[

Visualization-Based Visual Programming
Specifications Using Prolog

Wayne Citrin
CU-CS-543-91 September 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Visualization-Based Visual Programming
Specifications Using Prolog

Wayne Citrin

CU-CS-543-91

September 1991

Wayne Citrin

Dept. of Electrical and Computer Engineering
Campus Box 425

University of Colorado

Boulder, CO 80309-0425

citrin@soglio.colorado.edu

tel: 1-303-492-1688
fax: 1-303-492-2758

Submitted to the 1992 ACM Symposium on Applied Computing

Simulation of Communications Architecture Specifications Using
Prolog

Wayne Citrin

Department of Electrical and Computer Engineering
University of Colorado, Boulder

ABSTRACT

The design of the Cara simulator, a Prolog-based simulator for communications
architecture specifications, is described. Unlike other Prolog-based simulation methods,
the Cara simulator supports ‘‘exploratory simulation,”” in which high-level, incomplete
specifications may be simulated, and various specification alternatives and elaborations
added to the specification during the course of the simulation. Unlike other simulation
methods, which construct Prolog procedures whose behavior models that of the
specification, our simulator maintains execution traces of simulated protocol behavior
and adds to these traces through the application of rules of inference reflecting the proto-
col behavior. This method provides a flexibility not found in other approaches.

1. Introduction

The problem of specification of the behavior of a system, without specifying the manner in which it
is implemented, is a common one in computer science. Such problems are especially acute in those areas
in which the primary point of the system being designed is communication with other systems, and where
those other systems that communicate with the system in question must be designed on the basis of the
specification alone, and must count upon the system conforming to the specified behavior. In many cases,
the specified system is not yet built. Communications architectures and their associated protocols are one

area in which this situation arises.

When developing a specification, the designer would often like to determine whether the system as
specified will behave as desired. Later, the designers of other systems which will communicate with or
otherwise use the specified system will find it desirable to test the interaction of their designs with the not-
yet-built specified system. In either case, it is desirable to have a specification that is executable, that is, 10
automatically derive a system that behaves identically to the completed system (except for efficiency con-
siderations affecting time and space usage). Some specification methods [5, 10], for whatever reason, do
not provide executable specifications, while others [1,3], provide executable, albeit inefficient,
specifications.

Because specifications define behaviors, rather than implementations (in other words, because they
specify what happens, rather than how it happens), they often have the flavor of declarative languages.
This, in turn, leads to their being modeled through translation to declarative languages, in the case of the

-9

examples discussed in this paper, to Prolog. A number of systems have been proposed that employ Prolog
in the specification and simulation of communications architectures, either through directly modeling the
specification in Prolog [12, 14, 18], or through translation from another specification method into Prolog
[4,13]. Other schemes, making use of the concurrent nature of communications architectures, employ con-
current logic programming languages such as PARLOG [11]. We feel that these schemes could in many
cases just as easily and efficiently be implemented in some other languages, and do not take advantage of
such distinctive Prolog features as unification, backtracking, and inferencing on a database.

The Cara simulator, part of the Cara system [9] developed at the IBM Zurich Research Laboratory, is
an attempt to employ these features of Prolog to provide capabilities not available in other systems. The
Cara simulator maintains a database containing the messages exchanged between simulated entities up to
that point in the simulation, as well as information on previous entity states, and facts describing the
configuration being simulated. The simulator then employs rules of behavior representing the specified
communications behavior to infer new facts representing representing new state transitions and new mes-
sages exchanged by the simulated entities. The rules were written in a specially designed rule language,
known as Carla [7], which is translated into Prolog. A general overview of the Cara system is given in [9].
The current paper discusses the organization of the simulator module in depth.

Simulating communications architectures through this inference-based model supports exploratory
simulation, in which the user can easily experiment with various specification alternatives: the developer
can stop the simulation, roll it back to a given point, modify the simulation, and resume. A designer can
simulate starting from any intermediate state, even if the portion of the specification needed to reach that
state has not yet been written. Similarly, the user can simulate a specification at a very high level, when
formats of the data structures and messages, as well as large chunks of the specification, have not yet been
defined. Finally, the use of Prolog allows the specifier to employ a logical, non-procedural style in the rule
guards, which is easy to write and to understand.

The following sections describe the design considerations for our simulation method, as well as the
method itself, and compare this method with other uses of Prolog for the specification of communications

architectures.

2. Motivation

The simulation method we chose had to satisfy a number of requirements specified by the nature of
the Cara system [9] of which it was a part. Cara is an environment for the graphical specification and
simulation of communications architectures through the medium of message-flow diagrams [see figure 1].
It was intended that the users of the system be able to try out their specifications at an early stage in the
design process, when only high-level specifications have been supplied, and when large segments of the
specification are still unwritten. As we will see, the ability of Prolog to manipulate unspecified values
through the use of unification and the logical variable is useful here, as is the lack of distinction between
code and data; the latter allows us to replace entire Prolog routines temporarily by a single fact, or set of
facts, functioning as a placeholder and simulating the behavior of the as-yet-unwritten routine at a high
level.

A B
start(B) open(A,B)
oY 3
S
ack
send(B,Msg) data(A,B,Msg) revd(A Msg)
W) s} >
NS NS
send(B,Msg2) data(A,B Msg2) revd(A Msg2)
VAR o) .
Ny " »
stop(B) close(A,B)
S
NS
ack

Figure 1 - a message-flow diagram

As mentioned earlier, one of the goals of Cara is to provide the user with an environment for
exploratory simulation. This requires that the user be able to modify any part of the simulation at any time.
In particular, since the specification representation is message-flow diagrams, the user must be able to edit
any part of the diagram, including adding or deleting actions in the middle of the diagram. The use of a
finite-state-machine-based approach would make such a facility difficult to implement, since changes to the
specification could lead to extensive recalculation of states and transitions. A rule-based approach, on the
other hand, would be appropriate, since there is no explicit or specific ordering between the rules, and
adding or deleting actions in the diagram would result simply in adding or deleting the corresponding rules
in the rule base.

Likewise, we planned that the Cara system should allow the user to specify complex sets of initial
conditions (including entire histories of previous messages and receipts, and sequences of previous
specification actions) on which the simulation could be performed. Since such “‘canned histories’” might
not correspond to any state in a finite-state machine corresponding to the possibly incomplete specification
(and indeed, might never correspond to any state of the completed specification), an FSM-based approach
would be inappropriate, while a rule-based approach, incorporating initial conditions and histories in the

simulation database, was quite feasible.

-4

Finally, Cara required that traces of a simulation be recorded for subsequent analysis. An FSM
approach would require an external tracing mechanism, while the inference-based approach upon which

we settled incorporated this as an inherent part of the simulation design, as will be shown later in the paper.
3. Inference-based simulation

3.1. Underlying model

The underlying model that we are simulating is communicating protocol entities [PEs] connected by
communications links [commlinks, or simply links]. The PEs contain untyped state variables holding
information partially describing the PEs’ state. The remainder of the state consists of history queues
recording the communications activity of the PE. PEs are connected to the links through ports.

Each PE belongs to a specific PE type, and all PEs of a given type exhibit the same structure (state
variables and ports), and possess the same rules of behavior. These rules define the behavior of all PEs of
that type. «

Each rule consists of a guard and an action. Each PE possesses a clock of indeterminate rate. Each
time the clock ticks, the guards of the rules are all evaluated. The evaluation may be done in any order or
in parallel, since the guards have no side effects until a rule is committed. The guards may refer to state
variables, message receipts, or previous message history. If no guard succeeds (that is, evaluates to true),
no rule fires. Otherwise, one of the rules whose guard has succeeded is chosen, it is committed to, and its
associated action is performed. This action can cause a message to be transmitted, or the PE’s state to be
altered. If more than one rule contains a guard that succeeds, this indicates an ambiguity or nondetermin-
ism in the specification. In that case, the simulator can request user intervention, or can select one choice
at random.

The commlinks are connections of indeterminate behavior and delay. Right now in our simulator, all
commlinks are FIFO queues, with the delay controlled by the user, but we are experimenting with methods

to allow us to specify other definite, or even nondeterminate, behaviors on the commlinks.

Figure 2 gives a diagram showing the structure of the execution model. It is described in more detail
in [7].

LT T T e F— {1 T T[]
history queue port communications link
gooo oo
state variables
PE PE

Figure 2 - Cara execution model

The organization and behavior of the model resembles that of Actors [2], although the original
inspiration was that of infinitely recursive processes implemented using Guarded Horn Clauses [17] and

communicating through streams [16].

3.2. Simulation organization - databases

The databases maintained by the Cara simulator consist of two parts: an architecture database con-
taining information on the structure and behavior of the PEs, and a simulation database containing infor-
mation on the configuration currently being simulated, and on the course of that simulation over time.

In our implementation, employing Arity/Prolog, the databases are maintained as separate worlds.
Note that there are many possible simulations of an architecture, and that by replacing the facts of the
simulation database while keeping the facts and rules of the architecture database constant, the user can run
multiple simulations of the same architecture.

Statements appearing in the architecture database describe PE types, their structure, and their proper-
ties. Four types of facts are found in the architecture database:

. pe_type(PE_Type). There is a PE type named PE _Type.

* port(PE_Type,Port Name NumberIO). Each PE of type PE Type has Number pbrts named
Port Name. The type of the ports is /0, which may be either input or output. If Number is greater
than 1, there is an array of subscripted ports numbered Port Name.1 through Port Name Number.
If Number is *, there is an unlimited number of ports named Port Name, whose subscripts may be
any atom.

° state_var(PE_Type,Var_Name). Each PE of type PE_Type has a state variable named Var Name.

° rule(PE_Type,ID Rule). Each PE of type PE Type has a rule Rule with the unique identifier ID,
which is used during the simulation to identify the rule. Rule is in Prolog, translated from the Carla
language. The form of the rules will be discussed in section 3.3.

The statements appearing in the simulation database, unlike those in the architecture database,
express the changes in the state of the simulation over time, and therefore have a time component. This
component, called the simulation time, is an integer which expresses the number of ticks of a global clock
since the beginning of the simulation. The first action of the simulation is considered to occur at time 1,
although we shall see that initial conditions and ‘‘prehistory’” can be assigned simulation time values less
than 1. Every event expressed by a fact in the simulation database is assigned a simulation time value
denoting when it occurs in relation to other events in the simulation. Simulation time is related to the
graphical position of an event on the message-flow diagram drawn by the user. In addition to the simula-
tion time, each PE keeps its own local time, which is a count of the number of evaluation cycles performed
by the PE since its creation. The first evaluation cycle of the PE is assigned the value 1, although, again,
prehistory can be constructed by assigning facts a local time less than 1.

Some simulation database facts also have a true/false value associated with them. Such a fact in the
database denotes that the fact is known to be true or false, respectively, at the given simulation time.
Declaring a fact to be false is different from removing it from the database (retracting it), which is the act
of forgetting whether it was ever true or false.

Simulation statements are used to declare the existence of PE instances, describe their interconnec-

tions, and.show the way in which the values of their state variables and ports change. (The changes in port

-6-

values represent message traffic.) The following types of facts may appear in the simulation database.

pe(PE_Type PE Name,Time,TF). It is true/false (depending on the value of TF) that there exists a
PE named PE Name of type PE Type at simulation time Time. This statement (and all other state-
ments containing a TF value) is considered to be true until such time as a contradictory statement

(same type and name, different TF value) becomes true.

commlink(Link_Name,Time,TF). 1t is true/false that there is a communications link Link Name at

simulation time Time.

commlink_from(Link_Name ,PE_Name Port_Name,Time,TF). It is true/false that a sending end of a
communications link Link_Name is connected to the port Port Name of PE PE Name at simulation
time Time. There may be multiple sending and receiving ends of a commlink, each connected to
exactly one port. A message sent on any of the sending ends should be received at all the receiving
ends (although there is nothing to guarantee that the message actually arrives at all - or even any -
receiving end, or that it arrives at the same time at all ends on which it is received).

commlink_to(Link_Name,PE_Name Port Name,Time,TF). 1t is true/false that the receiving end of a

communications link Link_Name is connected to the port Port Name of PE PE_Name at simulation
time Time.

port(PE_name,Port_Name,Time,Value ,Context). The port Port Name in the PE PE Name has the
value Value with context Context at simulation time Time. A context is an identifier attached to a
message in order to associate it with other messages in a conversation. Unlike statements with a 7F
argument, the port statement is considered true only at Time. (In other words, values are not con-
sidered to persist until they are used or some other value arrives. If the value ought to be there at a
later time, it is up to the user to place that fact in the database.)

state_var(PE_Name,Var_Name,Time,Value). The state variable Var Name belonging to the PE
PE_Name has the value Value at simulation time Time. The statement is considered to be true for all
subsequent times until a later statement concerning the variable becomes true. (Note that this state-
ment, along with statements with a TF argument, are considered to have values that persist. This is’
simply a maiter of convenience to avoid cluttering the database with many statements saying, for
example, that a certain PE exists. Since, however, we cannot assume that commlinks behave this
way, we cannot make that assumption for port statements. As we will see in the next section, the
existence of persistent facts complicates somewhat the construction of rules of behavior.)

state_fact(PE_Name Fact,Time,TF). A fact, represented as a Prolog structure, is considered to be
associated with the PE PE_Name (if TF is true) or not associated with the PE (if TF is false) at simu-
lation time Time. Fact may be any value, completely or partially instantiated. Such statements are
used to record information for later use by a PE, or to assert that certain **facts’’ are not true.
rule(PE_Name,RulelD,Time). The PE PE Name fired the rule with identifier RuleID at simulation
time Time.

Statements may be explicitly asserted into the appropriate database, or implicitly asserted through

inferences corresponding to firings of rules of behavior. Explicit assertions are performed through a simu-

lator interface which will not be discussed here. The interface checks that the statements are syntactically

-7

legal, that the arguments are validly used, and that a new statement is consistent with previously asserted
statements. It is also to possible to query the databases to determine the truth or falsity of statements.
These queries are also mediated by the interface to guarantee syntactic correctness, and also to account for

the existence of persistent statements.

3.3. Rules of behavior

The rules of inference that describe the behavior of PEs are given in Prolog. However, since Prolog
does not contain communications primitives or other facilities for describing communications architectures,
we have designed a rule-based language called Carla. Carla rules are translated into Prolog and the Prolog
rules are applied to the database. We will not describe Carla in detail here (it is described thoroughly in
[71), but will describe it sufficiently to understand the underlying Prolog structures.

A Carla rule consists of a guard and an action. The guard is an expression consisting of one or
more terms connected by conjunctions and disjunctions. The guard terms include comparisons (of both
state variables and local variables, that is, variables local to a particular rule), unifications, tests of
whether a value has been received by the PE in the current evaluation cycle (i.e., whether it currently
appears in the port), whether given state facts are currently true or false, and whether certain values have
been received or sent by the PE sometime in the past. Guards have no side effects: they do not alter the
values of state variables, or change the values in ports. When the simulator attempts to satisfy a term, the
local variables in the term are unified with a possible solution to the term. If an attempt to satisfy a subse-
quent term fails, execution will backtrack to the most recent term for which another solution may exist,
unbinding all the variable bindings made in the meantime. Thus, the evaluation of Carla guards uses the
same mechanism as in Prolog. If a guard is satisfied (that is, if it evaluates to true), and the rule is commit-
ted (see below), then the particular solution found is also committed, and no further backtracking is

allowed.

All rules for a given PE type are evaluated with respect to the given PE at the given time. Ideally,
there will be exactly one rule tried whose guard succeeds. Since we allow, and in fact desire, the early
simulation of incomplete specifications, it is possible that more or less than one rule have a successful
guard. In the former case, the user will be asked by the simulator to choose one rule to fire, and the user
has the opportunity to rewrite the rules so that in the future only one rule will succeed in this situation. The
latter case indicates that either there is a missing rule, or the PE is in a state where it cannot do anything.

Once a rule is selected for firing, it is committed, and its action is performed. The action is a set of
operations to be performed in parallel by the PE. (Actually, certain operations for calculating new values
for local variables are done first, and sequentially, to avoid problems with data dependencies.) These opera-
tions include calculating new values for state variables, setting or unsetting state facts, and transmitting

messages.
A few relevant features of Carla rules are:

° The — operator separates the guard from the action. The guard appears on the left of the —, the
action on the right.

-8-

® In the guard, the comma is used as the conjunction operator, and the semicolon is the disjunction

operator.

. The := operator is used for assignment to a state variable, = is the unification operator, and == is

arithmetic evaluation and comparison.

® rev(Port,Message,Context) is true when a message Message with a context Context arrives in the
port Port at the current time. Any uninstantiated arguments will be unified.

° send(Port.Message,Context) is an action that transmits a message Message with context Context
through the port Port.

. revd(Port,StartTime,Occur Relative Absolute Message Context) is true if Message with Context was
the Occur-th unifiable message (counting from the local time StartTime) where a negative value for
Occur denotes a search towards the past, and a positive value denotes a search towards the future. A
special StartTime of now refers to a search starting at the current local time. Absolute is the absolute
local time or the reception (starting from time 0) and Relative is Absolute - StartTime. revd and sent
(see below) are used for referring to message ‘‘history,”” that is, messages previously sent and
received. Any uninstantiated variables will be unified, and backtracking will yield additional solu-
tions if they exist. The complex nature of revd and sent allows them to be used in many different
ways.

. sent(Port,StartTime, Occur Relative Absolute Message,Context) is the counterpart of rcvd for

transmitted messages.
° A not operator succeeds if and only if the expression which is its argument fails.

When a Carla rule is translated to Prolog, it takes the form of a pair
((Head :- Guard), Action)
It takes this form instead of the conventional
Head :- Guard, Action

in order to allow guards to be separated from actions at those times when all relevant guards are executed.
Conceptually, however, rules may be considered to take the latter form.

The functor of the rule head is the name of the PE type to which the rule applies. The head has two
argument variables, PE_Name and CurTime, representing the PE for which the rule is attempting to fire,
and the current simulator time. These variables are instantiated by the compiler at the time the rule is
attempted. Thus, all rules for PEs for PEs of type p belong to procedure p/2.

Each Carla primitive has an equivalent Prolog structure to which the primitive is translated. These
structures are connected with conjunctions and disjunctions in the same way as the corresponding Carla
primitives. The primitives and their corresponding Carla structures are given in table 1. Note the use of
the head arguments PE_Name and CurTime.

Note that rev is simply a query to the simulation database that succeeds if a suitable port statement
(representing the received message) is found. send is an assertion to that database (with some error check-

ing).

Table 1a -

Carla guard primitives and equivalent Prolog structures

Carla primitives Prolog structures

rcv(Port,Msg,Cxt) port(PE_Name,Port,CurTime , Msg,Cxt)

rcvd(Port,Start,Occurs,Rel,Abs Msg,Cxt) mhist(PE_Name,Port,Start,Occurs,Rel, Abs,CurTime, Msg,Cxt)
sent(Port,Start,Occurs,Rel, Abs,Msg,Cxt)

fact(X,Y,...) state_fact(PE__Name,fact(X,Y,.‘.),Time,T'F),
not(fact(X,Y,...)) Time < CurTime,
not(

state_fact(PE_Name,fact(X,Y,...), T2,),
T2 > Time, CurTime > T2),
TF = true /* or false, if not */

state variable reference state_var(PE_Name,’SV’,Value,Time),
(to state variable "SV?) Time < CurTime,
not(

state_var(PE_Name,’SV’,_,T2),
T2 > Time, CurTime > T2)

Table 1b -
Carla action primitives and equivalent Prolog structures

Carla primitives Prolog structures

send(Port,Msg,Cxt) var(Port) -> <return error>;
assert(port(PE_Name,Port,CurTime,Msg,Cxt))

fact(X,Y,...) assert(state_fact(PE_Name, fact(X,Y,...),CurTime,true)),
not(fact(X,Y,...)) /* or false, if not */

state variable assignment assert(state_var(PE_Name,’SV’,Value, Time))
'SV’ = <Value>

rcvd and sent are calls to the library routine mhist/9, which references the simulation database.
Since transmitted and received messages differ only by whether they refer to an output or an input port,
sent and revd call mhist/9 in exactly the same way. Likewise, since the issue of whether a transmission or
receipt occurs in the past or the future depends only on the event time’s relation to the CurTime value, past
and future history (predictions that an event will occur, rather than a check that an event has occurred) are

-10-

referenced in the same way.

Assignments to state variables and assertions of state facts [table 1b] are simply assertions to the
simulation database. Referencing state variables and facts is more complicated: code must be generated to
locate the most recent relevant fact which is not later than the CurTime.

In addition to the arguments in the database structures shown, the structures contain transaction
numbers assigned in the order in which the facts were asserted. This is useful in rolling back the database

to a previous state. For reasons of clarity, we have left out the transaction numbers here.

3.4. Simulator operation

To simulate the behavior of a PE, the user, through a simulator interface command, requests the
identifiers of all rules for the given PE whose guards are satisfied at the given simulation time. The simula-
tor looks up the PE’s type (the information is stored in the simulation database), calls all the clauses
(corresponding to rules of behavior) in the procedure whose name is the PE type (using a setof predicate in
order to find all solutions), and returns the identifiers of all rules whose guard succeeds. Rule guards
attempt to satisfy themselves by directly querying the simulation database, searching for the appropriate
port, state_var, and state_fact statements.

After the system notifies the user of those rules that can fire, the user chooses one of the rules. The
simulator then executes the rule’s action, which updates the simulation database, recording the message
transmissions and state changes performed by the rule.

The user can also simulate the behavior of a rule that has not yet been defined by directly asserting
port, state_var, state_fact, and even rule statements into the simulation database. Simulator interface

commands exist to accomplish this, as well as to retract such statements from the database.

The user repeatedly attempts to fire different PEs in the simulated configuration, using the graphic
interface described in [9]. The system front end translates user actions into the appropriate simulator com-
mands. There is a link simulator that is responsible for simulating the transport of messages across links,
or the user can simulate this by hand, by graphically demonstrating the movement of the message. In either
case, the system queries the simulation database to find the port statement representing the sent message,
and asserts a new port statement specifying the receiving PE, along with the port and time of receipt. The

message can now influence the firing of a rule in the receiving PE.

3.5. Simulator capabilities

The simulator scheme presented here fulfills the requirements laid out in section 2.0. The paradigm
of “‘exploratory simulation’’ is supported in a number of ways. For example, it is a sirhple matter for a
user to determine what would happen in the simulation if certain previous actions had never occurred, or
had occurred differently. This is done by retracting those statements representing the previous actions (for
example, messages received or sent), and asserting new statements representing the new ‘‘previous
actions.”” Likewise, an entire ‘“‘canned simulation’’ can be asserted into the database, and the simulation
taken up from there. This can be useful in simulating a part of a protocol when the part representing the
earlier history has not been formally specified, or for simulating from a state that may not be reachable

S11-

from normal initial conditions. It can also be used to save a simulation and resume further simulation at a
later time. None of the simulation schemes mentioned in section 5 allow such actions.

It should be noted that the facts in'the simulation database represent a complete trace of the simula-
tion so far. This can be printed out (either textually or graphically), analyzed, stored in a file, and reloaded
into the simulation database for further simulation.

The Cara simulator allows multiple designs to be simulated on the same data and the results com-
pared. For a given set of initial conditions, one design can be loaded into the architecture database and
simulated. Then, the initial conditions can be re-established in the simulation database and a new design
read into the architecture database and simulated. This process can be repeated for each design. It is also
possible to easily and quickly change a design by retracting and asserting rules of behavior, or PE type,
state variable, and port declarations in the architecture databése, even while the simulation is under way.

High-level specifications can be simulated in the Cara simulator, even if the underlying low-level
specification has not yet been written. For example, a design may require a routine that computes all the
other PEs to which the given PE is connected. If that code has not yet been written, a set of state facts giv-
ing the connectivity for that simulation can be substituted for it and asserted into the simulation database.
Since state fact checks are identical in forrh to procedure calls (both are call subgoals in Prolog), low-level
routines can later be substituted for the state facts without altering the rules.

Finally, as mentioned before, incomplete specifications can be simulated. If a rule does not yet exist,
its effect can be simulated by the user through the direct assertion of those facts that the rule would have
asserted had it existed. These direct assertions can be effected through the graphic user interface, or
through the textual simulator interface commands.

4. An example

We will illustrate the use of the simulator by simulating the alternating bit protocol [15], a simple,
not very efficient protocol for transmitting data across noisy channels.

In the alternating bit protocol, the sender and receiver each possess a bit (called S and R, respec-
tively). The S bit is the tag to be attached to the next message to be sent; the R bit is the tag of the next
message expected to be received. (Entities may possess both S and R bits, and consequently play the role
of both sender and receiver.)

The main idea of the protocol is simple: an entity may only transmit a message if an acknowledge-
ment for the previous message has been received, and an entity may only receive and acknowledge a mes-
sage whose tag is equal to the tag value it expects (the R bit). Upon transmitting or receiving messages, the
S or R bits, respectively, are flipped. S and R are both initially O.

Six rules of behavior describe the protocol. (N.B.: there are some errors deliberately introduced in

these rules. We will use the simulation to discover them.) Informally in English, they are:

1) Transmit a message: If there is a message to be sent, and either the previous message sent has been
acknowledged or this is the very first message, transmit the message along with the S bit, and flip the
S bit.

2)

3)

4)

5)

6)

212 -

Receive a message: If a message is received whose tag is equal to the R bit, relay it to the user, send
an acknowledgement containing the received tag, and flip the R bit.

Retransmit a message: If no acknowledgement has been received for the previous message sent,
resend the previous message along with the previous S bit (the inverse of the current S bit).
Retransmit an acknowledgement: Send an acknowledgement of the previous message (i.e., contain-
ing the inverse of the current R bit).
Discard a message: If a message is received whose tag is not equal to the R bit, do not relay it, and
do not acknowledge it.
Receive an acknowledgement: If an acknowledgement of the previous message is received, record it.
We first describe the structure of a PE by asserting facts about its type to the architécture database:

pe_type(pe).

state_var(pe,’S’).

state_var(pe,’R’).

port(pe,from_user,1,in). /* messages from the user */

port(pe,to_user,1,out). /* messages to the user */
port(pe,from_pe,1,in). /* messages from the other pe */
port(pe,to_pe,1,out). /* messages to the other pe */

We next specify the rules of behavior in Carla:

1) rcv(from_user,M,C),
((sent(to_pe,now,-1,_, .message(_,Last_S),C),
revd(from_pe,now,-1,_,_,ack(Last_S),C)); init)
— send(to_pe,message(M,S),C), S :="S.

Note: new values of state variables (e.g., S in the rule above) take effect only after the other actions have
been completed.

2) rcv(from_pe,message(M,R),C) -
— send(to_user,M,C), send(to_pe,ack(R),C), R :="R.

3) sent(to_pe,now,-1,_, message(M,Last_S),C), Last_S is °S,
not(rcvd(from_pe,now,-1,_,_,ack(Last_S),C))
— send(to_pe,message(M.last_S),C).

4) true — send(to_pe,ack(L.ast_R),C) where last_R is "R.

5) rev(from_pe,message(M,Tag),C), not(Tag = R) — true.

6) rcv(to_pe,ack(Tag),C) — true.

-13-

The Prolog translation for the first rule is:

Head: pe(PE_Name,CurTime) :-
port(PE_Name,from_User,CurTime,M,C),

/* test of sent and revd */

((mhist(PE_Name,to_pe,CurTime,-1,_, ,CurTime,message(_,Last_S),C)
mhist(PE_Name,from_pe,CurTime,-1,_,_,CurTime,ack(Last_S),C));
/* test of init fact */

(state_fact(PE_Name,init, Time,TF),

Time < CurTime,

not(
state_fact(PE_Name,init, T2,),
T2 > Time, CurTime > T2),

TF = true)).

Action: /* compute current and new values of S */
state_var(PE_Name,’S’,S,Time?2),
Time2 < CurTime,
not(
state_var(PE_Name,’S’, ,T3),
T3 > Time2, CurTime > T3),
NewsS is 1-S,

/* send message. assert new value of S */
assert(port(PE_Name,to_pe,CurTime,message(M,S),0)),
assert(state_var(PE_Name,’S’ NewS,CurTime)).

The other Prolog rules may be similarly constructed.

‘We now set up a test configuration by asserting facts into the simulation database. We must define
the two PEs and their connection:

pe(pe,pel,0,true).

pe(pe.pe2,0,true).

commlink(connectl).

commlink(connect2).
commlink_from(connectl,pel,to_pe,0,true).
commlink_to(connect1,pe2,from_pe,0,true).
commlink_from(connect2,pe2,to_pe,0,true).
commlink_to(connect2,pel,from_pe,0,true).

We choose to test the protocol by setting up initial conditions. These include initial values for S and

R, the init indicator, and an initial message:

-14 -

state_var(pel,’S’,-1,0).
state_var(pel,’R’,-1,0).
state_var(pe2,’S’,-1,0).
state_var(pe2,’R’,-1,0).
state_fact(pel,init,-1,true).
port(pel,from_user,0,first_msg,c1).

The logical first step is to learn what may happen at time 0, so we issue a command to the simulator
requesting this information. The simulator translates it into a Prolog query that attempts to satisfy all the
guards with CurTime instantiated to 0. The simulator tells us that pel may fire rule 1, and that both pel
and pe2 may fire rule 4. We have found our first error: PEs should not acknowledge non-existent mes-
sages. We retract rule 4 and replace it with

4) revd(from_pe,now,-1,_,_,message(_,Last_R),C)
— send(to_pe,ack(Last_R),C).

Now a PE will only acknowledge a message it has received.

We now fire rule 1 on pel, which causes a message to be sent, and the value of S to be changed:

port(pel,to_pe,0,message(first_msg,0),c1).
state_var(pel,’S’,0,1).
state_fact(pel,init,0 false).

In the absence of a link simulator, the user transports the message from pel to pe2. Generally this
may be done graphically, by drawing a line, but this is translated to a simulator command that asserts the
fact

port(pe2.from_pe,1,message(first_msg,0),c1).

We ask the simulator what may happen at time 1 and the simulator replies that pe2 may fire rule 2 (it
receives the message), and that pel may fire rule 3 (it attempts to retransmit the message). We note that it
is a bit premature for pel to retransmit the message and make a note to revise rule 3 to include a timeout.
For the moment, we choose to assume that pel performs correctly and we therefore ignore its rule firing
and merely fire pe2’s rule 2. Further simulation continues similarly.

We can set up intermediate states in order to test conjectures concerning protocol behavior. Perhaps
we suspect that rule 4 is still incorrect. We empty the simulation database and start over. We create a sin-
gle PE p. We assume it has received and acknowledged a message with tag 0 and now receives another
message with tag 0. Will it handle it correctly? We assert the following facts to start:

pe(pe.p,-1,true).
port(p,from_pe,0,message(m1,0),c).
port(p,to_pe,0,ack(0),c).
port(p,from_pe,1,message(_,0),c).

-15-

Note that we don’t care how we reached this point (hence the sender PE is not shown), nor do is it
relevant to show the message being relayed to the user. (The organization of the simulator makes it
unnecessary to specify the entire configuration.) Likewise, we don’t care what the message received at time
1is, so we leave it blank. We also don’t bother to assign a value to the variable ’S’. We ask the simulator
what rule(s) p may fire at time 1. The answer is that rule 5 may fire (the received message is discarded),
and so may rule 4. Although the two rules do not interfere with each other, our model allows only one rule
at a time to fire, so we must make a note to reformulate the rules to allow 5 to fire in this situation, but not
4. (Perhaps 4’s guard should require that no message be waiting to be received.) We explicitly direct that 5
be fired, then ask the simulator what may happen at time 2. The answer is that only 4 may fire. The rule
behaves as expected.

5. Comparison with other work

Two of the major types of formalisms for the specification of communications architectures are
finite-state machines [FSMs], typified by Estelle [1], and process algebra, typified by LOTOS [3]. Simula-
tion systems for both have been implemented in Prolog. We will look at one example of each, although
there are a number of others [4,6,12, 14].

Von Bochmann et al [18] proposed the modeling of FSM state transition rules in Prolog. Each tran-
sition rule was represented by a Prolog rule of the form

t(Present_State,Next_State,Input,Output) :-
enabling_condition,
action.

Input and output queues are represented as lists. A network of communicating FSMs is represented
by arule presenting the FSMs connected by logical variables. For example, in the network shown in figure
3, the transition rules for the whole system are written as follows (note that the state of the system consists
of the states of the two components plus the contents of the queues):

t_S([PS_A,PS_B,Q_A_to_B,Q_B_to_A],
[NS_ANS_B,NQ_A_to_B,NQ_B_to_A],
[To_A,To_B],[From_A,From_B]) :-
Q_B_to_A=[B_to_AllQ_B_to_Al,
Q_A_to_B =[A_to_B|IQ_A_to_B],
t_A([PS_ANS_A,[To_A,B_to_A],[From_A,B_from_Al}),
t_ B([PS_B,NS_B,[To_B,A_to_B],[From_B,A_from_B]),
append(IQ_B_to_A,[A_from_B]NQ_B_to_A),

append(IQ_A_to_B,[B_from_A]NQ_A_to_B).

Prolog-based specifications of this type are suitable for testing whether a sequence of inputs is legal under
the specified protocol, and for deriving the associated outputs. When properly constructed, it is also possi-
ble to generate valid sets of test inputs, although this may not be possible under the complexity of commun-
ications architectures in the real world. Unlike the Cara approach, it is unsuitable for exploratory develop-

ment and simulation of communications architectures. It is not possible to simulate incomplete protocols,

-16 -

To_A S Q_A_to B From_B
A —— (T T+
Q_B_to_A

Figure 3 - Sample simulated network
nor is it possible to modify the transition rules during the simulation. It would be very difficult to alter:
simulation state during the simulation, or to initialize the simulation to a particular state. And since the
entire system state is incorporated in the machine state and the contents of the system queues, it is impossi-
ble to design specifications that refer explicitly to previous input and output history, thus ruling out a very

convenient specification style.

Pappalardo [13] proposed a Prolog-based implementation of ECCS, a process algebra-based
specification language related to LOTOS. Using ECCS or LOTOS, a designer can specify the acceptable
communications behavior between a number of entities. Given the ECCS specification, a simulator can be
written in Prolog to reflect its nondeterministic behavior. This simulator is written in the form of derivation

rules:

der(P,A,Q)

in which some process expression P performs action A and becomes process expression Q. For example,
the sequencing operator A;P is expressed in Prolog as ‘

der((A;P),A,P)
or, A;P performs A and becomes P. The meaning of the alternative operator P1+P2 is expressed as

der(P1+P2, A, Q) :- der(P1, A, Q).
der(P1+P2, A, Q) :- der(P2, A, Q).

Note that the above expression is nondeterministic. There are more complex constructs expressing parallel
execution, or communication between two entities. The above system allows nondeterminism and main-
tains the necessary choice points, something that, in the Cara simulator, must be taken care of by the user.
In the Cara system, when there are two possible choices, the system so informs the user, but the user must
keep track of these points and explicitly roll the simulation back to that point (not difficult in itself) in order
to try an alternative.

In Pappalardo’s system, since the specification is bound to logical variables in the derivation rules, it
is not possible to alter the specification or any execution information while the simulation is under way. It
is also not possible to reference history. Finally, it is necessary to instrument the derivation rules if we
wish to produce a trace of the executing protocol.

-17 -

6. Current status and future work

The Cara simulator has been implemented in Arity/Prolog and runs on an IBM PS/2 running OS/2.
(We are currently porting it to Quintus Prolog running on a Sun SPARCstation.) It is part of the Cara sys-
tem [9], a graphical development environment for communications architectures based on message-flow
diagrams. The diagrams used in Cara, however, are not the specification itself; the system extensively
interacts with the user to derive an executable specification from the diagrams. We are currently develop-
ing a visual language based on message-flow diagrams that completely and unambiguously specifies the
communications architecture being designed [8]. We expect the Cara simulator to be part of the develop-

ment environment for this language.

The simulator itself will have to be improved in a number of ways. First, link behavior will have to
be modeled automatically. We have designed a rudimentary link simulator that simulates a wide class of
link behavior, but it does not incorporate the randomness that we would like to employ in modeling certain
classes of links. For completely deterministic links, such as ideal FIFO queues that never lose or corrupt a
message and have known timing characteristics, the link simulator is satisfactory. Modeling such links
may be useful during the protocol’s design phase, but during testing we would like to test the robustness of

protocols under various unanticipated conditions.

The second way in which the Cara simulator must be improved is in the management of structure in
the specification. The simulator currently handles flat specifications. Most communications architectures
contain many levels, sometimes seven or more, arranged in a ‘“protocol stack.” It is currently possible for
us to develop and simulate each of these levels separately, but we are unable to simulate the interaction

between the various levels, or to show that the multiple levels are consistent in their behavior.

7. Concluding remarks

We have outlined the design of a simulator for communications architectures written in Prolog.
Through the use of Prolog’s ability to manipulate facts in a database and to compute inferences based on
those facts, our simulator supports ‘‘exploratory simulation’’ of protocols at a very early stage in their
development: incomplete and high-level designs may be simulated; both the design and the data on which
it operates may be changed at any time, even during the simulation; multiple designs may be run on the
same initial data; traces of the behavior may be generated; and a style of specification involving reference
to previous, or even future, communication history is possible. Such flexibility is not present in other
Prolog-based specification simulation systems, because they attempt to model the specification directly as a
Prolog equivalent, and because the specification data is bound to the logical variables of the specification
during the simulation. This flexibility allows us to make full use of the special features of Prolog in a way
the other methods do not, and will contribute heavily to the visual protocol specification language currently

under development.

Acknowledgements

The work described in this paper was performed by the author during his term as a post-doctoral
researcher at the IBM Zurich Research Laboratory. The author benefited from extensive conversations
with colleagues in the Cara project and in the Communications Architecture Software and Technology

-18 -

group. Special thanks go to Alistair Cockburn, who collaborated with me on the design of the Carla

language, and who made many important contributions during the design of the simulator interface, and to

Liba Svobodova, who made many useful comments on an earlier draft of this paper.

References

1. The Formal Description Technique Estelle, North-Holland, Amsterdam, 1989,

2. G. Agha, Actors: a model of concurrent computation in distributed systems, University of Michigan,
Ann Arbor, MI, 1985. PhD thesis

3. T. Bolognesi and E. Brinksma, ‘‘Introduction to the ISO Specification Language LOTOS,”” Com-
puter Networks and ISDN Systems, vol. 14, pp. 25-59, 1987.

4, J.P. Briand, M.C. Fehri, L. Logrippo, and A. Obaid, ‘‘Executing LOTOS Specifications,”” Protocol
Specification, Testing, and Verification, VI, pp. 73-84, Elsevier Science Publishers B.V. (North-
Holland), 1987 .

5. K. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, Reading, MA,
1988.

6. N. Choquet, L. Fribourg, and A. Mauboussin, ‘‘Runnable Protocol Specifications Using the Logic
Interpreter SLOG,”’ Protocol Specification, Testing, and Verification, V, pp. 149-168, Elsevier Sci-
ence Publishers B.V. (North-Holland), 1987.

7. W. Ciwrin and A. Cockburn, ‘‘An Executable Specification Language for History-Sensitive Sys-
tems,”” IBM Zurich Research Laboratory Research Report, no. RZ 2162, July 1991.

8. W. Citrin, “Design Considerations for a Visual Language for Communications Architecture
Specifications,”” Proceedings 1991 IEEE Workshop on Visual Languages, Xobe, Japan, October
1991. To appear
A.AR. Cockburn, W. Citrin, R.F.Hauser, and J. von Kaenel, ‘‘An Environment for Interactive
Design of Communications Architectures,”” Proc. 10th Intl. Symposium on Protocol Specification,
Testing, and Verification, Ottawa, June 1990,

10. R. Duke, I. Hayes, P. King, and G. Rose, ‘‘Protocol specification and verification using Z,”” Protocol
Specification, Testing, and Verification, VIII, pp. 33-46, Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1988.

11. D. Gilbert, ‘*Executable LOTOS: Using Parlog to Implement an FDT,’’ Protocol Specification, Test-
ing, and Verification, VII, pp. 77-88, Elsevier Science Publishers B.V. (North-Holland), 1987.

12. L. Logrippo, D. Simon, and H. Ural, ‘‘Executable Description of the OSI Transport Service in Pro-
log,”” Protocol Specification, Testing, and Verification, IV, pp. 279-293, Elsevier Science Publishers
B.V. (North-Holland), 1985 .

13. G. Pappalardo, ‘‘Experiences with a Verification and Simulation Tool for Behavioral Languages,’’

Protocol Specification, Testing, and Verification, VII, pp. 77-88, Elsevier Science Publishers B.V.
(North-Holland), 1987.

14.

15.

16.

17.

18.

-19 -

D. P. Sidhu, “‘Protocol Verification via Executable Logic Specifications,”” Protocol Specification,
Testing, and Verification, III, pp. 237-248, Elsevier Science Publishers B.V. (North-Holland), 1983 .

A. S. Tanenbaum, Computer Networks, Prentice-Hall, Englewood Cliffs, 1981.

E. D. Tribble, M. S. Miller, K. Kahn, D. G. Bobrow, and C. Abbott, ‘‘Channels: A Generalization of
Streams,”” Concurrent Prolog: Collected Papers, vol. 1, pp. 446-463, MIT Press, Cambridge, MA,
1987.

K. Ueda, “‘Guarded Horn Clauses,”” Concurrent Prolog: Collected Papers, vol. 1, pp. 140-156, MIT
Press, Cambridge, MA, 1987.

G. von Bochmann, R. Dssouli, W. Lopes de Souza, B. Sarikaya, and H. Ural, ‘‘Use of Prolog for
Building Protocol Design Tools,”” Protocol Specification, Testing, and Verification, V, pp. 131-147,
Elsevier Science Publishers B.V. (North-Holland), 1986 .

