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Abstract

Many query processing operations can be implemented using sort- or hash-based algorithms, e.g., join,
intersection, and duplicate elimination. In the early relational database systems, only sort-based algorithms
were employed. In the last decade, hash-based algorithms have gained acceptance and popularity, and are fre-
quently considered generally superior to sort-based algorithms such as merge join. In this report, we compare
sort- and hash-based query processing algorithms using the Volcano query execution engine and conclude that
(a) many dualities exist between the two types of algorithms, (b) their costs differ mostly by percentages rather
than factors, (c) special cases exist that favor one or the other choice, and (d) there is a strong reason why both
sort- and hash-based algorithms should be available in a query processing system.

1. Introduction

With the emergence of relational query languages and algebra, database systems required algorithms to
operate on large sets, e.g., for join, intersection, union, aggregation, and duplicate elimination. In early
research and implementation efforts, e.g., Ingres [15, 30, 40], System R [2, 6], PRTV [42], and ABE [28], only
sort-based methods were employed, and sort costs were one (or even the) major component of query process-
ing costs. Consequently, ordering of stored relations and intermediate query processing results were an impor-

tant consideration in query optimization and led to the concept of interesting orderings in System R [38].

While set processing was based on sorting, even early systems employed hash-based algorithms and data
structures in form of hash indices [40]. Only in the last decade have hash-based query processing algorithms
gained interest, acceptance, and popularity, in particular for relational database machines such as Grace [17,
26] and GAMMA [10, 12], but also for sequential query execution engines [8, 39]. Reasons why hash-based
algorithms were not considered earlier include that large main memories are required for optimal performance,
and that techniques for avoiding or resolving hash table overflow were needed, i.e., algorithms to handle the

case that none of the sets to be processed fits in main memory.

Hash-based algorithms are now widely viewed as significantly faster than their sort-based equivalents,
and many major database system vendors are hurrying to incorporate hash join and aggregation into their pro-
ducts, e.g., [43]. Furthermore, hash-based algorithms are frequently associated with parallel query processing

and linear speedup, even though hash-based partitioning of data to several processors can also be combined



with sort-based local algorithms as the Teradata machine proves [41]. In fact, the choices of partitioning and

local processing methods are independent or orthogonal from one another.

In this report, we compare sort- and hash-based algorithms, and argue, contrary to "current wisdom,"
that (a) many dualities exist between the two types of algorithms, (b) their costs differ mostly by percentages
rather than factors, (c) special cases exist that favor one or the other choice, and (d) there is a strong reason

why both sort- and hash-based algorithms should be available in a query processing system.

The remainder of this report is organized as follows. We discuss sort- and hash-based algorithms as
used in real systems or proposed in the literature in Section 2. In Section 3, we consider dualities and differ-
ences between sort- and hash-based query processing algorithms. An experimental comparative study of sort-

and hash-based join algorithms follows in Section 4. Section 5 contains a summary and our conclusions.

2. Related Work

After the investigations of Blasgen and Eswaran [6, 7], merge join was universally regarded as the most
efficient join method for large input files. After sorting both join inputs on the join attribute, tuples with
matching join attribute values can be found efficiently and without much memory, independently of the file

sizes.

Significant effort has been spent on devising and improving sort algorithms for database systems; recent
work includes [1, 35]. The main memory algorithms employed in all these studies are either quicksort or
replacement selection; the variations and new ideas mainly concern optimizing the IO cost of writing and
merging temporary files or runs by considering larger units of 1/0 than pages at the expense of smaller merge
fan-in. Larger units of I/O allow for faster I/O because the number of seek operations and rotational latencies
is reduced. However, since one input buffer is required for each input run during merging, the fan-in (number
of runs merged simultaneously) is decreased with larger units of I/O. Considering that the number of merge
levels, i.e., the number of times each record is merged from one run into another, is the logarithm of the
number of initial runs using the fan-in as base, the number of merge levels may increase with reduced fan-in.
The most interesting recent insight was that it may be beneficial to use larger units of I/O even if the fan-in is

decreased and the number of merge levels is increased [19, 35].



Another important optimization for sorting concerns the merge strategy. Let us explain it with an exam-
ple shown in Figure 1. Consider a sort with a maximal fan-in of 10 and an input ﬁle that requires 12 initial
runs. Instead of merging only runs of the same level, it is better to delay merging until the end of the input has
been reached, then to merge first 3 of the 12 runs, and finally to merge the output with the remaining 9 runs, as
shown in Figure 2. The I/O cost (measured by how many memory loads of data must be written to disk to any
of the runs created) for the first strategy is 12+10+2 = 24, while for the second strategy it is 12+3 = 15, mean-
ing that the first strategy requires 60% more I/O than the second one. The general rule is to merge just the

right number of runs after the end of the input file has been reached, and to always merge the smallest runs

!

Figure 1. Naive Merging.

JAIHA

Figure 2. Optimized Merging.



available for merging. More detailed examples are given in [19].

Recently, parallel sorting has found increased interest, e.g. [3, 5, 19, 20, 24, 31, 32, 36]; most investiga-
tions concern either clever designs for parallel merging or for partitioning data evenly across a set of machines
to achieve good load balancing. In this report, we do not concern ourselves much with parallelism because we
believe that the issues of data manipulation and parallelism can be made orthogonal [18, 22] and that our con-

clusions are directly applicable to algorithms used in parallel environments.

For duplicate elimination and aggregate functions, ¢.g., sum of salaries by department, Epstein’s work
has led to the use of sorting for aggregation, too [15]. Aggregation and grouping are frequently assumed to
require sorting. It is interesting to note that sorting for aggregation permits a clever optimization [4]. Instead
of sorting the input file completely and then combining (adjacent) duplicates, aggregation can be done early,
namely whenever two records with matching grouping attributes are found while writing a run file. Consider
an aggregation with 100,000 input records being aggregated into 1,000 groups using a sort with maximal fan-
in 10. If aggregation is not done after sorting, the largest run file may contain 10,000 records. If aggregation
is done early, the largest run file will contain at most 1,000 records. In other words, with early aggregation, no
run file will ever contain more records than the final output file. If the reduction factor (output over input size)
is larger than the maximal fan-in, significant improvements can be realized. In the extreme case, if replace-
ment selection is used for creating initial runs and the output (not the input) fits into memory, the entire sort

may be accomplished without any run files on disk.

Starting in about 1983, query processing algorithms based on hashing experienced a sudden surge of
interest [8, 10, 11, 26], predominantly for relational join. Since they were used in a number of relational data-
base machines, hash-based join algorithms were frequently identified with parallel query execution [12, 17]
even though they make equal sense in sequential environments. In its simplest form, called classic hash join in
[39], a join algorithm consists of two phases. First, an in-memory hash table is built using one input (typically
the smaller input) hashed on the join attribute. Second, tuples from the second input are hashed on their join

attribute and the hash table is probed for matches.

The various forms of hash join differ mainly in their strategies for dealing with hash table overflow, ie.,
the case that the smaller input (and therefore the hash table) is larger than main memory. All overflow stra-

tegies use overflow files, either one per input or many partition files for each input [11]. Overflow avoidance



as used in the Grace database machine [17] builds the overflow files before any overflow actually occurs.
Overflow resolution creates overflow files after it has occurred. A clever combination of in-memory hash table
and overflow resolution called hybrid hash join [10, 39] optimizes the I/O for overflow files by retaining as
much as possible of the first input relation in memory, i.e., one of the partition files is kept in memory and
probed immediately as the other input is partitioned. If the partition or overflow files are still larger than
memory, they can be partitioned further using a recursive algorithm until classic or hybrid hash join can be

applied.

Hashing can also be used for aggregation and duplicate elimination by finding duplicates while building
the hash table. It is interesting to note that overflow occurs only if the output does not fit into main memory,
independently of the size of the input. Once overflow occurs, however, input records have to be written to

overflow files, including records with duplicate keys that eventually will have to be combined.

3. Duality of Sorting and Hashing

In this section, we outline the similarities and duality of sort- and hash-based algorithms, but also point
out where the two types of algorithms differ. We try to discuss the approaches in general terms, ignoring
whether the algorithms are used for relational join, union, intersection, aggregation, duplicate elimination, or

other operations. Where appropriate, however, we indicate specific operations.

Table 1 gives an overview of the features that correspond to one another. Both approaches allow for in-

Sorting Hashing

Quicksort Classic Hash

Physical divide, logical combine logical divide, physical combine
Single-level merge Partitioning into overflow files
Sequential write, random read Random write, sequential read
Fan-in Fan-out

Multi-level merge Recursive overflow resolution
Number of merge levels Recursion depth

Non-optimal final fan-in Non-optimal hash table size
Merge optimizations Bucket tuning

Reverse runs & LRU Hybrid hash

Replacement selection ?

? Single input in memory
Aggregation in replacement selection ~ Aggregation in hash table
Interesting orderings N-way joins, hash-merging

Table 1. Duality of Sort- and Hash-Based Algorithms.



memory versions for small data sets and disk-based versions for larger data sets. If a data set fits into memory,
quicksort can be employed for sorting and classic (in-memory) hash can be used as hashing technique. It is
interesting to note that both, quicksort and classic hash, are also used in memory to operate on subsets after
"cutting” an entire large data set into pieces. The "cutting" process is part of the familiar divide-and-conquer
paradigm employed for both sorting and hashing. There exists, however, an important difference. In the sort-
based algorithms, a large data set is divided into subsets using a physical rule, namely into chunks as large as
memory. These chunks are later combined using a logical step, merging. In the hash-based algorithms, the
large data set is cut into subsets using a logical rule, by hash values. The resulting partitions are later com-
bined using a physical step, simply concatenating the subsets or result subsets. In other words, a single-level
merge in a sort algorithm is a dual to partitioning in hash algorithms. Figure 3 illustrates this duality and the

opposite directions.

This duality can also be observed in the behavior of a disk arm performing the I/O operations for merg-
ing or partitioning. While writing initial runs after sorting them with quicksort, the I/O is sequential. During
merging, read operations access the many files being merged, and require random /O capabilities. During

partitioning, the I/O operations are random, but when reading a partition later on, they are sequential.

For both approaches, sorting and hashing, the amount of available memory limits not only the amount of

data in a basic unit processed using quicksort or classic hash, but also the number of basic units that can be

File \ Subfiles

Merging

Partitioning

Figure 3. Duality of Partitioning and Merging.



accessed simultaneously. For sorting, it is well known that merging is limited to the quotient of memory size
and buffer space required for each run, called the merge fan-in. Similarly, partitioning is limited to the same
fraction, called the fan-out, since the limitation is encountered while writing partition files. Considering this
limitation on fan-in and fan-out, additional techniques must be used for very large data sets. Merging can be
performed in multiple levels, each combining multiple runs into larger ones. Similarly, partitioning can be
repeated recursively, i.e., partition files are re-partitioned, the results re-partitioned, etc., until the partition files
fit into main memory. During merging, the runs grow in each level by a factor equal to the fan-in. For each
recursion step, the partition files decrease in size by a factor equal to the fan-out. Thus, the number of levels
during merging is equal to the recursion depth during partitioning. There are two exceptions to be made
regarding hash value distribution and relative sizes of inputs in binary operations such as join; we ignore those

for now and will come back to them later.

If merging is done in the most naive way, i.e., merging all runs of a level as soon as their number
reaches the fan-in, the last merge on each level might not be optimal. Similarly, if the highest possible fan-out
is used in each partitioning step, the partition file in the deepest recursion level might be smaller than memory,
and less than the entire memory is used when processing these files. Thus, in both approaches the memory

resources are not used optimally in the most naive versions of the algorithms.

In order to make best use of the final merge (which, by definition, includes all output items and is there-
fore the most expensive merge), it should proceed with the maximal possible fan-in. This can be ensured by
merging fewer runs than the maximal fan-in after the end of the input file has been reached (as illustrated in
the previous section). There is no direct dual in hash-based algorithms for this optimization. With respect to
memory utilization, the fact that a partition file and therefore a hash table might actually be smaller than
memory is the closest to a dual. Utilizing memory more effectively and using less than the maximal fan-out in

hashing has been addressed in research on bucket tuning [27].

The development of hybrid hash algorithms [10, 39] was a logical consequence of the advent of large
main memories that had led to the consideration of hash-based join algorithms in the first place. If the data set
is only slightly larger than the available memory, e.g., 10% larger or twice as large, much of the input can
remain in memory and is never written to a disk-resident partition file. To obtain the same effect for sort-

based algorithms, if the database system’s buffer manager is sufficiently smart or receives and accepts



appropriate hints, it is possible to retain some or all of the pages of the last run written in memory and thus
achieve the same effect of saving I/O operations. This can be done particularly easily if the initial runs are
written in reverse (descending) order and scanned backward for merging. However, if one does not believe in
buffer hints or prefers to absolutely ensure desired I/O savings, using a final memory-resident run explicitly in

the sort algorithm and merging it with the disk-resident runs can guarantee this effect.

A well-known technique to improve sort performance is to generate runs twice as large as main memory
using a priority heap for replacement selection [29]. If the runs’ sizes are doubled, their number is cut in half.
Therefore, merging can be reduced to some amount, namely logg(2) = 1/logy(F) merge levels. However, if
two sort operations feed into a merge join and both final merges are interleaved with the join, each final merge
can employ only half the memory, and cutting the number of runs in half (on each merge level, including the

last one) allows performing the two final merges in parallel without increasing the merge depth.

The effect of cutting the number of runs in half offsets a disadvantage of sorting in comparison to hash-
ing when used to join (intersect, union) two data sets. In hash-based algorithms, only one of the two inputs
resides in and consumes memory beyond a single input buffer, not both as in two final merges concurrent with

a merge join.

Heap-based run generation has a second advantage over quicksort; this advantage has a direct dual in
hashing. If a hash table is used to compute an aggregate function using grouping, ¢.g., sum of salaries by
department, hash table overflow occurs only if the operation’s output does not fit in memory. Consider, for
example, the sum of salaries by department for 100,000 employees in 1000 departments. If the 1000 result
records fit in memory, classic hashing (without overflow) is sufficient. On the other hand, if sorting based on
quicksort is used to compute this aggregate function, the input must fit into memory to avoid temporary files!.
If replacement selection is used for run generation, however, the same behavior as with classic hash is easy to

achieve.

The final entry in Table 1 concerns interesting orderings used in the System R query optimizer [38] and

presumably other query optimizers as well. A strong argument in favor of sorting and merge-join is the fact

! A scheme using quicksort and avoiding temporary 1/O in this case could probably be devised but would
be extremely cumbersome; we do not know of any report or system with such a scheme.



that merge-join delivers its output in sorted order; thus, multiple merge joins on the same attribute can be per-
formed without sort operators between merge-join operators. For joining three relations, this translates into a
3:4 advantage in the number of sorts compared to two joins on different join keys. For joining N relations on

the same key, only N sorts are required instead of 2N-2 for joins on different attributes.

Hash-based algorithms tend to produce their outputs in a very unpredictable order (depending on hash
function and on overflow management). To take advantage of multiple joins on the same attribute, the equality
has to be considered in the logical step of hashing, i.e., during partitioning on the input side. In other words,
such join queries could be executed effectively by a hash join algorithm that has N inputs, partitions them all
concurrently, and then performs N-way joins on each N-tuple of partition files (not pairs as in binary hash join
with one build and one probe file for each partition). However, since such an algorithm is probably cumber-
some to implement, in particular if some of the "join" operations are actually semi-join, outer join, set intersec-
tion, union, or difference, it might well be that this distinction, joins on the same or on different attributes,

determines the right choice between sort- and hash-based algorithms for complex queries.

Another use of interesting orderings is the interaction of (sorted, B-tree) index scans and merge join.
While it hasn’t been reported explicitly in the literature, it is perfectly possible and reasonable to implement a
join algorithm that uses two hash indices (provided the same hash function was used to create the indices) like
merge join uses two B-trees. For example, it is easy to imagine "merging” the leaves (data pages) of two

extendible hash indices [16], even if the key cardinalities and distributions are very different.

In summary, there exist many dualities between sorting using multi-level merging and recursive hash
table overflow management. Since there are so many similarities, it is interesting to compare their costs in

detail. This is done in the next section.

4. Experimental Comparison of Sorting and Hashing

In this section, we report on a number of join experiments to demonstrate that the duality of sorting and
hashing leads to similar performance in many cases, to illustrate the transfer of optimization ideas from one
type of algorithm to the other, and to identify the main decision criteria for the choice between sort-based and
hash-based query processing algorithms. A similar study of sort- and hash-based algorithms for aggregation,

duplicate elimination, and division algorithms could easily be done but has been omitted here for space



reasons. We first describe the experimental environment and then report on a series of experiments.

4.1. Experimental Environment

The testbed for our experiments was the Volcano extensible and parallel query processing engine [22].
Volcano includes its own file system which is similar to WiSS [9]. Much of Volcano’s file system is rather
conventional. It provides data files, B*-tree indices, and bidirectional scans with optional predicates. The unit
of I/O and buffering, called a cluster in Volcano, is set for each file individually when it is created. Files with
different cluster sizes can reside on the same device and can be buffered in the same buffer pool. Volcano

uses its own buffer manager and bypasses operating system buffering by using raw devices.

Queries are expressed as complex algebra expressions; the operators of this algebra are query processing
algorithms. All algebra operators are implemented as iterators, i.., they support a simple open-next-close pro-
tocol similar to conventional file scans. Associated with each operator is a state record. The arguments for the
algorithms, e.g., hash table size or a hash function, are part of the state record. All functions on data records,
e.g., comparisons and hashing, are compiled prior to execution and passed to the processing algorithms by
means of pointers to the function entry points. There is also an argument passed to each function so that the

function can be a generic predicate interpreter with the interpretable code as argument.

Since almost all queries require more than one operator, state records can be linked together by means of
input pointers. All state information for an iterator is kept in its state record; thus, an algorithm may be used
multiple times in a query by including more than one state record in the query. The input pointers are also kept
in the state records. They are pointers to a QEP structure which includes four pointers to the entry points of
the three procedures implementing the operator (open, next, and close) and a state record. An operator does
not need to know what kind of operator produces its input, and whether its input comes from a complex query
tree or from a simple file scan. We call this concept anonymous inputs or streams. Streams are a simple but
powerful abstraction that allows combining any number of operators to evaluate a complex query. Together
with the iterator control paradigm, streams represent the most efficient execution model in terms of time and

space for single process query evaluation.

Calling open for the top-most operator results in instantiations for the associated state record, e.g., allo-

cation of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated
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Iterator Open Next Close
Print open input call next on input; close input
format the item on
screen
Scan open file read next item close file
Select open input call next on input un- close input
til an item qualifies
Hash join allocate hash directory; call next on probe in-  close probe input;
(without open build input; build hash  put until a match is deallocate hash direc-
overflow table calling next on build found tory
resolution)  input; close build input;
open probe input
Merge-join  open both inputs get next item from in-  close both inputs
put with smaller key
until a match is found
Sort open input; build all initial determine next output  destroy remaining run
run files calling next on in- item; read new item files
put and quicksort or re- from the right run file
placement selection; close
input; merge run files until
their number is reduced to
the fan-in; open the remain-
ing run files

Table 2. Examples of Iterator Functions.
recursively. In order to process the query, next for the top-most operator is called repeatedly until it fails with
an end-of-stream indicator. Finally, the close call recursively "shuts down" all iterators in the query. This
model of query execution matches very closely the iterator concept in the E programming language design
[34] and the algebraic query evaluation system of the Starburst extensible relational database system [23].

Table 2 gives a set of simplified examples for open, next, and close functions of some operators.

Figure 4 shows a simple query plan which might illustrate the interaction of operators and their pro-
cedures. Calling open on the print operator results in an open call on the hash join operator. To load the hash
table, hash join opens the left file scan, requests all records from the file scan by calling its next function, and
closes it. After calling open on the right file scan, the open procedures of hash join and then print return. Now
the query evaluation plan is ready to produce data. Calling next on the print operator results in a next call of
the hash join operator. To produce an output item, the hash join operator calls next on the right input until a
match is found that can be returned to the print operator. After formatting the record on the screen, the print
operator’s next functions returns. The query execution driver must call the top-most operator’s next function

repeatedly until it receives an error status. When, in a subsequent next call, the right file scan returns an end-
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Print

Hash Join
File Scan File Scan

Figure 4. A Simple Query Plan.
of-stream status, the hash join and then the print operators return this status. Query execution completes with a

close call to the print operator which results in close calls for the hash join and the right file scan operators.

Volcano’s one-to-one match operator implements all functions in which a record is included in the out-
put depending on the match with another record, namely join, semi-join, outer join, union, intersection, differ-
ence, aggregation, and duplicate elimination [25]. It is implemented both sort-based and hash-based. The
sort-based version combines a sort operator that includes aggregation and duplicate elimination [19] with a
generalized merge-join operator. The hash-based version is a recursive implementation of hybrid hash aug-
mented with aggregation during the build phase and parameterized to allow both overflow avoidance similar to
Grace hash join [17] and overflow resolution using the original hybrid hash join {10, 39]. We are currently
studying how to incorporate bucket tuning and management of skew into the recursive overflow resolution

algorithm.

For creating initial runs in Volcano’s sort operator, we decided to use quicksort, not replacement selec-
tion, although this technique can create runs larger than memory. The basic idea of replacement selection is
that after a record has been written to a run file, it is immediately replaced in memory by another record from
the input. Since the new input record can frequently be included in the current output run, runs tend o be

about twice as large as memory.

In a page-based environment, however, the advantage of larger initial runs is not without cost. Either
the size of the heap used in replacement selection is reduced by about one half to account for record placement

and selective retention in input pages (which would offset the expected increase in run length), or a record

12



holding area and another copying step are introduced. We considered this prohibitively expensive?, unless the
previous query operator must perform a copy step anyway that can be moved into the sort operator, and aban-
doned the idea of using heaps for creating initial runs. Furthermore, this technique does not work easily for

variable-length records.

Volcano is operational on a variety of UNIX machines, including several parallel systems [18, 21]. The
experiments were run on a Sun SparcStation running SunOS with two CDC Wren VI disk drives. One disk
was used for normal UNIX file systems for system files, source code, executables, etc., while the other was

accessed directly by Volcano as a raw device.

4.2. Joins with Equal Input Sizes

In order to demonstrate the relative performance of sorting and merge-join vs. hybrid hash join, we
repeatedly joined two relations similar to the Wisconsin benchmark [14]. The two relations had the same car-
dinality, and each tuple was 208 bytes long. The join attribute was a four-byte integer; each value between 1
and the relation cardinality appeared exactly once. Each tuple (in either relation) had exactly one match in the
other relation, and the join result cardinality was equal to each input cardinality. The join result tuples were
immediately discarded after the join because we were interested in the relative join performance, not in the
performance of writing results to disk. The memory allocated for quicksort, for merging, for partitioning, and
the hash table was ¥4 MB. The cluster size (unit of I/O) was 4 KB; therefore, the maximal fan-in or fan-out

was 127 (2 MB /4 KB — 1) and the final fan-out in two sorts feeding into a merge join was 64.

Figure 5 shows the performance for merge-join and hybrid hash join for input sizes between about 2 MB
(10,000 tuples) and about 100 MB (500,000 tuples). Sort and merge-join performance is indicated with circles
(O), hybrid hash with squares ({J). Note that both axes are logarithmic. Table 3 shows the exact values meas-
ured and used in Figure 5. The performance is not exactly linear with the input sizes because both algorithms,
merge-join and hybrid hash join, require multiple levels of merging or overflow resolution for the larger inputs.
For example, for two 30 MB input files, both algorithms require that each record go to disk once. For 100 MB,

both algorithms require that a substantial fraction go to disk twice, either in merging or in overflow resolution.

2 Note that in many recent computer systems have been designed and optimized for a high MIPS number,
sometimes without similar performance advances in mundane tasks such as copying [33]. In a shared-memory
parallel machine in which bus bandwidth may be scarce, avoiding copying is even more important.
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Figure 5. Join Performance for Equal Input Sizes.

Input Size  Sort-Merge  Hybrid Hash
[MB] [seconds]
2 53 45
3 85 70
5 184 129
7.5 268 201
10 380 279
15 583 434
20 868 591
30 1145 918
50 2397 1607
75 3917 3631
100 5742 5638

Table 3. Join Performance for Equal Input Sizes.
For 50 MB input files, the advantage of hash-join over merge join is most pronounced because hash join can
join the two files with one overflow resolution level (50 MB / 127 < % MB), while sorting (using quicksort)
with a final fan-in of 64 (two concurrent final merges) requires that some records go to disk twice. This differ-
ence between sort- and hash-based join algorithms explains why hash join is about 1.5 times faster than merge
join for two input files of this size, but Figure 5 demonstrates that there is only a small range of file sizes for

which this difference results in a large performance advantage.

Sorting and merge-join performed worse than hashing in Volcano because Volcano uses quicksort, not

replacement selection, for creating initial sorted runs. To illustrate this claim, we calculate the relative I/O

14



required for sorting using quicksort, sorting using replacement selection, and hybrid hash to join two 50 MB
inputs. We only calculate write costs for one input because the I/O is equal for both inputs, and all files written
will be read exactly once. Using quicksort, 50 MB of data divided by ¥2 MB of memory results in 100 runs.
As each sort can use a final merge fan-in of 64 (¥2 MB /4 KB /2), 100 runs must be reduced to 64 using a
fan-in of 127 (2 MB /4 KB - 1), requiring 37 (100 — 64 + 1) original runs to be merged into 1 larger run.
Thus, the total I/O for sorting with quicksort is proportional to 137 memory loads for each input. For replace-
ment selection, there would have been about 51 runs, each about twice as large as memory for which one final
merge would suffice. Thus, the total I/O for sorting with replacement selection is proportional to 100 memory
loads for each input. For hybrid hash, the entire inputs have to be partitioned into overflow files of about 0.39
MB (50 MB / 127); hybrid hashing would not be very effective in this situation because at most 27 page
buffers (or 108 KB of 50 MB, 0.2%) could have been retained in memory. Each file will fit into memory when
joining partition files. Thus, the total I/O will be proportional to the input sizes, or 100 memory loads for each
input, exactly the same as for sorting using replacement selection. To summarize these calculations, we chose
quicksort in Volcano because it makes the software less complex and performs well with variable-length

records even though our measurements would have been better if we had implemented replacement selection.

We would like to discuss why we have obtained different results than Schneider and DeWitt [37] and
Shapiro [39]. One reason is that we used a more sophisticated sort operator than was implemented in the
GAMMA database machine at the time. GAMMA'’s sort operator was the same as WiSS’ [9], i.., it sorted
from a disk-resident file into a disk-resident file. Therefore, an intermediate result had to be written to disk
before it could be sorted rather than sorted into initial runs before the first write step, and the entire sorted file
was written back to disk rather than pipelined into the next operation, e.g., a merge-join. Thus, the WiSS sort
algorithm can easily require three trips to disk when actually one could have sufficed. Furthermore, neither
heap-based run creation nor merge optimizations are implemented in WiSS. Thus, the comparison in [37] is
biased against sort-based algorithms. Shapiro [39] analyzed only the case in which hybrid hash’s advantage is
most pronounced, i.e., when less than one full recursion level is required, based on the argument that most
memories are fairly large and multi-level recursion or merging are not realistic. This last argument does not

always hold, however, as discussed in the next section.
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4.3. Performance Optimizations

In this section, we focus on using duality to transfer tuning ideas from sorting to hashing and vice versa.
Originally, the performance of sorting and merge-join in Volcano had been clearly inferior to that of hybrid
hash join, in particular for input sizes relatively close to memory size. The big advantage of hybrid hash over
overflow avoidance (write all partitions to disk, do not retain any data in memory) is that as much data as pos-
sible is never written to temporary files. This led us to search for a dual in the realm of sorting for the in-
memory hash table used in hybrid hash join. To obtain the same effect, we changed Volcano’s sort operator
such that it retains data in memory from the last quicksort for the first merge. In order to achieve that, it writes
runs in reverse order, i.e., in descending order for an ascending sort, and gives the KEEP hint to the buffer
manager for the clusters written after the end of the input has been found. These clusters will stay in the I/O
buffer until the first merge, which is ascending and uses a backward scan on the run files. Therefore, these
clusters are never written to disk, and a similar effect to hybrid hash join could be achieved. This optimization
has been analyzed in some studies, e.g. [39], but was not considered a dual of hybrid hash. Without the focus
on duality, we probably would have overlooked it. This optimization makes the most difference for inputs
only slightly larger than main memory, precisely the same case when hybrid hash join shows the largest differ-

ence to overflow avoidance.

In a recent study of sequential and parallel sorting, we found that the unit of I/O can have a significant
impact on sort performance [19] beyond the effect of read-ahead and double buffering [35]. In Volcano, the
cluster size is defined for each file individually. Small clusters allow high fan-ins and therefore few merge lev-
els; large clusters restrict the fan-in and may force more merge levels but allow more efficient I/O because
more data is moved with each I/O and each merge level can be completed with fewer seeks. For sorting, we
found that the optimal performance is typically obtained with a very moderate fan-in and relatively large clus-
ters. If merging and partitioning are indeed duals, we expect the same effect of cluster size on hybrid hash per-

formance.

Figure 6 and Table 4 show the performance of joins of two 20 MB inputs for various cluster sizes. As
can be seen, hash performance is as sensitive to cluster size as sorting. The optimal cluster size for hashing
seems to be somewhat higher than for sorting; we suspect that this also stems from the fact that merge join and

sorting using quicksort uses more merge levels than hash join’s recursion levels (the difference is, as noted
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Figure 6. Join Performance by Cluster Size.

Cluster Size  Fan-in Sort-Merge  Hybrid Hash
[x 4 KB] Fan-Out [seconds]
1 127 868 590
2 63 483 351
3 41 455 332
4 31 420 310
5 24 404 307
6 20 385 294
7 17 367 275
8 15 354 275
9 13 341 273
10 11 337 271
11 10 328 257
12 9 321 264
13 8 337 255
14 8 327 250
15 7 339 245
16 7 350 241

Table 4. Join Performance by Cluster Size.
earlier, 1/logz F). A similar effect was observed in the GAMMA database machine [13], but only for cluster
sizes that did not change the recursion depth in hash table overflow resolution. Both algorithms perform best
with large cluster sizes and moderate fan-in respectively fan-out, even if multiple merge or recursion levels are
required. Around the optimal cluster size, the effect of small changes in the cluster size is fairly small, making
a roughly optimal choice sufficient. In an earlier study, we found that the optimal cluster size for sorting

depends only on the memory size and not on the input sizes [19]; we suspect the same is true for hashing. In
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the following experiments, we used clusters of 32 KB and fan-ins and fan-outs of 15. This is a second optimi-

zation we found based on our duality considerations, in this case transfering a sort optimization to hashing.

4.4. Joins with Different Input Sizes

As suggested by Bratbergsengen [8], we decided to include joins of relations with different sizes in the
comparison of sorting and hashing. We adjusted the data generation function such that each tple in the
smaller relation has exactly one match in the larger relation. For sorting the inputs of a merge-join, each input
determines the number of merge levels for its sort. The large input is merged over more levels than the small
input. The only possible optimization we found is the division of memory between the two final merges (of
the two inputs) which are overlapped with the actual merge-join. To determine the optimal memory division
between two final merges, we approximated the sum of two sort costs with a continuous function and found
that the memory allocated to each final merge should be proportional to the size of the inputs. In the following
experiments, we divided memory proportionally to the input sizes. For equal input sizes, the two final merge
fan-ins were equal; for extremely different sizes, the smaller input is merged into one run such that the final

merge is actually just a file scan.

For hashing, the build input determines the recursion depth because partitioning can be terminated as
soon as the build partition fits into memory. The recursion depth does not depend at all on the size of the probe
input. This is the reason why the smaller of two relations should be chosen to be the build input into a binary
hash operation. Changing the role of build and probe input dynamically, e.g., after a first partitioning step, is

possible but not considered further in this report.

Figure 7 and Table 5 show the performance of merge-join and hybrid hash join for inputs of equal to
very different size. The smaller (build) input size is fixed at 2 MB, the larger (probe) input size is varied
between 2 MB and 100 MB?, Notice again that both axes are logarithmic. As can be seen, the performance
advantage of hybrid hash join increases with the size difference between the input relations. If the probe input

is the same size as the build input (2 MB), hash join is faster only because Volcano uses quicksort, as dis-

3 Notice that the elapsed times for two inputs of 2 MB each are much smaller than in the first experiment,
both for sorting and hashing, because we used larger I/O clusters for temporary files (32 KB instead of 4 KB)
as suggested in the last subsection.

18



1000 - o

0
500 — '.'O"”-
o
200 — B
Time o-"".o G _
[seconds] 100 — y
P ]
" e .
O .
P ]
ot I
20— .......... Egeeettt” (X}
ettt I

1 1 l T 1
2 3 5 7510 15 20 30 50 75 100

Size of Large Input [MB], Small Input 2 MB, 2 MB Memory

Figure 7. Join Performance for Different Input Sizes.

Large Input  Sort-Merge  Hybrid Hash
[(MB] [seconds]
2 25 15
3 31 17
5 42 19
7.5 59 22
10 83 25
15 125 33
20 172 41
30 260 57
50 439 86
75 655 123
100 887 162

Table 5. Join Performance for Different Input Sizes.
cussed above. For the largest probe inputs, the difference grows to a factor of almost 5.5. The reason is that
for hybrid hash join, ¥ of the build relation fits into memory and % of both relations is written to overflow
files, independently of the probe input size. For merge-join, sorting the larger input dominates the total cost

and makes merge-join the inferior join method for unsorted inputs of very different size.

Similarly, algorithms derived from merge-join for semi-join, outer join, intersection, union, and differ-
ence will perform less efficiently than those derived from hybrid hash join for pairs of inputs of very different
size. On the other hand, if the query optimizer cannot reliably predict which input is smaller, merge join may

be the more robust and therefore superior choice.

19



4.5. Joins with Skewed Data and Hash Value Distributions

Finally, we experimented with some skewed join value distributions. Instead of using a uniform random
number generator to create test data, we used a generalized random function borrowed from Knuth [29].

Using a continuous parameter z, probabilities are assigned to the numbers 1 to N as P; = ¢ /i? for i=1,...N

N
withce =1/ 21 / j&. If z is 0, the random function creates uniform data; if z is 1, this function can be used to
l=

create random data according to Zipf’ law [44]. The reason Zipfian distributions are relevant for our purpose

is that they were defined to model real data and their frequencies.

Figure 8 shows the probability of values N = 1....,100 with z = k/5 for k=0,...,5. Since the domain of N
is discreet, it is not entirely right to draw the probability functions with continuous lines; however, we have
taken the liberty to indicate which data points belong to the same values of z. Note that the y-axis is loga-
rithmic. z =0 is shown by the horizontal line, a uniform distribution. With increasing z, the distribution
becomes increasingly skewed. For z = 1, the probability values at N = 100 is two orders of magnitude higher

than for N = 1 following Zipf’ law. Probabilities with more skew can be obtained with higher values of z.

We used the same data distribution in both inputs. This increases the number of matches between the

inputs, resulting in significantly more data copying to create new records and in more backing up in the inner

input of merge join.
1
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Figure 8. Probability Distributions for Selected Values of z.
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Figure 9 and Table 6 show the effect of skew on the performance of merge-join and hybrid hash join. It
is evident that merge join is much less affected by the skew. For uniform data, hybrid hash join outperforms
merge join, as shown in the previous figures. For highly skewed data, however, merge join outperforms hash
join. The reason is that the partitioning is not even; for z equal to 1, % of the entire build (and probe) input is
written to a single overflow file (pair). Therefore, instead of performing the join with a single level of

overflow resolution, multiple levels are needed.

The reason for this difference between sort- and hash-based algorithms is that sort-based algorithms

divide the input file into physical units, i.e., run files are build according to memory size and an input record is
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Figure 9. Join Performance for Skewed Data.

Data Skew  Sort-Merge  Hybrid Hash

[z] [seconds]

0 24 16
0.1 24 16
0.2 24 16
0.3 26 17
04 26 17
0.5 28 19
0.6 31 24
0.7 39 35
0.8 62 75
0.9 118 139
1 234 291

Table 6. Join Performance for Skewed Data.
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written to a particular run file solely because of it position in the input, without regard for its sort key. Thus,
dividing a sort input into run files is equally efficient for uniform and skewed data. Hashing, however, divides
the inputs logically, by hash value. Thus, it is susceptible to skewed hash value distributions. Obviously,
skewed hash value distributions are undesirable and against the idea of hashing, i.e., randomizing, the data. To
counteract and possibly even exploit hash value skew, we are currently working on a two-step hashing scheme
that rerandomizes hash values in hash-based query processing algorithms if a hash function perform unsatis-

factorily.

5. Summary and Conclusions

In this report, we have outlined many dualities between sort- and hash-based query processing algo-
rithms, e.g., for join, intersection, or duplicate elimination. Under most circumstances, the cost of optimally
implemented algorithms differs by percentages rather than factors. Furthermore, tuning ideas can be
transfered from one algorithm group to the other, as we indicated for the cluster size optimizations and con-
current use of temporary files and main memory which is the central idea of hybrid hash algorithms. We
expected these results from the large number of dualities and verified them with the Volcano query processing

system.

Two special cases exist which favor one or the other, however. First, if two join inputs are of different
size (and the query optimizer can reliably predict this difference), hybrid-hash join will outperform merge-join
because only the smaller of the two inputs will determine what fraction of the input files will have to be written
to temporary disk files during partitioning (or how often each record has to be written to disk during recursive
partitioning), while each file determines its own disk I/O in sorting. In other words, sorting the larger of two
join inputs is more expensive than writing a small fraction of that file to hash overflow files. This performance

advantage of hashing grows with the quotient of the larger over the smaller input file size.

Second, if the hash function is very poor, e.g., because a prior selection on the join attribute or a corre-
lated attribute, hash partitioning can perform very poorly and create significantly higher costs than sorting and
merge-join. If the quality of the hash function cannot be predicted or improved (tuned) dynamically, sort-
based query processing algorithms are superior because they are less vulnerable to data distributions. Since

both cases, join of differently-sized files and skewed hash value distributions, are realistic situations in
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database query processing, we recommend that both sort- and hash-based algorithms be included in a query
processing engine and chosen by the query optimizer according to the two cases above. If both cases arise
simultaneously, i.e., a join of differently-sized inputs with unpredictable hash value distribution, the query
optimizer has to estimate which one poses the greater danger to system performance and predictability and

choose accordingly.

The important conclusion from this research is that neither the input sizes nor the memory size deter-
mine the choice between sort- and hash-based query processing algorithms. Instead, the choice should be
governed by the relative sizes of the two inputs into binary operators and by the danger of skewed data or hash
value distributions. Fuarthermore, because neither algorithm type outperforms the other in all situations both

should be available in a query execution engine for a choice to be made in each case by the query optimizer.

Acknowledgements

The initial interest in comparing sort- and hash-based algorithms in greater detail resulted from a spirited
discussion with Bruce Lindsay and Hamid Pirahesh during VLDB 1988. David DeWitt made several very
helpful comments. — This work was supported in part by the National Science Foundation with grants IRI-
8996270 and IRI-8912618 the Oregon Advanced Computing Institute (OACIS), ADP, Intel Supercomputer

Systems Division, and Sequent Computer Systems.

References

1.  A. Aggarval and J. S. Vitter, ‘“The Input/Output Complexity of Sorting and Related Problems’’,
Communications of the ACM 31 (1988), 1116-1127.

2. M. M. Astrahan, M. W, Blasgen, D. D. Chamberlin, K. P, Eswaran, J. N. Gray, P. P. Griffiths, W. F.
King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade and V. Watson,
““System R: A Relational Approach to Database Management’’, ACM Transactions on Database
Systems 1,2 (June 1976), 97-137.

3. M. Beck, D. Bitton and W. K. Wilkinson, ‘‘Sorting Large Files on a Backend Multiprocessor’’, IEEE
Transactions on Computers 37 (1988), 769-778.

4.  D.Bitton and D. J. DeWitt, ‘‘Duplicate Record Elimination in Large Data Files’’, ACM Transactions on
Database Systems 8, 2 (June 1983), 255-265.

5. D. Bitton Friedland, ‘‘Design, Analysis, and Implementation of Parallel External Sorting Algorithms’’,
Computer Sciences Technical Report 464 (January 1982), University of Wisconsin — Madison.

6. M. Blasgen and K. Eswaran, ‘““‘On the Evaluation of Queries in a Relational Database System’’, IBM
Research Report, San Jose, CA., April 8, 1976.

7. M. Blasgen and K. Eswaran, ‘‘Storage and Access in Relational Databases’’, IBM Systems Journal 16, 4
Q9717).

8. K. Bratbergsengen, ‘‘Hashing Methods and Relational Algebra Operations’’, Proceedings of the
Conference on Very Large Data Bases, Singapore, August 1984, 323-333,

23



10.

11.

12.

13.
14.
15.
16.

17.

18.
19.
20.
21.

22.

23.

24.
25.
26.

27.

28.
29.

30.
3L

32.
33.

34.

H. T. Chou, D. J. DeWitt, R. H. Katz and A. C. Klug, *‘Design and Implementation of the Wisconsin
Storage System’’, Software - Practice and Experience 15, 10 (October 1985), 943-962.

D. J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker and D. Wood, ‘‘Implementation Techniques
for Main Memory Database Systems’’, Proceedings of the ACM SIGMOD Conference, Boston, MA.,
June 1984, 1-8.

D. J. DeWitt and R. H. Gerber, ‘‘Multiprocessor Hash-Based Join Algorithms®’, Proceedings of the
Conference on Very Large Data Bases, Stockholm, Sweden, August 1985, 151-164.

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar and M. Muralikrishna, ‘‘GAMMA -
A High Performance Dataflow Database Machine’’, Proceedings of the Conference on Very Large Data
Bases, Kyoto, Japan, August 1986, 228-237.

D. J. DeWitt, S. Ghandeharizadeh and D. Schneider, ‘‘A Performance Analysis of the GAMMA
Database Machine’’, Proceedings of the ACM SIGMOD Conference, Chicago, IL., June 1988, 350-360.
D. J. DeWitt, ‘‘“The Wisconsin Benchmark: Past, Present, and Future’’, in Database and Transaction
Processing Systems Performance Handbook, J. Gray (editor), Morgan-Kaufman, San Mateo, CA, 1991.
R. Epstein, ‘“‘Techniques for Processing of Aggregates in Relational Database Systems”,
UCB/Electronics Research Lab. Memorandum M79/8 (February 1979), University of Califomia.

R. Fagin, J. Niecvergelt, N. Pippenger and H. R. Strong, ‘‘Extendible Hashing: A Fast Access Method for
Dynamic Files”’, ACM Transactions on Database Systems 4, 3 (September 1979), 315-344.

S. Fushimi, M. Kitsuregawa and H. Tanaka, ‘“‘An Overview of The System Software of A Parallel
Relational Database Machine GRACE™’, Proceeding of the Conference on Very Large Data Bases,
Kyoto, Japan, August 1986, 209-219.

G. Graefe, ‘‘Encapsulation of Parallelism in the Volcano Query Processing System’’, Proceedings of the
ACM SIGMOD Conference, Atlantic City, NJ., May 1990, 102.

G. Graefe, ‘‘Parallel External Sorting in Volcano’’, submitted for publication, also CU Boulder Comp.
Sci. Tech. Rep. 459, February 1990.

G. Graefe and S. S. Thakkar, *““Tuning a Parallel Database Algorithm on a Shared-Memory
Multiprocessor’’, CU Boulder Comp. Sci. Tech. Rep. 470, April 1990.

G. Graefe and D. L. Davison, ‘‘Architecture-Independent Parallel Query Evaluation in Volcano™,
submitted for publication, also CU Boulder Comp. Sci. Tech. Rep. 500, December 1990.

G. Graefe, ‘“Volcano, An Extensible and Parallel Dataflow Query Processing System’’, accepted for
publication in IEEE Transactions on Knowledge and Data Engineering, . A more detailed version is
available as CU Boulder Computer Science Technical Report 481, July 1990.

L. M. Haas, W. F. Cody, J. C. Freytag, G. Lapis, B. G. Lindsay, G. M. Lohman, K. Ono and H. Pirahesh,
““‘An Extensible Processor for an Extended Relational Query Language’’, Computer Science Research
Report, San Jose, CA., April 1988.

B. R. Iyer and D. M. Dias, *‘System Issues in Parallel Sorting for Database Systems’’, Proceedings of
the IEEE Conference on Data Engineering, Los Angelos, CA, February 1990, 246.

T. Keller and G. Graefe, ‘“The One-to-One Match Operator of the Volcano Query Processing System’’,
Oregon Graduate Center, Computer Science Technical Report, Beaverton, OR., June 1989.

M. Kitsuregawa, H. Tanaka and T. Motooka, ‘‘Application of Hash to Data Base Machine and Its
Architecture’’, New Generation Computing 1, 1 (1983).

M. Kitsuregawa, M. Nakayama and M. Tagaki, ‘‘The effect of bucket size tuning in the dynamic hybrid
GRACE hash join method’’, Fifteenth International Conference on Very Large Data Bases, Amsterdam,
The Netherlands, 1989, 257.

A. Klug, “‘Access Paths in the 'ABE’ Statistical Query Facility’’, Proceedings of the ACM SIGMOD
Conference, Orlando, FL., June 1982, 161-173.

D. Knuth, The Art of Computer Programming, Vol. HlII: Sorting and Searching, Addison-Wesley,
Reading, MA., 1973.

R. P. Kooi, ‘“The Optimization of Queries in Relational Databases’’, Ph.D. Thesis, September 1980.

R. A. Lorie and H. C. Young, ‘‘A low communication sort algorithm for a parallel database machine”’,
Fifteenth International Conference on Very Large Data Bases, Amsterdam, The Netherlands, 1989, 125,
J. Menon, ““A Study of Sort Algorithms for Multiprocessor Database Machines”’, Proceeding of the
Conference on Very Large Data Bases, Kyoto, Japan, August 1986, 197-206.

J. Ousterhout, ““Why Aren’t Operating Systems Getting Faster as Fast as Hardware?’’, Dec. WRL
Technical Note TN-11, Palo Alto, CA., October 1989.

J. E. Richardson and M. J. Carey, ‘‘Programming Constructs for Database System Implementation in
EXODUS”’, Proceedings of the ACM SIGMOD Conference, San Francisco, CA., May 1987, 208-219.

24



35.

36.

37.

38.

39.
40.
41.
42.
43.

44,

B. Salzberg, ‘‘Merging Sorted Runs Using Large Main Memory®’’, Acta Informatica 27 (1990), 195-215,
Springer International.

B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren and B. Vaughan, ‘‘FastSort: An Distributed
Single-Input Single-Output External Sort”’, Proceedings of the ACM SIGMOD Conference, Atlantic
City, NJ., May 1990, 94.

D. Schneider and D. DeWitt, ‘‘A Performance Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment’’, Proceedings of the ACM SIGMOD Conference, Portland, OR,
May-June 1989, 110.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price, ‘‘Access Path Selection
in a Relational Database Management System’’, Proceedings of the ACM SIGMOD Conference, Boston,
MA., May-June 1979, 23-34.

L. D. Shapiro, ‘‘Join Processing in Database Systems with Large Main Memories’’, ACM Transactions
on Database Systems 11, 3 (September 1986), 239-264.

M. Stonebraker, E. Wong, P. Kreps and G. D. Held, ‘““The Design and Implementation of INGRES”’,
ACM Transactions on Database Systems 1,3 (September 1976), 189-222.

Teradata, DBC/1012 Data Base Computer, Concepts and Facilities, Teradata Corporation, Los Angeles,
CA., 1983.

S. Todd, ““PRTV: An efficient implementation for large relational data bases’’, Proceedings of the
Conference on Very Large Data Bases, 1975, 554-556.

H. Zeller and J. Gray, ‘‘An Adaptive Hash Join Algorithm for Multiuser Environments’’, Sixteenth
International Conference on Very Large Data Bases, Brisbane, Australia, 1990, 186.

G. K. Zipf, Human Behavior and the Principle of Least Effort, an Introduction to Human Ecology,
Addison-Wesley, Reading, MA., 1949.

25



