Dynamic Load Distribution on
Point-to-Point Multicomputer Networks

Dirk C. Grunwald
Bobby A.A. Nazief
Daniel A. Reed

CU-CS-542-91 August 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
'EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Dynamic Load Distribution on
Point-to-Point Multicomputer Networks

Dirk C. Grunwald
Bobby A. A. Nazief
Daniel A. Reed

CU-CS-542-91 August 1991

&y

University of Colorado at Boulder

Technical Report CU-CS-542-91
Department of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309

Dynamic Load Distribution on Point-to-Point Multicomputer

Networks*
Dirk C. Grunwald? Bobby A. A. Nazief! Daniel A. Reed ?
Department of Computer Science Department of Computer Science
University of Colorado University of Illinois
Boulder, Colorado 80309 Urbana, Illinois 61801

August 1991

Abstract

To benefit from parallel computers, programs must be partitioned into units that work in
parallel. Once partitioned, these units, called processes, tasks or threads, must be assigned to
specific processors for execution. On shared memory architectures, this is termed scheduling,
whereas on multicomputer systems, it is called load distribution, distinguishing it from any
local scheduling used on individual nodes. Load distribution algorithms determine the initial
placement for tasks, a precursor to the more general problem of load redistribution.

We compared several load placement algorithms using both instrumented programs and syn-
thetic program models. Salient characteristics of these program traces (e.g., total computation
time, total number of messages sent and average message size) span two orders of magnitude.
We simulated a modern architecture with point-to-point communication. To understand the
interactions of communication network characteristics, number of processors, and workload, we
analyzed the dynamics of task placement using measures of both the hardware utilization and
the placement algorithm behavior. We found that information is usually better than inference
for driving process placement, but that informationless strategies often are equal or superior to
both. The strategies we examined use load or status information to select placement locations;
this information is explicitly disseminated or is piggybacked on normal communication. We also
found that extant point-to-point networks reduce the rate of information dissemination because
transiting messages are ignored by intermediate nodes. From these studies, we have concluded
that the relative performance of placement strategies depends on the structure of the task cre-
ation tree. For shallow process trees, desirable workload distribution strategies will place new
processes globally, rather than locally, spreading processes rapidly.

1 Introduction

Parallel computation offers surcease for computational limitations when solving larger or more
complex problems than is possible on single processor systems. Of the many varieties of possible

*An abridged version of this paper appeared in the Proceedings of the Fifth Distributed Memory Computing
Conference, April 8-12, 1990, Charleston, NC.

tSupported in part by the National Science Foundation under NSF Grant CCR-9010624.

*Supported in part by the National Science Foundation under grants NSF CCR86-57696, NSF CCR87-06653
and NSF CDA87-22836, by the National Aeronautics and Space Administration under NASA Contract Number
NAG-1-613, and by a grant from the Digital Equipment Corporation External Research Program.

parallel computer architectures, we consider one architecture known as the multicomputer network
or simply multicomputers [29]. Multicomputers consist of a large number of interconnected com-
puting nodes that asynchronously cooperate via a message passing network to execute the tasks of
parallel programs. Each computing node minimally contains a processor, a local memory, and a
communication controller.

Multicomputers have evolved from machines with standard computation nodes and low-speed
communication networks to current generation systems with high-performance computation nodes
and high-speed communication networks. First generation multicomputers (e.g., the Ametek Sys-
tem/14 [1], the Intel iPSC/1 [28], and the Ncube/ten [17]) used computational nodes whose peak
performance was comparable to early personal computers. Moreover, their communication net-
work performance was poor; store-and-forward packet switching created communication latency
proportional to the distance between the source and destination nodes.

The processing speed of second generation multicomputers (e.g., the Symult 2010 [30] and the
Intel iPSC/2 [2]) increased by a factor of four. More importantly, they provided lower latency,
circuit-switched communication networks. The improvement in both computation and communi-
cation performance is even more striking in the coming generation of multicomputers (e.g., the
Intel Touchstone system [23]). Node computation speed is expected to increase by an additional
order of magnitude and communication performance should increase by two orders of magnitude.

In contrast to revolutionary hardware changes, multicomputer software has evolved slowly.
Traditional programminglanguages such as C and Fortran, coupled with library support for message
passing, still are used to program distributed memory parallel systems. The high communication
latency of first generation systems, coupled with simple software tools, placed a heavy intellectual
burden on application program developers; it was not possible to write application programs without
intimate knowledge of the machine architecture.

Better communication hardware in second generation machines eased the programming burden.
Communication locality remained important, but its absence was not debilitating. Concurrently,
newly created research software allowed the construction of parallel programs without intimate
knowledge of the machine architecture; examples include Cantor [3], Linda [5], the Chare Kernel
[20], and Mentat [12]. In general, these tools provide an abstraction of a task that can be dy-
namically created or destroyed, and they support a programming abstraction where the intertask
communication pattern is independent of task location. Moreover, both the number of tasks and
the pattern of intertask communication can vary during program execution. To benefit from the
parallelism offered by multicomputers, these tasks must be dynamically assigned to specific nodes
for execution. On shared memory architectures, this is termed scheduling; on multicomputer sys-
tems, it is called load distribution to distinguish it from the local scheduling algorithm used on
individual nodes.

In this paper, we explore the automatic distribution of dynamically created tasks in low-latency,
point-to-point communication networks. We compare policies for load placement, rather than the
more general problem of load redistribution. Load placement strategies place tasks when they are
created, whereas load redistribution strategies rearrange extant tasks. Several groups have proposed
load placement strategies [22, 32, 25, 19, 31, 4, 34, 33|, yet few comparative studies exist. Fewer
studies exist for modern, low-latency network architectures.

The objective of task placement can be succiently stated as follows. Given a parallel program
whose dynamically created tasks communicate via message passing, assign these tasks to multicom-
puter nodes to maximize parallelism and minimize program execution time. The simplicity of the

problem description belies its difficulty. Assigning tasks to nodes requires knowledge of the time-
varying system state — acquiring this information is not without cost. Any placement strategy
must balance the volume of state information against both its accuracy and cost; as the number
of multicomputer nodes increases, maintaining an accurate, distributed view of the system state
becomes problematic.

In §2, we begin by reviewing the possible approaches to dynamic task placement and their
relation to the application program’s computational model — the pattern of task interactions de-
limits the range of feasible task placement strategies. Based on this schema, §3-§4 summarize the
placement strategies and application program workloads we selected for study. The latter include
both synthetic and captured task creation patterns and represent both highly computation and
communication intensive programs. Salient characteristics of these programs (e.g., total computa-
tion time, total number of messages sent and average message size) span two orders of magnitude.
Although static performance measures, described in §5, suggest the efficacy of particular placemen-
t strategies, they cannot reveal the underlying reasons. Understanding these reasons requires a
careful analysis of system dynamics; this analysis is the subject of §6. Finally, §7 summarizes our
observations and offers suggestions for future work.

2 Review of Prior Work

Although many task distribution heuristics have been proposed, most studies have adopted differing
hardware models or have assumed disparate computational models. Because the efficacy of task
distribution heuristics is inextricably tied to the underlying assumptions, we begin by examining
a spectrum of possible computational models, followed by a review of archetypical task placement
heuristics.

2.1 Computational Models

FEarlier, we alluded to programming tools that hide machine architecture idiosyncrasies from soft-
ware developers. Many such tools support the development of programs that consist of dynamically
created tasks that must be distributed across processors during program execution. Both dynamic
task creation and the associated intertask communication can be realized in many ways. A partic-
ular combination of dynamic task creation and intertask communication patterns delimits a subset
of computational models.

In the simplest model, all tasks are created at the beginning of the computation and compute
independently with no intertask communication. In an extension of this model, each task commu-
nicates only with a fixed subset of the other tasks. Thus, the pattern of intertask communication
is regular in both space and time. This computational model was often used in programs for first
generation hypercubes. A classic example is a simple, iterative partial differential equations solver,
where each task communicates with four other tasks in a grid communication pattern.

When task creation occurs more than once (i.e., when a task can be created at any time during
program execution) the computational model becomes more complex, and the spatial pattern of
intertask communication becomes dynamic. It can be simplified by restricting the possible types
of intertask communication. As an example, one might restrict communication to a task and its
children. Communication can be further restricted to task creation, as the invocation message sent

by a task to its child, and at child’s termination, as the result returned by the child to its parent.
This could be interpreted as a computational model of functional programming.

We assume that computation on a multicomputer is performed by tasks that communicate via
messages. We have modeled their execution behavior by dynamic flowgraphs that describe the
time-varying relationships of processes and their interactions [13]. A task is an abstraction for
a persistent state associated with a computation. It may send and receive messages, and it has
a finite lifetime with an explicit times of invocation and termination. An action is the execution
by a task of a series of computation statements. The computation does not rely on external
resources, such as communication with another task. Actions correspond to the intervals between
task invocations and message operations; during these periods, the task is computing. A task is
delayed by a communication dependency if it requires information from another task. Until that
information is received, the task cannot continue execution. A dynamic flowgraph is a dynamic
sequence of actions and communications representing a task or group of interacting tasks. The
dynamic flowgraph depicts all tasks, actions and communication dependencies, but not scheduling
or distribution decisions. This representation excludes programs that react to the system state,
such as programs for real-time control.

A dynamic flowgraph is a dynamic flowtree if all non-root tasks outlive their children and tasks
communicate only with their children. A pure dynamic flowtree is a dynamic flowtree where tasks
receive messages only when they born or when a child dies, and they send messages only when they
complete or when creating children. Of the workloads described in §4, most tend to be dynamic
flowtrees, although a considerable fraction are the more restricted pure dynamic flowtree.

2.2 Load Distribution Studies

There have been many studies of load placement. Below, we survey some of the experimental
methods proposed; these are notable because either they are archetypical, or they have been the
subject of simulation studies.

2.2.1 Diffusion Scheduling

In one of the earliest proposals, Sullivan suggested diffusion scheduling for workload distribution
in the CHoPP system [32], a binary hypercube of processors. At the time of task creation, a task
tnvocatton message is broadcast to a subcube of the nodes within the network. Idle nodes bid on the
request, and one such bid is chosen by the originating node. If no node is idle, the last request of
the nearest requester is retained. When busy nodes become idle, they bid on the previous request.
When an originating node selects a bid from the set of respondents, it broadcasts a cancellation
message to all nodes with losing bids.

In the CHoPP scheme, task distribution is localized, but it allows a gradual diffusion of work
throughout the network. One can estimate the number of messages needed to distribute a task as
follows. Assume the broadcast is to a k-dimensional subcube, and the probability of a node being
busy is Pyy. In practice, Py, is the mean utilization of all system nodes. We assume that query
messages are not propagated by idle nodes because they tender a bid for the task.

Messages

0

1 I T T
0.00 0.20 0.40 0.60 0.80 1.00
Node Utilization (Pysy)

Figure 1: Number of Messages Sent by Diffusion Scheduling in a Binary 3-Subcube

In a binary hypercube topology, there are (l:) nodes exactly 7 hops distant in a binary k-subcube.
The number of nodes that receive messages in the initial query is

(kY i
Nqueryzz . 'Pbusy' (1)

1=1 ¢

Each of the (f) nodes receives the query if all ¢ — 1 nodes along its broadcast path are busy; the
probability of the latter is Pg;‘sly. Of the Ngyery nodes that receive a bid request,

Nidle = Nquery(l - Pbusy)a (2)

are idle, and respond with a bid.

Cancellation messages are of the form “the bid from node j was accepted,” and nodes that were
previously busy forward the cancellation message. Because idle nodes do not forward the original
request, forwarding the cancellation is unnecessary; there can be no nodes waiting “downstream”
for the cancellation. Our analysis does not consider the limiting case where no idle node exists. In
this case, the cancellation message is delayed until at least one node tenders a bid for the task. It
is possible that all nodes will respond to the bid before the cancellation arrives.

The lower bound for the number of messages sent for a single query is 2N;g. + Nguery. Recall
that we are broadcasting in a binary k-subcube of the network, where k is the diameter of the
subcube containing 2* nodes. Although 2N;ge + Ngyery total messages are sent, broadcast uses a
divide-and-conquer algorithm, and the originating node sends at most 2k messages: k for the query
and k for cancellation. The other messages are generated by intermediate nodes. However, the
originating node receives and processes a message from each idle node, or N,q. messages; this is
the bottleneck in the diffusion strategy.

Figure 1 shows N;ge and Ngye,y when scheduling within a binary 3-subcube containing eight
nodes. Recall that we broadcast to a subcube, or portion, of a network. At fifty percent processor
utilization, approximately ten messages would be sent to schedule a single task; on average, two of
the four idle nodes would respond.

Thus, broadcast schemes can locate an idle node in a subcube by sending a large number
of messages. We will see that other methods can locate the same node using fewer messages.
Moreover, the performance of broadcast schemes is poorer than that of other, simpler methods.
For this reason, we have not considered complex load placement policies, such as CHoPP diffusion
scheduling.

2.2.2 Gradient Scheduling

The Rediflow multiprocessor system [21] was based on a mesh-connected network of nodes. For
this system, Lin [24, 25] proposed the gradient strategy, a local, demand driven, adaptive load
sharing strategy for task scheduling. This strategy, and others based on it, can be termed limited
diffusion strategies, to differentiate them from the diffusion strategy of CHoPP. In limited diffusion
strategies, task invocation requests are sent through adjacent nodes as with diffusion scheduling.
However, more information is maintained regarding the system state, and this information is used
to limit the number of messages needed to distribute a task. This reduces the overhead of the load
distribution strategy and increases the stability of the distribution system.

In Lin’s strategy, tasks represent pure function invocations with no other communication. When
a task in created, it will be placed at the closest possible idle node. Ideally, any tasks that commu-
nicate with the new task will likewise be placed at nodes close to the new node, because they will
be children of the new task. Thus, the gradient strategy seeks to exploit the limited communication
locality of functional programs.

Nodes are assigned a pressure, a function of both processor utilization and memory availability.
The pressure is used to divide nodes into three categories: idle, neutral or abundant. Each node
also defines a prozimity function, indicating the distance to the nearest idle node. The proximity
function is computed using the pressure of each node and the proximity function of adjacent nodes.
The value of the proximity function at each node forms a distributed gradient plane. Nodes with
lower proximity are closer to nodes with a low pressure. In general terms, valleys represent regions
of low pressure; nodes in that area can accept additional work. Each node broadcasts its proximity
value to adjacent nodes using status messages that play the same role as query messages in diffusion
scheduling. The flow of status messages is adaptively damped in a steady-state system, when
pressure at each node is constant.

Lin shows that the minimum length path to an idle node is found by following the trail of least
proximity functions. When a new task is created, the task invocation message follows the gradient
plane until it reaches an idle node. If an idle node accepts a task and is transformed to a neutral
state, the gradient plane is updated to reflect this change. A limit on the number of hops a task
invocation message can travel prevents possible livelock. Otherwise, an invocation message could
pursue an elusive, shifting low point in the gradient plane. Lin states that task invocation messages
always move in the direction of the currently least loaded node. In practice, this is only true if
every node has the true status of adjacent nodes; the invocation message may be misdirected by
stale information.

Gradient strategies depend on strictly local communication, and they are adaptable to a variety
of interconnection networks while also tolerating node failures. By inferring the global system
state using information from adjacent nodes, load distribution can be achieved without the large
number of scheduling messages required for pure diffusion scheduling. In Rediflow simulations, Lin
determined that the gradient strategy performs significantly better than no load balancing. Lin

also compared the gradient strategy to a central scheduler that uses load information from all nodes
to schedule tasks; he found that the performance approached that of the central scheduler when a
sufficiently small status update interval was used.

2.2.3 Contracting Within a Neighborhood

Others have studied strategies based on the idea of limited diffusion or gradient planes. Kalé [18]
proposed a strategy called Contracting Within A Neighborhood (CWN) for placement of individual
clauses in a parallel Prolog system. It was compared to Lin’s gradient plane strategy in a study
by Kalé [19] and a thesis by Carroll [6]. Kalé [19] determined that the gradient strategy did not
distribute tasks rapidly enough in an idle system. Thus, CWN imposes minimum and maximum
forwarding thresholds, forwarding a task at least once, but no more than a predetermined limit.
Invocation requests are always sent to the topologically adjacent node with the least load; this
differs from the gradient strategy, where invocation requests are sent in the direction of an inferred
global minimum. Sending invocation requests to the node with the least load can induce a transient
local minimum.

Shu and Kalé [31] have recently developed the Adaptive Contracting Within a Neighborhood
(ACWN) distribution strategy. To distinguish the two, they refer to the CWN strategy previously
presented as Naive CWN (NCWN). The ACWN strategy is similar to NCWN; however, it adapts
to varying loads by dynamically altering the minimum and maximum distance a task invocation
message travels. Shu and Kalé have implemented this algorithm on an Intel iPSC/2 hypercube
and found that it results in shorter execution time than either the gradient strategy or random
placement.

2.2.4 Random Task Placement

Athas and Seitz [4] have proposed global, random task placement; a random node is selected for
each invocation request. Random allocation is appealing because of its implementation simplicity;
moreover, issues of event horizons, stale information and livelock are obviated. Although random
placement appears obvious, it was only recently proposed in earnest. Global random placement
ignores communication locality. In store-and-forward networks, this greatly increases communica-
tion overhead. In circuit-switched or wormhole networks, communication locality is less important,
making random placement feasible.

Eager et al. [10] have examined load redistribution, a problem similar to load placement. An
interesting conclusion from their study was that any redistribution strategy was better than none,
and that simple policies were almost as effective as more complex ones. Although the problems
differ, this offers encouragement for simple strategies such as random placement.

3 Load Distribution Strategies

Based on our survey of task placement research, we call a measured value describing the “load” of
a processor the load metric whereas a status metric is a synthesized value combining the measured
load value of a processor with other information. Examples of load metrics are the total number
of tasks, the number of tasks ready for execution or processor utilization. A status metric usually
indicates the current or predicted load of a subset of the multicomputer nodes. Load distribution

* Network l Bandwidth l Message Header Size I Node Latency [Switch Latency

Normal | 32 Mbytes/second 32 Bytes | 10 microseconds 1 microsecond
Slow | 32 Mbytes/second 32 Bytes | 100 microseconds 1 microsecond

Table 1: Hardware Characteristics of Simulated Networks

strategies can use either or both metrics when placing processes. Certain strategies also limit
the source of such metrics, using only local or regional information to make scheduling decisions,
whereas others attempt to use information from the entire network.

We have compared five families of load distribution policies. Within each policy family, we
examined several strategies that use different decision metrics (either load, status or no metric)
and different sources of information (either adjacent nodes, nodes within a fixed radius or the
entire network). Each strategy is purposefully simple to highlight the potential effectiveness of
each.

We implemented the different strategies using a simulated binary hypercube network with per-
formance comparable to the CalTech/JPL Mark-IIle HyperSwitch network [8]. The HyperSwitch
network is a point-to-point, circuit-switched network. Thus, only the source and destination nodes
for each message directly interact with those messages. Messages use a crossbar switch to cut-
through intermediate nodes, reducing the overhead for non-local communication. Each node has a
communication processor, freeing the main computation processor from mundane communication
tasks. The Intel iPSC/2 has a similar network; however, it has no communication processor and has
much higher communication latency. We simulated two networks, with the parameters shown in
Table 1. The “normal” network represents an aggressive network architecture, whereas the “slow”
network is more representative of implementations that have non-trivial software latency (e.g., due
to message buffer management).

We implemented a simulacrum operating system; it has enough substance to schedule processes,
orchestrate message delivery and implement a system scheduling task. Processes in an application
program are represented by tasks in the simulated system. Each task is assigned to a specific node
in the simulated system by one of our load distribution strategies. Tasks at the same node compete
for the single computation processor (CPU) at that node. Within a node, the CPU uses a first-
come-first-serve scheduler with two millisecond timeslices. We assume that the load distribution
strategies are implemented by the communication processor.

A task placement strategy contains two important, interacting components, namely information
acquisition and decision policy. Using the acquired information, the decision policy selects network
regions or individual nodes for potential task placement; we briefly review both information sources
and policies below.

3.1 Sources of Information

We can classify task distribution strategies based on the sources of information used to make
distribution decisions. Table 2, an extension of the classification scheme of Shu and Kalé [31],
summarizes the six categories we used. These classifications do not incorporate the possibilities
for selected destinations. For example, they cannot differentiate a random placement strategy that

Strategy Type | Strategy Description

Type I Use no information (e.g., a deterministic or probabilistic static scheduling
algorithm).

Type 11 Use only the local load, or information about the current node.

Type I11 Calculate the status information by collecting load information from neighbors.

Type IV Calculate the status information by collecting status information from neighbors.

Type V Calculate the status information by collecting load information from all nodes in
the system.

Type VI Calculate the status information by collecting status information from all nodes in
the system.

Table 2: Classification of Load Distribution Strategies

places processes on neighboring nodes from one that places them on arbitrary nodes; both are
treated as type I strategies.

3.2 Load and Status Metrics

Some strategies only use load information; others use a combination of load and status information.
In general, we used the total number of tasks assigned to a node for the load metric. The status
metric selected varies with the distribution strategy. We implemented the gradient metric of Lin
[25] and two metrics that infer load over a broader region. We call these metrics load of peers (LP)
and status of peers (SP); both use load and status information from a peer group, or topologic
neighborhood. Let 7 ; be the communication delay from node j to node ¢. This value is measured
for each message transmission; we assume the value T} ; is recorded by the communication processor.
Similar, L; ; is the load of node j as known by node 7, and S, ; is the status of node j as known by
node 7. We define LP and SP as follows, where w; is a weighting of local and non-local information,
and P is the set of node peers.

¢ Load of Peers (LP): This metric uses the last known load values of the local node and the

node’s peers:
ZPEP Ti,pLi,p
EpEP Ti’p

¢ Status of Peers (SP): This metric uses the last known load value of the local node and the
status values of the node’s peers:

Sii=wiLi; + (1 — w;)

Sii = wily; + (1 - wi)M
’ , Z::neP Tip

Both LP and SP incorporate local information, represented by the first term, and non-local
information from the peer group in the second term. The contribution of each peer to the non-local
information is weighted by the communication time to that node, and the sum is normalized by
the total communication time of the peer group. The motivation behind these metrics, like Lin’s

gradient metric, is that they may be better able to place new tasks in a lightly loaded area of the
network rather than simply the least loaded node in the network. In general, all of the status-based
strategies (LP, SP and gradient scheduling) had poorer performance than the simpler strategies
we describe here; [13] provides a complete comparison.

3.3 Information Dissemination

We assume that load and status information are piggybacked on normal messages, providing passive
information dissemination. Several strategies disseminate information actively using explicit load
messages. Load messages have lower transmission priority to reduce interference with program
communication, and they are generated by the communication processor, eliminating computation
overhead. We implemented three active methods. The first, active adjacent updating, dispatches
messages to neighboring nodes whenever the current load or status value changes. The second,
active radius does the same for a larger number of nodes delimited by a region radius. The last
method, active broadcast, broadcasts status information at fixed time intervals of at most one
hundred microseconds; no broadcast is done if the load has not changed since the previous broadcast.
The last distribution method relies on true information, or completely accurate load information.
In the simulated system, this involves reading load values directly; in an actual network, this would
be implemented using a global backplane interconnection [11].

3.4 Distribution Policies

We implemented five policy families:
¢ Random:

This policy randomly selects a distribution destination from a set of candidates. In global
random placement, all nodes in the system are candidates. In local random placement, only
the node itself and topologically adjacent nodes are candidates. In Global Random Walk,
a node is selected as in global random placement. However, the selected node can elect
to forward the task if it belives other nodes are less busy. This process continues until a
forwarding limit is reached or a node believes it is the least loaded node in the network.

¢ Gradient:

The gradient policy implements Lin’s gradient scheduling algorithm. Each node is classified
as having an idle, abundant, or neutral state, according to the algorithm of [25]. If a task
is distributed, it can only be sent to an adjacent node; that node may elect to continue
transferring the task.

¢ Min:

This policy places a new task on the candidate node with the minimum value of the load
metric. Once placed, tasks cannot be transferred to other nodes.

¢ Drift:

This policy is similar to Min; however, invocation requests can be forwarded after they
arrive at a node. The NCWN algorithm, an implementation of the Naive Contracting Within
a Neighborhood strategy [19, 31}, is a member of the Drift policy that uses the load values
of adjacent nodes to select locations for new tasks.

10

Strategy | Policy Class Peer Status Update Interval
Name Radius Value

LT Min Type V 2 True Information N/A t

GT Min Type V Global | True Information N/A

LR Random Type I 1 N/A N/A

GR Random Type 1 Global N/A N/A
GRWalk Random Drift | Type V Global N/A N/A
NCWN Drift Type II1 1 N/A Passive
NCWN.A | Drift Type III 1 N/A Active Adjacent
GRAD Gradient Type 111 1 Gradient Passive
GRAD.A | Gradient Type 111 1 Gradient Active Adjacent
DLL Drift Type 111 2 N/A Passive
DGL Drift Type V. | Global N/A Passive
DGL.A Drift Type V Global N/A Active Radius
DGL.B Drift Type V | Global N/A Active Broadcast
GRD Random& Min | Type V Global 2 Passive
GRD.A Randomé& Min | Type V Global 2 Active Adjacent
GRD.T Random& Min | Type V Global 2 True Information

1 Not Applicable

Table 3: Subset of Distribution Strategies Examined

11

¢ Region:

This strategy is similar to Drift, but differs from all of the previous methods by explicitly
using load and status information. The first time an invocation request is transferred, it is
sent to the candidate node with minimum status value; on subsequent transfers, it is sent to
the candidate node with the minimum load value.

In [13, 26], we examined several possible task placement strategies (i.e., instances of each policy
family with different sources of load and status information). Table 3 summarizes the parameters
used in a subset of the strategies examined in [13, 26]. Many strategies are omitted because of space
considerations, and because they were uniformly ineffective. The bulk of the strategies have names
denoting their policy family, placement class, status metric (if applicable) and status dissemination
method. The peer radius defines defines the maximum distance from the originating node where
a strategy can place a new task. For example, DLL is a member of the Drift family, it only uses
local load information from nodes within two hops, and it can place new tasks on nodes within two
hops; because it is a member of the Drift family, task invocation requests may be forwarded by
the selected node before the task is finally placed. Likewise, the DLL.A strategy is akin to DLL,
but uses active adjacent information distribution.

4 Load Distribution Workloads

Given a simulated multicomputer that implements different load distribution strategies, we need-
ed workloads, or example programs, to evaluate the distribution strategies. There are few extant
multicomputer environments that support dynamic task invocation. This complicates load distri-
bution studies, because there are few task creation traces that represent the execution of actual
programs. Hence, we used both captured and synthesized workloads. The Chare Kernel [20] is
a portable environment for distributed computation using chares, or small, very lightweight task
with restricted control flow. The total number of tasks and the execution time of each task are
unknown at compile time. We used four captured workloads from Chare Kernel programs; two
were C programs and two were compiled ROPM Prolog [27] programs. The externally observable
behavior of each Chare Kernel task was recorded in a timestamped trace. Computation time was
measured using a microsecond timer and scaled to simulate a processor executing approximately
ten million instructions per second. A similar process was used to trace the execution of a multigrid
algorithm implemented using Concurrent Aggregates (CA) [7], a concurrent programming language
developed at MIT.

Although Concurrent Aggregates and the Chare Kernel implement different computing envi-
ronments, both use a similar set of abstractions, such as task creation and message transmission.
The programs were traced by recording the occurrence of the common abstractions, allowing us to
gather trace data from either environment.

Below, we briefly describe each of the measured workloads.

Queens: Solves the ten-queens problem for a chess board ten squares on each edge using a divide-
and-conquer algorithm. Communications occur only between a task and its children.

Cubes: Searches for a number N that can be expressed as the sum of two cubes in two different
ways (i.e., N = A%+ B® = C3 + D®). As in the Queens program, the communications occur
only between a task and its children.

12

[| Minmax [IDA*-15 [Queens I Cubes } MultiGrid]
[Environment L CK I CK [CK | CK } CA]
Number of Tasks 2,801 5,676 3,874 1,933 949
Task Depth 4 23 15 3 17
| Total Messages | 2,800 | 5646 | 8,189 | 5,313 | 28,843 |
I Total Message Size (bytes)] 11,200 i 90,336 ! 393,072 | 255,024 | 772,430 \

Execution Time (microseconds):

Infinite 2,867 885 459,001 1,512,360 152,022
Sequential 247,286 57,400 | 1,276,860 | 6,077,070 | 4,804,660
Max. Speedup 86.23 64.83 2.78 4.02 31.6
Task Computation Time (microseconds):

Mean 88.3 10.1 329.6 3,143.9 5,062.9
Std. Dev. 105.72 0.26 274.83 8,436.68 3,639.29
Min 47.10 10.00 130.80 172.60 86.30
Max 2,327.10 27.30 7,987.20 | 369,690.70 20,112.7
Messages per Task:

Mean 1.00 0.99 2.11 2.75 30.39
Std. Dev. 0.02 0.07 1.13 2.80 22.03
Min 0.00 0.00 0.00 0.00 0.00
Max 1.00 1.00 7.00 31.00 102.00
Message Size per Task (bytes):

Mean 4.00 15.91 101.46 131.93 813.94
Std. Dev. 0.08 1.16 54.01 134.31 557.26
Min 0.00 0.00 0.00 0.00 0.00
Max 4.00 16.00 336.00 1488.00 2,375.00

Table 4: Measured Kernel Workload Characteristics

Minmax: Plays the game of Othello on a board of eight squares on each edge by competing
against itself. As in the above programs, communications occur only between a task and its
children, and furthermore, these communications occur only on creation and termination of

the children.

IDA*-15: Attempts to solve a randomly generated 15-puzzle using an iterative, deepening A*
search. As in Minmax, communications occur only between a task and its children on
creation and termination. The only exception is that execution is terminated when the
solution to the puzzle is found.

MultiGrid: Solves a finite difference equation using the multigrid algorithm. Unlike most of the
previous Chare Kernel programs, each task of this Concurrent Aggregates program sends and
receives multiple messages.

The synthesized workloads were generated from abstract descriptions of program behavior.
These workloads provide a range of task behavior absent in the captured workloads. Taken together,
the range of task activities (total computation time, total number of messages sent and average

13

Existing Tasks

Existing Tasks

890 890
712 N 712 — -
2
534 - — % 534 -
=
>
356 . = 356 .
<
178 - 178 —]
0 . 0 .
0 Time 2867 0 Time 2867
(a) Task Index for Minmax (b) Concurrency Index for Minmax
705 280
240 — -
564 — .
L, 200 - -
=
423 - . £ 160
g
282 - £ 1207
= 80 —
141 -
40
0 . 0) i
0 Time 152022 0 Time 152022

(¢) Task Index for MultiGrid

(d) Concurrency Index for HultiGrid

Figure 2: Task and Concurrency Indices

14

] Compute-1 | Compute-2 | Message-1 I Message-2 }

| Number of Tasks] 3,345 | 1,252 | 103 | 328 |
{ Task Depth l 1 ; 3 ! 3 1 3 [
t Total Messages] 3,344 I 1,324] 6,115 | 52,840 ’
| Total Message Size (bytes) | 84,942 | 68,176 | 766,588 | 6,780,636 |
Execution Time (microseconds):
Infinite 516,590 759,622 52,211 108,780
Sequential 17,415,600 | 25,549,000 315,645 | 2,375,960
Max. Speedup 33.71 33.63 6.05 21.84
Task Computation Time (microseconds):
Mean 5.206.45 20,406.51 3,064.52 7,243.77
Std. Dev. 9,962.46 37,598.05 4,730.35 10,759.03
Min 1.85 8.27 2.12 4.23
Max 500,000.00 500,000.00 33,804.74 88,276.90
Messages per Task:
Mean 1.00 1.06 59.37 161.10
Std. Dev. 0.02 0.26 113.80 286.33
Min 0.00 0.00 1.00 1.00
Max 1.00 3.00 984.00 2,391.00
Message Size per Task (bytes):
Mean 25.39 54.45 7,442.60 20,672.67
Std. Dev. 24.20 53.33 14,080.55 36,997.24
Min 0.00 0.00 20.00 26.00
Max 200.00 390.00 120,582.00 303,381.00

Table 5: Synthetic Workload Characteristics

message size) spans two orders of magnitude. The salient characteristics of the workloads are
summarized in Tables 4-5.

For each workload, we measured both the single processor execution time and the minimum
potential execution time for each program. The latter, obtained by eliminating all processor con-
tention and communication delays, corresponds to the delay on the longest possible path through
the program flowgraph. We use this to compute the maximum possible speedup for each pro-
gram. Tables 4-5 also show metrics for the total computation and communication activity for each
program; these provide a static description of program activity.

The dynamic activity of a program is more difficult to summarize. Figure 2 shows the dynamic
characteristics of two representative programs from our set of test workloads. Figures 2(a) and 2(c)
show the total number of extant tasks, whereas Figures 2(b) and 2(d) show the number of active
tasks, or tasks actually able to execute. In both cases, we assume no processor contention and no
communication delay. Differences are due solely to the intertask data dependencies caused by mes-
sage exchange. Although the envelope of these figures would change with different load placement
strategies or scheduling algorithms, the total area under each curve is fixed — it represents the
total computation time of all tasks.

15

Although concurrency profiles clearly differ across programs, they do not completely characterize
program dynamics. The pattern of task interactions and the structure of the task creation tree.
both influence the potential performance. In the Minmax program, most tasks are created shortly
after program begins, and the task ancestry relation forms a balanced tree. most of the tasks of the
MultiGrid program also are created near the beginning of execution. However, the task creation
graph for MultiGrid is skewed; two tasks are the parents of over half of all the other tasks.

5 Comparison of Distribution Strategies

The large number of distribution strategies, coupled with nine program traces, provides an
unwieldy array of data, far too great for succinct analysis. Based on our data analysis, we have
concluded that no single task placement strategy is unambiguously best across all workloads; the
spectrum of possible behaviors is simply too broad. Thus, we have distilled the data to infer general
trends and highlights.

Although static performance metrics (e.g., speedup) demonstrate the performance of different
load placement strategies, they do not illuminate the reasons for that performance. We have found
that dynamic, or time varying, metrics provide that insight; in §6, we will examine a subset of the
workloads in more detail, using dynamic information to explain the performance of different strate-
gies. First, however, we present an overview, showing summary statistics for several simulation
studies, and offer a few observations based on our data analysis.

The strategies of Table 3 differ in the number of times a task invocation request can be trans-
ferred. All our task placement strategies are server initiated [9] (i.e., it is the responsibility of overly
busy nodes to disperse tasks); however, the node selected during task distribution can delegate the
new task by itself transferring the task to another node. If tasks are short lived (e.g., as in the
Minmax program), repeatedly transferring task invocation requests can have a deleterious effect on
the speedup, as Table 6 shows. Simply put, the overhead for multiple transfers exceeds the cost of
quickly placing and executing the short lived tasks. The DLL strategy transfers tasks to the least
loaded adjacent node, but allows tasks to be incrementally transferred across the diameter of the
network. The DGL strategy is similar, but can select any node in the network, not simply adjacent
nodes. Unless aggregate processor utilization is extremely low, the local strategy, DLL, perform-
s slightly better than the global strategy, DGL. Why? Initially, we attributed this to enhanced
communication locality; however, comparison with the global random strategy (GR) suggests oth-
erwise. The GR strategy places tasks on randomly selected nodes drawn from the entire network,
and, in general, it performs almost as well as the DLL strategy. We concluded that DGL, confused
by stale information, repeatedly forwards tasks in pursuit of the chimera of idle nodes; see Figures
5 and 12.

Observation 1 Stale information hampers global task distribution strategies that use load infor-
mation (i.e., Type II — Type VI strategies).

The DGL strategy attempts to place tasks on nodes with minimum load, but it does not have
accurate load information; thus, tasks are transferred excessively. This is a fault of point-to-point
networks; intermediate nodes learn nothing from messages transiting a node. The DLL strategy
also suffers from stale information, but to a lesser extent; it considers only neighboring nodes,
and tasks are more likely to become ensnared in local “load minima,” reducing the likelihood of

16

Nodes In System

| Strategy 2] 4] 8] 16| 32] 64| 128]| 256
Unlimited Process Forwarding
DLL 1.99 | 3.95 | 7.71 | 14.64 | 22.34 | 35.39 | 53.92 | 64.16
DGL 1.99 1 3.95 | 7.74 | 13.35 | 20.51 | 29.61 | 45.68 | 70.19
GRWalk 1.98 | 3.93 | 7.69 | 14.55 | 18.57 | 25.48 | 39.13 | 67.17
Limited Process Forwarding
NCWN 1.98 | 3.95 | 7.73 | 14.86 | 26.91 | 43.93 | 61.68 | 70.17
MLL 1.99 | 3.94 | 7.76 | 14.73 | 26.09 | 38.73 | 49.02 | 50.89
MGL 1.99 | 3.94 | 7.76 | 14.78 | 25.57 | 33.85 | 51.25 | 59.53
D2L.L 1.99 | 3.95 | 7.75 | 14.79 | 27.01 | 42.64 | 54.40 | 60.66
D2G.L 1.99 1 3.95 | 7.73 | 14.86 | 25.86 | 30.22 | 51.48 | 68.31
GR 1.96 | 3.77 | 7.04 | 12.63 | 21.85 | 35.39 | 49.18 | 62.36
Forwarding With Information Dissemination
NCWN.A | 1.99 | 3.95 | 7.77 | 14.97 | 27.57 | 44.83 | 65.18 | 70.10
DLL.A 1.99 | 3.95 | 7.74 | 14.45 | 21.22 | 32.65 | 52.20 | 68.89
DGL. A 1.99 | 3.95 | 7.71 | 13.24 | 17.40 | 26.94 | 42.20 | 68.59
(a) Minmax Speedup
Nodes In System
| Strategy 2] 4| 8] 16| 32| 64| 128]| 256
Unlimited Process Forwarding
DLL 1.18 | 2.95 1 6.28 | 10.05 | 15.43 | 19.48 | 22.40 | 23.37
DGL 1.18 | 2.87 | 6.23 | 9.84 | 14.19 | 18.99 | 22.53 | 23.84
GRWalk 1.86 | 2.84 | 5,10 | 9.22 | 14.03 | 19.01 | 22.32 | 23.94
Limited Process Forwarding
NCWN 1.93] 2.12 1 3.96 | 525| 6.98| 9.48 | 10.32 | 11.17
MLL 1.18 | 1.93 | 2.42 | 3.66 | 4.45| 4.75| 4.88 | 543
MGL 1.18 | 1.96 | 2.68 | 4.84 | 6.10 | 8.34 | 17.71 | 23.49
D2L.L 1.93 | 2.98 | 4.73 | 9.25 | 13.64 | 16.75 | 19.07 | 19.98
D2G.L 1.93 | 2.96 | 5,70 | 9.96 | 11.54 | 18.75 | 21.90 | 23.96
GR 1.92 | 3.48 | 6.05 | 9.86 | 14.70 | 18.88 | 22.24 | 23.62
Forwarding With Information Dissemination
NCWN.A | 1.93 | 2.79 | 2.68 | 4.61| 5.92| 7.42| 8.36]| 8.18
DLL.A 1.19 1 2.83 | 6.21 | 9.95 | 15.06 | 19.41 | 22.01 | 23.95
DGL.A 1.18 | 2.78 | 6.27 | 9.92 | 14.42 | 18.78 | 22.58 | 23.83

(b) MultiGrid Speedup

Table 6: Deleterious Effect of Process Forwarding

17

Nodes In System

| Strategy 2] 4] 8] 16] 32] 64| 128] 256
No Information Dissemination
GR 1.96 | 3.77 | 7.04 | 12.63 | 21.85 | 35.39 | 49.18 | 62.36
LR 1.95 | 3.62 | 5.72 | 8.44 | 10.52 | 14.19 | 17.88 | 19.93
Passively Disseminated Information
GRD 1.99 | 3.94 | 7.77 | 14.84 | 27.16 | 44.47 | 52.55 | 61.44
DLL 1.99 | 3.95 | 7.71 | 14.64 | 22.34 | 35.39 | 53.92 | 64.16
NCWN 1.98 | 3.95 | 7.73 | 14.86 | 26.91 | 43.93 | 61.68 | 70.17
Actively Disseminated Information
GRD.A 1.99 | 3.95 | 7.77 | 14.77 | 27.42 | 44.40 | 55.84 | 63.58
DLL.A 1.99 | 3.95 | 7.74 | 14.45 | 21.22 | 32.65 | 52.20 | 68.89
NCWN.A | 1.99 | 3.95 | 7.77 | 14.97 | 27.57 | 44.83 | 65.18 | 70.10
Accurate Information
GT 1.99 | 3.95 | 7.76 | 15.00 | 27.99 | 44.05 | 44.33 | 58.96
LT 1.99 | 3.95 | 7.77 | 14.89 | 27.36 | 47.51 | 68.44 | 74.33
GRD.T 1.99 | 3.96 | 7.74 | 14.92 | 27.82 | 47.26 | 68.37 | 79.41
(a) Minmax Speedup
Nodes In System
| Strategy 2] 4] 8] 16] 32| 64| 128] 256
No Information Dissemination
GR 1.92 | 3.48 | 6.05 | 9.86 | 14.70 | 18.88 | 22.24 | 23.62
LR 1.912.84 | 3.75 | 4.63 | 5.28| 6.14 6.87 | 7.56
Passively Disseminated Information
GRD 1.91 | 3.38 | 6.21 | 10.13 | 14.32 | 18.59 | 20.97 | 23.56
DLL 1.18 | 2.95 | 6.28 | 10.05 | 15.43 | 19.48 | 22.40 | 23.37
NCWN 1.93 | 2.12 | 3.96 | 5.25| 6.98| 9.48 | 10.32 | 11.17
Actively Disseminated Information
GRD.A 1.92 | 3.42 | 6.17 | 10.35 | 14.86 | 19.00 | 21.93 | 23.95
DLL.A 1.19 | 2.83 | 6.21 | 9.95 | 15.06 | 19.41 | 22.01 | 23.95
NCWN.A | 1.93] 2.79 | 2.68 | 4.61 | 5.92| T7.42 8.36 | 8.18
Accurate Information
GT 1.19 | 1.97 | 2.98 | 2.81 | 5.36| 7.68 9.62 | 15.50
LT 1.19 | 2.00 | 2.98 | 2.95| 5.54 | 6.91 9.04 | 14.59
GRD.T 1.89 | 3.49 | 6.30 | 10.57 | 16.11 | 20.91 | 23.55 | 24.46

(b) MultiGrid Speedup

Table 7: Distribution Strategy Comparison

18

forwarding. For the Minmax program, both DLL and DGL spent too much time balancing the load;
comparison with MultiGrid shows that this is a function of task lifetime. The average task lifetime
in MultiGrid was 57 times longer than in Minmax, and the extra forwarding time was mitigated
by the better load distribution. Clearly, the time constant for information propagation must be
commensurate with the time between application program task state changes.

Observation 2 Load information staleness is correlated with task lifetime.

To understand the interaction of information staleness and task forwarding, we modified the
DLL and DGL strategies to forward tasks no more than twice; these strategies are labeled D2L.L
and D2G.L in Table 6. These modified strategies are similar to the NCWN strategy, except tasks
are not forced to be forwarded at least once, as in NCWN. For the Minmax program, with its
short lived tasks, limiting the number of possible task transfers often increases the speedup; short
lived tasks can begin executing quickly, and the placement decisions are no worse than before —
most transfers were based on inaccurate load information. In contrast, the long lived tasks of
the MultiGrid program benefit from repeated transfers; the cost of finding idle nodes, though
substantial, is repaid by better load balance.

In the expectation that increasing the frequency of load information distribution would allow
the DLL and DGL strategies to make more opportune placement decisions, we also modified the
DLL and DGL strategies to actively distribute load information to adjacent nodes, yielding the
DLL.A and DGL.A strategies of Table 6. Surprisingly, unless the mean processor utilization was
very low (i.e., large systems), this reduced program speedup for the Minmax program. Why? Using
the DLL strategy, we conjecture that tasks were trapped in “local minima,” whereas in the DLL.A
strategy, more frequent information dissemination increased task forwarding. Thus, Hinmax tasks
spent more time being forwarded. However, for the long lived tasks of the MultiGrid program,
there is little performance change with active distribution of load information.

Observation 3 Distribution strategies should limit task forwarding. Ideally, the forwarding limit
should adapt to system communication overhead and expected task computation time.

The GT and LT strategies use accurate or true information when placing tasks; they rely on load
information obtained from our simulation system. As such, they are not implementable, but they
do provide a point of reference. Table 7 compares these accurate methods to the informationless
strategies LR and GR. These informationless strategies bound the effort that should be expended
collecting accurate status information. In general, the informationless strategies perform quite well.

With accurate information, both LT and GT work well in general, but exhibit anomalous
degradations. Initially, the reason for this was unclear, but was explicated by an analysis of the
temporal performance data discussed in the next section. We assumed that the LT and G T methods
could be implemented with a limited number of out-of-band broadcast messages [11]. When a node
selects a destination, it enqueues a task invocation message for transmission. However, tasks are
often created in bursts, generating many messages with significant message transmission delays.
The selected node continues to advertise a low load while the invocation messages are transmitted,
and it is repeatedly perceived as lightly loaded although there are numerous tasks enroute. This
particularly affects the G'T strategy, because all nodes may select a single node repeatedly.

The LT strategy is less affected by tasks enroute, because each node considers only a subset of
the total nodes. The LT strategy performs better than LR because local strategies are very sensitive

19

to poor placement due to shallow task instantiation trees. Most tasks are created by only a few
parents. If one views the history of task creations as a tree, called a task instantiation tree, Minmax
has a shallow, broad tree. The parent process in Minmax creates 2800 tasks in a tree of four levels,
with seven children for each non-leaf task. By comparison, MultiGrid has a much deeper tree, but
most tasks are directly created by two parent tasks. The remaining tasks contribute greatly to the
tree depth, but perform little computation; thus, the computationally intensive tasks are created
in a shallow fashion, similar to Minmax. Methods that distribute tasks only to neighboring nodes
are unable to disperse a large number of tasks over many nodes; tasks simply congregate near their
point of origin, leaving most network nodes idle. The LT strategy effectively pushes child tasks as
far from the parents as possible; the LR strategy selects nodes randomly, returning some children
to the nodes with parent tasks.

Observation 4 Local placement strategies are inappropriate for programs with a shallow task in-
stantiation tree.

We have seen that selecting a node globally is beneficial, because local methods cannot disperse
large numbers of long lived tasks. Moreover, it is difficult to maintain accurate global information.
Thus, randomly selecting a global node (i.e., the GR strategy) is appealing. Intuitively, however,
one can improve the GR strategy by combining the value of accurate local information with the
dispersion of global random placement. To test this hypothesis, we implemented the GRD strategy
(“global random drift”). Each task can be forwarded twice; initially, a node is selected randomly
and globally, with a single, subsequent forwarding step to an adjacent node. Table 7 shows that
the GRD strategy is very successful; analysis of other workloads confirms this.

Acquiring load information has benefits and associated costs. In §3.3 we mentioned several
information dissemination techniques, each with an associated cost. Passive dissemination is a-
menable to implementation on systems without message processors; without a message processor,
active dissemination consumes substantial computation processor time. True dissemination, as
used by LT and GT, requires special hardware; of these, LT is easier to implement.

To compare the benefits of these dissemination methods, we implemented three variants of sev-
eral strategies using passive, active or accurate information, and compared them to strategies that
use no information. We chiefly considered strategies that use local information; Table 7 summarizes
the measured speedups. In general, the speedups do not justify using message processors solely for
load information dissemination, although there are numerous other benefits from their use. The
improvement for the GRD.T strategy indicates the benefit of local true information is slight; it
may justify modified network hardware, but only if other uses for those modifications exist.

How realistic are these results? Users of first-generation hypercube architectures, such as the
Intel iPSC/1 or the Ametek System/14, would typically recoil at the idea of the GRD strategy.
For those architectures, communication locality dictates more limited task distribution. With
second generation architectures, such as the Intel iPSC/2 and Symult 2010, locality has become
relatively unimportant; however, high communication latency and cut-through networks increase
the importance of the number of communication events.

Our simulated network posited the low communication latency possible from a research archi-
tecture; what is the effect of the higher communication latency on our results? A simplified model
of communication delay [16] in wormhole and circuit-switched networks includes a per-message
software overhead, a per-hop transit delay for messages switched through a node and a per-byte
delay dictated by network bandwidth. When sending a fixed size message, the software overhead

20

typically dominates the transit delay in a lightly loaded network. As we will see in §6.3, increased
software overhead decreases the performance of all placement strategies.

To summarize, our simulation studies suggest that, in general, random, global strategies per-
form relatively better than strategies that rely on forwarding tasks (e.g., DLL) or more accurate
local information (e.g., NCWN) for most workloads. The Message-2 workload is an exception; it
is very communication intensive and very long running. Poor placement decisions delay message
generation, and thus message reception, making performance very sensitive to the initial place-
ment. Without e priori information concerning the application, we believe that simple placement
strategies such as GR perform well; however, they must be augmented with load redistribution
mechanisms to compensate for poor initial placements when programs contain long running tasks.

6 Detailed Comparisons

To provide more insight into the dynamic behavior of each task placement strategy, we gathered a
variety of time dependent information about the aggregate system state, the spatial and temporal
distribution of tasks, and the observed error in load estimates. Fach is described briefly below,
followed by case studies of the Minmax and MultiGrid programs. Where appropriate, reported
data are shown with ninety percent confidence intervals, obtained via three simulated program
executions, each with differing seeds for the random number generators.’

6.1 System Metrics

We recorded several metrics in addition to the traditional speedup measure, including CPU and I/O
processor utilization, task placement cost, processor and message waiting time, and message trans-
mission time. The first of these, CPU and I/0 processor utilization, reflects use of the computation
and communication processor, respectively. Intuitively, one would expect the highest average CPU
utilization from a placement strategy that most equitably distributed tasks across the nodes; we
shall see, however, that this is not always the case. The average I/O processor utilization is one
measure of the communication network load; it includes both application program task interactions
and, for strategies that actively disseminate load information, the load information messages. Al-
though, strictly speaking, I/O processor utilization ignores the utilization of the actual circuits or
wires used, other studies [14, 15] have shown that the I/O processor saturates before the network
transport medium.

Following its creation, a task is quiescent during the search for a node that satisfies the task
placement strategy’s criteria. If the task lies on the parallel application program’s critical path,
this idle time is a direct contributor to total program execution time. To quantify the expected cost
for task placement, we recorded both the number of times a task invocation request is transferred
and the time needed to identify a recipient node.

Although the goal of load distribution is maximizing effective parallelism, not all the tasks
of a program can be concurrently active. If several tasks must share a resource, be it a CPU,
communication processor or the network, resource contention is inevitable, and some tasks must
wait. Moreover, task graph precedence constraints also force some tasks to wait for messages from
other tasks. Both long task placement delays and resource contention after placement exacerbate

!Temporal data are chosen from representative executions. Although the data in this section may appear to differ
from that in §5, both agree within the precision of the confidence intervals.

21

these message waiting delays. Thus, we measured both the mean time a task spent waiting for a
processor and the mean time spent waiting for messages; these metrics show where tasks spend the
majority of their time.

To study communication activities, we measured the time to send messages between nodes. The
internode message transmission time depends on the condition of the network and the number of
messages already in the transmission queue.

6.2 Spatial and Temporal Metrics

Our system metrics encompass all nodes over the entire application program’s execution time;
however, variability exists in both the spatial and temporal domains. To understand the causes of
this variability and its effects on high-level performance measures (e.g., speedup), we recorded a
small set of spatio-temporal data, showing performance data over time for individual nodes, and
temporal data, showing the data over time for all nodes. In each case, the data was recorded at a
series of regular time intervals and encompasses the events within that time interval.

Currently, the temporal data include the computation processor utilization, the number of tasks
per node, the number of transfers when placing a task and the average load estimation error. The
latter is the difference between the estimated load and the actual load. If L; ; is the load of node j
as known by node 7, than the average load estimation error at a point in time ¢t for N nodes is

Zé]\il Z;\Ll (Li,j - Lj»j)

E(t) = e >

if we assume that L;; (the load of j as known by j) is the actual load on node j. Note that a
negative value indicates that node i is underestimating the load of node j, whereas positive values
indicate it is overestimating the load.

6.3 Case Study: Minmax

Of our test workloads, the Minmax program has the greatest potential concurrency, and its mean task
computation time is slightly greater than its average message transmission time, given our hardware
assumptions. Figure 2(b) shows the potential concurrency in Minmax, assuming an infinite number
of processors; most tasks are created shortly after program execution begins. However, no single
task creates many child tasks; instead, the task ancestry relation forms a shallow, balanced tree.
Nevertheless, the initial burst of tasks tests the ability of any placement strategy to quickly and
effectively distribute tasks.

For a detailed analysis of task placement strategies, we selected the local and global variants of
the Random, Min, and Drift policies. Recall that LR, MLL, and DLL are local strategies that
distribute tasks only to neighboring nodes, whereas GR, MGL, and DGL are global strategies that
can distribute tasks to any node in the system. As we have seen, the LR strategy considers only
topologically adjacent nodes, whereas the MLL and DLL strategies have a larger peer radius and
consider all nodes within two hops.?

Figure 3 shows the observed speedups for the Minmax program. We include a hypothetical, ¢deal
speedup for reference. This ideal speedup is equal to the number of nodes but is bounded by the

2The properties of the hypercube topology imply that the number of neighbors within a fixed distance increases
with the system size.

22

Speedup

Utilization

90.0 I — Rk 90.0 I B B B
o LR : o GR
67.5- « MLL * 7 67.54 1« MGL _*. 4 7
> DLL % A a > DGL
. = . N
45.0 4 * Ideal % |- "?3 45.0 4 * Ideal L .
22.5 9 22.5 ~F -
o m%% ..
w WS .
0.0 S B R S R 0.0 T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension
Figure 3: Minmax Workload: Speedup
1.0 ;vda_ T T T 1.0 %thl T T 1
0.8 % ? - 0.8 m% i".l -
0.6 - - T, - g 064 o .
§ [§
044 ©LR - T ® _ 2 g4 0GR g
aMLL % T - = a« MGL
0.2 » DLL 5 0.0 » DGL 3
g ;
0.0 T T T T T 0.0 N A B B
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension
Figure 4: Minmax Workload: Processor Utilization
8 —] 8 T]
o LR o GR
é 6 a MLL | é 6 a MGL mp -
5 > DLL = > DGL B
= 3 & :
5 4 % g'&"‘f 7 g 4 § 7
r-< -t P B
Q P (% .
& | E
5 2- . . 5 2+ 5 .
=z = =, -
2 a e ae S8 g e @ @ @ a.a
0 T T T T 0 S S S S R
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7T 8 9
Dimension Dimension

Figure 5: Minmax Workload: Number of Transfers Per Placement

23

Time (microseconds)

Time (microseconds)

Utilization

3200

2400

1600

800 —

Dimension

.]E.A

0——@——%—?—?——%—%” | -

1 2 3 4 5 6 7 8 9

Time (microseconds)

3200 — I S
o GR
2400 - < MGL > -
> DGL }
1600 . ‘ ~
800 — : .
',% I
0 —R—F—F—F—F—F—F—]

1

2 3 4 5 6 7 8 9

Dimension

Figure 6: Minmax Workload: Time Spent Finding a Destination Node

10600

800 —

600 —

400

200 —

1 2 3 4 5 6 7 8 9

Dimension

Time {microseconds)

1000 T T T T
800] o} GR -
. A MGI
600 — > DGL —
3
400 % -
200 .
0 —t

1 2 3 4 5 6 7 8 9

Dimension

Figure 7: Minmax Workload: Average Message Transmission Time

0.5 S B S e R B
o LR
0.4~ <MLL =
> DLL %
0.3 j[
i3 E
0.2 ' «
S TRE R :
e N
0.1 T, ‘=
.. .
¢, I
0.0 S e B B
1 2 3 4 5 6 7 8
Dimension

Utilization

0.5 T
o GR
04 aMGL T i
> DGL ‘
0.3 E % .
0.2+ % -
& 00
0.1 g .
g
0.0 N R B B R S
1 2 3 4 5 6 7 8 9

Dimension

Figure 8: Minmax Workload: I/O Processor Utilization

24

13.00 T T T 13.00 ? T T T
! o LR . o GR
:é\ 9.75 — a MLL | %\ 9.75 — 'f\“ a MGL .
g > DLL g - > DGL
2 g .
= ~ =
2 6.50- 3 - E 6.50 -
E , E g
g B g
& 3.25 £y - & 3.25- 5 -
& B.ow@
0.00 —— T 0.00 — TR
1 3 4 5 6 7 8 9 1 2 3 4 6 7 8 9
Dimension Dimension
Figure 9: Minmax Workload: Time Spent Waiting for a Processor
1200 e L A 1200 e S B N
o LR o GR
g 900 | i a MLL_ f.g‘ 900 S a MGL]
§ > DLL § R % > DGL
g 8 B -
5 6004 - % : % - £ 600 i
g + . g i .
v L. . W §
E 300+ ‘é R - E 300 &= =
& > §$ = &
4.4 “ e .g
0 T T T T 0 I B e e
1 2 3 4 5 6 7 9 1 2 3 4 5 6 7 8 9
Dimension Dimension

Figure 10: Minmax Workload: Time Spent Waiting for Messages

maximum possible speedup for Minmax (i.e., it is the minimum of the number of nodes and the
maximum speedup shown in Table 4). As Figure 3 shows, the variance in speedup for a particular
placement strategy can be substantial for hypercubes of reasonable dimension. Although additional
simulation runs would reduce the width of the confidence interval, the high variance suggests that
some strategies are particularly sensitive to the pattern of placement decisions.

Of the local strategies, LR is clearly inferior to DLL and MLL, especially for larger system
sizes. Although speedups for the local strategies suggest that the Random policy is inferior,
the speedups for global strategies imply otherwise; all global strategies, including GR, the global
random strategy, have roughly equal performance.

The processor utilization, shown in Figure 4, confirms that those strategies with higher speedups
also have higher mean processor utilizations. As with the speedup data, processor utilization is a
coarse measure that does not reflect time varying resource demands, nor does it reveal the dynamics
of placement policies — there are many possible ways to place tasks in both space and time that

25

Processor Utilization Processor Utilization

Processor Utilization

1.0 i T T~ 125 T T T
0.8 - - 100 - i
Y
3
=}
0.6 - Z 75 - N
—GR = Dimension
0.4 - GRWalk — i 50 - = Three
- - MGL E
—--DGL &
0.2 s 25 - -
0.0 T i T 0 T
0 10K 20K 30K 40K 0 10K 20K 30K 40K
Time Time
30 T 1 T
25
[
T 20 -
=z
g 15 Dimension
2 Five
E§ 10
5]
0
0
[
<
S _
Z,
2 . Dimension
2 Eight
E.?':]
0.0 T | | T 0.0 | I R—
0 1K 2K 3K 4K 5K 0 1K 2K 3K 4K 5K
Time Time
(a) Processor Utilization (b) Mean Tasks per Node

Figure 11: Minmax Workload: Processor Utilization and Task Distribution

26

Load Error

Load Error

Load Error

i
Task Transfers

T | 1
0 10K 20K 30K 40K

Time

)
> oo no [@p} o
] |]

|
B~ o
| |

|
oo

0 3K 6K 9K 12K

I

0 1K 2K 3K 4K 5K

Time

(a) Load Estimation Error

Task Transfers

Task Transfers

0.0

I
0 10K 20K 30K

40K

1-
AN

0 I]] l
0 1K 2K 3K 4K

Time

(b) Transfers per Placement

5K

Figure 12: Minmax Workload: Load Error and Number of Placement Transfers

27

Dimension

Three

Dimension
Five

Dimension

Eight

have similar speedups and processor utilizations. Figure 5, which shows the number of transfers
needed to place a task, illustrates precisely this point.

Both the DLL and DGL strategies repeatedly transfer tasks using load information, and in
both cases, the maximum number of transfers is, by design, bounded by the hypercube dimension.
Table 6 and Figure 3 show that DLL and DGL have qualitatively similar speedups, though the
speedup of DLL is slightly higher. However, Figure 5 shows that DLL does not transfer tasks as
frequently as DGL for larger system sizes. Recall that the DLL strategy maintains load information
only about neighboring nodes; many local task transfers may be needed to reach a distant, least
loaded node. Moreover, with only local information, we believe the DLL strategy is more likely
than DGL to be trapped in local minima.

In contrast to DLL, the DGL strategy maintains load information on all nodes. However,
Figure 12 indicates that this information is inaccurate. Following the initial burst of task creation
in Minmax, most nodes underestimate the remote load — information on the change of state for
distant nodes has not yet propagated across the network. Simultaneously, those nodes with tasks
to distribute, observe, accurately, that they are overloaded. Based on a comparison of their local
estimate of high load with the incorrect estimate of low remote load, these nodes select another,
ill-informed node. This process repeats until sufficient task transfers accrue to reach the transfer
limit. As the system size increases, remote load information is increasingly accurate, not because
information dissemination improves, but because more nodes truly are lightly loaded. After the
initial set of tasks has been placed, the aggregate performance is a fait accompli, determined by
the initial actions.

Although both DGL and DLL transfer tasks, and, on average, DGL forwards tasks much more
than DLL, both have similar performance. Furthermore, their performance is similar to strategies
such as MGL, MLL and GR that transfer tasks at most once. One might hope that the DGL
and DLL strategies have some other, less obvious, redeeming benefit. For example, perhaps their
strategies yield better communication locality, reducing the total communication time. However,
Figures 7 and 8 show that DLL and DGL greatly increase the communication overhead.

Why, then, do these strategies perform well? Figure 9 shows the average number of tasks queued
for the computation processor on each node, and Figure 6 shows the time needed to place a task. In
small and moderate sized systems, a large number of tasks must wait for a computation processor.
Although additional task transfers increase both the average task placement time and the expected
message transmission time, shown in Figure 7, the total volume of computation so greatly exceeds
available computation resources that the overhead for task transfers makes little difference. Simply
put, excess tasks can either be queued for an available processor or shuttled through the network
until the computation backlog is satisfied; neither option affects processor utilization. For larger
systems, the computation processor queues are short, and the communication traffic is distributed
across a large number of nodes. This decreases the message transmission time and ameliorates the
effect of repeated task transfers; although tasks are transferred frequently, it costs little.

For the Minmax program, strategies that use load information, such as DLL and DGL have
no special benefit; they simply avoid the load inequities of LR. Figure 11 illustrates this clearly
for the global placement strategies. Recall that the GRWalk strategy is similar to DGL. A task
is sent to a node; if that node believes others nodes are less busy, the task is transferred again.
However, GRWalk transfers the task to a random node; no non-local load information is used. This
process repeats until a node with sufficiently low load is found or until the number of transfers
equals the dimension of the network. In Figure 11, the GRWalk and DGL strategies clearly form

28

, /m.ﬁ/l/////!/////

S
S
=
=

i

4 ”//'
//I///I/}//(

i

vl
A

I/M

il

r,',:.’ffial,l”!!i!llll/ ///// I/;Iu,
M

[,///,/// i iy

% iy
% ////////
% //l////l
7 ey
72 /¢

i,
744,
Sttt
/Il”///ll 't 7
¢ ”/;;/«f/llllllll/lllllllll” v
W w/////r/”//(//w &z
,w///’ﬂ I/4-/I//’I/////////Il/ll//l//////’//’,;/l
/’///'//'/,’7 //II/IIII//II///'I’II,’II////I///IIII 17/,
’I'//////I//I/Z;Z/”/,///’/,””/”I”””” I/llllll
7 7% w@){,{/}/{/f%ﬂ/[/]l///III/II//II/II
5 ////0///////1//1/// I/IIIIII/II// 174y,
lllll/l///ll///lll 2
0 %5 & /I///Il/////////lllllllllfllllI/ :’Il,/,,

be)
ercu
1 Hyp
siona,
ive-dimen

Five

ML

. for

ibution

istribu

k Dis

Tas

(b)

de
No
T

ks pe

f Tas

ber o

ing Num

ime Varying

d: Tim

kloa

Wor

. ax

: Minm

13:

. re

Figu

29

22.0 T T T 22.0 T T TFTTTTT =
oLR o GR
16.5- <« MLL - 165 < MGL I
N > DLL N > DGL -
= ; = ;
T 1104 * Ideal.; %ﬁ % a T 1104 * Ided; 3 -
2 . ’e =9 . .
) . . n . =
* % *
554 i - 554 A E]
S RN S B . 57 .
9"_6_»"3. %’“bwg‘_.& ewgif“%' 9~“>'.
- R e
0.0 — T 0.0 e e
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension
(a) Local Strategies (b) Global Strategies

Figure 14: Speedup Comparison For Minmax Workload: High-Latency Network

one equivalence class, with GR and MGL in another. The latter two strategies transfer tasks at
most once. Obviously, the potential benefit of global load information is critically dependent on its
accuracy. Figure 12 suggests that for large systems, global information is most often inaccurate —
information driven strategies degenerate to random walks. In such cases, informationless strategies
have comparable or superior performance with lower overhead.

The poor performance of the local random strategy LR demonstrates both the importance of
widely dispersing tasks when the total number of tasks is high and the relative unimportance of
communication locality in high-speed, circuit-switched networks. Global methods can place tasks
anywhere in the network, whereas local methods require multiple transfers to achieve a similar
effect. Only the LR strategy limits task placement to immediately adjacent nodes. The task depth
of Minmax, shown in Table 4, is four, meaning the most distant relative of the original task is only
four generations removed. Tasks of each successive generation can be placed one hop further from
the initial parent. Because a binary hypercube with diameter n has (2) nodes exactly k hops away,
the LR strategy can place the tasks of Hinmax on at most Y 4_¢ (7) nodes. The MLL strategy can
cross twice the number of links, making effective use of more nodes. This is dramatically illustrated
by recording the number of tasks assigned to each node as a function time; see Figure 13, which
shows the time varying number of tasks on each node of a five-dimensional hypercube.

Based on our analysis of the Minmax program, we conclude that load information often is not
particularly useful (i.e., its accuracy is too low), a large number of task transfers may not improve
performance, and strictly local strategies such as LR are not effective. One may well ask how
closely these conclusions are tied to the network architecture. To investigate the interaction of
network performance, workload, and placement strategy, we increased the message transmission
latency from ten to one hundred microseconds, while holding the bandwidth constant at thirty-two
megabytes per second. Comparing Figures 3 and 14 shows that, not surprisingly, speedup declines
for all strategies. However, the performance of the local strategies is comparatively poorer than
before.

30

Based on our earlier analysis, the reasons for performance shifts should be clear. Higher com-
munication latency penalizes those strategies that must transfer tasks many times (i.e., DLL and
DGL), regardless of the distance of each transfer. Thus, one would expect single hop strategies
(i.e., LR and GR) to fare well. GR remains the strategy of choice; it uses only a single transfer and,
in contrast to LR can place tasks on any node. For the local strategies, LR has a high probability
of placing tasks on the current node, reducing the number of messages that must be sent to other
nodes. Although the MLL strategy can offload tasks to more nodes than LR, it always sends tasks
to the least loaded node, causing most tasks to be distributed, although only to nearby nodes. This
is exacerbated by the shallow task tree of the Minmax program. Simply put, LR has poorer load
balance, but this is an advantage at high latency — minimizing communication, not maximizing
load balance, is most important when the costs of load balancing are high relative to task lifetimes.

For either global or local methods, a threshold mechanism favoring the current node becomes
increasingly critical as network latency increases. Moreover, the global methods perform relative-
ly better than the local methods because circuit-switched and wormhole networks diminish the
importance of spatial locality.

6.4 Case Study: MultiGrid

As we have seen, the Minmax program is a highly parallel application with many short lived tasks
that are created near the beginning of program execution. In this section, we examine a MultiGrid
program with strikingly different behavior. Like Minmax, most of the tasks are created near the
beginning of execution. However, the pattern of task creation is different — the tasks of Minmax
are recursively created, forming a broad, shallow, balanced tree of task ancestry. In contrast, two
"MultiGrid tasks are the parents of over half of all the other tasks. Also, each MultiGrid task
represents considerable computation with many large messages sent to and received from other
tasks. Table 4 shows that the potential concurrency is relatively lower than that for Minmax, but
it is highly variable. Tasks are activated cyclically, as the multigrid algorithm refines the mesh,
causing tasks to exchange messages.

The characteristics of the MultiGrid program present a significant challenge to load distribution
strategies. Figure 15 shows that the speedups for the LR and MLL strategies are relatively poor. As
with the Minmax program, the LR strategy is limited by the task depth of the MultiGrid program.
When a single task creates many children, the LR strategy can place these tasks only on nodes
adjacent to the node of the parent.

The MLL strategy also suffers from the task depth; tasks can be placed up to two hops away,
effectively using only a fraction of the available nodes. However, the MultiGrid tasks, unlike those
of Minmax are long lived, making MLL’s limited task dispersion debilitating.

Both MLL and MGL select nodes using an estimated load value supplied by the destination
node. When a task is enqueued for transfer to another node, the estimated load for the remote
node is locally incremented to reflect the new task. Initially, this is a good approximation; however,
when a node actually begins the task transfer, that node’s estimate of the remote node’s load is
replaced with the latest information from the remote node. In the MultiGrid program, most
tasks are created early in the computation. Because of this, the load estimates obtained from
remote nodes are too low because they do not yet account for tasks enroute. Thus, certain nodes
are erroneously, and repeatedly selected. Figure 24 shows that task placement occurs in three
distinctive stages. Estimates of remote load are not updated sufficiently rapidly to supply useful

31

Speedup

Utilization

Transfers

32.0 N R aae e 32.0 B B A A e
o LR o GR
240 ¢« MLL §oE] 2404 4 MGL . §§]
> DLL 5 o > DGL §
. 5 B i .
16.0 - * Idealy a ﬂ??, 16.0 4 * [ldeal ﬁ _
CE -
8.0 ; D 8.0 — %g = -
L 35 %3
0.0 S S N B B 0.0 T T T
1 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension
Figure 15: MultiGrid Workload: Speedup
1.0 T T 1.0 S e N B
o LR sl T GR
: E MLL 81 1§ a MGL
. § » DILL . K > DGIL
0.6- k. T - g 064 p L% -
. : 3 3
04 LT , . Z 044 L -
0.2 - - 0.2 1 - .
B L 5
% ‘4. 4 b
0.0 — T T T 0.0 A B e e
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension
Figure 16: MultiGrid Workload: Processor Utilization
64T T T T T T F 6.4 N S B R R
o LR ' ° GR B
« MLL g « MGL X%
4.8 . DLL ?V,' -) 4.8 +» DpGL X .
3.2 - '5' — § 3.2 1 % -
16 % .
16 - . =
B B X . g & 4 o 4
0.0 S S R B e 0.0 T T T T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Dimension Dimension

Figure 17: MultiGrid Workload: Number of Transfers Per Placement

32

Time (microseconds)

Time (microseconds)

Utilization

3000 T T T
2500 LR ~
« MLL
2000 T > DLL 7
1500 o -
1000 - % s .
500 % .
0 L A S e e
1 2 3 4 5 6 7 8 9
Dimension

Time (microseconds)

3000
2500
2000
1500 —
1000

500

K
|

Ficen

MGL
DGL

0

1
123456

I

Dimension

T
7T 8

Figure 18: MultiGrid Workload: Time Spent Finding a Destination Node

128 - - T T
o LR
96 -« MLL
> DLL
64 — —
32+ | g RS I
I
0 T T T
1 2 3 4 5 6 7 8 9
Dimension

Time (microseconds)

128 T I B
[GR
96 7 MGL
DGL
64
%E B EE -
0 lL e I
1 2 3 4 5 6 7 8
Dimension

Figure 19: MultiGrid Workload: Average Message Transmission Time

0.25 T T —
0.20 - LR ~
0.15 - MLL
’ > DLL
0.10 —
0.05 =
B
s 3: :: S5
0.00 1 S A B R (e S
1 2 3 4 5 6 7 8 9
Dimension

Utilization

0.25 I I S B R
0.20 GR
0.15 - MGL
’ DGL
0.10 —
0.05
%ﬁ i 20

- 2

0001 G T ox Tk
1 2 3 4 5 6 7 8
Dimension

Figure 20: MultiGrid Workload: I/O Processor Utilization

33

Time (milliseconds)

Time (seconds)

500 —

400

300

200

100

LR

{

et
4Mu1

O
T « MLL
> DLL

it

>~ — v!-ﬁéH
cs~vH=a§—i

o —
ot

Dimension

~l—‘y—1=$=H
OO%"F&“{

500 — T [T]]
’é 400 1 o GR |
o]
£ 300- < MGL
= : > DGL
£ 9004 Tt -
E % |
B 1004 T - .

04— s
1 2 % 4 5 6 7 8 9

Dimension

Figure 21: MultiGrid Workload: Time Spent Waiting for Processor

16| s
< MLL
1.2 4 B > DLL
08 £:] - .
§%
0.4 - . LIRS Y S
-
LR
0.0 T T T T T
1 2 3 4 5 6 7 8
Dimension

9

1.6 -
G 1.2-
=
2
&
= 0.8+
E
&
0.4 -
0.0
1

N -

T i I I [{
GR |
MGL
."p > DGL 7
[[T I I

|
3 4 5 6 7 8 9

Dimension

Figure 22: MultiGrid Workload: Time Spent Waiting for Messages

34

CPU Utilization CPU Utilization

CPU Utilization

1.0

1.0

0 0.25M 0.5M 0.75M 1M

Time
1.0 T T T T
0.8 4 —
— GR
0.6 — o GRWalk -
- - MGL
—-- DGL
0.4 —
0.2 — -
0.0] I ! I

0 50K 100K 150K 200K 250K

Time

(a) Processor Utilization

100

Tasks per Node
o
o
|

o
@
|

=23
o
]

IS
o
|

|

0 1.5sM 2M

[\
ot

Tasks per Node
0o
S
|

a4
|

-
ot
|

[u—y
(=)
|

|
|
!
|
|
|
|
i

I I
0 0.25M 0.5M 0.75M 1M

Time

3.0

2.5 4 n

Tasks per Node

0.5) .

0.0

2.0 - —
1.5 | -

1.0 - u

)

\

| i

] I I f
0 50K 100K 150K 200K 250K

Time

(b) Mean Tasks per Node

Figure 23: MultiGrid Workload: Processor Utilization and Task Distribution

35

Dimension
Three

Dimension
Five

Dimension

Eight

Load Error

Load Error

Load Error

|
Task Transfers

—40 l 1 T
0 0.5M 1M 1.5M 2M 2M
Time
16 T T | 5T T T
3
i :
- . ;
@ 3
ERER .
] e
& i
5 2 7
i S
1+ 7& .
0 —pA— T T
0 0.25M 0.5M 0.75M 1M 0 0.25M 0.5M 0.75M 1M
Time Time
1 1 T T 6 I T T
5 - —
0 -]
— GR £ 4 -
GRWalk s 47
- - MGL E ;
-1+ —-- DGL - g 3 -
: u b
7 & 2] 1
T i)
1 l?i f 7
T 0 I /Tj\t‘ T T T
0 50K 100K 150K 200K 250K 0 50K 100K 150K 200K 250K
Time Time
(a) Load Estimation Error (b) Transfers per Placement

Figure 24: MultiGrid Workload: Load Error and Placement Transfers

36

Dimension
Three

Dimension
Five

Dimension
Eight

information. Individual, simulated instances of the MGL strategy show that as few as two nodes
receive the majority of the tasks.

The problem of inaccurate load information dissemination is exacerbated by the network ar-
chitecture. Transiting messages impart no information to intermediate nodes; only the source and
destination of each message acquire the load information stored in the message. One of us is
examining the benefit of augmenting the the network architecture to impart this information to
intermediate nodes [?]. Although it is unlikely that nodes could accurately record the status of
all nodes for large systems, they may accurately track the status of topologically adjacent nodes,
making strategies such as GRD.T viable.

Figure 17, which shows the number of task transfers, is similar to Figure 5 for Minmax. However,
the time spent placing a task, Figures 6 and 18, differs dramatically. For MultiGrid, all strategies,
including those that transfer tasks only once, encounter considerable delay when placing tasks. As
we have seen, most tasks are the children of two parents. This serialized task creation means that
a few tasks quickly create a large number of child tasks that must be enqueued for distribution by
the communication processors of the nodes executing the parent tasks. Because the task placement
delay includes the queueing delay for distribution, the mean delay in Figure 18 is high for all
placement methods.

We noted earlier that MultiGrid tasks interact many times during their execution, not just
with their parent at task termination. Moreover, the average MultiGrid message is a thousand
times the size of a Minmax message. The latter explains the higher message transmission time
shown in Figure 19. However, the large message waiting time, shown in Figure 22, is not caused by
high communication processor utilization, as Figure 20 shows. Instead, it is a function of both task
interactions and task placement. A task’s delay while awaiting a message may be caused by the
sending task’s contention for a computation processor on a remote node. Only after the sending task
acquires its local processor and executes sufficient code to reach the message transmission event can
the message be enqueued for transmission by the communication processor (i.e., processor waiting
can induce message waiting). The dependency chain of message waiting delays may include multiple
tasks. The larger computation granules of the MultiGrid tasks, reflected in the larger processor
waiting times of Figure 21 is a contributing factor to larger message delays. Thus, load balance is
insufficient to minimize message waiting delays.

Analysis of the MultiGrid program reinforces the lessons gleaned from the Minmax program,
namely that informationless strategies such as GR are robust when placing widely varying workloads
and that the load information used to place tasks must be accurate; ideally it should be augmented
with information concerning tasks enroute to other nodes. Finally, no placement method can quickly
disperse tasks if the task creation tree is degenerate. This degeneracy can be corrected in several
ways. The simplest requires the programmer or language system to impose a divide-and-conquer
task creation mechanism, if permitted by the task semantics. However, the crux of the problem is
limited message transmission capability, even though our simulated architecture includes aggressive
assumptions about message latency and bandwidth.

A better solution is load redistribution via task migration. Typically, task migration is used to
balance processor load. However, consider the benefits of balancing communication performance
as well. If the MultiGrid tasks that are the progenitors of most other tasks were migrated to
other nodes after creating a number of tasks, they could continue to execute, creating additional
tasks there. Such a migration would effectively multiply the task placement rate because additional
nodes could now participate.

37

é -
7 Conclusions

It is foolhardy to draw strong conclusions from a small sample size; however, we purposefully
varied the parameters of our sample workloads and simulated architecture to cover a broad range
of behavior and possible designs. From our studies, we believe effective workload distribution
strategies should place new tasks globally, rather than locally, to spread tasks rapidly. This is
particularly important with the high latency networks in common use, where repeatedly transferring
tasks consumes considerable resources. We also believe informationless strategies are competitive
with those that rely on distributed load metrics; this is particularly true if the time constant for
information propagation is greater than the expected time between gross changes in the system
state.

As part of our ongoing study, we are examining task migration strategies that respond to a
variety of resource constraints, including processor utilization and message transmission delay. We
hope such strategies can refine a coarse task distribution, produced by an initial task placement
strategy (e.g., one of the strategies described in this paper), using information about task dynamics
to move tasks after they have begun execution. This is particularly important in the absence of
a priori information on task lifetimes and interactions; in these cases, few placement methods will
provide satisfactory performance. In addition, we are exploring new network topologies, includ-
ing two-dimensional meshes, and we are examining task placement algorithms for heterogeneous
systems.

Finally, we believe a detailed examination of system dynamics is crucial to understanding the
performance of task distribution methods. We have found it exceedingly difficult to infer the reasons
for poor or highly variable performance without this information. By their nature, these transient
characteristics are difficult to model and can dramatically affect performance. Only by studying
actual programs will we be able to design and refine effective load distribution methods.

References

[1] AMBTEK. The Ametek System 1§ Users Guide. Ametek Computer Research Division, May
1986. Document No. V12970.

[2] ARLAUSKAS, R.iPSC/2 System: A Second Generation Hypercube. In Proceedings of the Third
Conference on Hypercube Concurrent Computers and Applications, Volume I (Pasadena, CA,
January 1988), ACM, pp. 38-42.

[3] ATHAS, W., AND SEITZ, C. Cantor User Report, Version 2.0. Tech. Rep. 5232:TR:86,
California Institute of Technology, Department of Computer Science, January 1987.

[4] ArHAS, W. C., AND SEITZ, C. L. Multicomputers: Message-Passing Concurrent Computers.
IEEE Computer (August 1988), 9-24.

[5] CARRIERO, N.; AND GELERNTER, D. Linda in Context. Communications of the ACM 32, 4
(April 1989), 444-458.

[6] CarrOLL, M. A Comparison of Two Dynamic Load Balancing Schemes for Multiprocessor
Systems. Master’s thesis, University of Illinois at Urbana-Champaign, 1987.

38

[7]

[8]

[9]

[10]

[11]

[12]

(13]

(17]

(18]

[19]

CHIEN, A. A., AND DarLLy, W. J. Experience with Concurrent Aggregate (CA): Implementa-
tion and Programming. In Proceedings of the 5% Distributed Memory Computing Conference
(April 1990), Association For Computing Machinery, pp. 1040-1049.

Crow, E., Mabpen, H., PeTERsoN, J., GRUNWALD, D., aAND REED, D. Hyperswitch
Network for the Hypercube Computer. In Proceedings of the 15" International Symposium on
Computer Architecture (June 1988), pp. 90-99. to appear in IEEE Transactions on Computers.

Eacer, D. L., LaAzowska, E. D., AND ZAHORIAN, J. A Comparison of Receiver-Initiated
and Sender-Initiated Adaptive Load Sharing. Performance Evaluation 6, 1 (March 1986),
53-68.

Eacer, D. L., Lazowska, E. D., AND ZAHORJAN, J. Adaptive Load Sharing in Homogenous
Distributed Systems. IEEE Tranactions on Software Enginerring SE-12, 5 (May 1986), 662
675.

GrABAS, D. Design and Evaluation of a Performance Data Capture Program. Master’s thesis,
University of Illinois at Urbana-Champaign, Department of Computer Science, August 1989.

GriMsHAW, A. The Mentat Run-Time System: Support for Medium Grain Parallel Com-
putation. In Proceedings of the 5t* Distributed Memory Computing Conference (April 1990),
Association For Computing Machinery, pp. 1064-1073.

GRrUNWALD, D. C. Heuristic Load Distribution in Circuit Switched Multicomputer Systems.

PhD thesis, University of Illinois at Urbana-Champaign, Department of Computer Science,
August 1989.

GRUNWALD, D. C., AND REED, D. A. Analysis of Backtracking Routing in Binary Hypercube
Computers. Tech. Rep. UIUCDCS-R-89-1486, University of Illinois at Urbana-Champaign,
November 1987.

GruNwaLD, D. C., AND REED, D. A. Benchmarking Hypercube Hardware and Software. In
Hypercube Multiprocessors (1987), M. Heath, Ed., Society for Industrial and Applied Mathe-
matics, pp. 169-177.

GruUNWALD, D. C., AND REED, D. A. Networks for Parallel Processors: Measurements and
Prognostications. In Proceedings of the Third Conference on Hypercube Concurrent Computers
and Applications, Volume I (Pasadena, CA, January 1988), ACM, pp. 610-619.

Haves, J. P., MubGe, T., StouT, Q. F., CoLLEY, S., AND PALMER, J. A Microprocessor-
based Hypercube Supercomputer. IEEE Micro 6,5 (October 1986), 6-17.

KALE, L. V. Parallel Architectures for Problem Solving. PhD thesis, State University of New
York at Stony Brook, December 1985.

Karg, L. V. Comparing the Performance of Two Dynamic Load Distribution Methods.
Tech. Rep. UIUCDCS-R-87-1776, University of Illinois at Urbana-Champaign, Department of
Computer Science, November 1987,

39

[20] KALE, L. V., AND SHU, W. The Chare-Kernel Language for Parallel Programming: A
Perspective. Tech. Rep. UIUCDCS-R-89-1451, University of Illinois at Urbana-Champaign,
Department of Computer Science, May 1989.

[21] KELLER, R., LIN, F., AND TANAKA, J. Rediflow Multiprocessing. In CompCon ’84 (1984),
pp. 410-417.

[22] KraTZER, A., AND HAMMERSTROM, D. A Study of Load Leveling. In Compcon 79 (Fall
1980), IEEE, pp. 647-654.

[23] LILLEVIK, S. L. Touchstone Program Overview. In Proceedings of the 5" Distributed Memory
Computing Conference (April 1990), Association For Computing Machinery, pp. 647-657.

[24] LiN, F. C. H. Load Balancing and Fault Tolerance in Applicative Systems. PhD thesis,
University of Utah, June 1985.

[25] Lin, F. C. H., AND KELLER, R. M. The Gradient Model Load Balancing Method. IEEE
Software SE-13, 1 (January 1987), 32-38.

[26] Nazier, B. A. A. Load Distribution in Multicomputer Systems. PhD thesis, University of
[linois at Urbana-Champaign, Department of Computer Science, Sept. 1991.

[27] RAMKUMAR, B., AND KALE, L. V. Compiled Execution of the Reduce-Or Process Mod-
el on Multiprocessors. Tech. Rep. UITUCDCS-R-89-1513, University of Illinois at Urbana-
Champaign, Department of Computer Science, May 1989.

[28] RATTNER, J. Concurrent Processing: A New Direction in Scientific Computing. In Proceedings
of the 1985 National Computer Conference (1985), AFIPS Press, pp. 157-166.

[29] ReED, D. A., AND FuiimoTo, R. M. Multicomputer Networks: Message-Based Parallel
Processing. The MIT Press, Cambridge, Mass., 1987.

[30] Serrz, C. L., Arnas, W. C., Fraic, C. M., MARTIN, A. J., SEizovic, J., STEELE,
C. S., AND Su, W.-K. The Architecture and Programming of the Ametek Series 2010 Multi-

computers. In Proceedings of the Third Conference on Hypercube Concurrent Computers and
Applications, Volume I (May 1988), ACM, pp. 33-36.

[31] Suu, W., aND KALE, L. V. Dynamic Scheduling of Medium Grained Processes on Mul-
tiprocessors. Tech. Rep. UIUCDCS-R-89-1528, University of Illinois at Urbana-Champaign,
Department of Computer Science, November 1989.

[32] SuLLivaN, H., AND Brasakow, T. A Large Scale Homogeneous Machine I & II. In Proc.
4th Annual Symposium on Computer Architecture (1977), pp. 105-124.

[33] TiLBORG, A. V., AND WITTIE, L. D. Wave Scheduling - Decentralized Scheduling of Task
Forces in Multicomputers. IEEE Transactions on Computers C-33, 9 (September 1984), 835—
864.

[34] VAN TiLBorG, A., AND WirTIE, L. D. Distributed Task Force Scheduling in Multi-
Microcomputer Networks. In Proceedings of the 1981 National Computer Conference (1981),
AFIPS, pp. 283-289.

40

