Visualization-Based Visual Programming
Wayne‘ Citrin
CU-CS-535-91 July 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE



Visualization-Based Visual Programming

Wayne Citrin
CU-CS-535-91

July 1991

Wayne Citrin

Dept. of Electrical and Computer Engineering
Campus Box 425

University of Colorado

Boulder, CO 80309-0425

citrin@soglio.colorado.edu

tel: 1-303-492-1688
fax: 1-303-492-2758






Visualization-Based Visual Programming

Wayne Citrin

Department of Electrical and Computer Engineering
Campus Box 425
University of Colorado, Boulder 80309-0425
USA

citrin@soglio.colorado.edu

ABSTRACT

A new class of visual programming languages is proposed which employs para-
digms typical of program visualization as the programming language itself. Such para-
digms, called visualization-based visual programming, should improve programmer pro-
ductivity by allowing programs to be written in a form corresponding more closely to the
programmer’s mental models of the problem and its solution. Two examples of such a
language are given: one for network protocol specifications, and one for data structure
manipulation.

1. Introduction

Over the last 5-10 years, the advent of workstations with bit-mapped graphic displays and pointing
devices has created the possibility of new types of interaction with the computer. Previously, programming
was necessarily a one-dimensional activity, where a program was a string of text supplied by the program-
mer through a keyboard. (Admittedly, such programs have line breaks and are displayed as multiple lines
on a terminal screen, but this does not conceal the fact that they are character strings.) Likewise, debugging
output describing the progress of a running program was a sequence of lines of text describing program
activity, changes in data structures and program state, and so forth. Bit-mapped displays and pointing dev-
ices free the programmer from the necessity of describing programs through text, and allow the program-
mer to describe programs and data structures multi-dimensionally, through pictures drawn on a screen and
entered through the use of a pointing device such as a mouse, joystick, track ball, or light pen. In the other
direction, the progress of running programs can now be displayed to the user through the use of pictures
when such pictures may be used to lend greater insight into the activities of the program.

Myers[18] has classified visual programming activities into two large subclasses: visual program-
ming proper, and program visualization. Visual programming is the communication of programs or data to
the computer through the use of pictures. It generally consists of the manipulation of icons[5] representing
program structures which often correspond to textual program structures. Such program structures may be
far removed from the mental structures through which the programmer visualizes the algorithm[2]. On the
other hand, program visualization systems often abstract out low-level program structures and display



-2

information on program activities in a form closer to the user’s or programmer’s mental models, thus lend-
ing greater insight into the activities of the program, and allowing the programmer to determine whether
the program is functioning as intended.

The gap between paradigms used in visual programming and program visualization is a fundamental
problem in the field of visual programming, limiting its usefulness. This paper proposes a new class of
visual programming languages, known as visualization-based visual programming, in which paradigms
useful for visualization, that is, corresponding to high-level abstract visualizations of program activity, may
be used for actual programming. We will discuss the advantages of such a scheme, identify the charac-
teristics of those visual paradigms that are amenable to such use, and discuss two examples of
visualization-based visual programming languages.

2. Previous work

In the strictest sense[18], visual programming is the use of pictures to communicate programs and
data 1o a computer. Most visual programming systems are iconic[4,5,14], although some are forms-
based[21,23]. In an iconic System, icons representing data or program functions are juxtaposed in various
ways in order to specify program activities. In certain systems[5, 22], icons representing program functions
are superimposed on, or placed next to, icons representing data in order to denote the function applied to
the data. Icons may be composed to create new icons, a notion analogous to procedure abstraction. In
other systems, icons representing program activities are connected by lines representing flow of control[14]
or flow of data[4]. Such visual programs will represent flow charts or data-flow graphs, respectively.
While use of visual languages like these may yield insight into program structure, they are still direct
analogues to underlying textual programs, and the act of programming in such systems is no less difficult
than that of programming in the corresponding textual paradigms.

One response to the above was the proposal of conceptual programming[20]. In such systems, the
visual entities do not correspond to any common textual program structures. The most famous conceptual
system is the Garden system developed by Reiss[20], and the example most commonly provided in the
literature on Garden is the finite state machine presented as a transition graph. While such a system is not
inherently textual, it is still inherently procedural, and of a similar order to programming in a procedural
textual language, although the task is simplified by the fact that the programmer no longer needs to be con-
cerned with textual syntax, but rather can concentrate on the state changes and transitions in the system
being developed. (It is conceivable that visualization-based languages of the type described in this paper
could be implemented in Garden, but languages of this type have not been found in the Garden literature.)

Another visual programming paradigm attempts to avoid many of the difficulties of programming by
allowing the user to directly manipulate objects representing the program input and output. The system
attempts to generalize from these examples and produce a complete program. Such programming-by-
example systems[12, 15] have the drawback that the systems cannot generalize sufficiently and completely
to produce a useful or even correct program without extensive intervention by the user, and it appears that
they cannot be scaled up to be useful in solving real-world problems, except in certain specific domains,
such as user interface design[17, 19].



-3

Program visualization systems, on the other hand, attempt to model program activity in a form
closely corresponding to the programmer’s or user’s mental image of the program. For example, one sys-
tem[11] attempts to model a running Prolog program as a traversal of an AND/OR tree presented graphi-
cally on a screen. Another system[9] displays traces of executing communication protocols as message
flow diagrams. A third system[16] presents performance information for parallel systems as a set of paral-
lel time lines each colored or shaded to represent a process’s state at a given point in time. Such paradigms
correspond closely to mental images of the activities in question (see section 3) and can convey a great deal
of insight and information.

Certain direct manipulation systems come closest to employing useful visualization paradigms to
instruct the computer. A classic example is a system which displays entity-relation schema describing
databases, and models queries on the database as transformations on those schema[10]. Such systems are
not general enough to be useful for programming, however, since they do not allow operations to be com-
posed or otherwise combined, in order to provide more complex abstractions,

3. Visualization-based visual programming

In visualization-based visual programming , visual representations corresponding to mental models
are used for programming. There are a number of advantages to this. Ackerman and Stelovsky[2] describe
programming as the act of mapping mental models into programming language constructs and the main
problem of programming as the gap between the two. They suggest that the problem should be alleviated
by providing tools to assist in the transition. We suggest that the answer lies in programming language
constructs that correspond closely to mental models, thereby reducing or even eliminating the conceptual
gap.

This begs the question of how such models can be identified. Ackerman and Stelovsky suggest that
it can only be done through interviews with programmers and by careful examination of the code they pro-
duce. We propose that such models can be found by examining documentation, manuals, and textbooks.
When a communications protocol designer wishes to describe a protocol he or she has designed, he or she
often does not use a programming language, or even a formal specification language, but rather illustrates
the operation of the protocol through through use of a message flow diagram[1]. Likewise, a basic Prolog
textbook[8] explains the operation of Prolog programs to beginners through the use of trees. General pro-
gramming language and compiler textbooks[13] illustrate complex data structures through the use of
labeled boxes and arrows connecting them. It is no coincidence that the visualization systems described in
the previous chapter use these models, since they correspond closely to the programmers’ mental models.

Assigning executable semantics to the diagrams corresponding to mental visualizations (that is, mak-
ing them programming languages) would solve a basic problem of the programming process, whether the
programs are written using visual or textual paradigms. A programmer must currently transform his or her
mental models into programming language constructs. When debugging the program, if a visualization
system is being used, the programmer must match the visualization information and the program, which are
likely to be in different paradigms. If no visualization system is being used (for example, if a textual
debugger is being used), the programmer must map both the program and the debugging information into
his or her mental models. Each mapping, or paradigm shift takes time and detracts from programmer



4.

productivity. It is also likely to introduce mistakes, which will show up either in erroneous code, or in bugs
that are not identified during debugging. The purpose of visualization-based visual programming is to
reduce, or even eliminate, the paradigm shift by merging the programming and visualization models.

This class of paradigms has a number of other advantages. Because the program resembles the
programmer’s (and possibly the user’s) mental models, the program can serve to a large extent as docu-
mentation. (We do not claim, however, that such programs are self-documenting.) The paradigm might
also simplify the act of fixing bugs. Since programs and visualization are in the same form, if a running
program produces incorrect or unanticipated behavior in the visualization, the programmer can edit the
visualization to exhibit the correct behavior and submit the visualization to the compiler as program
source. The compiler can then identify where the newly submitted program differs from the original pro-
gram and make the appropriate corrections.

4. Visualization-based visual programming paradigms

It is important to identify visual paradigms which are suitable for visualization-based visual program-
ming. One method is by searching the literature for illustrations, as mentioned above. The search can be
narrowed and pointed in certain directions. The scope of a paradigm may have an effect on its usefulness:
namely, the paradigm may be (textual) language-based, application domain-based, or program-based. For
the most part, visual paradigms that are mapped closely to textual languages (for example, flowcharts) are
not appropriate since they do not map well to mental models and lead to a paradigm gap in the program-
ming process. A few language-based paradigms, where the paradigm does correspond to a mental model,
may be suitable. One such model is the aforementioned AND/OR trees based on Prolog. Another is a
model related to object-oriented programming presenting class hierarchies as a directed graph and showing
a program as a network or objects with messages passing back and forth between them.

Paradigms based on application domains seem to be a fertile area for investigation, since people who
work in a given domain often develop a common set of visual paradigms to explain their work to each
other. One such domain is communications protocols, with its message flow diagrams, network graphs,
and protocol towers. Another is the E-R graphs of entity-relationship databases. Tables are an appropriate
visual paradigm for relational databases. Other domains containing useful visual paradigms are VLSI
design, hardware configuration, and robotics.

Program-based paradigms, on the other hand, reduce the usefulness of visual programming when
each program has its own visual paradigm. In the network domain example, to would be much more useful
if a protocol compiler, validator, tester, and simulator all accepted the same visual input. Having them
each accept different forms of input representing the same thing would lead to another paradigm gap.

Visualization-based visual programming paradigms can be classified in another way: they may be
output-oriented or state-oriented. A message flow diagram is an output-oriented paradigm. It displays the
visible behavior of the protocol as a trace of messages. (As will be seen in the next section, message flow
diagrams also incorporate state information; few practical paradigms are purely output- or state-oriented.)

The AND/OR tree visual paradigm for Prolog is a state-oriented paradigm. The tree describes the
state of the computation, and the language paradigm describes the transition between one state and another
(or perhaps between the relevant part of one state and the corresponding part of the resulting state). Unlike



-5-

the output-oriented paradigms, which can express ‘‘motion’’ or progress in a single picture, state-otiented
paradigms like AND/OR trees show progress by a series of “‘snapshots;”” a transition is a pair of pictures
(and perhaps some additional enabling information) describing the ‘‘before’’ and “‘after’’ situation of a
portion of the state.

5. An example - Message-flow diagrams

We present a simple example of a visualization-based approach using message flow diagrams. In
figure 1, there are two network nodes: N1 and N2, N1 contains a state variable X. N2 contains no state
variables (or at least no relevant ones).

N1 N2
X
X :=X+1
2 now-1
m2
X =X+1
3
m3
0O

Figure 1. A program based on a message-flow diagram

At its most superficial level, the diagram says that, in a certain conversation, a node of type N1 will
send a message m1 to a node of type N2. When N2 receives it, it replies with message m2. On receipt of
m2, N1 replies with m3.

The diagram has been augmented with state and dependency information. The initial message m1 is
only sent when the state variable X is greater than zero. After the message is sent, X is incremented.
When N2 receives m1, it always responds with m2. If N1 receives m2 and it previously sent message m1
during the previous clock cycle (denoted by the dependency edge labeled ‘‘now-1", N1 sends message m3
and increments X.

We see two possible methods of interpreting this diagram. The first is a rule-based interpretation.
The firing rules described above are stored in a rule database, and a network entity fires a rule associated
with its type in the database whenever the enabling conditions are met (which means that the rules might be
fired in an order different from that in the defining diagram). The second interpretation is a script-based
interpretation. In this interpretation, the diagram is a script that is executed as long as the enabling condi-
tions are met. If a condition is not met, the diagram is abandoned. Several consistent diagrams may be
active simultaneously, provided they are equivalent up to that point according to some set of criteria. This
scheme would lend itself well to a translation into a process algebra-based language like LOTOS[3]. We
propose implementing both interpretations and determining through tests which one most closely



corresponds to programmers’ mental models.

For the purposes of brevity, the above example was necessarily simple. Diagrams may be
parameterized, and messages may contain variables. Diagrams may be composed, so that when execution
runs off the bottom of one diagram, it commences at the beginning of another. Multiple conversations (or
diagrams) may be active simultaneously. Recursion and iteration may be specified. The diagrams also
lend themselves to multi-level abstraction: the transmission and receipt of the message m1 at this level
might correspond to an extensive exchange of messages at a lower level. Similarly, the receipt of m1 and
the resulting transmission of m2 might correspond on a lower level to a conversation between entities
which are components of N2.

A more detailed description of a language based on message-flow diagrams is given in[6].

An environment for executing or simulating programs written in this language would, of course,
present the visualization of the running program in a form identical to that of the program itself: a message
flow diagram.

6. Another example - data structure manipulation

Another simple example of a visualization-based language involves the almost ubiquitous visual
model of data structures as boxes and arrows. The following example is very sketchy, but should suggest
the flavor of such a language.

In the first example (figure 2), the act of pushing a value onto a stack is specified. There are two
diagrams, indicating the “‘before’” and “‘after’” states. In the ‘‘before’” state, a value is about to be pushed
onto a stack. The value is represented simply by the symbol X. The stack is represented by a box (denot-
ing a memory location) next to another box containing an ellipsis (indicating that there are zero or more
instances of the memory location denoted by the first box). This suggests an array,

X
O O
©) O
O O

Figure 2. Stack push: "before" and "after”



-7

In the ““after’” picture, X is placed in a new box above a copy of the old array. Being placed above
suggests that the stack grows upwards. There is a question as to how to indicate that the array in the
““before’” picture is the same as the array in the ‘‘after’” picture. One possibility is to draw a line between
the two. Another is to simply to point to both of them (assuming that the environment allows gestures) or

to assign them a common name.

The second example (figure 3) shows a step in an insertion sort algorithm in a linked list. When the
value to be inserted falls between the first and second elements of the list, we insert it. Ellipses indicate a
possible continuation of the list.

X
—_ Y 7z e p— O O O
Y<=X<=7Z
— Y X Z —1 O OO

Figure 3. List insertion: "before” and "after"

The purpose of this section is simply to give an impression of what such a language might be like.
There are clearly further problems to be solved, particularly in the specification of recursion and iteration.

7. Current and future work

Over the past two years, a system, known as Cara[9], has been developed that used message flow
diagrams as a form of specification. In that project, we did not attempt to assign an executable semantics to
message flow diagrams. Instead, for each action drawn on the screen, the system used a set of heuristics to
construct a textual rule describing the action in a language called Carla[7]. The rule was then displayed to
the user, who was free to edit it as he or she pleased, before depositing it in the rule database. The system
could also simulate the rules, displaying the results in the form of a message flow diagram. The Cara sys-
tem was intended as a specification aid, rather than a programming environment.

Currently we are attempting to demonstrate the feasibility of the visualization-based visual program-
ming approach by creating a graphical language based on message flow diagrams, with a well-defined syn-
tax and semantics. (In the Cara system, diagrams had neither well-defined syntax nor semantics.) Follow-
ing this, we will implement a programming environment using message flow diagrams both as program-
ming language and visualization paradigm, and attempt to implement complex protocols using this method.

In parallel to this, we plan to identify and develop other paradigms of this type. A language for data
structure manipulation based on the box-and-arrow model seems a likely candidate. We also plan to inves-
tigate methods of specifying such visual languages formally and generating programming environments



automatically from such language specifications.

References

1.

10.

11.

12.
13.

14.

15.

16.

Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2, Document SC30-
3269-3, IBM Corporation, December 1985.

D. Ackerman and J. Stelovsky, ‘“The Role of Mental Models in Programming: From Experiments to
Requirements for an Interactive System,”” Visualization in Programming, pp. 1-23, Springer-Verlag,
Berlin, 1987. Selected contributions, Sth Interdisciplinary Workshop in Informatics and Psychology,
Schaerding, Austria, May 1986

T. Bolognesi and E. Brinksma, ‘‘Introduction to the ISO Specification Language LOTOS,”* Com-
puter Networks and ISDN Systems, vol. 14, pp. 25-59, 1987.

A. Borning, ‘‘Defining Constraints Graphically,”” Proc. CHI 86 - Human Factors in Computing Sys-
tems, pp. 137-143, April 1986.

S.-K. Chang, “‘Principles of Visual Languages,”’ Principles of Visual Languages, pp. 1-59,
Prentice-Hall International, Englewood Cliffs, NJ, 1990.

W. Citrin, ““Design Considerations for a Visual Langunage for Communications Architecture
Specifications,”” Proceedings 1991 IEEE Workshop on Visual Languages, Kobe, Japan, October
1991. to appear

W. Citrin and A. Cockburn, ‘‘An Executable Specification Language for History-Sensitive Sys-
tems,”” IBM Zurich Research Laboratory Research Report, no. RZ 2162, July 1991.

W. Clocksin and C. Mellish, Programming in Prolog, Springer-Verlag, Berlin, 1981.

A.AR. Cockburn, W. Citrin, R.F,Hauser, and J. von Kaenel, ‘‘An Environment for Interactive
Design of Communications Architectures,” Proc. 10th Intl. Symposium on Protocol Specification,
Testing, and Verification, Ottawa, June 1990,

B. Czejdo, R. Elmasri, M. Rusinkiewicz, and D. Embley, ‘A Graphical Data Manipulation
Language for an Extended Entity-Relationship Model,”” IEEE Computer, pp. 26-36, March 1990.

M. Eisenstadt and M. Brayshaw, ‘“The Transparent Prolog Machine (TPM): An Execution Model
and Graphic Debugger for Logic Programming,’’ J. Logic Programming, vol. 5, pp. 277-342, 1988.

W. Finzer and L. Gould, ‘‘Programming by Rehearsal,”” Byte, vol. 9, no. 6, pp. 187-210, June 1984.

C. Ghezzi and M. Jazayeri, Programming Language Concepts (2nd Ed.), John Wiley, New York,
1987.

E. P. Glinert and S. L. Tanimoto, ‘‘Pict: An Interactive Graphical Programming Environment,”’
Computer, pp. 7-25, November 1984,

D. Halbert, Programming by Example, Computer Science Division, University of California, Berke-
ley, CA, 1984. PhD Thesis

T. Lehr, Z. Segall, D. Vrsalovic, E. Caplan, A. Chung, and C. Fineman, ‘‘Visualizing Performance
Debugging,”’” IEEE Computer, pp. 38-51, October 1989.



17.

18.

19.

20.

21.

22.

23.

-9.

D.L. Maulsby, LH. Witten, and K.A. Kittlitz, ‘‘Metamouse: Specifying Graphical Procedures by
Example,”’ Proceedings SIGGRAPH ' 89, Boston, July 1989,

B.A. Myers, ‘‘Taxonomies of Visual Programming and Program Visualization,”” Journal of Visual
Languages and Computing, vol. 1, pp. 77-95, 1990.

B. A. Myers, ‘‘Creating Interaction Techniques by Demonstration,”” IEEE Computer Graphics and
Applications, pp. 51-60, September 1987,

S. P. Reiss, “Garden Tools: Support for Graphical Programming,”” Advanced Programming
Environments, pp. 59-72, Springer-Verlag, Berlin, 1986.

N. C. Shu, Visual Programming, Van Nostrand Reinhold, New York, 1988.

K. Tsuda, A. Yoshitaka, M. Hirakawa, M. Tanaka, and T. Ichikawa, ‘‘IconicBrowser: An Iconic
Retrieval System for Object-Oriented Databases,”” Journal of Visual Languages and Computing, vol.
1, pp. 59-76, 1990.

M. M. Zloof, “‘Query-by-Example: A Data Base Language,”’ IBM Systems Journal, vol. 16, no. 4,
1977.



