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Abstract. We present an algorithm that finds the edge connectivity A of a directed graph in time
O(Amlog(n?/m)) and is slightly faster on an undirected graph (n and m denote the number of
vertices and edges, respectively). This improves the previous best time bounds, O(min{mn, \?n?})
on a directed graph and O(An?) on undirected. We present an algorithm that finds k edge-disjoint
arborescences on a directed graph in time O((kn)?). This improves the previous best time bound,
O(kmn + k3n?). Unlike previous work, our approach is based on two theorems of Edmonds that

link these two problems and show how they can be solved.

* Research supported in part by NSF Grant No. CCR-8815636.



1. Introduction.

The starting point of this work is two characterizations of Edmonds for packing arborescences.
Consider a directed graph G = (V, E). An arborescence is a directed spanning tree, i.e., an acyclic
subgraph where some vertex a has in-degree zero and every other vertex has in-degree one. We
sometimes write a-arborescence and call a the root. The arborescence packing problem for vertex a
is to construct the greatest possible number of edge-disjoint a-arborescences. An a-cut is the set
of edges directed from V — § to §, where vertex set § satisfies § # § C V — a. Edmonds’ first

characterization for packing arborescences is in terms of cuts.

Cut Characterization. In a directed graph the maximum number of edge-disjoint a-arborescences

equals the minimum cardinality of an a-cut.

Edmonds gave an algorithmic proof using first principles of graph theory [Ed72] (the algorithm is
involved and seems to use exponential time in the worst case). Alternative proofs are in [F, Lo,
TL].

The edge connectivity of a directed graph G, denoted A or A(G), is the smallest number of
edges whose deletion leaves a graph that is not strongly connected. Such a set of A edges is a
connectivity cut. G is k-edge-connected if A > k. Clearly A is the minimum cardinality of an a-cut
in either G or G with all edges reversed. Thus the Cut Characterization gives a way to compute
edge connectivity. This observation also holds for undirected graphs G (since the edge connectivity

of G equals that of the directed graph where each edge is oriented in both directions).
To state Edmonds’ second characterization, recall that a spanning tree is a connected acyclic
spanning subgraph of an undirected graph. Throughout this paper we refer to a spanning tree (or

forest) of a directed graph — for this, simply ignore edge directions.



Matroid Characterization. The edges of a directed graph can be partitioned into k a-
arborescences if and only if they can be partitioned into k¥ spanning trees and every vertex except

a has in-degree k.

We call this the Matroid Characterization since the condition corresponds to a matroid intersection,
as indicated below. For k = 1 the Matroid Characterization is simply the definition of arborescence.
However for k£ > 2 the proof is not easy. Edmonds shows the Matroid Characterization follows from
the Cut Characterization [Ed69].

This paper gives two algorithms, corresponding to the two Characterizations. The algorithm
for the Matroid Characterization can be used to efficiently compute edge connectivity. The two
algorithms together can be used to efficiently pack arborescences. Both algorithms are based on
matroid theory. We now discuss the two algorithms and mention some related results. To state
resource bounds throughout this paper n and m denote the number of vertices and edges of the
given graph, respectively. Note that a directed graph has m > An, since every vertex has in-degree
at least A; similarly an undirected graph has m > An/2.

The algorithm corresponding to the Matroid Characterization finds k edge-disjoint spanning
trees such that every vertex other than a has in-degree k, and £ is as large as possible. This can be
done using an algorithm for maximum cardinality matroid intersection [Ed65] along with techniques
for efficiently implementing matroid intersection and matroid sum algorithms on graphic matroids
[GX89b, GW]. However we achieve much better efficiency with a different overall organization which
we call round robin. The algorithm using round robin runs in time O(km log (n?/m)). Round robin
is easy to program and uses only simple data structures, arrays and lists.

Round robin can be used to find the edge connectivity, as observed above. The algorithm also
produces a connectivity cut. The time is O(Amlog (n?/m)). For undirected graphs a preprocessing
step reduces the time to O(m+ A?nlog(n/\)) (since m = Q(An) this is at most the previous bound
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and can be smaller). Alternatively round robin can check if a graph is k-edge-connected. The
time is given by changing A to k in the above bounds. For instance round robin can check if an
undirected graph is k-edge-connected, for any constant k, in time O(m + nlogn).

Let us summarize previous work on edge connectivity. Early algorithms for computing edge
connectivity are given in [ET, Sch]. The best-known time bound for finding the edge connectivity
of an undirected graph is O(An?); since m = Q(An), this bound is also O(nm). The latter bound
was first achieved by Podderyugin [P], the former by Karzanov and Timofeev [KT] (improving
[Ti]). Matula [M87] rediscovered both bounds independently. Mansour and Schieber generalized
Matula’s work to directed graphs, achieving time O(min{mn, A2n?}) [MS]. These bounds apply to
checking if a graph is k-edge-connected, changing A to k. An undirected graph can be checked to
be 2- or 3-edge-connected in time O(m) ([GI] reduces checking 3-edge-connectedness to checking
3-vertex-connectedness).

Recently Nagamochi and Ibaraki have given a linear-time graph searching algorithm that is
helpful in computing edge connectivity of undirected graphs [NI89a]. We use their algorithm in
our undirected connectivity algorithm. An application of Matula [M90] is discussed in Section 4.
[NI89b] uses it to find a minimum cut on graphs with large capacities (this does not improve any
of the above bounds).

All the above general edge connectivity algorithms (but not [NI89a-b]) are based on network
flow and Menger’s Theorem rather than Edmonds’ Characterizations. Recall that Menger’s The-
orem characterizes the size of a smallest ab-cut (where for given vertices a and b, an ab-cut is a
set of edges intersecting every path from a to b) [Ev]. This gives a less direct characterization
of edge connectivity, leading to less efficient algorithms. Our time bound is asymptotically never
larger than any of the above general bounds and it is smaller for graphs with m = o(n?) (since
Amlog(n?/m) is O(An?) and is o(An?) when m = o(n?)).

Our algorithm for the Cut Characterization arranges a set of edges into k edge-disjoint arbores-
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cences, if possible. It runs in time O((kn)?). Thus our two algorithms together find k edge-disjoint
arborescences in a given graph in total time O((kn)?), if they exist. This improves the previous
best-known bound O(kmn + k3n?) due to Tong and Lawler [TL]. Earlier packing algorithms in-
clude [T74, Sh]. For the special case k = 2 Tarjan gives an algorithm that runs in time O(m)
if a linear-time set merging algorithm is used [T76, GT]. Our two step approach to packing also
facilitates finding a minimum cost packing (see Section 4).

The analysis of our algorithms gives a new proof of the two Characterizations, so our develop-
ment is self-contained. The remainder of this paper is organized as follows. Section 2 presents the
round robin algorithm for the Matroid Characterization, and the edge connectivity algorithms. Sec-
tion 3 presents the arborescence packing algorithm, and proves the two Characterizations. Section
4 states several extensions of the results of this paper. The rest of this section gives notation and
reviews matroids. Note that the paper is presented in terms of elementary graph theory. Material
on matroids is included to place the results in their proper setting, but our proofs do not logically
draw upon matroid theory.

If S is a set and e an element, S + e denotes S U {e} and S — e denotes S — {e}. The function
log n denotes logarithm base two.

For any graph G, V(G) and E(G) denote the vertex set and edge set of G, respectively; we
use V and E when the graph is understood. For vertices v and w, the notation vw denotes an
undirected edge joining v and w, or a directed edge from v to w; it will be clear from context which
is meant. A directed edge vw has tail v and head w.

Consider a directed graph on vertices V' and a subset of vertices . p(S) denotes the set of
all edges directed from V — § to §; if F' is a set of edges then pp(S) denotes p(§) N F. In these
notations we abbreviate an argument {v} to v, e.g., pr(v); also for a set of edges L we abbreviate

an argument V(L) to L, e.g., pp(L). The function é is analogous to p for edges directed from a

set; thus 6(5) = p(V - 5).



Introductory treatments of matroids are given in [L76, R, W]. A matroid consists of a finite
set S and a family of subsets of § called independent sets, that satisfy simple axioms. This paper
works with several specific matroids, so we concentrate on describing them rather than matroids
in general. The graphic matroid of an undirected graph G, denoted G(G) (or G when the graph is
understood) has § = E(G) and independent sets the forests of G. A partition matroid on a set §
is determined by a partition of S into sets 5; and nonnegative integers d;, t = 1,...,p; AC §is
independent if |A N S;| < d; for each .

For matroids M;, ¢ = 1,...,k on the same set S, the matroid sum \/f=1 M; is a matroid on §,
whose independent sets are all subsets of S that can be partitioned into k£ subsets, the ith subset
independent in M;. A special case is the k-fold sum of a matroid M, Vf=1 M, also denoted M*.
For example an independent set of G* is a subgraph that can be partitioned into k forests. For
matroids M;, 1 = 1,2 on S, a (matroid) intersection is a subset of S that is independent in both
M;; the set of all such intersections is denoted M; N M;. (This is not a matroid.) Polynomial-time
algorithms for finding a maximum cardinality independent set of a matroid sum or a maximum
cardinality matroid intersection are due to Edmonds [Ed65]; more efficient algorithms are in [GW,
GX89a-b].

Let A be a set of elements of S for an arbitrary matroid. If A is independent and spans an
element e, then C(e, A, M) denotes the fundamental circuit of e in A. We drop the last argument
M when it is clear from context. For example in a graphic matroid with edge e and spanning tree

T, C(e,T) (or C(e,T,G)) is the fundamental cycle of e in T'.

2. The round robin algorithm and edge connectivity.
This section presents the round robin algorithm and uses it to solve the intersection problem

for the Matroid Characterization. Then it applies round robin to compute edge connectivity.

The bulk of the section is devoted to round robin and the intersection problem. It is organized
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in a top-down fashion as follows. It starts by reviewing facts about matroids, giving a definition of
augmenting path and a labelling algorithm to find such a path. Then a basic lemma is proved. This
leads to the round robin algorithm. To make round robin efficient a refined labelling algorithm, the
“cyclic scanning algorithm”, is presented. To make that efficient the “cycle traversal algorithm” is
presented, along with the “augmenting algorithm”. Thus the final algorithm at the highest level
is round robin, with portions implemented by the cyclic scanning algorithm, the cycle traversal
algorithm, and the augmenting algorithm. Although the first labelling algorithm is not used we
present it to achieve a simple proof of the basic lemma, which is fundamental to our study.

We begin by defining our matroid intersection problem and briefly reviewing matroid inter-
sections and sums. Fix a directed graph G with a distinguished vertex a. Let k be any positive
integer. Define G¥ and D* to be matroids over the edge set E(G) as follows. G* is the k-fold sum
of the graphic matroid of G. D* is the partition matroid where an independent set contains no
edges of p(a) and at most k edges of p(v) for every v # a (DF is easily seen to be a k-fold sum). A
k-intersection (for a on G) is a set in G¥ N D¥, i.e., it can be partitioned into k forests and contains
at most k edges directed to any vertex but none to a. A k-intersection is complete if it contains
precisely k(n — 1) edges. Thus the Matroid Characterization corresponds to finding a complete
k-intersection. We do this by finding a maximum cardinality intersection.

Let us review the algorithm to find a maximum cardinality matroid intersection, specialized
to G¥NDF. (For a complete discussion of the general matroid algorithm see e.g. [L75; L76, Section
8.4; R, Section 13.1].) The algorithm maintains a k-intersection T’ partitioned into forests Tj,
-4 = 1,...,k. (As already mentioned the directions of edges in these forests is irrelevant.) The
algorithm repeats the following step: Search for an “augmenting path” P. If P is found then
“augment T along P”, thereby enlarging T' by one edge; then repeat the step. If no augmenting
path exists then halt with the maximum cardinality intersection T'.

Before defining the notion of augmenting path we describe how T is enlarged. Let z be a vertex
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with |pr(z)| < k. We wish to enlarge T' by one edge, increasing the in-degree of z by one. To do
this an edge e; € p(z) — T is added to some forest T;. If this results in a new forest we are done.
Otherwise adding e; creates a cycle, which is broken by removing some edge e; from T;. Edge e
is treated in one of two ways. It can be added to another forest T}; this is done using the above
procedure for adding e;. Alternatively it can be deleted from T'; if ey is directed to vertex y, this
decreases the in-degree of y; this is remedied by adding an edge e3 € p(y) — T, using the above
procedure for adding e;. This pattern continues until some edge e, is added to a forest without
creating a cycle. In this case the sequence ey,...,e, is an augmenting path P; the process just
described is called augmenting T along P.

Now we give the precise meaning of these terms. Let z be a vertex with |pr(2)| < k. A partial

augmenting path P from z is a sequence of edges e;, 7 = 1,...,£ satisfying the following conditions.

(i) e1 €p(2)-T.
(#¢) For each ¢ < £ either
(a) eiy1 € C(ei,Tj,G), where T; contains e;41 but not e;, or
(b) €;41 is directed to the same vertex as e;, where T' contains e; but not e;41.
(74¢) A pair e;,e;41 as in (id.a) is called a swap; to ezecute the swap is to replace e;+1 in T; by

e;. Then executing each swap of P gives a new collection of forests.

Note that in condition (¢i.a) it is implicit that the fundamental cycle C(e;, T}, G) exists. (If it
does not then P is an augmenting path, defined below.) It is easy to see that each edge of P is in
one or two swaps. Also in (#7i) each of the new forests T; spans precisely the same vertices as its
original counterpart.

Condition (77) is essential and is not implied by the others. It can be guaranteed by any of
several rules, e.g., path P has no “shortcuts” (i.e., no subsequence of P satisfies the definition) or
P is formed using the cyclic scanning rule [RT, GW, and the references of RT] or the topological
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numbering rule [GX89a-b]. This paper uses the first two rules.

An edge is joining (for T}) if its ends are in different subtrees of forest T,. An augmenting
path P from z is a partial augmenting path from z containing precisely one joining edge, the last
edge e;. To augment T along P is to execute each swap of P and add e, to T}, where ¢, is joining
for T},. Clearly augmenting 7" along P makes T to a new k-intersection T'. T’ contains one more
edge than T since the in-degree of z increases by one and no other in-degree changes.

The reader familiar with matroids will observe that in our definition of augmenting path, a
maximal subsequence of edges e;, ¢ = r,...,8 with each consecutive pair forming a swap corre-
sponds to the condition e; € C(e,,T,G*) in the matroid definition of augmenting path (so edges
€rt1,-..,€s-1 do not appear in the matroid definition). Also condition (7i.b) essentially corre-
sponds to the condition e; € C(ei41,T,D*) in the matroid definition of augmenting path. A slight
difference is that if e; and e;4q are directed to z, the matroid definition requires that |pr(z)| = &,
which we do not require. This relaxation is for convenience and causes no harm: if |pr(z)| < k then
the augmenting path could actually begin with edge e;4+1. (Our definition simplifies the statement
of Lemma 2.1.)

The definition of augmenting path indicates how to search for such a path. We give a high-level
description of the search for P. (A more efficient algorithm, cyclic scanning, is given below.) The
data structure consists of a label for each edge: if edge f has the label e then there is a partial
augmenting path ending with edges e, f. The labels allow the augmenting path P to be traced out,
starting from its last edge. We now sketch an algorithm that specifies L, the set of edges that get
labelled in this search. It is a simple matter to assign appropriate labels.

The labelling algorithm works as follows. Consider a k-intersection T' partitioned into forests
T;yi=1,...,k. Let z be a vertex having |pr(z)| < k. To search for an augmenting path from z,

initialize a set of edges L to p(z) — T. Then repeat the following step until it halts:



L Step. If L contains a joining edge then halt (the search is successful). Otherwise add
U{C(e,Ti,G) | e € L — T;} — L to L. If no edge has been added to L then halt (the search is

unsuccessful). Otherwise add J{p(v) — T | prnr(v) # 0} — L to L. L

We now give the properties of this algorithm. Recall that in any graph, a collection of trees
is cospanning (for S) if each tree has the same vertex set S. Let L denote the set of the labelling

algorithm when it halts.

(¢) In a successful search L contains an augmenting path from z.
(7¢) In an unsuccessful search L N T is a set of k subtrees of T that are cospanning for V(L).

Furthermore vertex v has p(v) =T C L if v = z or ppar(v) # 0.

Property (i¢) is proved as follows. First observe that for each ¢, LNT; is connected, i.e., LNT;
is a subtree. This follows by a simple induction (note that each L N T; spans vertex z). When the
algorithm halts unsuccessfully any edge of L is spanned by any subtree L N T3, i.e., the k subtrees
L NT; are cospanning for V(L). The second part of (i¢) is obvious.

Property (¢i) can be used to show that in an unsuccessful search there is no augmenting path
from z. We do not use this fact; instead we prove the stronger Lemma 2.1 below.

Next consider property (¢). Let e be the first joining edge to enter L and let P be the sequence
of edges corresponding to the label of e (assume the algorithm generates appropriate labels). It
is clear that P satisfies all the defining conditions of an augmenting path except possibly (7).
Condition (#3¢) will be clear to readers familiar with the matroid intersection algorithm (P has no
shortcuts if one views the matroid G* as a direct sum of k copies of G and D as a direct sum of a
truncation of a partition matroid for each vertex). For completeness we provide a proof, based on
a notion that is useful later on.

Let P satisfy all the conditions for an augmenting path except possibly (zi¢). In addition
suppose P is G-shortcut free, i.e., for any swap g, h in P with h € T}, no edge following h in P is in
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C(g,T;). Then P satisfies (i77) and is a valid augmenting path. We give a simple proof, similar to
[L76]. Note this completes the proof of property (7) for the labelling algorithm, since its paths are
G-shortcut-free if labels are assigned in the natural way. (Most treatments of matroid intersection
use a different notion that might be termed “G*-shortcut free”, i.e., if g, h is a swap then no edge
following h in P is in C(g, T,G*).)

Given P that is G-shortcut free, augment along P in reverse, i.e., first add the joining edge of
P to the appropriate T} and then execute the swaps of P in reverse of their order along P. We
prove by induction that each change to T gives a new k-intersection, thus establishing (¢¢7). (Note
that when swaps are executed in reverse order an edge e; in two swaps of P will have two copies in
the intersection after swap e;, e;4; is executed but before swap e;_1,e; is executed. This causes no
harm.)

For the base case of the induction note that adding the joining edge of P gives a new k-
intersection. For the inductive step consider a swap g, h of P. Immediately before we execute this
swap C(g,T;) is the same as it was before the augment began. This follows since P is G-shortcut-
free. Thus executing swap g, h keeps T; a valid forest. We conclude that P is a valid augmenting
path.

This completes our review of matroid theory. Now we give the basic lemma. Let G be a
directed graph with distinguished vertex a and let T be a k-intersection for a. Use the labelling
algorithm to search for an augmenting path from a vertex z # a with |pr(z)| < k. Let L denote

the set of the labelling algorithm when it halts.

Lemma 2.1. In an unsuccessful search, an a-cut with less than & edges is formed by p(L)if L # §,

or p(z)if L = 0.

Proof. If L = () then z has in-degree less than k, by property (77) of the labelling algorithm. Thus
p(2) is the desired a-cut.
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Now suppose L # 0. Let £ = |V(L)|. By property (i), L N T forms k subtrees of T that are
cospanning for V(L). These subtrees contain k(£ — 1) edges, each of which is in prnr(z) for some
z € V(L). Strictly more than k(£ — 2) of these edges are in prnr(2) for some 2 € V(L) — 2. Since
lpLar(2)| < k, all £ — 1 vertices z € V(L) — z have prar(z) # 0.

We draw two consequences from this fact. First the fact clearly implies that a ¢ V(L). Thus
p(L) is an a-cut. Second with property (i¢) the fact implies that every z € V (L), including 2, has
p(z) =T C L. Thus p(L) = pr(L). Since z € V(L), |pr(L)| < k€ — k(€ — 1) = k. In other words

p(L) is an a-cut containing less than k edges. L

The following result is an obvious consequence of Edmonds’ Characterizations. We give a short
proof (Section 3 then uses it prove Edmonds’ Characterizations). The proof also gives a simple

version of our algorithm.

Corollary 2.1. A directed graph G contains a complete k-intersection for a if and only if any a-cut

contains k£ or more edges.

Proof. Consider the “only if” direction. Let T be a complete k-intersection and let the vertex set
S determine an a-cut p(5); let s = |S|. Precisely ks edges of T have their head in §. At most s—1
edges of each tree of T have both ends in S. Thus |p(S5)| > ks — k(s — 1) = k as desired.

For the “if” direction consider the following algorithm to find a complete k-intersection. Let
T be a k-intersection. Stop if it is complete. Otherwise choose a vertex z # a with |p7(2)| < k.
Use the labelling algorithm to search for an augmenting path from 2. If successful then augment
the intersection and repeat. If unsuccessful then halt.

If any a-cut contains k or more edges the algorithm finds a complete k-intersection, by Lemma

2.1. This proves the “if” direction. L

We now present the round robin algorithm. It is an efficient implementation of the algorithm
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of Corollary 2.1. Its input is a complete (k — 1)-intersection partitioned into ¥ — 1 spanning trees.
Its output is a similar partitioned complete k-intersection if such exists. Thus to find a complete
k-intersection from scratch, start with £ = 1 and repeatedly execute round robin until the desired
value of k is reached.

Round robin maintains a k-intersection T partitioned into spanning trees T;, i =1,...,k — 1
and a spanning forest Tx. The goal is to enlarge T to a spanning tree. An f-tree is a subtree of
forest Tx. (Thus an edge is joining if and only if its ends are in different f-trees.) Two invariants
on the in-degrees are maintained: Each vertex v # a has |pr(v)| equal to k — 1 or k; each f-tree has
precisely one vertex z with |pr(2)| < k. The notation F, denotes the f-tree having z as its unique
vertex of in-degree less than k. Note that z is either a or a vertex of in-degree k — 1.

The algorithm is organized as a sequence of “rounds”. At the start of a round every f-tree
except F, is active; an f-tree created during the round is not active. The following version of round
robin is efficient for graphs that are not extremely dense. (Below we give another version of round

robin with better performance on dense graphs.)

Round robin initializes T' to contain the given (k — 1)-intersection plus T}, a forest consisting

of all the vertices and no edges. Then it repeats the Round Step until the algorithm halts.

Round Step. If T}, is a spanning tree then halt (T is a complete k-intersection). Otherwise make

all f-trees except F, active. Then repeat the Augment Step until no f-tree is active or it halts.

Augment Step. Choose an active f-tree, say F,. Search for an augmenting path P from z. If P does

not exist then halt (no complete k-intersection exists). Otherwise augment intersection T along P.

We comment briefly on the Augment Step. The last edge e of P joins F), to another f-tree F;
it can be in p(F;) or 6(F,). The augment adds e to T}, forming a new f-tree. The edges of F, may
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change in the augment but its vertices do not, so the new f-tree has vertices V(F,) UV (Fy). The
new f-tree is inactive.

In an augment |pr(2z)| changes only for # = z, for which |p7(z)| becomes k. Thus the new f-tree
has a unique vertex with in-degree less than k, preserving the in-degree invariants. Since round
robin implements the algorithm of Corollary 2.1 it is correct, i.e., it finds a complete k-intersection
if one exists.

The second version of round robin achieves better performance on dense graphs by making the
following change to the Round Step: At the start of the rth round make only f-trees with at most
2" vertices active. Clearly this version is also correct.

It remains to provide an efficient implementation of the Augment Step. The basic idea is
simple: A search for an augmenting path stops as soon as a joining edge is encountered. Thus an
edge is labelled only once per round, since it has an end in F,. Each edge is labelled in O(1) time.
This gives time O(m) per round.

Before providing the details let us analyze the efficiency of round robin. As mentioned we will
show that the time for the Augment Step amounts to O(m) per round for either version; also for
the second version the time is O(m, + 2"n) for the rth round, where m, is the number of edges
labelled in the rth round. Now we show these bounds imply the first version of round robin runs
in time O(mlogn), the second in time O(mlog(n?/m)).

There are at most [logn| rounds in either version of round robin. This follows since in the rth
round any f-tree other than F, has at least 2”71 vertices (in either version of round robin). This
gives the desired time bound for the first version of round robin since each round uses O(m) time.

To analyze the second version, obéerve that at most n joining edges get labelled in the entire
algorithm. In addition for any vertex z, the rth round labels at most 2" nonjoining edges in p(z)
and 2" nonjoining edges in §(z). This holds because each edge of p(z) comes from a different
vertex, and similarly for §(z). Thus m, = O(2"n) and the time for the rth round is O(2"n). Hence
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the first [log(m/n)] rounds use total time O(m). The number of remaining rounds is at most
[logn] — [log(m/n)] < 1+ log(n?/m). Since each such round uses time O(m) the total time is
O(mlog(n?/m)) as desired.

We turn to implementing the Augment Step. The main task is implementing the labelling
algorithm. We use two ideas. The first is cyclic scanning, a labelling method used in [RT, GW]
for matroid sum algorithms. (Our cyclic scanning algorithm differs slightly because of additional
constraints for efficiency.) The second idea is a fact about augmenting paths that allows them to
be found more efficiently. We first give the cyclic scanning algorithm, with some details at a high
level. We then use the second idea to implement cyclic scanning and achieve the desired efficiency.

The cyclic scanning algorithm implements the labelling algorithm by searching for a G-shortcut-
free augmenting path. The idea is to gain efficiency by propogating labels from T; only to Tj4q. It
uses the following data structures. Each edge of G has a label which, as in the labelling algorithm,
indicates how to construct the augmenting path; the label also indicates if the edge is labelled or
not. The algorithm maintains an invariant that for each 7 < k, the labelled edges of T; form a
subtree. There is a queue @ that contains labelled edges. In addition one element of @ may be a
“flag” (it separates the current group of edges from the next). A variable 7 indicates the current

tree T; for computing fundamental cycles.

The cyclic scanning algorithm works as follows. In an Augment Step to search for an augment-
ing path P from vertex z, initialize set A to the edges of p(2) — T, initialize  to empty, set e — A
and ¢ « 1. Execute the Label Step. If this step does not stop (it places the edges of p(z) — T in

@) then repeatedly execute the Cyclic_scanning Step until the algorithm stops.

Cyclic_scanning Step. If Q) is empty then stop (the search is unsuccessful). Otherwise remove the
first element e from Q. If e is a flag, add a new flag to the end of @, set ¢ « (i mod k) + 1 and
continue with the next Cyclic_scanning Step. If e is an edge then go to the Fundamental_cycle
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Step.

Fundamental_cycle Step. Let u be the end of e such that v # z and u is not on a labelled edge of
T;. If u does not exist then continue with the next Cyclic_scanning Step. Otherwise (u exists) let
A be the path of unlabelled edges of T; from z or a labelled edge to u. (We show below that u is

unique if it exists, in which case A is unique.)

Label Step. Examine the edges f of A in order, doing the following for each f. Assign the label
e to f. If f is a joining edge then make it the last edge of P and stop (the search is successful).
Otherwise add f to the end of @Q; furthermore if f € p(y) and no edge of p(y) — T is labelled then
do the following: For each edge g € p(y) — T, assign the label f to g; if ¢ is a joining edge then

make it the last edge of P and stop (the search is successful); otherwise add g to the end of Q.

The correctness of the cyclic scanning algorithm essentially follows from [RT, GW]. For com-
pleteness we outline the argument. The basic fact is that A contains precisely the unlabelled edges
in C(e,T;), where ¢ = (j mod k) + 1 and T contains either e, or if e ¢ T, the label of e. Prove
this by induction, with the help of the following inductive assertions: For each ¢ = 1,...,k define a
set of vertices L; to consist of z plus every vertex on a labelled edge of T;. (For convenience allow
subscripts ¢ > k; such an ¢ corresponds to the value 1+ (¢ —1) mod k.) Then at all times each L; is
a subtree of T;. Furthermore whenever the first element of @ is a flag f (i.e., ¢ is about to advance)
these two properties hold: each edge of @ contains a vertex in L;;1 or in a previous edge of @;

Liy1CLiyaC...C Liyp1 CL; CLipaUV(Q - f).
The argument also shows that as mentioned, u is unique in the Fundamental_cycle Step. Also since
each L; is a subtree, the path A is unique.

Now we show the cyclic scanning algorithm satisfies properties (i) — (¢7) of the labelling algo-
rithm. Property (¢) follows because P is G-shortcut-free (since every edge of A gets labelled). For
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property (7i) consider an unsuccessful search, i.e., the Cyclic_scanning Step stops with ¢ empty.
Let L denote the set of labelled edges. The above set inclusion shows that sets L;, j = 1,...,k are
equal, i.e., the labelled edges L N T; form k cospanning subtrees. The second part of (i) is clear.

This completes the analysis of the cyclic scanning algorithm.

To achieve the desired efficiency we implement the Fundamental_cycle Step so it traverses only
edges of C(e,T;) having a vertex in F, (traversing the entire fundamental cycle can be too time-
consuming if it contains a joining edge.) This also allows us to delay executing all augmenting paths
until the end of the round. (This simplifies the presentation.) We now present the cycle traversal
algorithm, which implements the Fundamental_cycle Step, and the augmenting algorithm, which

executes all augmenting paths.

The cycle traversal algorithm uses the following data structures. All trees of T" are rooted as
follows. For 7 < k the root of T; is vertex a. For each f-tree F,, add a new vertex 2’ with edge
2z’ and make 2’ the root. (This handles boundary conditions for terminating the traversal.) Each
vertex in each T}, ¢ < k has a parent pointer. For each edge e that is in a tree Tj, 7 < k, d(e) (its
“depth”) is the length of the path beginning with e and ending at the root (a or 2’). The vertices
of each f-tree F, are labelled with the value z. (None of these values change even as the algorithm
discovers augmenting paths, since all augments are executed at the end of the round.) For each
¢ < k, r; is the root of the subtree containing z and the labelled edges in T;.

In the algorithm below references to the Label Step mean the step of the cyclic scanning algo-
rithm, which does not change. Assume the above data structure is correct on entry. (Initialization

of data structures is discussed below.)

The cycle traversal algorithm implements the Fundamental_cycle Step as follows. It works in
tree T;, ¢ < k so terms like “tree path” and “ancestor” refer to T;. First determine vertex u for
edge e (see the Fundamental cycle Step). Suppose u exists (else stop). Traverse the tree paths

16



from 7; and u to the root concurrently; always traverse the edge with greater depth d(e) or in
case of a tie, traverse both edges. Stop as soon as an edge that is common, joining or labelled is
traversed. (Common means common to both paths. The deeper vertex of this first common edge
is the nearest common ancestor ¢ of r; and u. c is never the root a or 2. When both paths are at
the same depth check for a common edge before checking the other conditions.)

Suppose we stop because a joining edge f is traversed. Set A — {f} and go to the Label Step
(it stops successfully).

Suppose we stop because a common or labelled edge is traversed. (Every unlabelled edge in
C(e,T;) has been traversed, and there is no joining edge.) Set r; to the nearest common ancestor
of r; and u. Set A to the tree path of unlabelled edges from z or a labelled edge to u. Go to the
Label Step. (If a common edge has been traversed, with deeper end ¢ the nearest common ancestor
of r; and u, r; is set to ¢ and path A goes from 7; to ¢ to u. If a labelled edge f has been traversed,

r; does not change and A goes from the deeper end of f to u.) n

It is not hard to see that the cycle traversal algorithm correctly implements the Fundamen-
tal_cycle Step. If we stop because a joining edge f is traversed then f € C(e,T;) (the algorithm
has verified that f is on only one path). Note for later use that any other joining edge g € C(e,T;)
has d(g) < d(f). If we stop because of the other conditions, every unlabelled edge of C'(e, T;) gets
placed in A. (The end of e opposite u, say w, is in the subtree of labelled edges of T;. Hence the
path from w to r; can be ignored.) We conclude that the cycle traversal algorithm is correct. This
finishes the implementation of the labelling algorithm.

Now we describe how the augmenting algorithm updates the intersection at the end of the
round. To represent the new intersection we must update the parent pointers of T and the depth

function d. Assume each successful search ends by recording the last edge of the augmenting path.

The augmenting algorithm proceeds as follows. For each ¢ < k compute T7, the set of edges in
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T; after all augments have been done. Do this by using edge labels to trace out each augmenting
path and transfer edges appropriately. Then do the following for each 7} that has changed from
T;: Place the edges of T/ in an adjacency structure and do a depth-first search to determine new
parent pointers and d values for T/ (start the search from root a for ¢ < k and roots 2’ for i = k).
At this point it is also convenient to erase all edge labels, and in each (new) f-tree F, set all vertex

labels to z, in preparation for the next round. L

It is not entirely obvious that this approach is correct: Augmenting a path changes the inter-
section, and conceivably this can invalidate swaps of subsequent augmenting paths. However we

show this does not occur.

Lemma 2.2. The augmenting algorithm constructs a new k-intersection.

Proof. We begin with two definitions. For each index ¢ < k define a tree J; by contracting each
nonjoining edge of T;. Thus J; is a rooted tree; each of its edges is a joining edge; each of its vertices
corresponds to a set of vertices of G' contained in one f-tree. For a rooted tree R and a real-valued
function d on E(R), say d is a valid depth function for R if d decreases strictly along any path to
the root (i.e., if edge e is followed by e’ then d(e) > d(e')).

Augment the paths P one by one; to augment P, execute its swaps in reverse of their order
along P, and then add the joining edge of P. At any time in this process let 7' be the current
intersection, with forests T}, ¢ < k; define J; similar to J;, for i < k. We prove by induction that
each change makes the new T’ a valid intersection. In addition we prove two auxiliary assertions
concerning depths in J!: d is a valid depth function on J!, and the deeper end of an edge in J]
contains its deeper end in J;. (For the second assertion note that any edge in J/ is in J; and its ends
are sets of vertices of G. The main significance of this assertion is that the deeper and shallower
ends of an edge never get interchanged; in general a swap interchanges these ends for some edges.)
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Consider an augmenting path P from z. Let e, f be a swap of P with f € T;, 1 < k. First
suppose that f is the joining edge of P. (Such a swap is last in P. It may not exist since the last
two edges of P may satisfy condition (ii.b) of the definition of augmenting path.) Let e be edge
z12,. For j = 1,2 let z; be in the deeper end of edge f; in J;. We can assume d(f;) > d(fz) and
f = fi # f2 by the cycle traversal algorithm (see the proof of correctness). By induction z; is in
the deeper end of f; in J; (note that each f; is in J}). Since d is a valid depth function for J; this
implies f = f1 € C(e,J!). Thus f € C(e,T}). In other words e, f is a valid swap.

For J! the effect of executing swap e, f is that edge f = f; is deleted and the vertices containing
x;1 and z, get contracted together. Since d(f1) > d(f2), d remains a valid depth function. Since
21 is in the deeper end of f;, no shallower end of an edge becomes the deeper end, so the second

assertion on J/ holds.

Next suppose that edge f of swap e, f is not joining. Thus all edges of C(e,T;) have both
vertices in F, (by the cycle traversal algorithm). Clearly fundamental cycle C(e, T;) is not changed
by any preceding augmenting path. It is not changed by a preceding swap of P, which is G-shortcut-
free. Thus swap e, f is valid. Since all edges of C(e,T;) are nonjoining, the swap does not change
Ji.

Finally consider adding the joining edge of P to T}. Clearly this does not create a cycle in T}.

The effect on J/ is that some edges become nonjoining and so get contracted. This preserves the

two properties for J;. This completes the induction. n

Clearly the augmenting algorithm enlarges the intersection by one edge for each augmenting
path. Thus it is correct.

The data structures of the algorithm are initialized as follows. To prepare for the first round
initialization similar to the augmenting algorithm is done at the start of round robin. When the
Augment Step begins a search for an augmenting path from vertex z, it sets each r; — 2,1 < k.
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This concludes the detailed implementation of round robin. (Another version of round robin
augments each path upon discovery. When programmed carefully the efficiency of this version is
the same. A similar analysis applies.)

We now justify the timing analysis already given for round robin. We must show that the total
time for round robin amounts to O(m) per round for either version; also for the second version,
time O(m, + 2"n) for the rth round, where m, is the number of edges labelled in the rth round.
(The timing analysis already given also assumes that an edge is labelled only once per round. We
have already mentioned that the cycle traversal algorithm achieves this since a labelled edge has
its deeper end in F}.)

To compute the time first consider initializations. At the start of round robin initializing parent
pointers, d values and vertex labels uses time O(kn). At the start of a search for an augmenting
path initializing r; values uses time O(k), giving total time O(kn). Thus initializations amount
to O(kn) time total. This contribution can be absorbed in the bound for the last round, since
O(kn) = O(m) = O(n?).

We now show that the time to search for all augmenting paths in the rth round is O(m;, + n),
which is also O(m). The Label Step uses time O(m,). The time for the cycle traversal algorithm
is proportional to the number of edges that get placed in A plus additional edges of F, traversed
when a joining edge is found. There are at most m, edges of the first type, since each gets labelled.
There are at most n edges of the second type, since each has its deeper end in F.

Finally consider the time for the augmenting algorithm. The new edge sets T} are constructed
in time O(m, ). Suppose that ¢ edge sets T} differ from T; (¢ > 1 since T changes). Then the time
to construct the new data structure is O(cn). Since ¢ < k, O(cn) = O(m). This implies the first
bound for the time of a round. Thus it remains only to show that ¢ = O(2") for the second version
of round robin.

Recall from the analysis of cyclic scanning that at all times the labelled edges in T; form a
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subtree of T;. Each such subtree contains an edge of p(2)Ué(z). The analysis of the second version
of round robin shows that at most 2"*! 4 1 such edges are labelled in the search for an augmenting

path from z (the term of 1 allows for a joining edge). Thus ¢ = O(2").

Theorem 2.1. A complete k-intersection, if it exists, can be found in time O(mlog(n?/m)) given

a complete (k — 1)-intersection or time O(kmlog(n?/m)) starting from scratch. The space is O(m).

Although round robin is most efficient on graphs it extends to multigraphs. Represent a
multigraph by associating a multiplicity with each edge. The first version of round robin works
correctly. It is implemented by representing each tree T; explicitly and each edge of G — T by
storing its multiplicity. In each round an edge of G — T is examined only once. Thus the time to
find a complete k-intersection is O(k(m + kn)logn). The space is O(m + kn). The second version
of round robin speeds up the processing of edges of G — T but not T'. Thus it improves the time
to O(k(mlog(n®/m)+ knlogn)). If each multiplicity is at most d then the logn factor decreases
to log(dn/k) (since the ith round spends O(2'dn) time on edges of T, whence the first [log(k/d)]
rounds spend O(kn) time on T').

We also mention a type of multigraph used extensively in [G]. Suppose every edge with
multiplicity greater than one is incident to the distinguished vertex a. Then the time is
O(k(mlog(n?/m)+ kn)). This follows since any edge from a is joining.

We turn to edge connectivity. We first compute the edge connectivity of a directed graph G.
Choose an arbitrary vertex a; let G™ denote graph G with the direction of each edge reversed. For
k starting at one and assuming successively larger values, execute round robin on both G and G”.
Stop upon finding the smallest value & such that G or G” does not have a complete k-intersection.
Then A = k — 1 by Corollary 2.1. Furthermore Lemma 2.1 shows that the edges labelled in the
unsuccessful search determine a cut of A edges, i.e., a connectivity cut. Clearly the time for the
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entire procedure is O(Amlog(n?/m)).

Next consider an undirected graph G. As noted in Section 1 the above procedure correctly
computes A(G) and a connectivity cut for G when applied to the directed graph where each edge
has both orientations. An obvious practical simplification is that the reverse graph G" need not
be processed. More importantly we can use the following lemma of [NI89a, Th]: Partition E(G)
into a sequence of spanning forests F;, ¢ = 1,...,n; do this by letting F; be a maximal spanning
forest of G' and proceeding recursively on G — Fj. It is easy to see that G is k-edge-connected (i.e.,
A(G) > k) if and only if Ule F; is k-edge-connected.

This implies we can compute the edge connectivity of an undirected graph G as follows. First
find the spanning forests F;. Initialize a directed graph D to contain vertices V(G) and no edges,
and an intersection 7' to contain no edges. Then for k starting at one and assuming successively
larger values do the following: Add each edge of E(Fj) in both orientations to D; execute round
robin to enlarge T to a complete k-intersection for D. Stop when the complete k-intersection does
not exist, setting A = k& — 1.

The algorithm of [NI89a] finds all sets F;, i = 1,...,n in total time O(m). The kth run of round
robin uses time O(knlog(n/k)). A simple calculation shows that A runs use time O(A\*nlog(n/)))

(the runs for & € (2971..27] use time proportional to 2%/n((logn) — j)).

Theorem 2.2, The edge connectivity and a connectivity cut can be found in time
O(Amlog(n®/m)) for a directed graph, O(m + A%nlog(n/))) for an undirected graph. The space

is O(m) for both. L

3. Packing arborescences.

This section begins with a high-level version of our packing algorithm. The correctness proof
gives a new proof of Edmonds’ Characterizations. Then an efficient implementation of the packing
algorithm is presented.
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For convenience we summarize some properties of the labelling algorithm. Let L be the set of

labelled edges when the algorithm halts; assume L # 0.

(#7¢) In an unsuccessful search, p(L) = pr(L) is an a-cut of less than k edges; the edges with

heads in V(L) are L U pp(L).

The first half is proved in Lemma 2.1. For the second half recall that L N T forms k cospanning
trees (property (i7) of the labelling algorithm). Hence all edges of T' with both ends in V(L) are in
L. For edges not in T, the proof of Lemma 2.1 shows that every z € V(L) has p(z) - T C L.

Consider a directed graph G that is a complete k-intersection for distinguished vertex a. We
wish to partition the edges of G into k a-arborescences. We do this by maintaining two subgraphs:
A is an a-arborescence spanning a subset of the vertices of G; call such a subgraph a partial
arborescence. T is a complete (k — 1)-intersection that is edge-disjoint from A.

An enlarging path (for e) consists of an edge e € §(A), plus if e € T, an augmenting path P
for the (k — 1)-intersection T — e such that E(P) C E(G)— E(A)—e. (Note that P starts with the
unique edge of p(z) — T where e € p(z).) An enlarging path allows us to extend A by one edge as
follows: If e € T then modify T by removing e and augmenting along P, obtaining a new complete
(k — 1)-intersection T. Now in either case e ¢ T. Add e to A. Clearly we have enlarged A by an
edge and maintained the defining properties of A and 7.

The following lemma allows us to use enlarging paths as the main tool of the algorithm. Let
G be a directed graﬁh that is a complete k-intersection for a. Let A and T be subgraphs as defined

above.
Lemma 3.1. V(A) # V(G) implies there is an enlarging path.

Proof. Choose any edge e € §(A) (e exists by Corollary 2.1). Suppose e € T, else e forms the
desired enlarging path. Let e € p(z). Search for an augmenting path from z for the (k — 1)-
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intersection T — e by executing the labelling algorithm. If the search is successful we have the
desired enlarging path. We first show that if the search halts unsuccessfully, having labelled a set
of edges L, then é5,(A) # 0.

Let R = V(L)—V(A). Note that p(R) contains e but no edge of 4; the remaining edges of p(R)
are in the graph searched by the labelling algorithm. Thus (é¢7) shows p(R) C e+ pr(R)Upr—.(L),
and further |p7_.(L)| < k — 1. Since G has a complete k-intersection and a ¢ R, |p(R)| > k. Thus
pL(R) # 0; since pr(R) = 61,(A) we have 61,(A) # 0 as desired.

Now consider an edge e € §(A) whose search is unsuccessful and has |L| minimum. As just
shown there is an edge €’ € §,(A). We prove there is an enlarging path for e’. It suffices to show
that searching for an augmenting path in T — e’ is successful. For the sake of contradiction suppose
the search is unsuccessful. Let it label a set of edges L’. Then L’ C L, since any edge labelled in the
search for €’ could be similarly labelled in the search for e. (It is not significant that the searches
for e and €’ are executed on different sets T — e and T — e’: Since each search is unsuccessful the
same edges are labelled if it is executed on 7'.) By definition e’ ¢ L'. Thus |L'| < |L|, the desired

contradiction. L]

The lemma can be used to partition G into k disjoint a-arborescences as follows. Initialize T
to a complete (k — 1)-intersection. Initialize A to a partial arborescence containing vertex a and no
edges. Then repeatedly find an enlarging path and use it to add an edge to A, until V(A) = V(G).
Output the arborescence A. If £ = 1 then halt, else decrease k¥ by one and repeat the entire
procedure on graph G — A.

The correctness of this procedure follows from Lemma 3.1 and the fact that a complete (k—1)-
intersection on G exists. The latter is a consequence of Corollary 2.1: Since G is a complete
k-intersection, any a-cut has at least k edges, whence G contains a complete (k — 1)-intersection.

This proves the Matroid Characterization. The Cut Characterization also follows, using Corol-
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lary 2.1.

We turn to an efficient implementation of this procedure. The main difficulty is that the edge
e that has an enlarging path is unknown. A simple strategy like trying all possibilities is inefficient
(it increases the time by a factor of kn). We avoid this inefficiency using the following observations.

Suppose edge e € §(A) gives an unsuccessful search for an augmenting path for T — e. Let L
be the set of edges labelled in the search. LNT consists of k — 1 trees that are cospanning for V(L)
(property (i7) of the labelling algorithm). Furthermore |pr(L)| = k — 1. This follows since property
(#i1) shows |pr—e(L)| < k — 1, i.e., |pr(L)| < k — 1. The last inequality holds with equality since T
is a complete (k — 1)-intersection.

Now let B be an a-arborescence containing A and edge-disjoint from a complete (k — 1)-
intersection U. (The discussion following Lemma 3.1 shows B and U exist.) Let the trees of U be

U,i=1,...,k—1.

Lemma 3.2. LNU consists of k — 1 trees that are cospanning for V/(L). Furthermore pp(L) C U.

Proof. Asin Lemma 3.11et R = V(L) — V(A); let £ = |V(L)| and r = |R|. The definitions imply
that |[BN L| < r and for each ¢, |[LNU;| < £ — 1. Furthermore |L| > (k- 1)(¢~ 1)+ r, since LNT
forms k — 1 cospanning trees and each 2 € R has the edge of p(z) — T contained in L (by (i77)).
Combining these inequalities show they all hold with equality.

Since L N U; contains £ — 1 edges, it is a subtree spanning V(L). This gives the first part of
the lemma. B N L contains r edges, each with a head in R. Thus the edges of B with heads in L

are in AU L. Thus pp(L) C U as desired. "

Based on these observations we construct an algorithm that processes L recursively. (A possible
organization is to find all k arborescences for L recursively; for notational simplicity our algorithm
finds only one arborescence recursively.) It is convenient to now let Gy denote the given graph, with

25



distinguished vertex ag. We give a recursive procedure p(G,a,A,T). Argument G is a graph that
is a complete k-intersection for a; arguments A and T are as above, i.e., A is a partial arborescence
and T is a complete (k — 1)-intersection edge-disjoint from A; in addition T is partitioned into k-1
spanning trees. Procedure p modifies A and T but maintains these defining properties. It returns
with A an a-arborescence for G that is edge-disjoint from some complete (k — 1)-intersection. The
initial call to procedure p is p(Go,ao, A,T), where A contains vertex ap and no edges, and T is
a complete (k — 1)-intersection; it constructs an ag-arborescence, edge-disjoint from a complete

(k — 1)-intersection.

Procedure p(G,a,A,T) returns if V(A) = V(G). Otherwise choose an edge e € §(A), where if

possible e ¢ §(a). Execute the case below that applies and then return A.

Case (i) An enlarging path for e exists. Find such a path. Use it to enlarge A. Then call

p(G,a,A,T).

Case (it) No enlarging path for e exists. Let L be the set of edges labelled in the search for an
augmenting path for T — e. Denote the £ — 1 subtrees comprising L N T as L;; denote the £ — 1
edges of pr(L) as e;; here ¢ = 1,...,k — 1 but the indexing is arbitrary. (The discussion preceding
Lemma 3.2 shows L; and e; exist. Note that a tree of T need not contain any edge e;.)

Modify graph G to G' by deleting all edges with head not in L and contracting all vertices not
in L into a single vertex a’. Construct subgraphs A’ and T' of G’ as follows. A’ contains the edges
of A with heads in L. T' is the complete (k — 1)-intersection for a’ on G’, whose ith tree consists
of L; plus e;. Call p(G’,a’, A", T"). Add the edges of A’ — A to A.

Modify graph G to G’ by contracting V(L) into a single vertex L'. Let A’ be A — pas(L)+ f
where f is an edge in p4(L) of minimum depth. Modify T to a (k — 1)-intersection on G’ by

contracting each subtree L; to vertex L'. Call p(G',a,A’,T). Add the edges of A’ — Ato A.

We prove that procedure p is correct in two steps. The first step is to show by induction
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that for each invocation p(G,a, A,T), the arguments satisfy their defining properties; furthermore
if the invocation returns, A is an a-arborescence for G, edge-disjoint from some complete (k — 1)-
intersection. The argument is as follows.

The assertions are obvious for Case (), so assume Case (i7) is executed. Consider the first
recursive call. To show the argument G’ has a complete k-intersection, observe that Lemma 3.2
implies G’ consists of £ spanning trees. (The first tree consists of the edges B with heads in L. The
other k — 1 trees are the trees of L N U with an edge of p7(L) added to each one.) This implies G’
is a complete k-intersection. Argument T” is correct by the discussion preceding Lemma 3.2.

Next observe that when the first recursive call returns, adding the edges of A’ — 4 to A gives
a new partial arborescence (containing V(L) in its span). To prove this we must show that no e;
is in A’ (adding an e; to A need not give a partial arborescence, since the tail of e; may not be
in A). By induction when p returns A’ is edge-disjoint from some complete (k — 1)-intersection of
G'. Note that é(a’) consists of edges in A and the edges pr(L), i.e., the edges e;. Since there are
precisely k — 1 edges e;, each tree of the intersection contains exactly one of them.

Consider the second recursive call in Case (4¢). Argument G’ is a complete k-intersection by
Lemma 3.2. (Note that B—pp(L)+ f, for f an edge in pp(L) of minimum depth, is an arborescence
on G'.) Argument T" is correct by the discussion preceding Lemma 3.2. Now it is easy to see that
Case (41) returns with A the desired a-arborescence. This completes the induction.

The second step is to prove that all recursive calls terminate. This follows from the fact that
in Case (7i) each graph G’ has fewer vertices than G. This is clear for the second graph G' (L # §
so |V(L)| > 2). Consider the first graph G’. Let e = zz. Since the search is unsuccessful neither
a nor z is in V(L). Thus it suffices to show that z # a. If z = a the choice of e implies that
6(A) C 6(a); thus é,(A) = @; but as shown in Lemma 3.1 an unsuccessful search for an enlarging
path has é,(A) # 0.

We conclude that procedure p is correct. To analyze its efficiency we add one implementation
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detail. Search for an augmenting path for T' — e using the cyclic scanning and cycle traversal
algorithms of Section 2. Thus a search uses time proportional to the number of edges of G (recall G
is the current graph). In fact the entire time for any invocation of p, excluding recursive invocations,
is proportional to the number of edges of G.

Now we show that the total time for an initial call p(Go,ao,A,T) (including all recursive
invocations) is O(kn?). Since each invocation (excluding recursive invocations) uses time O(kn),
it suffices to show there are O(n) executions of Cases (i) and (i¢). Clearly Case (i) is executed at
most 7 times (it is easy to see that any edge added to A in Case (7) is in the arborescence returned
by the initial call).

For Case (i) define t(n) to be the greatest number of executions of Case (ii) that can be done
(in all recursive invocations) for a graph of n vertices. We show that for ¢ = 2, #(n) satisfies the
recurrence

t(n) <1+ max{t(n1) + t(n2) | n1,ne <n—1, ny +n2 <n+c}
As already noted, each recursive call is on a graph with fewer vertices. The total number of vertices
in graphs of recursive calls is precisely n + 2 since the first graph has vertices V(L) +d’, the second
(V(G)=V(L))+ L' The recurrence implies t(n) = O(n). (Setting T = max{t(i) | i < ¢}, r = 2T+2
and s = rc+ 1, it is easy to show #(n) < rn — s for n > ¢.) This completes the proof that the total
time for p is O(kn?).

The space needed by the algorithm is O(kn). This can be achieved by standard techniques in
a variety of ways. We sketch one approach. First observe that for any recursive call the graph G’ is
obtained from G by contracting a set of vertices. There is a forest F’ that represents the structure
of the currently contracted sets. The leaves of F' are the vertices of Gy; each internal node of F
represents a contracted set formed from its children; F' has O(n) nodes, since each internal node
has at least two children. The algorithm maintains F.

In addition when a recursive call is made, it is given a list of the edges of G and a list of the
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edges of each tree T; of T. The lists contain edges of G¢; we must determine the vertex [z] of G
that contains a given vertex z of Go. To do this use F' to construct a table giving the value [z] for
each vertex z of G. The table is constructed in O(n) time. This allows the given lists of edges to
be translated into the desired representation of G and T in time O(kn). (Specifically the desired
representation is that required by the cyclic scanning and cycle traversal algorithms to search for
an augmenting path, i.e., an adjacency structure for G and parent pointers for 7'.)

We note two more implementation details. First the argument A for procedure p is not needed.
Instead we maintain one global partial arborescence for Gy; the algorithm adds all edges directly
to it. Each recursive invocation only needs to know the vertices in its local partial arborescence.
This is easily determined from the global structure. (Our presentation of procedure p maintains
the partial arborescence A for conceptual purposes, to demonstrate the correctness of p.) Second,
when the algorithm makes the first recursive call in Case (i7), it stores in the recursion stack a list
of the edges of T; — L, for each i. Using these lists it reconstructs 7" when the first recursive call
returns. Note that the edges of pr(L) are stored in the recursion stack and are also in G’. Since
there are at most n levels of recursion this uses O(kn) extra space. From these remarks it is not
hard to see that a detailed implementation uses O(kn) space total.

Now we solve the arborescence packing problem. Recall that we are given a directed graph
G with distinguished vertex ¢ and wish to construct the greatest possible number of edge-disjoint
a-arborescences. Start by using the round robin algorithm to find the largest value k such that G
has a complete k-intersection 7. Then set G to the subgraph with edges E(T) and execute the
following procedure.

Use round robin to find a complete (k — 1)-intersection T'. Initialize A to the vertex a. Execute
p(Go,a,A,T) and output the a-arborescence A. If k = 1 then halt, else decrease k by one and
repeat the entire procedure on graph Gy — A.

The time for this procedure is O((kn)?). To show this observe that the bound for round robin
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to find a complete k-intersection is O(kmlog(n%/m)) = O(kn?). The bound for one execution of p

is the same. There are k + 1 executions of the round robin procedure and k executions of p.

Theorem 3.1. In a directed graph, the greatest number k of edge-disjoint a-arborescences can be

found in time O((kn)?) and space O(m). n

Clearly the same bounds apply to the problem where k is given and we wish to find k edge-disjoint
a-arborescences, if they exist.

A similar algorithm applies to multigraphs, using O((kn)?) time and O(m+kn) space. We must
proceed more carefully since k can be larger than n. The idea is to execute round robin only once, to
determine the value of k. The second version of round robin does this in time O(k(mlog(n?/m)+
knlogn)) = O(kn? + k*nlogn) = O((kn)?). We change the rest of the procedure in the following
two ways.

Procedure p is modified to return, in addition to A, a complete (k — 1)-intersection T" that is
edge-disjoint from A. (Doing this is straightforward.) This implies that at the start of each iteration
we have a complete k-intersection 7', which we wish to convert to a complete (k — 1)-intersection.
To do this first make T a valid (k — 1)-intersection: remove tree T} from T'; then for each vertex z
still having |pr(z)| = k, delete an arbitrary edge of pp(z). This gives a (k — 1)-intersection at most
n edges short of being complete. Now repeatedly find an augmenting path for T and augment,
until 7' is complete.

The time to find each augmenting path is O(kn) if we use the cyclic scanning and cycle traversal
algorithms. (A slight difference from Section 2 is that more than one T; can be a forest rather than
a tree. It is easy to adapt cyclic scanning so it works for such a T: when an edge gets labelled,
check if it is joining in the forest after the current one, T{; mod k)41 It is easy to see the new
version of cyclic scanning is valid and runs in the same time bound.) Thus the time to find the
complete (k — 1)-intersection is O(kn?). This implies the desired bound of O((kn)?) time for the
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arborescence packing problem on a directed multigraph. In practice it may be desirable to use this

modification on graphs as well as multigraphs.

4. Related results.

This section briefly summarizes some extensions of the results of this paper.

The algorithm of [KT] for undirected edge connectivity finds all connectivity cuts, not just
one. In [G] we show that the output of the round robin connectivity algorithm (i.e., a complete
A-intersection) can be processed in O(m) time to find a succinct representation of all connectivity
cuts. (The representation is similar to the one of [KT].) [G] uses this representation and round
robin to develop efficient algorithms that increase the edge connectivity of a graph to a given target
value, adding the fewest edges possible.

Consider an undirected graph with minimum degree §. Choose any € > 0. Matula shows that
if A < (3 —€)6 the edge connectivity can be found in time O(m + n?/6) [M90]. Incorporating round
robin into his algorithm improves the time to O(mlogn) or better (O(m) when § = Q(y/n), as in
[M90]).

A problem in cluster analysis is, find a subgraph of maximum possible edge-connectivity.
Matula accomplishes this in time O(n3) [M87]. Repeated applications of round robin achieves time
O(m? log (n?/m)), an improvement for sparse graphs.

Next consider the problem of packing weighted arborescences. In a directed graph with edge
costs, we seek a set of k edge-disjoint a-arborescences of minimum total cost. (Equivalently we seek
a minimum cost subgraph that has k edge-disjoint paths from a to any vertex v, plus the paths
for all v.) The edges of the desired arborescences can be found in time O(kn(m + nlogn)logn);
alternatively using cost-scaling the time is O(ky/nlogn(m + knlogn)log(nN)) for integral costs
at most N. Then the desired arborescences are constructed using the packing algorithm of Section
3.
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We close by mentioning the more general version of Edmonds’ Characterizations. In a directed
graph G, if A is a nonempty set of vertices then an arborescence rooted at A is a subgraph such
that for every vertex v there is exactly one directed path from a vertex of A to v. Consider a family
of k nonempty sets of vertices A;, 7 = 1,...,k. The Cut Characterization states that G' contains k
edge-disjoint arborescences, the ith one rooted at A;, if and only if for any nonempty set of vertices
S, 1p(8)] > ¢(S). Here ¢(S) = [{t | Ain S = @}|. The Matroid Characterization states that the
edges of G can be partitioned into k arborescences, the ith one rooted at A;, if and only if they can
be partitioned into k spanning forests, the ith one rooted at A;, and each vertex v has in-degree
k — a(v). Here a(v) = |{i | v € A;}| and a spanning tree rooted at A is the undirected version of an
arborescence rooted at A.

The results of this paper extend to the general case. To state the basic observation, consider
an undirected graph. Let H be a subgraph whose edges can be partitioned into k forests, the
ith one containing no path between any two vertices of A;. Then for § = V(H), |E(H)| <
kS| —@(S)—Y {a(v) | v € S}. In the labelling algorithm an unsuccessful search for an augmenting
path labels a subgraph that satisfies this inequality with equality.

Lemmas 2.1 and 3.1 for the general case are proved analogously. The main change in the
algorithms is that in round robin, cyclic scanning is no longer valid. However a generalization of
cyclic scanning achieves the same efficiency. In summary the results of Theorems 2.1 and 3.1 apply

to the general case.
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