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Abstract

This paper argues that grid-based spatial reasoning can
- significantly improve human-computer interaction. While
grids constrain the user’s ability to position objects on a
screen on one hand, they greatly increase the transparency
of functional relationships among these objects on the
other hand. A system called Agentsheets employes the
notion of agents organized in a grid. The spatial
relationships between agents are used to capture design
properties independent of domain and programming
language. Two types of spatial relations are distinguished
called strict-spatial relations and pseudo-spatial relations.
This paper gives a short introduction to Agentsheets,
explains how Agentsheets address problems of
construction kits, sketches sample applications, and
evaluates the contribution of grid-based spatial reasoning
to human-computer interaction.
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1. Introduction

The design and implementation of human-computer
interfaces is, no doubt, a verifiably hard task. Construction
kits have been shown to be effective tools for human-
computer interaction [5]. Designers using construction kits
create systems by composing building-blocks instead of
implementing systems on a conventional programming
language level. These building blocks serve as abstractions
of complex functionality. Hardware designers, for instance,
typically think in terms of integrated circuits and not on
the level of individual transistors, i.e., they view integrated
circuits as abstractions of compositions of simpler
constituents.

Visual programming systems (VP), on the other hand, are
supposed to help users to program computers by
capitalizing on human spatial reasoning skills [3, 21].
Visual programs are created by drawing building blocks
and establishing relationships among them.

The designers of tools having graphical user interfaces are
faced with a dilemma regarding the level of abstraction
represented by the building blocks:

» Construction Kits: High Level Building Blocks provide
powerful abstractions but are quite likely domain
specific and therefore not applicable to a broad palette
of different applications.

» Visual Programs:Low Level Building Blocks are used
as a general purpose tool for a wide set of applications.
However, the composition of non-trivial functionality
from these building blocks might be beyond the reach
of a casual computer user.

The low level building blocks of Visual Programs are too
close in their semantics to conventional programming,
Often Visual Programming systems can be viewed as
syntactic variants of existing conventional programming
languages, e.g., boxes representing procedures, functions,
etc. These systems typically add only little value to their
textual counter parts.

The use of high level graphical building blocks in
construction kits deserves more attention. In situations in
which a construction kit is inadequate, either because it
would lead to a very long-winded solution or because the
set of building-blocks provided is incomplete, a user will
be forced to resort to programming on a much lower level
of abstraction. The step between a building block level and
the level of a conventional programming language used to
implement the building-blocks is called the
“Representation Cliff” [20]. Users not only have to
understand the underlying programming language, they
also have to know about the possibly very complex
transformation between the language constructs (e.g., a
library consisting of a large set of functions), the behavior,
and look of artifacts.



Agentsheets take the edge off the Representation Cliff by
introducing an intermediate level of abstraction between
high-level building-blocks and the level of conventional
programming languages called the spatial reasoning level
(Figure 1). Agentsheets make use of a grid-structure to
clarify essential spatial relationships such as adjacency,
relative and absolute position, distance, and orientation.
These relationships, easy for the user to understand and
manipulate, allow the system to create implicit
communication channels between agents.
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Figure 1. Spatial Reasoning Level

The spatial reasoning level employed by Agentsheets
supports the design of graphical user interfaces by being:

» domain independent, and

» programming language independent.

Agentsheets is a graphical system builder. In a typical
application of Agentsheets a designer will define the look

and behavior of high level building blocks and thus make
use of the spatial reasoning level. These building blocks
constitute the elements of a construction kit which can be
used readily by end users.

2. Types of Spatial Relations

We distinguish between two types of spatial relationships:

+ Strict-Spatial Relation: A strict-spatial relation
between objects is apparent by the actual positions of
the objects. For instance in Figure 2 the roof and the
frame of the house describe an implicit above
relationship.

Figure 2. Strict-spatially related roof and frame
of a house

» Pseudo-Spatial Relation: A pseudo-spatial relation
between objects is independent of the actual positions
of the objects. Instead explicit clues are used to
represent a relation. In Figure 3 arrows are employed as
explicit clues of the roof frame relationship. Although,
there are strict-spatial relations between the roof and the
arrow and the arrow and the frame the spatial relation
between the roof and the frame is non-strict. That is,
the relative position of the roof and frame are
completely irrelevant.
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Figure 3. Pseudo-spatially related roofs and
frames of houses

The necessity for explicit clues in pseudo-spatial relations
can easily lead to cluttered, interconnected diagrammatic
representations. Even in relatively simple diagrams these
clues readily outnumber the related objects. As long as
these clues represent highly abstract relationships without
evident spatial meanings then their use might be
unavoidable.

Some of the limitations of visual programming system
result from their use of pseudo-spatial relations. Pseudo-
spatial relations are chosen because of their general



purpose nature. Brooks states his skepticism regarding
visual programming as follows [2]:

“A favorite subject for PhD dissertations in software
engineering is graphical, or visual, programming -
the application of computer graphics to software
design. Sometimes the promise held out by such an
approach is postulated by analogy with VLSI chip
design, in which computer graphics plays so fruitful
a role. Sometimes the theorist justifies the approach
by considering flowcharts as the ideal program-
design medium and by providing powerful facilities
for constructing them.

Nothing even convincing, much less exciting, has
yet emerged from such efforts. I am persuaded that
nothing will.”

The components in a chip design interface are related strict-
spatially, whereas the elements of a flow-chart are only
pseudo-spatially related. The relative positions of chip
components have physically grounded meaning. In other
words, the designer of a chip gets many more facts out of a
chip layout than just pure topological information. The
positions of flow-chart elements, in contrast, have no
meaning. Infinitely many valid arrangements of the same
set of elements representing the same topology might
therefore range in their readability from excellent to chaotic
without implying different semantics.

Strict-spatial relations appear to be preferable to pseudo-
spatial relations in cases where the positional information
of objects can be mapped to physically natural concepts
understood by users (e.g., time). Agentsheets encourage
the use of strict-spatial relations. That is, the meaning of
an artifact composed by a user is defined by the position of
its constituents.

3. The Agentsheets System

3.1. Agents and Agentsheets

The basic components of Agentsheets are agents [8, 14].
An agent is a thing (or person) empowered to act for a
client. It is a computational unit either passively reacting
to its environment, or, more typically, actively initiating
actions based on its perception. These actions, in turn,
may impact the environment.

The Agentsheet is a grid-structured agent container. Figure
4 shows an Agentsheet depicting a simple electrical
system. In this system the look as well as the behavior of
the system components like voltage sources, switches,
bulbs and even individual wire pieces are captured by
agents.
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Figure 4. The Structure of an Agentsheet

The depictions in Figure 4 show the graphical

representation of an Agentsheet as it is seen by an user.

Each depiction represents the class of an agent, e.g., the

symbol of an electrical switch denotes a switch agent.

Furthermore, different states of an agent are mapped to

different variations of depictions, e.g., an open switch

versus a closed switch. The agents, corresponding to the
cells in the depiction level, consist of:

o Sensors. Sensors invoke methods of the agent. They
are actively triggered by the user (e.g., clicking at an
agent).

e Effectors. A mechanism to communicate with other
agents by sending messages to agents either using grid
coordinates (strict-spatial relations) or explicit links
(pseudo-spatial relations). The messages, in turn,
activate sensors of the agents to be effected.
Additionally, effectors also provide means to modify
the agent’s depiction or to play sounds.

* Behavior: The built-in agent classes provide a default
behavior defining reactions to all sensors. In order to
refine this behavior, methods associated with sensors
can be shadowed or extended making use of the object-
oriented paradigm [22].
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Figure 5. A Wire Gallery

+ State. Describes the condition the agent is in.
» Depiction. The graphical representation of the class and
state, i.e., the look of the agent.

3.2. QGalleries

The depictions of agents are defined in the so called
gallery. Depictions are defined incrementally by cloning
existing depictions. In the below gallery only 5 depictions
have been drawn by the designer. All remaining depictions
have been created through cloning.

4. Related Work

Agentsheets are highly related to cellular automata (CA)
[23]. Similar to CAs, they define complex global behavior
in terms of simple, local relations. CAs also make use of
the high degree of regularity furnished by grids. In contrast
to CAs, however, Agentsheets contain agents instead of
simple cells. These Agents have a large set of sensors
allowing them not only to perceive the state of their
neighboring agents but also to react to user events (e.g.,
an user clicking at an agent). Furthermore, the state of an
agent is visualized by an entire bitmap instead by a single
pixel on the screen.

Furnas' BITPICT system employs graphical, two
dimensional rewriting rules to augment human spatial
problem solving [7]. Like CAs, BITPICT operates on the
pixel level.

Spreadsheets have shown to be powerful tools because
they adopted an interaction format people were already
familiar with [6]. Furthermore, the cell addressing scheme
is equivalent to strict-spatial relations. Many extensions to
spreadsheets have been proposed to increase their usability
even more. Piersol suggested the use of object-oriented
techniques for spreadsheets [18]. In his system a cell may

not only be represented with a piece of text, but also with
a bitmap. However, in Piersol’s system individual bitmaps
are not intended to be part of a large composite picture.

Not only are spreadsheets user interfaces, they can also be
employed to design user interfaces [10, 12, 16, 25].
Agentsheets go one step further unifying the graphical user
interfaces to be designed with the design tool. That is,
cells in Agentsheets do not just refer to attributes of
spatial representations (e.g., positions), instead they
contain the spatial representation. There is no distinction
between the artifact to be designed and the tool to design
it.

5. Sample Applications

Agentsheets support strict-spatial as well as pseudo-spatial
relations. In the following several application are shown to
elaborate on the applicability of different spatial relation
types. The river modeling system and the voice dialog
designer have been tested by several users. An in-depth
description, including empirical user testing, of an
Agentsheet-based application utilized to create an user
interface for a commercial expert system shell can be found
in [20].



5.1. Pipes
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Figure 6. Pipes and Valves
Agents represent:
» Pipes to propagate water
» Valves to control flow
» Sources and Sinks generating or absorbing water

This simple model simulates water distribution in pipe
system. Strict-spatial relations are used to model physical
phenomena. For instance, the loss of water due to leaks or
evaporation is modeled on the level of individual water
pipes. A sequence of 10 pipe agents having 1% loss of
water each will lead to an water output of about 90%. This
behavior is specified for a straight horizontal pipe agent by
a sensor definition:

SENSCR Value-From-Left OF Pipe-Agent (Value)

“A pipe agents looks like: &= ™
if value > 0.0 then
effect (0, O, depiction, filled);
else
effect (0, O, depiction, empty);
effect (0, 1, value-from-left, Value * 0.99);

Activating the VALUE-FROM-LEFT sensor of a PIPE-
AGENT will result in changing the current depiction of
the pipe agent to either a filled or empty pipe. Then the
agent computes the water loss and propagates the
remaining value of water to its right neighbor. The effect
statements enclosing relative grid positions are used to
communicate with other agents, i.e., activate their sensors.

The coordinates are relative and increasing towards right
and down. A reference to itself is (0, 0), a reference to the
immediate neighbor one row down and one column to the
right is (1, 1). Given this addressing scheme hooking
pieces of pipes up comes for free. That is, pipes are
connected by simple placing them next to each other.

The position of pipe agents on the screen manifest actual
distances. By placing pipes into the agentsheet a user
implicitly defines the distances and hence the water loss
between any two points in the system. A system based on
pseudo-spatial relations would require the user to explicitly
specify the distances between individual points. This can

be quite tedious as the geometry of pipes might be
complex.

5.2. River Modelling
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Figure 7. River System

Agents represent:

* Reservoirs having inflow and outflow

* Data Sinks and Sources, e.g., databases containing
statistical rain fall data

* Computational Units massaging numerical information

e Buttons to create links and to start/stop the simulation

 Guards watching critical values

Links represent:
- Water flow

= Information flow, e.g., the level of a reservoir being
sent to a data base

Discrete event simulation [24] is used to verify what-if
scenarios in large scale water distribution system.
Constraints can be attached to reservoirs (e.g., regarding
their tolerated water level) to study the impact of different
water distribution schemes. This system is described by
Reitsma [19].

The simulation neglects physical effects like evaporation
between reservoirs. Hence pseudo-spatial relations turned
out to be sufficient. Positions of reservoirs on the screen
are completely irrelevant and do not reflect actual
positions. This Agentsheet application is therefore on the
other extreme of the strict/pseudo spatial relation spectrum
compared to the pipe simulation.



5.3. Voice Dialog Designer
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Figure 8. A Voice Dialog Specification

This system is used to design and simulate telephone voice
systems. Agents represent user interaction like voice
output and telephone keyboard input or nested voice dialog
subsystems. This prototype started off using pseudo-
spatial relations exclusively. The pseudo-spatial relations
mimicked the existing paper-and-pencil design documents.
As a result the prototype also inherited the limited
readability of the original design documents. In a second
attempt the concept of time and choice got mapped to
strict-spatial relations leading to a much better structured
and denser graphical representation. Only high level
relationships remained in their pseudo-spatial relation
form, e.g., the link in Figure 8. The emerging clusters in
the diagram improved readability significantly.

5.4. Agentsheets

Self applicability of a system is a good indicator for its
usability. Also, reducing the number of concepts in a
system will increase simplicity as well as uniformity,
which will amplify the usability of a system [1].

The first application implemented using Agentsheets has

been Agentsheets:

» The Gallery is an Agentsheet (Figure 5). Agents
represent items of a palette. Links represent cloning
relationships among these items.

+ The Bitmap Editor is an Agentsheet (Figure 9). A pixel
agent flips its color by clicking at it.

Figure 9. Bitmap Editor

All agents represent pixels.

6. Discussion

The rigid grid structure is one of Agentsheets' main
strengths. Some application domains might be hard to be
laid out in a grid structure. However, the design objective
of Agentsheets is to support a limited set of domains
elegantly rather than providing a very general but low-level
tool.

6.1. Spatial Metaphors

Even if a spatial representation of a application domain is
non-obvious it might be worth while to think of new
ways of the problem. Ehn states [4]:

"The spatial metaphor can be used to create

completely new concrete tools for tasks that earlier
have been purely formal or abstract.”

Hence, instead of relying on general purpose visual
programming tools supporting only pseudo-spatial
relations, the use of a graphical system builder helps to
create high level, domain specific tools. These tools may
improve human-computer interaction by employing new
powerful spatial metaphors.

6.2. Why Grids?

Agentsheets use grids for reasons of visual and conceptual

integrity [13]. Grids are well known in the area of graphic

design, typography, and three dimensional design. Miiller-

Brockman characterizes the purpose of grids as follows

[15]:

“The use of a grid system implies the will to
systematize, to clarify; the will to penetrate to the
essentials, to concentrate; the will to cultivate
objectivity instead of subjectivity;..”

The main reasons for grids are:

* Britleness: Without a grid spatial relations can become
very brittle. That is, moving an object (agent) on the
screen one pixel may change its spatial relation to an
other object from a adjacent relation to a non-adjacent
relation. While this might reflect the intention of an



user it is more likely to lead to non evident problems.
In this respect grids offer an abstraction of details
related to positions of objects.

e Relational Transparency: The use of grids increases the
transparency of spatial relationships considerably. The
strict-spatial relationships of object in a grid are
obvious to the user.

o Implicit Communication: Communication among
agents is accomplished implicitly by placing them into
the grid. That is, no explicit communication channel
between agents has to be created by the user. In the
circuit Agentsheet shown in Figure 4, the electrical
components get “wired-up” simply by placing them to
adjacent positions. The individual agents know how to
propagate information (flow in this case), e.g., the
voltage source agent will always propagate flow to the
agent immediately below it.

e Regularity: Grids also ease the location of common
regular substructures like one dimensional vectors or
sub matrices.

7. Conclusions

Agentsheets are not meant to replace general purpose
visual programming techniques like data flow [11], flow
charts like system [9], Nassi-Shneiderman structure
diagrams [17] etc, because for most of these established
visual representation techniques very elegant
implementations already exist. Instead, Agentsheets
provide a method to build domain specific construction
kits without forcing the kit designer to adapt to
preconceived notions introduced in current visual
programming systems. The kit designer maps domain
specific concepts to spatial relationships. These spatial
relationships can be employed, but are not limited to,
represent existing visual representations techniques. In
other words, the designer has the freedom to introduce new,
non-traditional, means of visual representations without
the need to implement his “custom semantics”
construction kit on the low level of abstraction provided
by conventional programming languages.
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