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Abstract

Divide and conquer techniques based on rank-one updating have proven fast, accurate,
and efficient in parallel for the real symmetric tridiagonal and unitary eigenvalue problems
and for the bidiagonal singular value problem. Although the divide and conquer mechanism
can also be adapted to the real nonsymmetric eigenproblem in a straightforward way, most
of the desirable characteristics of the other algorithms are lost. In this paper, we examine
the problems of accuracy and efficiency that can stand in the way of a nonsymmetric divide
and conquer eigensolver based on low-rank updating.

1 Introduction

The eigenvalues and eigenvectors of a real nonsymmetric matrix A have traditionally been
computed by first reducing A to Hessenberg form H and then computing the eigendecomposition
of H by the QR method. The serial nature of the QR method combined with the high cost of
data transfer on distributed-memory multiprocessors has made parallel implementations of this
approach inefficient [16]. The failure of parallel QR algorithms has sparked recent research into
new algorithms including stabilized tridiagonalization [9, 14], iterative refinement techniques
[11}, and homotopy methods [25].

In this paper, we examine the use of divide and conquer techniques based on low-rank up-
dating for solving the real nonsymmetric eigenvalue problem. This divide and conquer approach
was first applied to the symmetric tridiagonal eigenvalue problem by Cuppen [8] and analyzed
and implemented in parallel by Dongarra and Sorensen [12]. The algorithm involves tearing
a symmetric tridiagonal matrix 7" into a pair of symmetric tridiagonal submatrices 7y and 7%
by removing off-diagonal elements of 7" and using rank-one updating techniques to form the
eigendecomposition of T from those of 7T} and T,. We review the method in Section 2 of this
paper.

The symmetric divide and conquer technique of [8, 12] provides a fast and accurate serial
alternative to the QR method or to bisection with inverse iteration [12, 23]. In addition, the
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divide and conquer method is efficient when implemented on shared-memory multiprocessors
[12]. Similar methods have also performed well for the bidiagonal singular value problem [24]
and for the unitary eigenvalue problem [4]. In this paper, we show that the efficiency and
accuracy shared by these divide and conquer methods cannot be expected in general when the
approach is applied to the nonsymmetric eigenproblem.

In Sections 3 and 4 of this paper, we demonstrate how the symmetric divide and conquer
method of [8, 12] can be extended in a straightforward way to nonsymmetric tridiagonal and
Hessenberg eigenproblems if we assume that the submatrices formed from tearing are diago-
nalizable. This algorithm allows us to examine the troubles with a nonsymmetric divide and
conquer eigensolver in direct analogy to the symmetric eigensolver. In [1], Adams and Arbenz
consider a general rank-r update to a nonsymmetric matrix without assuming diagonalizabil-
ity. Their proposed algorithm bears less resemblance to the symmetric algorithm, but many
of the conclusions that we will draw about our simplified algorithm do apply to their complete
theory. In fact, we will show that one major obstacle to accurate implementation of such a
method arises for virtually any updating method that does not employ the original matrix T
at some stage after tearing. We discuss the difficulties that can plague a nonsymmetric divide
and conquer method in Section 5. We present our conclusions in Section 6.

Throughout this paper, unless otherwise specified, capital Greek and Roman letters repre-
sent matrices, lower case Roman letters represent column vectors, and lower case Greek letters
represent scalars. A superscript 7" denotes transpose, a superscript H denotes conjugate trans-
pose, and h is the element-wise complex conjugate of the vector h. The vector e; is the j-th
“canonical vector” with all elements equal to zero except the j-th which equals 1.

2 A Review of the Symmetric Tridiagonal Method

An unreduced symmetric tridiagonal matrix T of order n = 2m can be written as the matrix
sum

_ (T Em T p-1,T
= (T ) e () ) (R o, (1)

where 3 is the mth off-diagonal element of T', e; is the ith unit vector of length m, and 77 and
T, are symmetric tridiagonal of order m. The algorithm can be made backward stable with
0 = sign(el Tien) [5).

If the solutions to the two smaller eigensystems are T} = X1D1X1T and Ty = X2D2X2T, then

T:X{DWLM(H}%/[Z)U? 0= 1)

(X4 (D
X—< Xz)’ D_< D2)’

I[f = el X, is the last row of X1, and fI = €T X, is the first row of X5. To solve the eigenproblem
for T, it is necessary to find the eigenvalues and eigenvectors of the diagonal plus rank-one
matrix

XT

where

D+ pzzt = XTTX,



where 27 = \/Q?(ZIT 0=1f1), and p is selected so that || 2 || = 1 [8].

The eigensystem of 1" is computed via the rank-one updating technique described in [6, 18].
Namely, if all elements of z are non-zero and if the diagonal elements of D are distinct, then
the eigenvalues of D + pzzT are the roots Ay > ... > A, of the secular equation

(e] 2)°
85—\

wN)=1+p2I(D=N)"1z=1+ Z
J=1

If 3 > 0 and the diagonal elements of D are given by §; > ... > §,, each eigenvalue is bracketed
by the adjacent diagonal elements of D: §; > X\; > 6,41 and &; + p2zL2 > Ay > é;. When 8 < 0,
a change of variables leads to a similar result. This interlacing property means that the roots of
w(A) may be found efficiently using any one-dimensional root finder such as the one based on
rational interpolation developed in [6]. Once A; has been found, its corresponding eigenvector
u; is computed from

(D - )\]’)_12
(D =X) 2l

uj:

When the diagonal elements of D are not distinct, i.e., § = 6,41 = ... = 4, the eigenprob-
lem of order n is reduced to one of order n—k by the process of deflation. The eigenvector basis
is first rotated to zero out the elements (j41,..., {11k corresponding to the multiple elements
0141 = -+ - = 8141 a product of plane rotations G, is applied so that

Gl(ChCH—la T Cl—Hc)T = (Ga Cl’+1’ o 'vClI-Hc)T = (Cl,a 0,-- ’aO)T'

For I 41 < j <14k, the jth eigenvalue in exact arithmetic is the jth element of D (A; = §;),
and its corresponding eigenvector is the appropriate canonical vector (u; = e;) [6].

Representing the product of all rotations by the matrix &, the matrix T is expressed as
T = XGTQAQTGXT = UAUT, where UAU™ is the eigendecomposition of G(D + pzzT)GT.
The eigenvalues of T" are the diagonal elements of A, and the eigenvectors of T" are the columns
of U = XGTQ.

The above derivation assumes exact arithmetic. Deflation rules have also been developed for
finite precision in [12]: rotations are applied when diagonal elements of D are close, and deflation
occurs when elements of z are small. Numerical experiments have confirmed that the increase in
speed due to this deflation is substantial for serial and shared-memory parallel implementations
[12]. With appropriate choice of deflation criteria and use of extended precision, it is possible
to guarantee computation of highly accurate eigenvalues and orthogonal eigenvectors [30].

Implementations of the divide and conquer method [12, 22] recursively subdivide the sym-
metric tridiagonal matrix T until the resulting subproblems are of a desired order. In parallel
implementations, the smallest subproblems are solved in parallel with one problem per pro-
cessor, and the work to solve larger order subproblems is shared by more than one processor
[12, 22]. In particular, high parallel efficiency has been achieved on shared-memory multipro-
cessors by dynamically assigning independent root-finding and eigenvector computing tasks to
separate processors at each level of updating [12]. A parallel implementation of the divide and

conquer method can also be pipelined with reduction of a symmetric matrix to tridiagonal form
[10, 12].



3 A Nonsymmetric Eigensolver

In this section, we investigate the application of low-rank updating techniques to the non-
symmetric tridiagonal eigenproblem. This problem arises as a subproblem in other numerical
methods such as exponential interpolation [2, 3]. Tridiagonal eigenproblems also result from
nonsymmetric Lanczos algorithms [19] or the stabilized reduction of general eigenproblems to
tridiagonal form [9, 15]. We show in Section 4 that the theory we develop in this section for the
tridiagonal problem extends in a straightforward manner to Hessenberg matrices. We assume
the use of exact arithmetic in both cases. The nonsymmetric algorithms presented in this paper
require that the submatrices be formed by the matrix tearing be diagonalizable.

The method of Section 2 was based on rank-one updating of a torn symmetric tridiagonal
matrix. The theory behind that method does not carry through to solving a nonsymmetric
updating problem D + wv?. Furthermore, the updating matrix uv? is dense and otherwise
unstructured. In this paper, we employ a rank-two tearing of a nonsymmetric matrix that
leads to smaller order subproblems, a shorter recursion tree, and a convenient arrowhead up-
dating matrix. A symmetric tridiagonal eigensolver based on rank-two updating appears to
be competitive with the symmetric eigensolver based on rank-one updating [13]. Solution of
symmetric arrowhead eigenproblems is discussed in [28, 31].

Let T" be the tridiagonal matrix with diagonal elements a4, ..., a,, sub-diagonal elements
Y1y -5 Yn—1, and super-diagonal elements fy,..., 5,1, and suppose n = 2m + 1. By splitting
off two superdiagonal elements (3, and f,,4+1 and the corresponding subdiagonal elements 7,,
and Y41, we can write the matrix 7" in terms of the tridiagonal submatrices T} and T5:

T B
T = e + Tm /Bm+1
T2 Im+1

If Ty and 75 are diagonalizable, we can compute the eigendecompositions Ty = X1 D X| ! and

Ty = X2D2X2_1 with diagonal matrices Dy and Dg. Substituting these decompositions and
abbreviating a = «a,, gives the matrix product

XiDy X! B
T = « + Ym 5m+1
X2DQX{1 Ym+1
Dy ! )
= X a + | Af hi X, (2)
D2 (%))
where
Xy
X = 1 ,

Xo

v = ﬁle'”lem, vy = 7m+1X{161, hi = YmX{em, and hy = ﬁmHXéTel for canonical vectors
ey and e, of appropriate length.



We permute the elements of equation (2) to form

D1 0
T = X Dy + vy || X7 (3)
| I hI ] 0
with
X4
X = X,
1

and rewrite the interior matrix of equation (3) as

Dy v1
, D
M = D, + vy :<hT Z)
‘af h? hg‘ 0

The arrowhead matrix M is the sum of a diagonal matrix and a rank two nonsymmetric matrix.
The eigenvalues of the matrix M are the eigenvalues of T'. The left and right eigenvectors of
M premultiplied by X~ and X, respectively, are the left and right eigenvectors of T'.

The procedure for computing the remaining eigenvalues and eigenvectors of M follows basic
steps similar to those for the eigendecomposition of a diagonal plus symmetric rank one matrix
developed in [6, 18], but because M is nonsymmetric, the details differ in several important
ways.

If M has diagonal elements 61,...,6,-1, o, last column (vq,.. .,vn_l,a)T, and last row
(R1,...,hp—1,@), then the following lemmas establish when diagonal elements of M can be
retained as eigenvalues of T'.

Lemma 3.1 If the diagonal elements éy,...,6,_1 of M are distinct, the element §; is an eigen-
value of M if and only if v;h; = 0.

Lemma 3.2 If M has repeated diagonal elements 6; = &; with h;h; # 0, M is similar to a
matriz with 6; = 6; and h; = 0.

Proof: The proof is by construction of the unitary similarity transformation that reduces h;
to zero when 6; = ¢;. Let

h; T
2 = ]hj[z—]—]hilQ, C:———J—, S:—i,
T T

then the matrix is transformed in the following way

¢ —-s 0 6, 0 ¢c § 0 & 0 cv; — Sv;
s ¢ 0 0 4 v]-) (—3 0] = (0 b; svi«{—cvj) .
0 0 1 hi h; « 0 0 1 0 a

Similarly, if 6; = 6; and v;v; # 0, M is similar to a matrix with §; = é; and v; = 0. If h; = 0,
e; is the right eigenvector of M corresponding to the eigenvalue &;. If v; = 0, ¢; is the left
eigenvector of M corresponding to the eigenvalue §;.

O



We first consider the case where D has distinct diagonal elements §; # 82... # 6, and v
and h have no zero elements. By Lemmas 3.1 and 3.2, no diagonal element &1, ...,8,-1 can be
an eigenvalue of M. The eigenvalues of M are then the roots of the complex rational equation

e @)ty N
g(A) = (A a)+LTT— 0. (4)

The right eigenvector ¢ of M associated with eigenvalue A is given by

- ()=

()= ()

where £, ( are chosen to make SJH ¢; = 1. (This normalization ensures that the left eigenvector
matrix is the inverse of the right eigenvector matrix.)

When there are zero elements in v or h, the matrix (D — Al) is singular, and equations
(5) and (6) cannot be used to compute the eigenvectors of M. To derive rules for computing
eigenvectors in this case, we first suppose that M has been transformed by a series of elementary
transformations accumulated into the matrix G so that equal diagonal elements correspond to
zero elements of v or h. We then permute the n x n matrix M «— PGMG*PT so that all zero
elements in its last row or column are grouped together as follows:

and the left eigenvector is

0o Dy 0 VvV
M=, Dy 0| (7)
0 0 H M

with

where % and h have no zero elements. We further assume that the similarity transformations
have been applied so that D1 and Dz have no common diagonal elements. Thus, no eigenvalue
of D1 is an eigenvalue of D2 or of M.

The zero structure of M allows us to deflate out some eigenpairs. Specifically, The diagonal
elements of the diagonal submatrix Dy € CI*J are eigenvalues of the matrix M with corre-
sponding left and right eigenvectors (I;, 0, O, O)T. The diagonal elements of Dy € Ct*?
are eigenvalues of M with right eigenvectors (0 I, 0 0 )T. The eigenvalues of Dy € CP*P
are eigenvalues of M with couesponding left eigenvectors (0, 0, Iy, O)T. The remalnlng
eigenvalues of M are the eigenvalues of M. By Lemmas 3.1 and 3.2, no eigenvalue of Dy or Dy
can also be an eigenvalue of M.

To compute the remaining eigenvectors, we first determine the eigenvectors of the submatrix

_(Dy 0
wr = (209),



The right eigenvector (¢{,G1 )T corresponding to the eigenvalue X satisfies

(D2 — N
Hq -I-(M* A)% =

If A is not a diagonal element of bg, then ¢, = 0, (M —A)gz = 0, and g3 is the right eigenvector
of M determined from equation (5). The corresponding left eigenvector (37, 31)7 satisfies

Bm-x) =0
(D - N+&H = 0

The vector 3, is found using equation (6), and the vector §; comes from a diagonal scaling of
TH. If \is the kth diagonal element of Dy, then §; = ey, (M A2 = —Hey, and ¢, can be
found by solving the latter linear system. The corresponding left eigenvector is the appropriate
canonical vector. Note that for the arrowhead matrix M € C"*", any left or right eigenvector
of My can be found O(r) operations.
We then determine the eigenvectors of the matrix

Dy 0 Vv
My = 0 Dy 0

0 H M

from those of My. The left eigenvector (sf,s3)? of My corresponding to the eigenvalue A
satisfies
S{I(Dl - /\)

st (0,V)+ s (M —X) =

If \is not a diagonal element of Dy, s =0, and 351 is just a left eigenvector of Mpy. The
corresponding right eigenvector (¢f , ¢ )T of M satisfies

(D1 = Nai +(0,V)ge =
(MH - ’\)q2 = 07

and ¢z is the associated right eigenvector of My. The vector ¢; is produced by a diagonal
scaling of (0,V)qz. If A is the kth diagonal element of Dy, sH = e, and s¥ is found by solving
the arrowhead system s (Mpy — \) = —ef(O,V) in O(r + t) operations. The corresponding
right eigenvector is the appropriate canonical vector.

The eigenvectors of M are those of My and of Dy with zeros appended or prepended as
necessary.

4 A tearing for Hessenberg matrices

In this section, we show how the divide and conquer scheme of Section 3 can be applied to an
upper Hessenberg matrix H of order n = 2m+1, under the assumption that the Hessenberg sub-
matrices formed by matrix tearing are diagonalizable. If H; = X, DlX and Hy = XoDo Xy t



then

Hl 7 v
H = Ay + Tm h'
Hy Ym+1
Dy Xt X7'zX,
= X a + | mel Xy rT X, X1
D2 ’)/m+1X2_161

with & = a,, and X the direct sum X; & 1® X,. The interior matrix can be permuted to form

Dy | X7'ZX, | v
M = D, IR (8)
hT hL a

where vy = X{lv, Vg = 'ymHX{lel, hy = 'meirem, and hy = Xérh. The eigenvalues of M not
equal to diagonal elements of Dy and D, are the roots of the secular equation

r(A) = (a=AN)+hI(Dy = M) roy + b (Dy — M) 720y —
RE(Dy = AD)™HXTYZX)(Dy — M)y, (9)

Note that r(A) = 0 has the same form as the tridiagonal secular equation (4) plus an additional
cross term involving Z.
The right eigenvector of M for eigenvalue A is

) —(Dy = ADT=(XT'ZX)(Dg — M) Yoy + vy]
g=14q | = C —(DQ - AI)_l’Z)Q .

¢ 1

The deflation rules for the right eigenvectors of M derive from this expression (using Mq = A\q)
and are not as simple as those given for the tridiagonal case in Lemmas 3.1 and 3.2. For

example, a diagonal element of Dy is retained as an eigenvalue A of M whenever Dy — Al is
nonsingular, and both of the following relations are satisfied:

Cefor = (el (XT'ZX)(Dy— M) toy
Wa = [R5 (D= A0 0+ (a = M)

for ef(Dl — Al) = 0 and any choice of ¢;. The requirements are similarly complicated if Ais a
diagonal element of Dy but not of Dy. If A appears in both Dy (jth diagonal element) and D,
(kth diagonal element), the requirements simplify to

—46311)1 = ef(Xl-—lZXQ)qQ

Celfvy, = 0

for any ¢1. The formulas for the left eigenvector and deflation rules resemble those for the right
eigenvector. The divide and conquer mechanism thus extends to the Hessenberg case, although
less simply and less efficiently than to the tridiagonal case.



5 Obstacles to the Nonsymmetric Method

To this point, we have shown that as long as the submatrices formed from tearing are diagonaliz-
able, a divide and conquer method for nonsymmetric tridiagonal and Hessenberg eigenproblems
can be derived along the lines of the symmetric method reviewed in Section 2. In the remain-
der of this paper, we discuss difficulties with efficiency and stability that stand in the way of a
practical implementation of a nonsymmetric divide and conquer method. We use our method
and that of [1] to illustrate the problems, but many of our deliberations would apply to any
divide and conquer algorithm of this type.

5.1 Root-finding

An accurate and eflicient root-finder is essential to the success of the symmetric divide and
conquer method of [8, 12]. The nonsymmetric tridiagonal secular equation (4) g(A) = 0,
however, shares few of the properties that make the symmetric secular equation (2) w(A) = 0 so
easy to solve. The nonsymmetric function g(A) can still be evaluated in O(n) flops, but because
it derives from the spectral decompositions of 77 and T5, it can have complex coefficients. The
complex roots of g(A) = 0 occur in conjugate pairs but otherwise can lie anywhere within
the union of Gerschgorin disks of 7" or of M. Ouly the poles éy,...,6,_1 of g(\) are easily
identified. Unlike the symmetric equation, where the roots interlace the poles, there is no
obvious connection between the locations of the poles and roots of g(A) = 0. The only advantage
of the nonsymmetric equation is that only its roots with nonnegative (or nonpositive) imaginary
roots need be explicitly computed to determine the full spectrum.

To illustrate the general structure of g(A) we present contour plots of log(|g(A)|) over the
area of the complex plane containing all roots and poles for two 5 x 5 matrices. Figure 1 shows
the function for matrix 75 having diagonal elements 1, 2, 3, 4, 5 and off-diagonal elements
Br=1,v = -1,k =1,...,4. Boxes mark the four complex poles of the function, and x’s
mark its one real and four complex roots. In this case, the structure of [g(A)| is quite regular.
Figure 2 shows log(|g(A)|) for a 5 x5 random tridiagonal matrix. In this instance, two poles and
three roots lie on the real line. The remaining complex conjugate poles and roots are nearly
coincident, although deflation ensures that they are not equal. (In both cases, the function rises
monotonically toward the poles: apparent structure near the poles is an artifact of the printer’s
resolution. )

In this section, we examine the possibility of unconditional global convergence to all roots of
g(A) = 0. As the roots and poles of this equation do not interlace, the first order of business is
to localize the roots. To this end, we present Weyl’s algorithm [20] which was originally devised
for polynomials. Given an initial search interval for the roots (here, the union of all Gerschgorin
disks of T or of the deflated matrix M), we can cover it with closed squares and determine the
number of roots lying within each. Any squares found to contain no roots are discarded from
the search area. The remaining squares are subdivided and the process is repeated recursively
with the smaller squares. (Lehmer’s method uses a similar process that covers the search area
with disks [20, 21]. Derwidué’s method covers the upper half plane with strips [21].)

To implement Weyl’s algorithm, it remains to devise an exclusion test to determine which
squares are empty [20]. Let I' be the boundary of a square to be tested. Because we know the
locations of the poles of g(A), we could determine the number of roots inside of I' by numerically



evaluating the winding number

I Y A0
no= o Fg(/\)d/\, (10)

which equals the number of zeros of g{A) inside T' minus the number of poles of g(A) inside
I' [7]. The cost of computing this integral can be high, however, and it may be impossible
to attain an accurate result when zeros lie close to I' [20]. An alternative is to see whether
"I lg(A)] ever exceeds "*|g’(A)]/w on a square I' of side w not enclosing a pole. If it does, the
function cannot have a zero inside of I' [7]. (A similar test is described in [20] for polynomials.)
Determining these maxima amounts to yet another root-finding or optimization problem and
so would be expensive. Such a test could also fail for roots near poles or near the edge of a
square.

Even if a practical exclusion test could be devised, Weyl’s method offers only linear conver-
gence. Furthermore, Weyl’s algorithm requires that significant work be performed on intervals
containing no eigenvalues. (In the symmetric case, the interlacing property means that only
intervals of the real line containing eigenvalues are examined [12, 22].) Weyl’s algorithm does
lend itself to a parallel implementation as each square can be examined independently by one
processor, although experiments with one-dimensional multisection routines suggest that an
efficient mechanism for dynamically assigning squares to processors would be required for good
performance [22, 26]. According to Henrici [20], this sort of multisection procedure is the only
way to compute all roots of a polynomial to a desired precision with unconditional global con-
vergence. We are not aware of any other globally convergent method for computing all zeros of
rational functions.

While it appears that there is no reasonably efficient globally convergent method for solving
the secular equation, alternatives such as Newton’s method, Bernoulli’s method, Graeffe’s root
squaring method, or Rutishauser’s quotient-difference method [20, 21} might work in practice.
We could also pose the root-finding problem as the problem of finding all local minimizers of
|g(X)| within the minimal set of Gerschgorin disks of 7' or M. As a consequence of the Maximum
Modulus Theorem [7], the modulus |g(\)| has no local minimizers other than its roots. In this
case, we can use the method of steepest descent for guaranteed convergence to a single root
[17, 20]. Any of these methods would require a mechanism for choosing starting guesses for
each root and a mechanism for determining if all roots have been computed.

Finally, we note that the O(n) cost for evaluating g(\) results from having a tridiagonal
matrix torn into diagonalizable submatrices. In contrast, when evaluating the Hessenberg
secular equation (9), we must first determine X;'ZX; in O(m®) operations then evaluate
r(A) = 0 in O(m?) operations where m = 2=1. If the submatrices resulting from tearing a
tridiagonal or Hessenberg matrix, are not diagonalizable, the cost of evaluating the resulting
secular equation is also higher than for g(A) or r(\), respectively [1].

5.2 Eigenvector Computation

The derivation in Section 3 shows that, for an n x n matrix M, all left and right eigenvectors are
produced by our nonsymmetric divide and conquer algorithm in O(n?) operations. Furthermore,
at each stage, every eigenvector of My, My, or M is computed independently of every other.
Although independent computation of eigenvectors is good for parallel efficiency, it may not
be the best numerical strategy for the nonsymmetric eigenproblem. To compute an accurate

10



singular value decomposition of a matrix by the divide and conquer strategy of [24], it is
necessary to compute each right singular vector from its corresponding left singular vector
rather than by independent formulas. In part, this ensures correct pairing of left and right
singular vectors corresponding to close singular values. Similarities between the divide and
conquer algorithms for the SVD and the nonsymmetric eigenproblem suggest than an accurate
eigensolver for the latter might also require the right eigenvectors to be computed from the left
eigenvectors. :

In the SVD algorithm of [24], the right singular vector is given by a diagonal scaling of the left
singular vector. The relationship between the left and right singular vectors that makes this
efficient transformation possible does not carry through to the nonsymmetric eigenproblem.
If the matrix M in equation (7) is diagonalizable, the matrix of right eigenvectors @ can
be computed from the left eigenvectors only by inverting the latter in O(r®) operations. If
the eigendecomposition My = @ HAHQ;; is computed stably, the left eigenvectors of the
diagonalizable matrix My derive from
Dy Vv )

MV:<0 Mg

and the relation

(0 )=o) (0 )6 a) ()

In this case, A = —CQ;Il, and each element of C' is computed by
e}wCek = —(eJTV)(Qf{lek)/(efﬁlej — eFAger),

1 <j<pand 1<k <r+4t. Computing the submatrix C takes O(p(r + t)) operations, but
computing A takes O(p(r+1)?) operations. The matrix product needed to compute A and the
inversion of ()~! make the eigenvector computation expensive both serially and in parallel. In
the algorithm of [1], the left and right eigenspaces are computed independently.

5.3 Deflation

In practice, the cost of the symmetric divide and conquer method of [8, 12] is strongly problem
dependent and is determined by the amount of deflation occurring for a given problem [12, 23].
When deflation is prevalent, divide and conquer is the fastest way to compute accurately all
eigenvalues and eigenvectors of a symmetric tridiagonal matrix, but if no deflation occurs,
the divide and conquer and QR methods are of comparable cost [23]. We have not done
experiments to determine the likelihood of deflation in the nonsymmetric case but do note
that the zero structure of the computed eigenvector matrices could influence the savings. For
symmetric matrices, the eigenvector matrix decouples into the direct sum of an identity matrix
and a computed submatrix, but for nonsymmetric matrices, the eigenvector matrices have
nonsymmetric zero structure and, hence, possibly fewer zeros than if v = h. Fewer zeros
would mean less savings when the eigenvectors of M are computed and and when they are
backtransformed to those of the original matrix 7.

As in the symmetric case, deflation rules can be formulated for use in a finite precision
implementation. A diagonal element ¢; of the matrix M is retained as an eigenvalue of M
when 6; is close to some other diagonal element é; or when an element v; or h; is small. In

11



the first instance, similarity transformations are applied as in Lemma 3.2 to zero out a border
element h; or v; corresponding to one duplicate diagonal element. Error analysis of this process
proceeds much as for the symmetric case in [6, 12] and shows that finite precision deflation leads
us to work with a matrix M + F close to the one we would use in exact arithmetic.

If we accept the eigendecomposition of M + F as the eigendecomposition of M. we can then
see an error in a computed eigenvalue A; of M as large as [19, 31]

|E]

N(M) = \i(M + E)| =~ OO’

where 1/0(;) is the condition number of the eigenvalue \;. Thus, if all eigenvalues of M are
well conditioned, deflation of this sort should pose no threat to the accuracy of the method.
Similarly, a well-conditioned eigenvector would not be sensitive to the small errors introduced
by the similarity transformations.

Ignoring small elements of h and v also appears to have little influence on the accuracy of
the solution as measured by the residual error. We accept (6;,e;) as a right eigenpair of M
whenever |h;| < tol = fepr|| M || with 6 = O(1) and ey = machine epsilon. This ensures that
the residual error of the eigenpair is bounded above by a small value

|| Me; — 6;¢; H = |(hT€i)€n‘ = Ihil < tol.

These results indicate that deflation should not influence the accuracy of well-conditioned eigen-
pairs but could be problematic for ill-conditioned eigenpairs.

The time savings due to deflation are difficult to predict. The nonsymmetric zero structure of
the eigenvector matrices leads to reduced savings in both computation and backtransformation
of the eigenvectors of M when compared to deflation in the symmetric method. The loss of
the efficient root-finder, however, suggests that eigenvalue computation time may occupy a
substantially larger fraction of the total time than it does in the symmetric case. If this is
true, the savings in eigenvalue computation following deflation would be more important for
nonsymmetric than for symmetric matrices.

The algorithm of [1] attains a low operation count by computing the eigenvectors of T
through direct system solution rather than by computing and backtransforming the eigenvectors
of an intermediate matrix. Adams and Arbenz conclude that as long as the required system
solution is stable, deflation of the problem is unnecessary. (The stability of the computation is
as yet unestablished.)

5.4 Stability

There remains one additional aspect of a divide and conquer method that can most severely
impact its accuracy even if it allows for defective submatrices. Namely, if either of the torn
submatrices Ty or T3 of a nonsymmetric matrix 7" is ill-conditioned with respect to the eigen-
problem, the accuracy of its computed eigendecomposition can be poor [19, 31]. Because the
eigendecomposition of 7' is built up from those of 77 and T3 and is never corrected using T
itself, the eigendecomposition of 7" will also be inaccurate.
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The following example demonstrates that even a matrix that is well-conditioned for eigen-
decomposition can have ill-conditioned submatrices. The Hessenberg matrix

107846

—

H(8) =

oo OO oo
O = OO OO

SO OO OO O O
O OO OO - OO
[ew R e B en B an B e Bl = I e R e ]
S OO OO OO O
[on i = Il o B an B on B e B e B e ]
—_—_ 0 OO OO oo o
[ T T S =S S

0

[en)

has distinct eigenvalues all with condition numbers near 10 and an eigenvector matrix with 2-
norm condition number of 3.4 when § = 0. Like H(0), the 4 x 4 submatrix formed by rank-two
tearing

00 0 1
1 0 0 1
=14 1 o 1
00 1 1

has distinct eigenvalues with condition numbers near 10 and an eigenvector matrix with 2-norm
condition number 2.0. However, the submatrix

0 0 0 1078446
1 0 0 0
H@)=14 1 9 0
0 0 1 0

has four distinct eigenvalues with condition numbers around 10° — 10° and an eigenvector
condition number of about 10® for § near or equal to zero. (See [31].)

To demonstrate the sensitivity of H(§) to the ill-condition of Hy(6) = X1(8)D1(8)X1(6)1
in our divide and conquer algorithm, we first compute the structured matrix

Dl(é) X1(6)~4ZX2 01(6)
M(é) = D, U2
hy(8)T hi a

from equation (8) using Matlab [27] for § = 0 and § = €y = 2.22 x 10716, All eigendecompo-
sitions needed to construct and analyze M are computed in double precision using the Matlab
function eig which computes the eigenvalues by the QL method [29, 27].

The small perturbation in H(6) leads to a difference in M(6) of

|| M(err) — M(0) ||oo = 0.14
or a relative difference of

| M(enr) = M(0) [loo/[| M(0) [loo = 2.28 x 1077,
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This change in M leads to the following relative changes in the computed eigendecomposition

of M(8) = Q(6)A(8)Q(6) "

| Alerr) = AO) oo /Il A(0) [loo = 1.89 x 107"
| Qerr) = QUO) 1/ Q(O) o = 110
1 Q)™ = Q)™ oo/l QO oo = 0.32.

In the latter cases, the absolute errors are

| Qler) — Q(0) [lo = 1.62x10°
| Q(ear)™ —Q(0)™! lw = 0.025.

The residual error for the computed right eigenpairs is

| M(0)Q(enr) — Qerr)Alenr) lloo/|l Alenr) |Joo = 3.85 x 107*.

By any of these measurements, we see that a very small change in H(§) leads to a significantly
larger error in its computed eigendecomposition. An ill-conditioned problem in which deflation
takes place could be even more inaccurate. As these errors are caused by ill-condition, there is no
reason to expect a substantially different result when the QL method used for our experiments
is replaced by root-finding.

If an inaccurate subproblem solution is detected, the matrix could be divided at a different
point and the ill-conditioned submatrix replaced with a new submatrix. Despite the additional
work involved, this approach cannot guarantee new subproblems with better condition than the
original ones. Furthermore, efficient divide and conquer methods typically recursively subdivide
the original matrix more than once to form a tree of updating problems [12, 22, 24]. Even if
the smallest submatrices at the leaves of the tree are well-conditioned with respect to the
eigenproblem, larger submatrices farther up the tree may not be. To correct for ill-conditioning
at level k of the tree, it would be necessary to redivide the matrix and repeat the updating
procedure for all levels of the tree from the leaves to level k. Again, this redivision could not
guarantee improved condition of the level k problems. To make matters worse, ill-conditioning
could be introduced in the new problems below level k.

6 Conclusion

We have seen that the divide and conquer method that has been so successfully applied to other
matrix problems can fall short when extended to the nonsymmetric eigenvalue problem. The
speed and accuracy of the other methods rely largely on the availability of a fast and globally
convergent root-finder and on the prevalence and ease of deflation. However, there appears to
be no equivalent root-finder for the nonsymmetric case, and deflation of of the nonsymmetric
problem may not be as advantageous as in the symmetric case. Furthermore, if it is necessary to
compute the left eigenvectors from the right eigenvectors to maintain accuracy, the eigenvector
computation may become inefficient, especially in parallel.

The greatest danger with the divide and conquer method, however, lies in its potential
instability. Even if the original matrix is well-conditioned with respect to the eigenproblem,
an ill-conditioned submatrix can be created at any level of updating. Thus, even small errors

14



introduced by tearing, deflation, or updating can lead to large errors in the computed eigen-
decomposition. Because the original matrix is never used in the updating procedure, there is
no opportunity to correct an error introduced by an ill-conditioned submatrix. Two divide
and conquer methods that employ the matrix original matrix 7" in the updating procedure and
appear to overcome poor intermediate results are discussed in [11, 25]

a
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Figure 1: Contour plot of log(|g())|) for the 5 x 5 matrix T5. Poles are marked with boxes,
and roots are marked with X’s
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Figure 2: Contour plot of log(]g(A)]) for a random 5 X 5 matrix. Poles are marked with boxes,
and roots are marked with x’s
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