited properties and Py is the set of

own properties defined in the class. The set of inherited properties of a class is identical with the set of total
properties of its immediate super class. We define the extended union operator as:

UOV=Uu{vi(veV)a(VwueU A(name@) = name (v))]}

In other words, the extended unification of a set U with a set V is equal to the unification of U with the
subset of V, consisting only of elements having different names than all members of U. Note that this

extended notion of a union operation is only symmetric in case where U and V are disjoint sets.

Consider the following set of class definitions:

(create-class C1l
(instance-variables
(X 0 "X of cl1")
(Y 1 "Y of clm)
(2 2 "Z of c1M))
(instance-methods
(+X () "+X of CI" (incf X))

!n this context we use the term properties as a short form for class/instance variables and class/instance
methods of a class.

17

(+Y () "+Y of C1" (ian Y))))

(create-class C2
(sub~class-of Cl)
(instance-variable

(z 3 "Z of C2M))
{(instance-methods

(+Z (DX) "+Z of C2" (incf Z DZ))))

(create-class C3
(sub-class-of C2)
(instance-variables
(Y 4 Y of C3™))
(instance-methods
(+#X (DX) "+X of C3" (incf X DX))))

After applying unification to all classes we get the following schemes:

Class: C1 Variables Methods

Pinherited { {

Pown {X0“X of C17), {(+X O "+X of C1" ...},
(Y 1“Y of C17), +Y) "+Y of C1" ...)}
(Z2“Zof C17))}

Piotal {X0“X of C1M), {(+X O "+X of C1" ...},
(Y 1Y of C17), #Y O "+Y of C1"..))
(Z2*“Z of C17)}

Class: C2 Variables Methods

Pinherited {X0“X of C17), {(+X 0 "+X of C1" ..),
Y 1Y of C17), (+Y O "+Y of C1" ...)}
(Z2“Z of C17)}

Pown {(Z3"Zof C2")} {(+Z (DX) "+Z of C2" ...)}

Piotal {X0“Xof C17), {(+X O "+X of C1" ..)),
(Y 1“Y of C17), +Y O "+Y of C1" ..)),
(Z3"Zof C2")} (+Z (DX) "+Z of C2" ...)}

Class: C3 Variables Methods

Pinherited {X0“X of C17), {(+X) "+X of C1" ..)),
(Y 1“Y of C17), +Y O "+Y of C1" ..)),
(Z3"Zof C2")} (+Z (DX) "+Z of C2" ...)}

Pown {(Y4"Y of C3")} {(+X (DX) "+X of C3" ...)}

Piotal {X0“X of C17), {(+X (DX) "+X of C3" ..),
(Y 4"Y of C3"), (+Y O "+Y of C1" ..)),
(Z3"Zof C2")) (+Z (DX) "+Z of C2" ...)}

It is not possible for any system design to furnish the enormous flexibility necessary to cope with all
possible future system enhancements. Systems need to be easily extendible. The need to modify existing

code with conventional programming techniques in order to extend the functionality of a system leads to

18

enormous complexity. Object-oriented programming provides a means to represent the structure of a system
design explicitly. Intermediate design stages do not get lost, they are provided as so called mixin classes.
These classes are exploited to provide basic functionality in order to create system extensions later on by
mixing these classes together to more concrete classes. In contrast to concrete classes mixin classes are

merely provided for the sake of extendibility; no instances are created of these classes.

Multiple Inheritance

Multiple inheritance is the generalization of single inheritance allowing each class to have more than just
one immediate super class. This technique is often employed to combine the functionality of classes by
merging their properties.

Class Graphs

A class can be viewed as a vertex in a graph of all classes. The edges of the graph are given by the directed
sub-class-of links. The super class graph is a sub graph of this graph containing only super classes of a
class including the class itself. This super class graph is specific to each class. OPUS linearizes the super
class graph while maintaining topological order. This linearized super class graph, called the class
precedence list is associated with each class. Two criteria implying a partial order are applied to arrange the
class precedence list:

i) The lexicographic order of classes within the sub-class-of definition slot of the create-class form is
preserved as long as it does not contradict with ii).

ii) Every class always precedes it super classes.

Example class graph:

Figure 5. Class Graph

The lexicographic order within sub-class-of slot of the class definition is reflected in the depiction of the
graph, e.g., class b precedes class ¢. Then the super class graph for class d is a sub graph of the class graph:

19

lof
Figure 6. Super Class Graph of Class d
The super class graph of d is linearized by applying a topological sort starting at class d. We get the class

precedence list (d, b, ¢, a) for class d. In general, applying i) and ii) to a class graph is guaranteed to
Iead to an unique total order.

Another example elaborates the relationship of the class definition and the class precedence list:

(create-class A)

(create-class B
(sub-class-of A))

(create-class C
(sub~class~of B A))

(create-class D)
(sub-class-of B))

(create-class E
(sub-class-of D C))

Figure 7 shows the set of classes as a graph including the class precedence list for each class:

Figure 7. Class Precedence Lists

If we denote the class precedence list as (C1, C2, ..., Cn) then the set of total properties of a class C1 is

given as:

Pm'cl= Po,Cl uPo‘C U ...uPo,C

2 n

The criterion mentioned might contradict each other. Criteria ii) outweighs criteria i) to resolve cases like
the one illustrated in Figure 8.

20

Figure 8. Class Graph leading to Contradictions

The lexicographic order implyed by Figure 8 suggest the class precedence list (b, a, ¢). However, class a is
a super class of class c. To satisfy ii) ¢ has to precede a, and b has to precede ¢ and a. Therefore, the only
valid order is (b, c, a).

An Example: Grouping of Graphic Objects

Consider building a simple MacDraw-like graphic editor. A picture consists of a set of objects. Each object
shall be an instance of a sub class of a class called Graphic-Object. In order to select, drag and update a
graphic object, we need a means to describe the area they cover. For simplicity we chose a rectangular shape
completely containing the two dimensional graphic object. We call this rectangular area the foundation area.
First, we define the Graphic-Object class which is a mixin class, i.¢., no instances are created of this class,
it is only employed to furnish a basis for refined classes. Obviously we cannot define a method to draw a
generic Graphic-Object as we have no associated depiction for it. However, knowing about the foundation
area of the object we can define a UNDRAW method.

(create-class Graphic-Object
"The root class of all graphic object classes."
(sub-class-of Object)
(instance-variables
(X-Pos 0 "Horizontal position.")
(Y-Pos 0 "Vertical position.")
(Foundation-Area (list 0 0 0 0)
"List of <x, y> bottom-left, <x, y> top-right."))
(instance-methods
{FOUNDATION~AREA () "Return the foundation area.™
Foundation-Area)
(UNDRAW () "
Clear rectangular area defined by foundation-area."
(format t "undraw ~S: ~5~%" Self Foundation-Area))))

Every Graphic-Object has a reference point (X-Pos, Y-Pos) which is independent of the foundation area.
Instead of physically clearing the area on the screen defined with the foundation area, the UNDRAW method
simply prints out the foundation area.

Two sub classes of Graphic-Object, Circle and Rectangle, are defined below. Each of them defines a
DRAW method and a method to set-up the properties of the object:

(create-class Circle
"A graphic object class defining draftable circle objects.™
(sub-class-of Graphic-Object)
(instance-variables
(Radius 0 "Circle radius"))
{instance-methods
(DEFINE (X Y R)™
in: X, Y, R
Define the circle parameters."
(setg X-Pos X Y-Pos Y Radius R)
(setq Foundation-Area

21

(list (= X R) (= Y R) (+ X R) (+ Y R))))
(DRAW ()"
Draw the circle."
(format t "draw circle: X ~D, Y ~D, radius ~D~%"
X-Pos
Y-Pos Radius))))
=> CIRCLE

{create-class Rectangle
"A graphic object class defining draftable rectangle objects."
(sub-class=-of Graphic-Object)
(instance-methods
(DEFINE (X1 Y1 X2 Y2)"
in: X1, Y1, X2, Y2
Define the rectangle parameters."
(setq X-Pos X1 Y~Pos Y1)
(setg Foundation-Area (list X1 Y1 X2 Y2)))
(DRAW ()"
Draw the rectangle."
(apply #'format t
"draw rectangle: X1 ~D, Y1 ~D, X2 ~D, Y2 ~D~%"
Foundation-Area))))
=> RECTANGLE

Note that the DEFINE methods are also setting up the foundation arcas. Now we define a Group class to
deal with agglomerations of objects. A group is capable of broadcasting messages to its members.

(create-class Group
“A group consists of arbitrary many elements."
(sub-class-of Object)
(instance-variables
(Elements nil "List of elements."))
(instance-methods
(ADD-ELEMENT (Element)"
in: Element. out: Element-List.
Add a new element."
(push Element Elements))
(BROADCAST (Selector &rest Parameters)"
in: Selector + Parameters = Message.
The message 1s propagated to all elements of the group."
(dolist (Element Elements)
(apply Element Selector Parameters)))))
=> GROUP

Finally, we orchestrate the Graphic-Object class and the Group class by merging them together.
Graphic-Object-Group instances also have a foundation area which is given as the geometrical union of the
foundation area of its elements. The DRAW and the UNDRAW message are forwarded to the elements of
the group by making use of the BROADCAST method:

(create-class Graphic-Object-Group
(sub-class~of Graphic-Object Group)
(instance-methods
{ADD-ELEMENT (Element)"
in: Element. out: Element-List
Extension of Group ADD-ELEMENT: set-up foundation area.™
(setg Foundation-Area
(1f Elements
(area-union
Foundation-Area
(funcall Element 'Foundation-Area))
(funcall Element ‘Foundation-Area)))
(super 'add-element Element))

(DRAW () "Broadcast to elements."
(self ‘broadcast 'draw))
(UNDRAW () "Broadcast to elements.”

{self 'broadcast 'undraw))))
=> GRAPHIC-OBJECT-GROUP

22

The union of the foundation areas is determined incrementally, i.e., adding a new element to the group also
updates its foundation area. We define the union of two rectangular shapes to be the smallest rectangle that
can entirely enclose the rectangular shapes. Within the body of the ADD-ELEMENT method we call the
arca-union function defined below, returning the union of the current foundation area and the one from the
new element.

(defun AREA-UNION (Areal Area2)
(list
(min (first Areal) (first Area2))
(min (second Areal) (second Area2))
(max (third Areal) (third Area2))
(max (fourth Areal) (fourth Area2))))

Having defined all classes, we can now create instances and initialize them:

(rectangle 'new ‘'rectanglel) => RECTANGLEl
(rectanglel ‘'define 6 7 8 9) => (6 7 8 9)

In our example the DEFINE method returns the foundation area.

(circle 'new 'clrclel) => CIRCLEL
(circlel 'define 2 3 1) => (1 2 3 4)

A circle with radius 1 with its center at position 2,3 has a foundation area of (1, 2, 3, 4).

(circlel 'draw)
draw circle: X 2, Y 3, radius 1
=> NIL

The DRAW method simply prints out the graphic-object parameters.

(rectanglel ‘'draw)
draw rectangle: X1 6, Y1 7, X2 8, Y2 9
=> NIL

The foundation area is queried with the FOUNDATION-AREA message:
(circlel 'foundation-area) => (1 2 3 4)
We create a first Graphic-Object-Group instance called gopl,
(graphic-object-group ‘'new 'gopl) => GOP1
and add the circlel as an element to it.
(gopl 'add-element 'circlel) => (CIRCLEL)
The Graphic-Object-Group instance assumes the foundation area of circle1.
(gopl 'foundation-area) => (1 2 3 4)
The DRAW message sent to gop1 is forwarded to circlel.
{(gopl 'draw)
draw circle: X 2, Y 3, radius 1
=> NIL
We also annex the rectanglel as an element to gopl.
(gopl 'add-element 'rectanglel) => (RECTANGLEl CIRCLE1)
Gop1's foundation area is replaced with the union of its old foundation area and the one from the rectangle.
(gopl 'foundation-area) => (1 2 8 8)
If we now send the DRAW message again, then rectanglel and circlel are printed out.
(gopl ‘draw)
draw rectangle: X1 6, Y1 7, X2 8, Y2 9

draw circle: X 2, Y 3, radius 1
=> NIL

Also the UNDRAW message is forwarded.

23

{gopl ‘'undraw)

undraw RECTANGLEl: (6 7 8 9)
undraw CIRCLEl: (1 2 3 4)

=> NIL

Group elements are not restricted to be rectangles or circles, another group can also be an element of a
group. A second group (gop2) is created containing rectangle? as an element.

{graphic-object-group 'new 'gop2) => GOP2

{rectangle ‘'new 'rectangle2) => RECTANGLE2

2

rectangle3 'define 10 10 11 11) => (10 10 11 11)
gop2 ‘'add-element 'rectangle2) => (RECTANGLEZ2)

Finally, we add gop2 as the new element to gopl and send the DRAW message to gopl.
(gopl ‘'add-element 'gop2) => (GOP2 RECTANGLEl CIRCLEL)
(gopl ‘draw)
draw rectangle: X1 10, Y1'10, X2 11, Y2 11
draw rectangle: X1 6, Y1 7, X2 8, Y2 9

draw circle: X 2, Y 3, radius 1
=> NIL

The Graphic-Object-Group class is a simple example of how to exploit objects to define recursive
schemes. Multiple inheritance is a powerful technique allowing the definition of disjoint concepts on a

general level in order to combine them arbitrarily later on to sub classes.

Semantic Issues

Classes merged to a new sub class are typically not disjoint, i.e, certain properties get shadowed depending
on the lexicographic order of the class names within the sub-class-of slot of the create-class form. The
property name remains, but other elements of a property like initform or parameter list get changed. In
practice these effects are not a primary problem. A much more severe problem is the semantic overloading
of properties.

Consider a case where two classes called A and B provide a instance variable with the name x. It might be
that x has completely different semantics in the two classes. If we now merge these classes to a new class
C, then we might have a serious problem. Furthermore, assume that class A has precedence over class B.
All methods provided by A treat x from the semantic viewpoint of A. If B provides equally named methods,
then they are shadowed by A. However, there may also be methods only provided by B, which in turn treat
the variable x from the semantic viewpoint of B. Applying these merged methods usually leads to

inconsistencies.

It is a good practice to choose specific names for variables which somehow reflect their semantics instead
of using very generic names. The merging of object classes is a complex operation. It often appears to be
tempting to merge classes. However, this operation demands a lot of skill from the designer in order to

prevent undesired side effects.

3.2.8. Pseudo Objects
Pseudo objects provide a means to send messages to the current active object and to invoke shadowed

methods.

24

Self
Sending a message to the Self object is identical to sending a message to the current message receiver:

self Selector &rest Parameters [Instance/Class Object]

The use of this object is only valid within a method.

Example: A class called Number already provides a method '+'. A sub class shall be defined furnishing a
new method *' being expressed in terms of '+";

(create~class Number
(sub-class—of Object)
(instance-variables
{(Number 0 "The actual number."))
(instance-methods
(+ (DX) (incf Number DX))))

=> NUMBER

(create-class Multipliable-Number
(sub-class—of Number)
{instance-methods
(* (Times)
(let ((Old-Number Number)
(dotimes (I (1- Times) Number)
(self '+ Old-Number))))))

=> MULTIPLIABLE-NUMBER
Then we create a Multipliable-Number instance,
(multipliable-number 'new 'mnl) => MN1
and add the number 5.
{mnl '+ 5) => 5
In order to make the messages to the mnl instance visible we trace it using the ordinary Common Lisp
trace macro.
(trace mnl self) => (MN1 SELF)
Now we send the "*' message,
(mnl '* 4)
and get the following output from the tracer:

Calling (MN1 * 4)
Calling (SELF + 5)
SELF returned 10
Calling (SELF + 5)
SELF returned 15
Calling (SELF + 5)
SELF returned 20

MN1 returned 20

=> 20

Super
It is often desirable to make use of shadowed methods in order to extend them. Extending methods rather
than overwriting them is the basic concept provided by OPUS for incremental specification.

Sending a message to the pseudo object super is similar to sending the message to the class first specified
in the sub-class-of slot of the create-class form. However, all possible side effects take place in the original

25

receiver of the message sending a message to super. The syntax is very similar to the one of the self pseudo

object:
super Selector &rest Parameters [Instance/Class Object]
Example: Assume the following scenaric. A sub class to Object has to be defined keeping track of the

instantiation time of its instances. The Object class already provides a method called NEW which appears to
be a good candidate to be extended.

(create~class Time-Stamped-Object
"The creation time of every instance is recorded in the class."
{sub-class-of Object)
(class-variables
(Name-Time nil "property list of (<Name> <Time>) pairs"))
(class-methods
(NEW (&optional Instance-Name)"
in: g&optional Instance-Name.
Extension of Object NEW. Record the instance creation times."
(let ((Name (super 'new Instance-Name)))
(setf (getf Name-Time Name) (get-universal-time))
Name))
(CREATION-TIME (Name)"
in: Name.
out: Time.
Return the time of creation."
(decode-universal-time (getf Name-Time Name)))))

The NEW Instance-Name message sent to the super pseudo object creates an instance and returns the name
of it. The creation time of the two instances created is stored in the Name-Time class variable:

(time-stamped-obiject 'new ‘tsol) => TSO1
(time-stamped-object ‘'new 'tso2) => TSO2

This time is read by sending the creation-time message to the class. It returns the nine decoded universal
time values specified in Steele, page 445 [8]:

(time-stamped-ocbject 'creation-time 'tsol)

The tso2 instance was created one second later then the tsol instance.

The super pseudo object can be called as many times as required. Furthermore, the message being sent to
the super object does not necessarily equal the one sent to the receiver object invoking super.

26

3.2.9. Initialization of Objects

Like ordinary data structures, objects have to be initialized in order to start from a defined state. During the
creation of objects the init message is sent to them. Sub classes of the Object class inherit an init method
which simply returns the name of the created object.

In contrast to the initforms of object variables, which are computing values independent of other object
variables, the init method typically handles the computation of values dependent on multiple object
variables. Furthermore, the init method is responsible for returning the value of the create-class form for the
creation of classes, and the NEW message for the creation of instances respectively. The init method is
invoked after the initforms of the object variables have been evaluated.

Regardiess of the fact that class variables are persistent (their initforms are not reevaluated when the
create-class form is rcevaluated), the class init method is invoked each time the create-class form is
evaluated.

Example:

(create-class Circle
(sub-class-of Obiject)
(instance-variables
{Radius 5.0 "Initial radius.")
(Perimeter nil "Perimeter®))
(instance-methods
(PROPERTIES ()"
out: list of radius and perimeter.
Return the properties of the circle.®
(1list Radius Perimeter))
(INIT ()"
out: Perimeter of circle.
Is called during the instance creation."
(setq Perimeter (* 2 pi Radius)))))
=> CIRCLE

The creation of a circle instance is setting up the radius and the perimeter:

(circle 'new 'circlel) => CIRCLEl
(circlel 'properties) => (5.0 31.41592653589793)

Instead of having a fixed initial value for the radius, the INIT method can be exploited in conjunction with
the class method NEW to define a radius at instance creation time and to derive the perimeter of the circle:

(create-class Circle
(sub-class~of Object)
(class-methods
(NEW (&optional Instance-Name Radius)"
in: Instance-Name, Radius.
out: Perimeter
Create a circle, define its radius and its perimeter."
(funcall (create-instance Self Instance-Name) 'init Radius)))
(instance-variables
(Radius nil "Radius.")
(Perimeter nil "Perimeter™))
(instance-methods
(PROPERTIES ()"
out: list of radius and perimeter.
Return the properties of the circle."
(list Radius Perimeter))
(INIT (R)"
in: R,
out: Perimeter.
Define radius and derive perimeter.™
(setg Radius R)

27

(setg Perimeter (* 2 pi Radius)))))
=> CIRCLE

Note that the class method NEW has been shadowed because the inherited NEW method from the Object
class is not expecting that the INIT method requires any arguments. Now we supply the initial radius of a
circle by supplying one more argument:

(circle ‘new 'circleZ 10) => CIRCLE2
(circle 'properties) => (10 62.83185307179586)

3.2.10. Error Handling

The design and implementation of programs frequently leads to unexpected complexity, which in turn is
the cause of many programming errors. In interactive programming environments like Common Lisp it is
especially tempting to execute partially implemented code. The question whether the trial and error
technique is a favorable programming approach is beyond the scope of this paper. However, OPUS provides
a simple but extendable error handling scheme.

Missing Methods

It often happens that messages are sent to an object not providing a matching method. In case none of the
super classes furnishes a matching method, the NO-MATCHING-METHOD message is sent to the object.
Sub classes of the Object class automatically inherit a default NO-MATCHING-METHOD method. The
parameter list of this method is given as:

NO-MATCHING~METHOD Selector &rest Parameters [Object class/instance method]

Selector and Parameters are bound to the selector and the arguments of the message causing the error. The
default behavior defined in the Object class for instances and classes is to call the Common Lisp error
function displaying the receiver object and the message. The NO-MATCHING-METHOD method may be
shadowed or extended by any sub class of Object to alter the default behavior.

For example, we define a Group class to group elements. This Group class provides a broadcast method to
forward a message to all elements of the group. The elements of the group are instances of a
Geometrical-Object class or any sub class of it. Because the sub classes of the Geometrical-Object class
introduce additional methods, the broadcast of messages exploiting these methods will cause an error in case
they are sent to elements of the group not furnishing these methods. To avoid ending up in the debugger we
shadow the NO-MATCHING-METHOD instance method of the Object class with one method defined in the
Geometric-Object class:

(create-class Group
"A group consist of arbitrary many elements.™
(sub-class—of Object)
(instance-variables
(Elements nil "List of elements.™))
(instance-methods
(ADD-ELEMENT (Element)™
in: Element. out: Element-List
Add a new element.”
{push Element Elements))
(BROADCAST (Selector &rest Parameters)™"
in: Selector + Parameters = Message.
The message is propagated to all elements of the group."
(dolist (Element Elements)
(apply Element Selector Parameters)))))

28

(create-class Geometric-Object
"Basis class for geometric objects."
(sub-class—of Object)

(instance-methods
(NO-MATCHING-METHOD (Selector &rest Parameters)™

in: Selector + Parameters = Message

Shadow the default error handler which signals

a non-continuable error and halts."

(format t
"Instance ~S does not support the ~35 selector~%"
Self
Selector)))))

(create-class Rectangle
"A gecmetric rectangle object."
(sub-class—of Geometric-Object)
(instance-variables
(Length 10 "Long side.")
(Width 5 "Short side.™))
(instance-methods
(LENGTH () (print Length))
(WIDTH () (print Width))))

(create-class Line
"A geometric line object.™
(sub-class—of Geometric-Object)
(instance-variables
(Length 100 "Line length"))
(instance-methods
(LENGTH () (print Length))))

First we create three instances,

(group 'new 'groupl) => GROUPL
(rectangle 'new 'rectanglel) => RECTANGLEL
(line 'new 'linel) => LINEl

and append the two Geomeltric-Object instances to groupl.

(groupl 'add-element ‘rectanglel) => (RECTANGLE1)
{(groupl 'add-element 'linel) => (LINE RECTANGLEL)

Then, we broadcast the length message.

(groupl ‘'broadcast 'length)

100
10
=> NIL

The initial length of linel and rectanglel are printed out. If we try to broadcast the width message then the
NO-MATCHING-METHOD error handler defined in the Geometric-Object class prints a message to the

screen.
(groupl ‘broadcast ‘width)

"Instance LINEl does not support the WIDTH selector™

5
=> NIL

Note that the broadcasting proceeds without terminating in a non-continuable error situation.

Specific Methods without Implementation

OPUS perceives specific methods consisting exclusively of the method definition differently. Despite not

having an implementation, the method shadows any methods of super classes sharing the same name.

29

However, sending a message to an object matching an unimplemented method causes a continuable error, In
interactive environments like Common Lisp it is often the case that a system is only partially loaded. This
might lead to very bizarre behavior if no distinction would be provided between implemented and
unimplemented methods.

3.2.11. Debugging

No programming paradigm is able to prevent programming errors and misconceptions. In order to cope
with problems they first have to be comprehended. Debugging tools make the flow of control more
explicit. In object-oriented environments they exhibit messages sent and the objects involved.

Tracing Objects
Because OPUS treats objects as functions in terms of message syntax, objects can be traced by employing
the Common Lisp built-in trace macro :

trace {object-name}* [Macro
On the other hand, untrace is used to stop tracing again:
untrace {object-name}* [Macro]

If untrace is invoked with no further arguments then all currently traced objects will be untraced. An

example is given in the section describing pseudo objects.

Tracing all Messages

Using the built-in trace macro of Common Lisp has its limitations. It can get very complex to predict the
set of all involved objects. Furthermore, objects may be created dynamically such that the programmer is
not aware of their existence. Also, the number of objects might be too large to be dealt with by the

programmer in an explicit way.

The Object class of OPUS provides a trace-all method which in turn traces every message sent in the
system:

trace-all enable [Cbject Class Method]

Setting the enable parameter to a non-nil value enables trace-all, whereas a nil value disables the trace-all
feature. In contrast to the Common Lisp trace macro, the trace-all method distinguishes between instance
and class messages which is especially helpful in the case of exploiting pseudo objects. Reconsider the
Rectangle example from the "Extensions with Sub Classes" section:

(create-class Rectangle
"Geometric object."
(sub-class—of Object)
(instance-variables
(Height O "Rectangle height.")
(Width O "Rectangle width.™)
(Area 0 "Area of rectangle."))
(instance-methods
(DIMENSIONS (Dimensions)™
in: Dimensions = (<Height> <Width>)
out: Area

30

Modify the dimension of the rectangle and

return its new area."
(setq Height (first Dimensions) Width (second Dimensions))

(setq Area (* Height Width))))

(class-methods
(NEW (Instance-Name Dimensions)"
in: Instance-Name, Dimensions = (<Height> <Width>)
out: Instance-Name
Create a new instance and set-up the dimension of it."

{progl
(super 'new Instance-Name)
(funcall Instance-Name 'dimensions Dimensions)))))

If we now enable trace-all,
(object 'trace-all t) => nil
and create an initialized instance of the Rectangle class,

(rectangle 'new 'rectanglel '(5 6))
class message: (RECTANGLE NEW RECTANGLEl (5 6))
class message: (SUPER NEW RECTANGLEL)
instance message: (RECTANGLEl INIT)
(RECTANGLE] INIT) returns:

RECTANGLE1
(SUPER NEW RECTANGLEl) returns:

RECTANGLEL
instance message: (RECTANGLEl DIMENSIONS (5 6))

(RECTANGLE1 DIMENSIONS (5 6)) returns:
30
(RECTANGLE NEW RECTANGLELl (5 6)) returns:
RECTANGLEL
=> RECTANGLE1

then one gets a good idea of the interaction taking place between instances and classes.

Trace specific Messages, Classes, or Messages
The usefulness of a trace operation is often determined by the amount of output created. In many cases
trace-all is too generic. Trace-thing lets the user define specific trace conditions:

trace-thing &optional Instance Class-Name Selector [Function]

where Instance can be an anonymous instance or nil, Class-Name can be a symbol refering to a class or
nil, and selector can be a symbol representing a selector or nil. A nil value always denotes a wild card.
Therefore, trace-thing with no arguments is identical to the trace-all message. Examples:

(trace-thing) ; trace every message to all instances of all classes

(trace-thing nil 'taxi) ; trace every message to all instances of taxis

(trace-thing nil nil '+) ; trace only + messages to all instances of all classes

Untrace-thing accepts the same arguments which can be used selectively to disable trace conditions:

untrace-thing &optional Instance Class-Name Selector [Function]

31

4. The Built-in Class OBJECT

Instead of furnishing a large set of functions, OPUS embodies large parts of its functionality in the Object
class. This class is usually the root of all other classes in the system. It provides a default behavior for
creating/deleting and inspecting objects.

In the following sections we provide a survey of all instance methods and class methods furnished by the
Object class. Types of parameters are denoted by curly braces, e.g., a-number {fixnum} represents a
parameter of type fixnum.

4.1. Class Methods

CLASS~OBJECT~P [Object Class Method]
Return a non-nil value if the receiver is a class object, nil otherwise. Used to distinguish class and
instance objects.

out: Is-Class-Object-p {boolean}.
DESCRIBE (&key [Object Class Method)

St ream

(Variable *Describe-Class-Variable*)

(Met hod *Describe~Class~-Method*)

(Instance *Describe-Class-Instance¥*)

(Class *Describe-Class-Class*)

(Own *Describe-Class-0Own*)

(Inherited *Describe-Class-Inherited¥*)

(Generic *Describe-Class-Generic*)

(Specific *Describe-Class—Specific¥)

(Unigue *Describe-Class-Unique*)

(Super-Class—-0f *Describe-Class-Super—Class-0f¥*)

(Sub-Class-0Of *Describe-Class~Sub-Class-0Of*))

Generate a description of an object. The degree of detail provided in the description is controlled by a set
of keywords, which in turn have defaults being defined with global variables.

in: &key Stream {stream}
The output of the description is sent to <Stream>.
Variable {boolean or symbol} default: *Describe-Class-Variable*

If <Variable> has a non-nil value then the variables of the receiver object matching <Variable> are
described. The t value for <Variable> matches every variable (it can be viewed as a wild card). In
case the value of <Variable> is a symbol then only the variable is described having an equal name.

32

The description of class variables includes the name of the variable, its current value, and its
documentation string. Instance variables, on the other hand, are described by their name, their
initform and their documentation strings.

Method {boolean or symbol} default: *Describe-Class-Method*

Equal to the Variable keyword, the value of the Method keyword is matched against the existing
methods if it has a non-nil value. A t value results in the description of all variables whereas a

symbol describes only the method which is equal in name.
Instance {boolean} default: *Describe-Class-Instance*
The instances of the class are described in case of a non-nil value for the Instance keyword.
Class {boolean} default: *Describe-Class-Class*
The class is described in case of a non-nil value for the Class keyword.
Own {boolean} default: *Describe-Class-Own*

Own variables and methods are limited to the properties defined in the described class which are

not inherited.
Inherited {boolean} *Describe-Class—-Inherited*

Describe the inherited properties. These properties do not include shadowed properties (not even
methods extended by making use of super), nor own properties.

Generic {boolean} default: *Describe-Class-Generic*

If non-nil, describe the generic methods.

Specific {boolean} default: *Describe-Class-Specific*
If non-nil, describe the specific methods.
Unique {boolean} default: *Describe-Class-Unique*
If non-nil, describe the unique methods.
Super—Class—0Of {boolean} default: *Describe-Class—-Super-Class-0f*
If non-nil, return a list of immediate sub classes.
Sub-Class—-0Of {boolean} default: *Describe-Class-Sub-Class—-Of*
If non-nil, return a list of immediate super classes.
Example: Sending the following describe message
(rectangle 'describe :method t :variable t :instance t :class t :inherited nil)

to the rectangle object defined in the "An Example: Grouping of Graphic Objects” section results in:

Class Object: RECTANGLE
Geometric object.
Super Class of:
Sub Class of: OBJECT
Class Methods:

Own:

From Class: RECTANGLE

33

Generic Methods:
NEW (Instance-Name Dimensions)
in: Instance-Name, Dimensions

out: Instance-Name
Create a new instance and set-up the dimension of it.

= (<Height> <Width>)

Instance Methods:
Own:
From Class: RECTANGLE
Generic Methods:

DIMENSIONS (Dimensions)
in: Dimensions = (<Height> <Width>)

out: Area
Modify the dimension of the rectangle and

return its new area.
Instance Variables:

Own:
From Class: RECTANGLE

AREA initform: 0 Area of rectangle.
HEIGHT initform: 0 Rectangle height.
WIDTH initform: O Rectangle width.

[Object Class Method]

DELETE &Key (Delete-Instances T) {(Delete-Subclasses T)

Delete the class object.
in: &key Delete-Instances {boolean} default: t
If Delete-Instances is set to a non-nil value, then all instances of the class are deleted too.

Delete-Subclasses {boolean} default: t
A non-nil value for Delete-Subclasses also deletes the sub classes of the class.

DOC &rest Arguments &key Stream &allow-other-keys [Object Class Method]

Describe the class and its sub classes. Furthermore, print out a graph of classes. The DOC method

accepts exactly the same arguments as the Object class method describe.

in: &rest Arguments &key Stream &allow-other-keys

All arguments are forwarded to the describe method.
[Object Class Method]

INIT
Is invoked at create-class evaluation and reevaluation time respectively. The typical use is to initialize

class variables. Returns the name of the receiver class.

out: Self {symbol}.
[Object Class Method]

NEW (&optional Instance-Name)

Create an instance of the class.

in: &optional Instance-Name {symbol}

If Instance-Name is not supplied then a unique instance name is created.

out: Instance-Name {symbol}.
[Object Class Method]

NO-MATCHING-METHOD (Selector &rest Arguments)

34

Error handling method invoked in case of not having an own or an inherited method matching the
selector of the message sent to class.

in: Selector {symbol}
Seiecior is bound io the seiccior of the original message seni io ihe class.
&rest Arguments {list of: {s—-expression}}
Arguments is bound to the list of arguments of the original message sent to the class.
SUB-CLASS-OF [Object Class Method]
Return the list of names of all immediate super classes.

out: Sub-Class-Names {list of: {symbol}}.

SUPER-CLASS-OF [Object Class Method]

Return the list of names of all immediate sub classes.

out: Super-Class-Names {list of: {symbol}}.

TRACE-ALL Enable [Object Class Method]
Enable and disable the tracing mode of all messages sent.
in: Enable {boolean}
A non-nil value enables the trace, whereas, a nil value disables it.
OPUS::VALUE Variable-Name &optional (Value Nil Value-Boundp) [Object Class Method]

If Value is provided then the value of the variable denoted by Variable-Name is set to it and the value
is returned. Otherwise, the current value of the Variable is returned. This method is intended as a
debugging aid only in an interactive fashion. It should never be used to modify the value of an object
variable from within a program on a regular basis because this violates the principles of data abstraction.

in: Variable-Name {symbol}
The name of an object variable.
&optional Value {t}
A new value for the object variable.

out: Updated-Value {t}.

4.2. Instance Methods

CLASS-OBJECT~P [Object Instance Method]

Return a non-nil value if the receiver is a class object, nil otherwise. Used to distinguish class and
instance objects.

out: Is-Class-Object-p {boolean}.

INSTANCE-OF [Object Instance Method]

35

Return the name of the class of which the receiver is an instance.

out: Class-Name {symbol}.

COPY &optional Instance-Name [Object Instance Method]
Copy an instance.
in: &optional Instance-Name {symbol}.
If Instance-Name is not provided then a unique symbol is created for the name of the instance.

out: Instance-Name {symbol}.

DELETE [Object Instance Method]
Deletes the receiver object.

DESCRIBE (&key [Object Instance Method]
Stream
(Variable *Describe-Instance-Variable¥*)
(Method *Describe-Instance-Method*)
(Instance *Describe-Instance-Instance*)
(Class *Describe-Instance-Class*)
(Own *Describe-Instance-Own*)
(Inherited *Describe-Instance-Inherited*)
(Generic *Describe-Instance-Generic*)
(Specific *Describe-Instance-Specific*)
(Unique *Describe-Instance-Unique*)

(Instance-0f *Describe-Instance-Instance-0f*))

Generate a description of an object. The degree of detail provided in the description is controlled with a
set of keywords, which in turn have defaults being defined with global variables.

in: &key Stream {stream}
The output of the description is sent to <Stream>.
Variable {boolean or symbol} default: *Describe-Instance-Variable*

If <Variable> has a non-nil value then the variables of the receiver object matching <Variable> are
described. The t value for <Variable> matches every variable (it can be viewed as a wild card). In
case that the value of <Variable> is a symbol, then only the variable having an equal name is
described.

The description of class variables includes the name of the variable, its current value, and its
documentation string. Instance variables, on the other side are described by their name, their

initform and their documentation strings.

Method {boolean or symbol} default: *Describe-Instance-Method*

36

Equal to the Variable keyword the value of the Method keyword is matched against the existing
methods if it has a non-nil value. A t value results in the description of all variables, whereas a

symbol describes only the method being equal in name.

The instances of the class are described in case of a non-nil value for the Instance keyword.
Class {boolean} default: *Describe-Instance-Class*

The class is described in case of a non-nil value for the Class keyword.
Own {boolean} default: *Describe-Instance-Own*

Own variables and methods are limited to the properties defined in the described class which are
not inherited.

Inherited {boolean} *Describe-Instance-Inherited*

Describe the inherited properties. These properties do not include shadowed properties (no even
methods extended by making use of super), nor own properties.

Generic {boolean} default: *Describe-Instance-Generic¥*
If non-nil, describe the generic methods.

Specific {boolean} default: *Describe-Instance-Specific*
If non-nil describe the specific methods.

Unique {boolean} default: *Describe-Instance-Unique*
If non-nil, describe the unique methods.

Super-Class—-0f {boolean} default: *Describe-Instance-Super-Class—Of*
If non-nil, return a list of immediate sub classes.

Sub-Class-0Of {boolean} default: *Describe-Instance-Sub-Class-Of*
If non-nil, return a list of immediate super classes.

INIT [Object Instance Method]

Invoked at instance creation time. A typical use is to initialize instance variables. Return the instance

name.

out: Self {symbol}.

NO-MATCHING-METHOD Selector &rest Arguments [Object Instance Method]

Error handling method invoked in case of not having an own or an inherited method matching the
selector of the message sent to the receiving instance object.

in: Selector {symbol}
Selector is bound to the selector of the original message sent to the class.

&rest Arguments {list of: {s-expression}}

37

Arguments is bound to the list of arguments of the original message sent to the class.
OPUS: :VALUE Variable-Name &optional (Value Nil Value-Boundp) [Object Instance Method)

If Value is provided then the value of the variable denoted by Variable-Name is set to it and the value
is returned. Otherwise, the current value of the Variable is reiurned. This meihod is iniended as a
debugging aid only in an interactive fashion. It should never be used to modify the value of an object

variable from a program on a regular basis because this violates the principles of data abstraction.
in: Variable-Name {symbol}
The name of an object variable.
&optional Value {t}
A new value for the object variable.

out: Updated-Value {t}.

38

6. Index Lambda-List 10

aim 16 lexicographic order of classes within the sub-class-of
allow-unique-methods 12 definition 19

anonymous instance 31 linearizing of super class graphs 19
anonymous instances 16 message 4
apply-instance-message 16 message sending 15

behavior 3 method body 10

behavior aspect 3 method dictionary 15

bijection 5 method implementation 10, 11
Built-in Class OBJECT 32 method specification 10, 11
C++ 5 methods 3

class graph 19 mixin class 21

class method 15 Multiple inheritance 19

class order criterion 19 name-of-class 8

class precedence list 19 name-of-instance 7

class precedence list 15 NEW 6, 15, 26, 34
CLASS-OBJECT-P 32, 35 NO-MATCHING-METHOD 28
COPY 36 NO-MATCHING-METHOD 34, 37
create-instance 5 Object 6
create-anonymous-instance 6, 16 OPUS

create-class 6

data 3 VALUE 35, 38

data abstraction 4 persistency of class variables 27
data aspect 3 persistent 7

databases 3 portable 2

defclassvar 9 procedural abstraction 3
definstancevar 9 procedures 3

DELETE 34, 36 properties 17

demon functions 4 Pseudo objects 24

DESCRIBE 32, 36 re-evaluate the initforms 7
designer's model 3 real objects 5

DOC 34 recursive schemes 24
Doc-String 6 reevaluating create-class forms 14
documentation string 8, 10, 11 relationships among classes 16
error handling 28 selector and arguments 15
evaiuation 7 Self object 25

extended union 9, 17 semantic nets 3

Flavors 5 semantic nets, 16

foundation area 21 semantic overloading of properties 24
Frame 3 semantics of matching 11
functions 3 single inheritance 17

generic method 10 slots 3

global variables 7 Smalltalk 4

immediate super class 17 so called mixin classes 19
implementation part 12 Specific methods 11
implementation parts 2 specification 2, 12
incrementally define new software artifacts 16 state 6

inheritance 8 state of an object 10

INIT 34, 37 sub-class-of 16

init message 27 SUB-CLASS-OF 35

Initforms 7 super 25

instance-of 16 SUPER-CLASS-OF 35
instance method 15 topological order 19
INSTANCE-OF 35 topological sort 20

is-a 16 trace 30

KEE 5 trace-all method 30

KEN 5 TRACE-ALL 35

lambda list 11 trace-thing 31

39

unique methods 12 user defined relationship 16
Units 5 variable definition 6
untrace 30 variables 3

untrace-thing 31

[1] M. Stephik and D. G. Bobrow, "Object-Oriented Programming: Themes and Variations," The Al
Magazine, , pp. 40-61, 1984.

[2] M. Vitins, R. Huebscher and A. Repenning, "A Knowledge-based Approach for the Configuration of
Technical Systems," Eight International Workshop, Avignon, 1988, pp. .

[3] N. Wirth, Algorithms and Data Structures, B. G. Teubner, Stuttgart, 1983.

[4]1 F. P. Brooks Jr., "No Silver Bullet: Essence and Accidents of Software Engineering," IEEE
Computer, , pp. 10-19, 1987.

[51J. Martin and S. Oxman, Building Expert Systems: A Tutorial, Prentice Hall, 1988.
{6] P. Cointe, "Metaclasses are First Class: the ObjVlisp Model," OOPSLA ‘87, 1987, pp. 156-167.

[7]1 G. A. Ford and R. S. Wiener, Modula-2, A Software Development Approach, John Wiley & Sons,
New York, 1985.

[8] G. Steele L., Common LISP: The Language, Digital Press, 1984.

[9] U. Schiel, "Abstraction in Semantic Networks: Axiom Schema for Generalisation, Aggregation and
Grouping," SIGART Newsletter, , pp. 25-26, 1989.

40

