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Abstract

Due to dramatic increases in microprocessor performance, medium-grain ensemble multi-
processors have become an economical hardware platform on which to solve compute-intensive
problems. Unfortunately, the use of these systems to solve such problems is hampered by
a lack of understanding about the behavior of parallel programs at all levels of execution —
hardware, operating system, and runtime system. The goal of the Parallel Execution Evaluation
Testbed project at the University of Colorado is to improve the general understanding about
the performance of parallel programs and systems at these levels using trace-driven simulation.

In this paper, we discuss the validity of trace-driven simulation of parallel programs, the
difficulties of applying this approach to evaluating parallel programs, and a new technique to
abstract the logical behavior of the program and capture it in the traces we collect. We describe
how this abstract trace information can be used to understand the behavior of parallel systems.

*This work was supported in part by NSF Cooperative Agreement No. DCR-8420944, NSF Grant No. CCR-
9010624, and NSF Grant No. CCR-9010672.



1 Introduction

The increase in performance of microprocessors in recent years has far outpaced that of
supercomputers, and this trend shows no signs of abating (prompting cries of the “attack of the killer
micros”). Recently announced microprocessors, such as the MIPS R4000, IBM RIOS, Intel i860,
and National Semiconductor Swordfish have claimed performance in the range of 20-100 MIPS.
More importantly, many of these microprocessors represent that latest in a line of architectural
families. Thus, computers that take advantage of these new micros can be designed very quickly,
and manufactured very economically.

Some manufacturers, such as BBN, Intel and Alliant have introduced medium-scale multi-
processors based on these “killer micros”. The performance of these architectures scales in two
dimensions: by adding processors, or by increasing the speed of each processor. This has resulted in
multiprocessor systems rivaling the computational performance of more expensive supercomputers.

In spite of this rapidly emerging hardware technology, there are several remaining obstacles
to the effective use of multiprocessors. There is inadequate architectural and operating systems
support for parallel programming constructs; the tools to measure the efficacy of extant
architectural and operating systems constructs are not up to the task. In today’s systems it is
difficult to determine what mechanisms, (such as synchronization hardware, scheduling policies or
multiple processor contexts), contribute most significantly to system performance. This is due to a
lack of data concerning parallel program behavior at the hardware, operating system, and runtime
system levels; furthermore, we know of no inexpensive, effective way to compare design alternatives.

We call the combination of machine architecture, operating system, and runtime system the
ezeculion architecture of a system. A commonly-used technique for evaluating alternative execution
architectures is trace-driven simulation, or TDS [14]. Traditionally, address traces have been used
to evaluate cache organizations [15, 2, 7, 17, 5], page reference traces have been used to evaluate
paging policies [3, 12], and file system-call traces have been used to evaluate file system designs
[13].

Increasingly, TDS has been applied to parallel systems, using traces of parallel programs.
Despite questions about the validity and usefulness of parallel traces (see Section 2.2), there are

few tools for quantitatively comparing architectures. Traces of parallel programs have been used



effectively to compare distributed cache algorithms [1] and to investigate cache performance on
distributed computers [16].

The complications arise from the fact that tracing systems typically provide per-processor traces,
and thus the number of simulated processors must be equal to the number on which the traced
program was run. As a consequence, one cannot easily use the traces to compare the effect of
varying numbers of processors. Methods for simulating arbitrary parallelism exist for special cases
[18], but there do not appear to be any generally applicable techniques.

SPAE! is intended to be a general purpose tracing facility for parallel systems. SPAE is used to
create an instrumented parallel program that will produce an abstract trace of its execution. The
abstraction eliminates many details of the execution architecture such as the number of processors,
the synchronization mechanisms, scheduling policies, memory allocation policies and operating
system behavior. When the abstract trace is used, the resulting abstractions are instantiated to a
particular target execution architecture. Thus, we call such abstract traces ezecution architecture
independent traces.

A program is an implementation of a software design driven by some specification. While
the program’s requirements are typically independent of an execution architecture, the design
depends on the execution architecture to some degree. Any program implementation depends to
an even larger extent on certain features on the execution architecture, e.g., the instruction set, the
number of registers or the compiler technology used. Hence a trace of a program has an inherent
set of assumptions about the execution architecture. Moreover, many programs are written to
optimize their performance on a particular execution architecture. For example, an algorithm
may be implemented very differently for shared-memory architectures than for distributed-memory
architectures. Despite the prevalence of these architecture-specific algorithms, we feel that tracing
parallel programs will enable quantitative system comparison within an “architectural family.”

The important point is that each of these problems is an inherent limitation of program tracing
itself, rather than an artifact of parallel execution, or our approach. Our objective is to make
traces as independent of the execution architecture as possible, subject to these inherent limitations.
Eventually, we expect to be able to identify a number of architectural equivalence classes within

which traces can be generalized. This has already been applied in very restricted cases, such as

! Spae (spi) is a fourteenth century Scottish term, meaning to spy or foretell.



using traces from an execution architecture with one cache organization to simulate one with a
different cache organization.

The remainder of this paper is organized as follows: we discuss the TDS technique in general,
including its uses, the gathering of traces, and its limitations. We particularly examine the
shortcomings of current trace gathering technology when applied to a parallel system. We
then describe our trace gathering technique, its advantages over current approaches, and some
implementation details. A simplified example illustrates the technique, and is followed by a more

complex example illustrating novel aspects of SPAE.

2 Trace-Driven Simulation

This section discusses the motivation for evaluation techniques based on trace-driven simulation
and addresses some of the problems associated with this approach when it is used to evaluate

parallel systems.

2.1 Motivation

Solving a problem on a paralle]l computer involves several design stages:

Specification: A problem is identified and the designer begins to formulate a solution. The
solution is largely independent of any particular execution architecture (except at the most gross
levels, e.g., shared vs. distributed memory environments); the approach focuses on algorithms and
general constraints.

Design: During design, the algorithm is molded to fit some more specific execution architecture
constraints (e.g., synchronous vs. asynchronous execution, static vs. dynamic parallelism, etc), but
has not yet been committed to a particular implementation of the algorithm.

Implementation: A programming language is selected to implement the algorithm, resulting
in a concrete program for a concrete execution architecture. Ideally, specifics of the execution
architecture would not enter into this stage of the solution, but any concrete instance must be
specific to the execution architecture.

Execution: The program is executed on a particular execution architecture, resulting in a

single solution to the problem.



Evaluation and Tuning: The program or algorithm is modified in response to observed
behavior of the program on the execution architecture to obtain a more efficient problem solution
on subsequent executions on that execution architecture.

When a parallel program exhibits unacceptable performance, the blame may lie with its
specification, design, implementation, or the execution architecture. One might choose to achieve
a better match of specification to execution architecture by changing the design or implementation
(program tuning), or by changing the execution architecture (system tuning).

The Parallel Execution Evaluation Testbed (PEET) project is intended to support the change
of execution architectures — hardware, operating systems, and runtime systems — so that they are
well-matched to a body of well-behaved parallel application programs.

Because of the relative success of TDS in cache studies, PEET uses the technique as a
fundamental methodology. Performance estimates of new architectures are determined by tracing
the behavior of a set of programs on the original execution architecture and using the traces to drive
simulations of new execution architectures. We prefer simulation in general, and TDS in particular,
as the paradigm for evaluating the impact of changing an execution architecture in PEET.

Other approaches to evaluating performance exist, but have drawbacks. Analytic models
simplify many details of an execution architecture. Many phenomena that are crucial to the
performance of parallel programs, such as cache behavior and process synchronization, are very
difficult to model analytically. Furthermore, simulation is more cost effective than prototyping
when exploring a design space that contains a wide variety of execution architectures. Synthetic
traces, or statistical profiles of program behavior, are often used due to the complexity of gathering
actual traces. However, a detailed simulation is only as accurate as its inputs; thus, using actual
traces increases the credibility of simulation results.

The goal of the PEET SPAE tool is to provide abstract trace data of parallel programs that rival

the accuracy of actual traces.

2.2 Issues in Trace Driven Simulation

While trace-driven simulation appears straightforward, the sheer volume of data may make it a
daunting undertaking (depending on the level at which the traces are taken and the length of the

program execution). Some issues that arise are:



System Instrumentation| Dilation
Name Tool Factor
ATUM [2] | Microcode 20
TRAPEDS | Instrumented 10-30
[16] executable

code
MPtrace Instrumented 2-3
[6] executable

code
Titan Compiler, 8-12
Trace [4] kernel
AE [9] Compiler 1-4

Table 1: Current trace collection systems.

What to trace? The trace might contain a record of high-level events (e.g., operating system
calls), medium-level events (e.g., synchronization primitives), and/or low-level events (e.g., address
references). We believe that each of these event levels are important for understanding some aspect
of the execution architecture, and that correlating the events across levels can provide a more
complete picture of the behavior of the program on the execution architecture. However, address
level tracing presents the most serious challenge because the large volume of data slows program
execution and makes heavy demands on storage space.

How to trace? The difficulty of gathering address traces has led to a spectrum of collection
techniques; see Table 1. In the table, the dilation factor refers to the ratio of execution time of a
traced program to that of an identical, untraced program. The tools shown have dilation factors
ranging from 1 to 30, depending upon the program behavior and on the tool. Although most
systems trace only user-level execution, some, such as Titan Trace, also trace the operating system.
Hardware instrumentation can also be used; see [17] for a comprehensive survey.

How to manage the data? Tracing parallel production programs generates more data than
can be stored on many systems. Furthermore, long traces identify program behavior that is not
captured by shorter traces, as observed by Borg et al. [4]. This problem has two aspects: execution
time is excessively dilated by I/O activity, and an enormous amount of secondary storage is required
to store the traces. These problems are exacerbated in a parallel environment, since there are many

streams of execution to trace simultaneously.



Program | Untraced Execution | Traced Execution Raw Trace | Compression
Name Time (seconds) Time (seconds) | Size (Mbytes) Factor

Shallow 0.45 0.62 12 197

ARC/2D 3214.2 5484.9 109,408 22.5

Table 2: Trace Measurements of Two Scientific Programs

Gathering and effectively using large amounts of trace data suggests on-the-fly simulation [4] or
exzecution-driven simulation [16], in which the output of a traced program is processed directly by
the simulator. This implies that the measured application is executed each time a simulation is run.
Some tracing systems, such as MPtrace and AE, generate compressed traces; unfortunately, Table 2
shows that compression is insufficient for large programs. Shallow is a finite difference program
modeling shallow-water flow, while ARC/2D solves the Euler equations using an implicit finite
difference method. Both programs were run on a Solbourne Series 5 system, and generate ~ 20
megabytes of raw trace information each second, or ~ 5 million events per second. Although, trace
compression techniques reduce the storage for the ARC/2D trace 23 fold, to 4.7Gbytes, it is still
impractical to store the trace data. This single trace contains over 19 billion instruction references
and 8 billion data references. Thus, on-the-fly simulation is currently the only practical solution
to tracing such large programs. We feel that it is reasonable to trade the extra processor time
of reexecuting the application in exchange for the savings of large amounts of secondary storage;
however, a small execution dilation is critical, because it drastically affects the trace generation

time.

2.3 Tracing Multiprocessor Programs

A number of new issues arise when using TDS techniques to evaluate parallel programs and
architectures. First, parallel programs are more sensitive to changes in execution architecture
than their sequential counterparts. Second, most parallel program execution architectures are
nondeterministic to some extent. While there is widespread agreement that these properties are
characteristic of parallel programming environments, there is some controversy over whether or not

they present true obstacles to the use of TDS.



Koldinger et al. [8] showed that, unlike sequential programs, most parallel programs will yield
different process or task instruction interleavings each time they are executed. This interleaving is
likely to be dependent not only on characteristics of the execution architecture, but also on subtle
timing perturbations introduced by the tracing software [11, 10], other users on the system, page
faults, and so on. The effect on the overall execution of the program depends on its structure.
Traces of statically scheduled parallel programs can be affected in subtle ways, such as the time
to rendezvous at a barrier. Dynamically scheduled programs can be affected more dramatically.
Timing variations can result in different assignments of threads to processors, affecting cache
behavior, lock acquisition, bus traffic and so on. Thus, executing a parallel program on a parallel
execution architecture yields one of many possible instruction interleavings. A consequence of
nondeterminism is that no single trace is completely representative of a program’s behavior; one
can gain confidence in observation by tracing a program many times, then computing an “average
behavior” from the traces.

Certainly, if a program trace is not repeatable on the same execution architecture, there is little
reason to rely on it to predict performance on different execution architectures! This leads to a
related issue about the validity of using such traces to model new execution architectures: since the
trace contains information about the tracing execution architecture, how will it affect the results of
the simulation? For example, is it possible to model different cache behavior using parallel traces
if the original cache misses and bus contention affected the original program execution and the
resultant trace?

A more subtle consequence of nondeterminism is that tracing may make it impossible to observe
representative program behavior. Tracing dilation slows the execution of a program; some tracing
techniques have a larger dilation than others, but none are entirely free from it. Since dilation
is not perfectly uniform across all processors, it perturbs the program instruction interleaving.
Just as minor events such as cache misses can perturb program behavior, this tracing-induced
perturbation can affect the program dynamics. For example, suppose tracing slows one thread of
execution enough that it loses a race for a shared lock. This can have a significant effect on the
remaining execution. If such a scenario occurs frequently in traced execution, but only rarely in
untraced execution, the traced observations of the program will not be representative of the true

average behavior of the program. Thus, taking a large number of observations and averaging the



results is not guaranteed to produce performance measures that are indicative of the real execution
architecture; confidence intervals for a performance measure may not contain its true mean.

Furthermore, dilation may mask effects that occur on a fine time scale. It is unlikely that
one could capture the effect of a particular bus contention protocol in the execution architecture,
because the dilation of the program’s execution may considerably reduce bus contention.

It is difficult to avoid the problem of nonrepresentative program behavior measurements within
a trace, or that of masking small-scale effects by dilation; using current tracing technology, there
does not appear to be any way to prevent these effects. However, traces are an important tool in
system design, and more extensive and flexible trace collection tools are needed.? The best that
can be done is to validate the traced data against untraced program execution.

Even if we were confident that a traced program exhibited representative behavior “on the
average,” the necessity for multiple experiments increases the computation and storage requirements
of the methodology. The requisite secondary storage is significant — prohibitively so to most
researchers — and thwarts the distribution of parallel traces. Fortunately, increases in CPU
performance means that on-the-fly simulation is practical. Unfortunately, nondeterministic
behavior makes it virtually impossible to provide identical input to two different on-the-fly
simulations, unless they are run simultaneously.

Most tracing systems record per-processor traces. Thus, the number of processors that can be
simulated using such a trace is the same as the number of physical processors used to produce that
trace. At best, this means that the program must be traced on every number of processors that
one wishes to simulate, involving substational cpu time and mass storage. In the worst case, it
means that it may not be possible to simulate future execution architectures with more processors
than the one used to capture the traces. There are certain exceptions to this for limited domains:
for example, Fortrace [18] traces FORTRAN programs containing doall and doacross loops,
simulating the parallel execution on an arbitrary number of processors.

In the next section we present a tracing mechanism that provides trace data of parallel programs
rivaling the accuracy of traditional traces, while attacking the problems mentioned here. It remains
to be determined if our method suffers to some extent from the identified problems; however, we

know of no practical method that does not.

2Prompting one to recall the joke, “The food here is terrible, and the portions are too small.”



3 Execution Architecture Independent Traces

In this section we describe ezecution architecture independent (EAI) tracing, designed to address
the problems with tracing multiprocessor programs.

Conceptually, an EAI trace is an address-level trace of the execution of a program on an
unbounded number of processors, with a separate trace per thread. Since there are conceptually
as many processors available as are required by the program, there is no scheduling information in
the trace other than precedence constraints between the threads. Furthermore, the traces contain
no absolute timing information. Finally, selected events, such as synchronization primitives (e.g.,
fork, join, lock, or barrier), operating system calls, and runtime system operations (e.g., memory
allocation and garbage collection), are represented in the traces as abstract events rather than as
sequences of lower-level events (e.g., address references).

The lack of embedded scheduling information is a key advantage to an EAI trace. The simulation
is responsible for determining the nature of the interleaving among thread traces using a strategy
determined by the effective architecture chosen by the simulator (rather than by the execution
architecture on which the traces were taken). The simulator also assigns threads to the processors
present in the simulated execution architecture, permitting the simulator to model execution
architectures with more or fewer processors than the tracing architecture. In fact, we generate
EAI traces on a uniprocessor, greatly simplifying the data gathering and increasing portability of
the system. Moreover, EAI traces allow simulation of scheduling policies other than the policy used
in the system being traced.

Abstract events permit the simulation to explicitly represent events in a way that is
representative of the target execution architecture, rather than the tracing architecture. Thus, one
can model different methods for obtaining a lock or reaching a barrier, different virtual memory
or garbage collection algorithms, and even different operating system organizations. In particular,
traces with abstract events enable one to consider large-scale reorganization of the division of
function between operating and run-time systems.

In addition to the advantages of abstracting details of the trace-capturing execution architecture,
EAI tracing solves, or at least mitigates, the problem of perturbation of program execution. The
simulation program becomes responsible for representing the execution architecture’s implementa-

tion of these events, in particular, interleaving of thread execution. On the other hand, this is a
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powerful tool that threatens to complicate the construction of simulations, since they must now
represent more detail in the effective architecture. This complexity can be moderated by three

techniques:

e Data from very low-dilation instrumentation (i.e., a record of thread scheduling order) can

be used by the simulation to guide the fully instrumented execution.

e The analyst can use “expert intuition” to decide to skew the distribution of executions one
way or another. Thus, if the analyst discovers that a particular, but unlikely, instruction
interleaving or thread schedule leading to superior performance, this information may produce

a more eflicient design.

e The simulation can be written to ensure a random selection of possible execution traces
are measured. This random selection may not have the same distribution as the execution
of the actual program, but it might reduce the probability of the measurements being

overwhelmingly skewed by some artifact of the instrumentation.

Obfuscation of small-scale events is not a concern, because the traces are recorded on a virtual
time scale completely unrelated to real time; effects at any scale can be explicitly simulated.
Unimportant events can be intentionally excluded; contrast this with current measurement
technology, where these effects are always present, even those not representative of the execution
architecture being simulated. We also intend to provide library routines that simulate detailed
behaviors of common execution architectures, such as particular synchronization methods and
scheduling policies. These routines can be used as common facilities within the simulation
application program.

Finally, although the EAI software can generate events at a rate of approximately 5 million per
second, program execution speed is not critical to ensuring trace fidelity. Thus, EAT tracing allows
efficient on-the-fly simulation, reducing I/O and storage costs and expanding the range of programs

that can be traced.

3.1 AE

Our implementation of EAI tracing is based on the AE (Abstract Execution) tool [9]. Figure 1 is

a schematic outline of the stages of tracing a measured application, denoted “foo.c.” AE provides
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foo.C gee -AE aecrt0.o
Input Data
foo.sma foo < —
(Schema)
foo. ama o Statistics
(Source) —t o Simulate >

Simulate.c

| - Provided Executable Software

Qj Measured Application Files

O User Simulation Files

Figure 1: Information Flow In AE [9]

a modified C compiler and associated runtime library. The measured application is compiled using
this modified C compiler, producing a static schema file and an object file. The schema file is
an abstract version of the assembly code of each basic block in the measured application, while
the object file is the executable file resulting from the compilation. The object file is linked with
various libraries producing an instrumented application program. This instrumented application
performs the same function as the original application. However, it also generates dynamic trace
information in the file as.out, used to reconstruct the program trace. This dynamic information
is generated each time the instrumented application is run; the data can also be sent directly to
another program.

The schema file contains information used to reconstruct instruction and data references. This
static information reduces the execution time of the instrumented application and the total volume
of dynamic data. The schema file is compiled into a C program, the schema driver, by the aec

utility. The schema driver, when linked with the simulator, reads data from the dynamic trace

12



] # ] Schema File

1 | line_number 120 "shallow.c"
uneventful_inst 2 2
compute_defn_2 R8 #I32 + #S_cons_
load_inst #R8 + #I0 Ystruct_ref
load_inst #R8 + #I4 Ystruct_ref

[SA R

Figure 2: Sample AE Schema for statement“mnmin = min(cons_1.m,cons_1.n);”

information file (ae.out), reconstructs the full reference stream, and passes individual references
to the simulator.

Consider the schema file excerpt shown in Figure 2. Static information, such as the current
line number, can be generated by knowing the current basic block of the application, without
cluttering the dynamic trace file with such data. Uneventful instructions, i.e., instructions that do
not reference memory or modify registers used for addressing, are condensed into a single event in
the static schema file; no information need be sent from the executing application to the schema
driver. Knowing the number of executed instructions means the program counter can be directly
updated and instruction references generated for those instructions.

Many memory references are relative to registers and compile-time constants. When an AE
trace is reconstructed, the contents of registers are also tracked by the schema driver. The AE
schema file records the computations of register values. Line three in Figure 2 illustrates one such
computation, setting register eight to 32 plus the constant address of the variable _cons_. Lines
four and five use register eight and constant offsets to generate data load addresses. Note that,
with no dynamic information from the executing program, the schema sample shown here encodes
five instruction references and two data references.

Not all addresses can be encoded this way; some (e.g., arbitrary memory references), require
information from the executing program. In this case, the executing program writes data to the
file ae.out. The data in ae.out also encodes the dynamic behavior of the program, such as the
branches taken and subroutines called. Each execution of the instrumented application results
in a new ae.out file; this information must be processed by the schema driver to reconstruct a
complete trace of the program. By tracking the value of registers and knowing the addresses of

global variables, AE greatly reduces the amount of data emitted by the instrumented application,
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reducing the storage needed for a trace and the execution dilation of the instrumented program.
This greatly increases the quantity and variety of events that can be traced.

This mechanism is not unique to AE; both MPTrace and TRAPEDS use a similar technique.
However, AE uses dataflow information produced by the compiler to limit the amount of dynamic

information needed; furthermore, AE has been ported to a variety of processor architectures.

3.2 SPAE: Symbolic Parallel AE

We have modified AE to provide symbolic parallel traces, that is, parallel program traces in which
certain architectural constructs are symbolized by abstract events. We first describe the problems
germane to all variants of SPAE, then show an example for simple doall programs, and follow
with extensions for thread-based applications.

The first modification provides multiple program conterts within the ae.out file. In AE, the
activity of a single program context is traced. The data in ae.out is not tagged in any way, and
can only be interpreted by the correct schema routine. In SPAE, we interleave the execution of
each program context, requiring the data in ae.out to be associated with its context.

When data is delivered to the simulator it is tagged with its context identifier; logically each
context has its own ae.out file. A full set of information specific to a context, such as the contents
of registers and the program counter, is maintained for each active context. The SPAE analog of
aec, spaec, compiles the schema file to a set of C “decoding functions,” one for each basic block in
the measured application. When a thread in the application enters a basic block, the appropriate
decoding function reads data specific to that context from ae.out, returning the events generated
by that basic block. These functions reconstruct data and instruction references for an arbitrary
context, provided we have enough dynamic information (i.e., data from ae.out). Moreover, we can
reconstruct references for multiple contexts, simulating an interleaving of the contexts active in the
measured application; this will be explained in more detail shortly.

Contexts can represent independent iterations of a doall loop or arbitrary parallel threads. We
must also record any interaction between contexts. In particular, we are interested in providing
abstract events for specific interactions. For example, assume that barriers are implemented using
hardware-assisted locks in a certain computer. If we were interested in simulating the behavior of

that specific computer, we could simply record the interaction of contexts with the lock primitives.
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C SPAE Runtime J i

' SPAE Context Management )

Figure 3: Interaction of SPAE components

Parallel Application

However, if we wanted to simulate alternative implementations of barriers, we would record a single
abstract event indicating a barrier join rather than a sequence of load, store, and hardware locking
operations. This abstract event could be expanded by the simulator to represent the behavior of
an existing architecture, or it can emulate novel architectural approaches.

There are other events, such as spinlock acquisition or context creation and destruction, that
are best treated as abstract events. In SPAE, such events can be explicitly entered in the the
static (foo.sma) and dynamic (ae.out) trace description. Figure 3 illustrates the interaction of
different SPAE components. We modify the parallel tasking library used by an application to
create SPAE contexts and inject specific events into the dynamic event stream (ae.out). The
SPAE data transport interacts with the simulation to provide correct dynamic information for each
context. A decoding (event interpreting) interface, specific to the parallel tasking library used by
the application, reconstructs the abstract events of individual contexts in the measured application.
These decoded events are used by the simulation program to drive a specific simulation. The figure
also indicates information flow from the trace consumer back to the trace producer; this flow is

explained in Section 3.4.

3.3 SPAE: Constrained Synchronization

This section uses a simple parallel tasking library to describe how SPAE is used. The library traces
programs using doall and doacross loops, providing a “simulated parallelism” similar to Fortrace

[18].
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Recall that SPAE traces parallel applications on uniprocessor computers. The semantics of
doall and doacross are satisfied by sequential execution. Consider the following doall loop:

DOALL 10 I=1,4
AlI] = 1
10 CONTINUE

At a gross level, four instructions are issued:

] Time | Instruction !

1 All]=1
2 | Af2]=2
3| A[3]=3
4 | A[4)=14

Simulating parallel doall on P processors involves storing the references of P iterations, then
interleaving those references at simulation time. For example, the following is a possible interleaving

for two processors:

! Relative Time ] Processor 0 ] Processor 1 I
0 All] =1 Al2] =2
1 Al3] =3 A[4] =4

There are a multitude of possible interleavings of the iterations corresponding to the scheduling
policy, the underlying simulated execution architecture and so on. The program simulating a
parallel computer architecture must be able to select the interleaving applicable to the simulated
hardware or scheduling policy. Each doall iteration is a context, or distinct parallel entity, in
SPAE. The simulation program can map different contexts to specific simulated processors. In this
example, contexts one and three were assigned to simulated processor zero, while the remainder
were assigned to processor one.

When simulating the parallel execution of a doall, the order of the instructions issued on a
processor is specified because it is intrinsic to the execution of the program. However, the total
time order of the executed instructions is not known, because it depends on memory latency or
contention for resources in the simulated parallel architecture.

This example simplifies several issues, but it illustrates the important points of tracing doall
programs: sequential execution satisfies the doall semantics; each iteration is a distinct contezt,
allowing the simulator to arbitrarily order contexts; and instruction issue within a context is intrinsic

to the program, but ordering between contexts is controlled by the simulation program.
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C$DOALL
DO P=1,S
M[P] = 0.0
DO I = PN, (P+1)*N
IF ( M[p] < A[I] ) M[P] = A[I]
END DO
END DO

Figure 4: Sample doall Code

ae_special_event (FORK_DOALL, 2);
for (p = 0; p < S; p+t+) {

int i;
ae_special_event (START_DOALL_ITER, p);
M[p] = 0;

for (1 = p * N; 1 < (p + 1) * N; i++)
if (M[pl < A[i]) M[p]l = A[il;
ae_special_event (FINISH_DOALL_ITER, p);

}
ae_special_event (JOIN_DOALL, 0);

Figure 5: Converted DOALL Code

We now expand the example to include the actual program instrumentation needed by SPAE.
(This example was extracted from programs used to measure the efficacy of hierarchical distributed
cache algorithms for scientific applications.) The original FORTRAN program locates the maximum
element of an array. The program in Figure 4 has NSECTIONS independent iterations, and has been
mapped to a two-processor system.

We convert the code fragment to the C program, shown in Figure 5, using a FORTRAN to C
translator, and hand-instrument it to indicate the doall loop. This corresponds to the instrumented
parallel library depicted in Figure 3; although we could automate this process, we have not found
that it hampers our work.

The subroutine calls to ae_special_event are recognized by the modified C compiler (no
actual subroutine call is performed). The first argument (e.g., FORK_DOALL) is inserted into the
static schema file and code is generated to inject successive arguments into the dynamic trace file

(ae.out). This information is used when decoding the events specific to the parallel library, i.e.,
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Figure 6: Schematic Mapping of Trace

the doall loops in this example. The raw trace contains unwanted information, including the
outer loop setup, increment and termination. Figure 6 shows a schematic view of this information
mapped to two processors, labeling each set of events with the applicable context.

The dynamic data for contexts one and two are buffered by the SPAE context management
interface. Extraneous events, such as those following the FINISH_DOALL_ITER are removed from
the trace by the library-specific interface. Similarly, this interface informs the simulator of the
. doall loop and the implicit barrier synchronization. The cache simulator translates the START
and FINISH events into more elaborate scheduling activity; likewise, the barrier synchronization is
translated into activity specific to the simulated architecture.

Figure 7 shows an event interleaving for the first two doall contexts. Each line encodes events
for a single CPU. For example, CPUO executed an abstract event (DIS) at address 0x22e8, read a
data value from address 0xfffffd4 and then executed four more instructions. Initially, both contexts
behave identically, but diverge because of data dependent behavior. SPAE has been implemented
on the Sun SPARC and MIPS R3000 processors; this example used a SPARC processor.

We can also generate similar traces for doacross loops; there, additional events corresponding
to POST and WAIT synchronization events are added to the event stream. Furthermore, we can

rearrange memory addresses, performing a virtual-memory to virtual-memory remapping; this is
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cpu 0: DIS: #0, 0x22e8, start iter 0
cpu 1: DIS: #0, 0x22e8, start iter 1
cpu 0: I x 6: 2268

cpu 1: I x 6: 22e8

cpu O0: R: ffffffd4

cpu 1: R: ffffffd4

cpu 0: I x 1: 2300

cpu 1: I x 2: 2398

cpu 0: R: ffffffcc

cpu 1: I x 1: 23a0

cpu 0: I x 2: 23dc

cpu 1: I x 1: 23a4

cpu 0: W: ffffffcc

cpu 1: R: ffffffcc

Figure 7: An Event Interleaving for Sample Code

used in the distributed cache simulator to examine the effect of array layout on distributed cache
behavior.

Our modifications slow the instrumented application by less than 1% over a regular AE trace;
this in turn is about one to four times slower than uninstrumented application execution time. Our
initial measurements have shown that for large traces (e.g., of ARC2D) it is faster to simply rerun
the application than to read the trace from disk. Currently, SPAE slows event decoding two-fold,;
we expect to reduce this overhead, but the time spent decoding events is typically dwarfed by the
simulation overhead, so optimization will have little overall effect.

SPAE is unique in that it provides both data and instruction traces while maintaining high
efficiency. Futhermore, the mechanisms used in this simple example allow us to trace programs
that use thread or task execution models as well as programs that employ arbitrary synchronization

primitives.

3.4 SPAE: Arbitrary Synchronization

Explicit, independent streams of control (threads) are a general parallel program mechanism. A
thread library, such as Sun LWP or Mach C-Threads, consists of routines to create and destroy

threads, acquire and release locks, enter and leave monitors, signal condition variables, join at
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a barrier, etc. There are also transparent operations that schedule the threads on the physical
processors. While doall and doacross programs have limited dependence relations, thread-based
computations can have arbitrary precedence constraints between the individual threads. This
complicates program tracing, because thread behavior is time-dependent; for example, acquiring a
lock in differing orders can present different program behaviors. Although many thread libraries
exist, most provide similar abstract functionality; SPAE is designed to integrate with different
thread libraries. To create EAI traces of a thread-based computation, we modify the run-time
thread library.

Some changes to the thread library simply insert events into the trace, using ae_special_event
as in §3.3. Consider thread creation: when a thread is created in the traced program, the thread
library calls the SPAE context management routines to create a new context for the thread and
inserts an event in the ae.out file indicating to the simulator the existence of a new context. This
is similar to the DOALL_FORK operation in the previous example. Likewise, thread library routines
that schedule threads must inform the simulator of their activity, and must indicate the current
context to the SPAE context management routines.

If threads did not interact, this process would be similar to the doall loops of §3.3; however,
consider acquiring a spinlock. Spinlocks can be implemented in a variety of ways, and this is an
important variable in simulations of cache and system design. We want an execution architecture
independent representation of the spinlock acquisition. In other words, we do not want an attempt
to acquire a spinlock to generate a multitude of low-level events; instead, a single event, indicating
the attempt to acquire the lock, should be generated. The parallel library decoding interface
(Figure 3) synthesizes a sequence of address references appropriate to the architecture being
simulated, and based on the length of time that the simulated thread is forced to wait.

There are several instances, such as lock acquisition, in which the simulator must direct thread
scheduling. For example, if two threads attempt to acquire a single lock, one succeeds and the other
fails; the success or failure depends on the simulated execution architecture. Thus, whenever threads
interact, or any scheduling decision is made, the simulator controls the scheduling. Primitives such
as lock acquisition are modified to pause and wait for direction from the simulator, allowing the
simulator to determine which thread obtains a lock. This enables the simulation of significantly

different execution architectures. This is similar to the iteration scheduling decisions possible in
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doall programs; however, rather than selecting the next context from the remaining iterations, the
thread approach selects a context from the thread ready queue maintained by the thread library.

With this model (Figure 3), the simulator can select a thread from the ready queue, trace it until
it reaches a scheduling event such as a lock or system call, select another thread and so on. This
creates two other problems. First, not all program are perfectly synchronous; that is, a program may
examine data without locking that data, in an effort to reduce lock contention. This produces one
result on a real multiprocessor, where multiple threads execute concurrently, and quite a different
result when simulating parallelism by running a single thread as described. When necessary, SPAE
can circumvent this by interleaving the execution of the measured program’s threads. Currently, a
small amount of code is executed at the beginning of each basic block to check for sufficient buffer
space for dynamic (ae.out) information in that block. We augmented this to count the number of
instructions executed by the current context, and switch to another context when a threshold is
reached. The expense of this thread interleaving depends on the processor architecture, because
the complete processor context must be switched. The simulation program can specify the set of
runnable contexts, but is not informed of these context switches, because the interleaving does not
affect thread synchronization.

For many measured applications, thread interleaving is unnecessary and can be suppressed,
speeding trace generation. However, simulator-directed thread interleaving is still useful for
reducing the amount of data from the measured program that needs to be buffered by the simulator.
On-the-fly simulation uses data directly from the instrumented program; however, if that data is
not immediately needed, it must be buffered. Consider as an example a measured program having
a fork-join structure with two parallel threads, t1 and t2 (Figure 8(a)). Suppose that the run-time
system schedules the threads in a run-to-completion fashion, that is, with no thread interleaving,
but the simulator interleaves the two threads on a single processor due to some constraint of the
simulated architecture. In this case, the mapping from the trace file to the simulation will be as
shown in Figure 8(b). Thus, all of the data from t1 marked by asterisks (*) would need to be
buffered before the simulator could simulate the first reference from t2. An alternate scenario,
in which the run-time system interleaves the two threads but the simulator simulates run-to-

completion scheduling, produces a similar situation, shown in Figure 8(c). In this case, nearly
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(a) Precedence graph (b) Sequential trace generation (c) Time-sliced
driving time-sliced simulation trace generation driving
sequential simulation

Figure 8: An example of the buffering problem. Asterisks denote data that must be buffered
before the block marked with the bold arrow can be simulated.

all of the references from t2 would need to be buffered before the simulator can finish simulation
of t1.

Using thread interleaving, we can limit the buffering requirements to at most one basic block
per concurrently executing thread in the program. The SPAE runtime system is directed by the
executing program to execute “interesting” threads first. With this facility, the simulator can

control thread scheduling without an onerous amount of data buffering.

4 Status & Conclusions

The PEET project is driven by the desire to simulate a variety of execution architectures with
detailed trace data. To achieve generality, we have developed a tool, SPAE, to generate abstract
traces that are consumed by on-the-fly simulations.

We have shown that on-the-fly simulation is a practical method for simulating large, long-
running programs, where gigabytes of trace data are common. Furthermore, we have found that
trace data can be regenerated faster than it can be read from disk.

SPAE generates an ezecution architecture independent (EAI) trace, allowing investigation of a
broader design space of execution architectures. An EAI trace decouples the trace generation
architecture from the evaluated architecture, allowing simulated multiprocessor traces to be

generated on a uniprocessor. EAT tracing requires intervention by the simulation program to resolve
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architecture-specific events, such as lock acquisition by threads in the instrumented application.
Simulator-directed tracing also reduces buffering of the trace data.

The initial version of SPAE traces doall and doacross loops as described in §3.3. Data from
these traces is being used in a study of distributed cache architectures for scientific applications.
The volume of data and detail of the traces would be impossible without a tool like SPAE.

The design work has been completed for tracing general thread-based applications, and the
implementation is nearing completion. We have accumulated a number of parallel applications. As
part of a broader endevour, we will eventually distribute SPAE, the instrumented program libraries
and sample applications.

The most serious concern is validating the traces generated by SPAE; as the PEET project
progresses, validation studies will be conducted, and the tools and traces will be distributed to

other researchers.
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