An Architecture for Discovering and Visualizing
Characteristics of Large Internets

Michael F. Schwartz
David H. Goldstein
Richard K. Neves

David C. M. Wood

CU-CS8-520-91

l

)Univensity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION

An Architecture for Discovering and Visualizing
Characteristics of Large Internets!

Michael F. Schwartz
David H. Goldstein
Richard K. Neves
David C. M. Wood

CU-CS-520-91 February 1991

Department of Computer Science
University of Colorado
Boulder, Colorado 80309-0430
(303) 492-7514
electronic mail contact: schwartz@latour.colorado.edu

Abstract

In this paper we present an architecture for discovering characteristics of large internets, such as topology,
congestion, routing, and protocol usage. Our approach uses a very loosely coupled architecture that does not require
global agreement on a particular network management standard, such as the Simple Network Management Protocol.
Instead, we use a number of different network protocols and information sources to derive information about net-
works, cross-correlating this information when necessary to determine important characteristics or to uncover incon-
sistent information. This approach recognizes that different sources of network information have different charac-
teristics with respect to timeliness of discovered information, expense, danger of generating network problems, and
completeness of discovered information. Our architecture gives the network administrator control over which
discovery protocols are used, and how frequently each is scheduled. Moreover, the architecture focuses on support-
ing network management in large scale internets, such as the global TCP/IP Internet. We have built a prototype
implementation that can collect network information using a few network protocols, and display this information

graphically.

1. Introduction

For the past three years, the Networked Resource Discovery Project at the University of Colorado, Boulder has
explored a number of experimental means by which users can discover the existence of resources in a large internet
environment [Schwartz 1991]. Example resources include network services, documents, retail products, current
events, and people. The project focuses particularly on very large, administratively decentralized environments,
spanning national or international networks. This general problem has taken a number of specific forms, including
Internet "white pages" [Schwartz & Tsirigotis 1991], support for distributed collaboration [Schwartz & Wood
19901, support for probabilistic "yellow pages" management [Schwartz 1989, Schwartz 1990], and support for map-
ping and discovering public resources reachable via the Internet [Schwartz et al. 1991]. A common theme of these
projects is the ability to accommodate heterogeneity of upper level network protocols, information formats, and
organizational structures. While standards are helpful in this regard, it is difficult to specify standards that are both
globally adopted and technologically current,

In the current paper, we present an architecture that applies resource discovery techniques to the problem of net-
work management, and a prototype implementation of this architecture. The architecture supports a visual interface
to data discovered about networks, such as topology, congestion, routing, and protocol usage. Three characteristics
differentiate our work from related projects, such as Digital Equipment Corporation’s DECmcc system [Malamud
1991], Sun’s SunNet manager [Sun Microsystems 1990], Silicon Graphics’ NetVisualyzer
[Silicon Graphics Computer Systems 1990], Reissig’s network management system [Reissig 1990], NASA’s Lisa
IV system [Kislitzin 1990], and various other tools [Stine 1990]. First, our approach uses an unusually loosely cou-
pled architecture, which does not require global agreement over a particular network management standard (such as
the Simple Network Management Protocol (SNMP) [Case et al. 1989]). Instead, we use a number of different net-
work protocols and information sources to derive information about networks, cross-correlating this information
when necessary to determine important characteristics (such as the location of gateways), or to uncover inconsistent
information (such as different subnet masks on individual nodes within a particular IP subnet). Second, our
approach provides mechanisms to allow passive monitoring and active probing to be scheduled in different ways in
various segments of an internet, and for information to be cached at various points around the network. These con-
siderations enhance scalability, for use in large internets. Third, our architecture supports multiple graphical
representations of network information, in recognition of the fact that different types of information and different
scales of network can best be represented using different graphical representations.

An explicit component of our approach is the recognition that different sources of network information have dif-
ferent characteristics with respect to timeliness of discovered information, discovery expense, danger of generating
network problems (such as broadcast storms), and completeness of discovered information. In contrast, network
management systems based on a single standard are limited to the characteristics provided by that standard. Usually
the standard focuses on a particular perspective of network management, which therefore limits its scope. SNMP,
for instance, takes the perspective that the network is essentially a collection of devices that can be instrumented and
measured, to determine packet flow rates, routing table contents, etc. A different set of characteristics may be
detected if passive packet monitoring servers are installed in the network (which would allow broadcast storms o be
detected without imposing added processing load on a gateway, for example), or if the network management system
supports directed probes into a network (which would allow networks to be examined even if no monitoring server
were installed; this might be useful for network management when it is infeasible to install monitors on all network
segments). Our architecture supports all of these perspectives.

As with our earlier Internet white pages work [Schwartz & Tsirigotis 1991], the current architecture makes use
of multiple protocols and information sources. In contrast, however, the current architecture targets an environment
that provides significantly more information sources that can support discovery. In the case of the white pages tool
we used four sources, while the current architecture may use dozens of sources, particularly in multi-protocol net-
works. While the current prototype only uses a few of these sources, our longer range goal is to incorporate many
more of the available sources. Essentially, our high level goal is to explore the extent to which one can integrate a
heterogeneous, administratively decentralized network by viewing it as an instance of a resource discovery problem,
using the techniques we have developed in other resource discovery contexts to support network management.

The remainder of this paper is organized as follows. In Section 2 we introduce the network visualization archi-
tecture. In Section 3 we overview the set of discovery protocols and information sources that can be used by our
system, indicating the implications of each. In Section 4 we discuss a prototype implementation of the important

-2,

parts of the architecture. Finally, in Section 5 we offer a summary, and discuss continuing efforts and future work.

2. Architecture

In this section we discuss the general architecture to support scalable network discovery and visualization. The
full architecture involves a number of elements that have not yet been implemented. In Section 4 we will discuss
our prototype implementation.

2.1. Overview

The macroscopic architecture for supporting internet discovery and visualization is illustrated in Figure 1. The
architecture uses a collection of servers distributed around portions of the internet being instrumented. Each server
periodically executes a set of discovery protocols to maintain information about certain segments of the network.
Typically, a server will reside on a particular segment of a local internet, and passively gather information about that
segment (monitoring routing table update traffic on a broadcast LAN, for example). In the figure, passive monitor-
ing is indicated by thin arcs with arrowheads directed into the discovery server. However, the architecture also
allows active probes, where queries are sent to remote LAN to collect information. This capability can be used by
discovery servers to monitor multiple network segments, to reduce the number of discovery servers that must be
installed to instrument an internet. Active server probes are indicated in the figure by thin arcs with arrowheads
directed out from the discovery server. The scope of a discovery server is specified in terms of a set of networks or
subnets to probe, as indicated by the dashed cloud surrounding three networks in the figure.

i connectiom

“*s.. discovery server active probe
i8S
L4

(o |f660085858 5648558886 88856858588

. /__/ pwemmenn - client network with
s : no discovery
',."' /’56(5(1)066(56 006400644 server

4 g
" 'l

launched

-
-*
®

.
.

.
Cwan®

‘TN

Cm-

U
4 '
kd

’

'l

discovery server using g
active probes and .
passive monitoring .

~

. 0
~ o
~ R
.

U

-
- b

.

.

-
~a
N .
Seeaa PR LA
e

scope of
server probes

Figure 1: Macroscopic Network Discovery Architecture

This active probe capability can also be used by clients to "launch" a probing network discovery operation to a
portion of the internet where no discovery server has been installed. In this fashion, a network manager could run
servers on only those network segments of frequent concern (such as heavily loaded segments or critical back-
bones), but can still check into problems that arise on the parts of the internet that have not been instrumented.

Client requests are indicated by thick arcs in the figure. Of course, the ability of clients to launch active probes
raises security issues, similar to those raised by SNMP’s community name model of network instrumentation.!

1 The SNMP standard currently provides no means for authenticating users who connect to servers. Instead, SNMP divides its information
space into "communities”, and any user who knows the name of a community maintained by a particular server can access the information in that
community on that server.

-3.

Remotely launched probes may also generate more network load (and load that is less isolated onto network seg-
ments) than local discovery protocols. Clearly, the decision to use remotely launched probes must be made with
some understanding of these issues. It might be prudent, for example, for a network administrator to configure a
client that will not allow remotely launched probes, for use by non-network sophisticates.

In addition to the ability to use both passive and active probes, the architecture provides a discovery protocol
scheduler and state manager that allows a system administrator to specify which discovery protocol modules will be
scheduled and how frequently, according to his/her perceptions about the relative importance of the various protocol
characteristics (timeliness of discovered information, etc.). Network protocols can be specified in a table that
describes each protocol, where the executable code to use it resides, and its characteristics. In this fashion, the set of
network protocols that are supported is easy to change without rebuilding the system.

We consider the ability to tailor the discovery mechanism to be an important aspect of our network discovery
architecture. The range of protocols under consideration will be discussed in Section 3.

2.2. Scheduling, State Management, and Caching

The heart of the network discovery architecture is the scheduling and state management mechanism. This
mechanism determines which discovery protocols will execute, and how frequently each protocol will execute. It
maintains an in-memory representation of information associated with each network interface, host, router, and net-
work link, and periodically dumps this information to a cache file that may be retrieved by a remote client. (Clearly,
the scope of discovery must be limited for any particular server, so that the internal state it maintains does not
become unmanagably large.)

Since some protocols do not provide sufficient information for determining all characteristics of interest in a net-
work (e.g., it is not possible to determine which hosts are gateways using Internet Control Message Protocol Echo
messages alone), the state manager must also maintain partial information that can later be filled in by correlating
information obtained from multiple protocols. This mechanism can also detect conflicting information from dif-
ferent protocols. It may be useful to bring such inconsistencies to the attention of a system administrator, to flag
potential problems.

The architecture supports two different modes for scheduling discovery protocols. Explicit mode allows a sys-
tem administrator to specify explicitly which protocols will run, and how frequently each will run. Implicit mode
allows a system administrator to specify his/her perceptions of the relative importance of various characteristics of
the discovery protocols (timeliness, etc.). From this specification and a table of the protocol characteristics (to be
discussed in Section 3), the scheduling and state management module chooses a schedule. In general the scheduling
algorithm could take dynamic characteristics such as current network load into consideration.

To support scalable operation, the architecture includes a mechanism to cache discovered network information.
In addition, queries may specify predicates, to avoid retrieving duplicate information. For example, a query may
request remote retrieval of information about all of the hosts on a particular network segment that have been
discovered since the most recent entry in the cache. In addition to enhancing scalability, this mechanism can
improve the responsiveness of browsing operations, for the case where users are browsing parts of the internet that
have been viewed recently.

Cache consistency is handled using a simple scheme involving two timestamps and a counter for each interface
in the network. The first timestamp indicates when the element last changed status (e.g., the last time its Media
Access Control layer address changed). The second timestamp indicates the date and time when the most recently
recorded values for the interface were confirmed. The counter indicates the number of failures that occurred since
the last confirmation. Combining these pieces of information allows the system to distinguish between an element
that has not been observed recently but is still around (such as a node that crashes for a few days) vs. one that has
probably been removed permanently vs. one that has changed characteristics (such as a host being replaced by a
newer model with a different Ethernet address, whose name and IP address have not changed).

2.3. Network Representation

The user interface for this architecture allows a user to browse the state of the internet graphically, and display
the discovered information. The user need not manually specify how to display the information. Instead, the user
specifies the type of network state to be viewed (topology, protocol usage, etc.) and some indication of the scope of
the internet to be browsed. The interface then connects to discovery servers in sequence around the internet,

retrieves the necessary information, and displays it according to some display representation,

An important part of the user interface is the network representation. Our eventual goal is to allow the user to
chose among several different representations, depending on their needs. In a wide area network, the representation
could position nodes according to their geographical location. However, for some network management functions
(such as detecting routing problems), this may not be the most appropriate representation. Another mechanism
could place nodes on the screen with the appropriate links drawn between them, and allow users to interactively
modify the on-screen layout. We favor a more automated approach, so that the network topology is always clear. A
number of commercial network management stations force users to infer network topology from a list of host pairs
(or a similar representation). We feel this task should be handled by the visualization service, with a mechanism
provided to allow users to move nodes around and abstract away unintcresting detail, for example by specifying
nodes on a particular network segment to be collapsed into a single display node.

Once information is displayed, the user uses the mouse to click on a node or link, to open a scrollable window of
relevant information. Self describing fields are highlighted and viewable. For example, clicking on a link might
display the type of link (e.g., leased line, satellite link, or fiber) and its bandwidth. Clicking on a host may display
its network and Media Access Control layer addresses, and network protocol specific information (e.g., the subnet
mask for IP networks).

3. Discovery Protocols and Implications

A wide variety of network protocols can be used for network discovery. In discussing these protocols, we
assume the reader has basic familiarity with the Internet Protocols in general, and ICMP, UDP, ARP, and SNMP in
particular. Details of these protocols are available in RFC’s [Case et al. 1989, Plummer 1982, Postel 1980, Postel
1981a, Postel 1981b] and in Comer’s TCP book [Comer 1988].

Network discovery protocols can be classified according to several different criteria. Some important criteria
are:

e Are special privileges (e.g., UNIX“ "root") or private information (e.g., SNMP community names) needed?

e Does the discovery protocol involve listening only to packets sent to the monitoring system, or does it require
that all (or a large number) of packets be monitored from the attached network?

o How much load does the discovery protocol put on the host being used for discovery?

¢ Does the discovery protocol generate packets on the network? How much load does the discovery protocol gen-
erate?

o Does the discovery protocol work on Local Area Networks? Does it work on Wide Area Networks?
‘We now discuss a number of protocols for use in network discovery.

3.1. Simple Network Management Protocol

The most obvious protocol under consideration is the Simple Network Management Protocol (SNMP). It pro-
vides the most complete set of information from the widest number of routing devices. From SNMP one can obtain
complete routing table information, including next hop, metric, and routing protocol for known routes. One can also
obtain other management information such as queue length (indicating congestion), packet and byte counts (indicat-
ing utilization), and error counts (which aid in finding malfunctioning facilities).

A current operational problem is that SNMP is not running on many nodes around the Internet, although it prob-
ably has the widest distribution of any of the management protocols. More importantly, it requires knowledge of the
SNMP "community name" in order to access the agent running on any particular router. This last issue is the main
reason why we do not treat SNMP as a pivotal part of our discovery protocols.

3.2. Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) provides several discovery mechanisms that can be used in dis-
covering characteristics of a network. The biggest drawback to its use is that normal users on most UNIX systems

2 UNix is a trademark of AT&T Bell Laboratories.

-5-

are not permitted to generate ICMP packets, largely because ICMP packets can cause problems with network and
host loading if not used carefully.

The ICMP Echo and Echo Reply messages can be used in several ways to determine information about a net-
work. For example, the UNIX "ping" utility sends a sequence of ICMP Echo requests to a host. Properly configured
hosts will send back ICMP Echo Reply packets. We have created a variation of this mechanism to send a single
ICMP Echo Request to the broadcast address for the local network, and wait for responses from all of the machines
on the addressed network, to discover all hosts on that LAN. The main problem with this approach is that it can
cause a sufficient number of collisions on an Ethernet that some of the replies are lost. In addition, on networks that
already have problems with "broadcast storms", this may cause severe storms. This problem can be reduced by set-
ting the Time-To-Live (TTL) field in the packet header to a small value, so that broadcast storms last at most a short
time. An alternative is to send an ICMP Echo Request individually to each machine in a range of addresses. For
example, one could use this technique to discover the machines in a Class C network by cycling through 254 net-
work addresses (all 28 addresses except 0 and 255, the broadcast address).

L]

Van Jacobsen’s "traceroute” utility also uses ICMP Echo Request packets, but sequentially increments the TTL
through the values 1, 2, 3, etc., causing the packet to be returned to the originating host with an ICMP "TTL
Expired" message by each router along the chain from source to destination. This allows the source host to discover
the route that a normal packet would likely take from the originating machine to the ultimate destination (assuming
that routes do not change frequently). This is one of the best mechanisms for determining network structure because
it is implemented in a majority of routers and because it does not require knowledge of "private" information on the
router.

The "pong" utility uses ICMP Echo Reply packets combined with "loose source routing” to specify that the
packet must pass through the "destination” node on the way to the ultimate destination, which is the originating
node. This tool uses the "Route Record" option of IP to record the addresses of the routers through which the packet
travels from the source to the "destination" and back to the source. This tool suffers from the fact that many systems
do not implement the "Route Record” IP option, and that many also do not handle "loose source routing”. More-
over, the number of slots reserved in the IP packet header for recording route hops is smaller than the current diame-
ter of the Internet.

The Subnet Mask Request and Subnet Mask Reply messages are very similar to the Echo Request and Echo
Reply messages, except that they provide additional information from the sampled machine. This is one way to
determine the subnet mask of a network.

3.3. Address Resolution Protocol

The Address Resolution Protocol (ARP) can be used to determine the presence of a machine on a network, as
well as the machine’s MAC layer address. On an Ethernet, the ARP protocol is used to find the Ethernet address for
a particular IP address on that Ethernet. This information is normally kept in a cache file which is accessible by a
user program,

Given the Ethernet address of a machine, it is possible to determine the make of the network interface, because
each manufacturer has an assigned range of Ethernet addresses.

A variation of Paul McKenney’s EtherHostProbe program can be used to check for the presence of an entry in
the ARP table. If no entry is found, and if the destination node is on the same subnet, then EtherHostProbe will
attempt to send a UDP Echo packet to the destination node. Any reply is ignored, but the ARP table is checked
again for an appropriate entry. This process is repeated for a range of hosts and, while slower than a "broadcast
ping", produces reliable results. Clearly, it is only feasible to sequence through a fairly small range of hosts
(perhaps on the order of hundreds).

One can also implement a discovery protocol that simply monitors broadcast ARP requests on a network. This
imposes very little overhead on the network, yet it eventually discovers most of the machines that are sending pack-
ets onto the network (except, for example, if the monitoring machine cannot keep up with the network traffic). One
can also monitor ARP replies, to discover all of the receiving hosts on a local subnet. However, this requires that

-6-

the Ethernet controller be operated in "promiscuous” mode, receiving every packet transmitted on the Ethernet.

3.4. User Datagram Protocol

The User Datagram Protocol (UDP) can be used to send packets with little overhead and, depending upon the
port number, without specific user privileges. The Routing Information Protocol and the RWHO protocol both
broadcast UDP packets to advertise their information. Individual users can use the Echo, Daytime, Time, Systat,
Netstat, and other ports [Postel 1979] to get information from remote machines, but not all machines enable all these
services, so they are not relied upon in our discovery protocols.

3.5. Transmission Control Protocol

The Transmission Control Protocol (TCP) can also be used for discovering information about remote machines.
It does, however, present higher overhead than UDP. For example, one could make a TCP connection to the port
for the Simple Mail Transfer Protocol (SMTP). Most machines providing mail service will respond with their host
name. Other services (such as Daytime and Time) may also be used, but they are less commonly accessible.

3.6. Domain Naming System

The Domain Naming System can be used to determine a large amount of information about a network, including
some topological information in certain cases. In particular, the DNS can be used to discover all registered hosts on
a network.3 Multiple addresses for the same name can indicate likely routers. Multiple names for the same address
may also indicate possible routers, but with less probability. Host names that include "-gw" or "-rt" usually indicate
routers. The subnet mask can frequently be deduced from a list of all registered hosts.

3.7. Routing Protocols

Routing information is the most likely source of information related to the structure of a network. This informa-
tion is frequently available in a host’s own routing tables (as can be seen using the UNIX "netstat -r" command).

The most common routing protocol is the Routing Information Protocol (RIP). RIP information can be acquired
from the network by monitoring RIP packets that are broadcast onto a local Ethernet. Because they are broadcast
packets, this does not require setting the interface into promiscuous mode. It is necessary to perform much the same
function as would be done by a routing server because many systems readvertise onto the Ethernet routes that were
learned from that same Ethernet, thus providing false indications that they have a route to the advertised networks.

RIP information can also be acquired from RIP sources by issuing RIP Request/Poll packets, as is done in the
UNIX RIPQUERY program. This avoids the task of continually monitoring the network for RIP broadcasts, but has
the same problem of discerning the real routers from those hosts that are just passing on hearsay evidence.

Other routing protocols include the Exterior Gateway Protocol (EGP) [Rosen 1982], the Border Gateway Proto-

col (BGP) [Lougheed & Rekhter 1990], and the HELLO protocol [Mills 1983]. However, these protocols are not
generally accessible to the average host, and are not in use on most Ethemets.

Table 1 summarizes the network discovery protocols under consideration. Double lines indicate grouping as per
the subsections above.

4. Prototype

The current prototype is implemented in C on top of UNIX, and runs on the University of Colorado local area
internet. While the current set of discovery protocols are based on IP, they may be extended for use in a multiproto-
col environment. We used a simple ASCII representation of data to aid debugging.

3 Except on networks where Domain "zone transfers” have been disabled.

Protocol Requirements Information Prevalence of Problems
Implementation
SNMP community name topology, load broad varying community names,
network load, privacy
Ping root permission host, delay very broad network load
Broadcast Ping root permission multiple hosts broad collisions
Sequential Ping root permission multiple hosts, delay very broad slow speed, network load
Traceroute root permission, route to specified medium slow, network load
ability to modify address, delay
TTL
Pong root permission, route to/from specified narrow slow, network load,
loose source routing, address, delay limited implementation
route record
SubnetMask root permission host, subnet mask, medium slow, network load
delay
ARP table - communicating hosts, very broad only see hosts to which
manufacturer this host has sent packets
on this LAN
ARP requests read access to communicating hosts, very broad only sec hosts that
broadcast traffic manufacturer are sending packets
on this LAN
ARP replies read access to communicating hosts, very broad only see hosts that are
all network traffic manufacturer sending or receiving packets
on this LAN
EtherHostProbe - hosts, manufacturer very broad only see hosts that are
currently answering
ARP requests
on this LAN
UDP - host, delay narrow slow, network load,
limited implementation
TCP - hosts, host name if Very narrow -
SMTP host, date/time
DNS - most host names and broad requires sifting
addresses in a domain, through much information
perhaps routers
"netstat -r" login on host routers, known broad hearsay, fixed metrics
networks, metrics
RIP watch read access to routers, known networks, broad hearsay, fixed metrics
broadcast traffic metrics
RIPQUERY - routers using RIP, medium hearsay, fixed metrics,
known networks, must look for routers,
metrics miss other protocols
EGP, BGP, a place to monitor routers, known narrow not widely accessible
HELLO protocol traffic networks, metrics

Table 1: Characteristics of Discovery Protocols

‘We discuss various parts of the prototype in more detail below.

4.1. Control Flow

The modular decomposition and control flow of the system is illustrated in Figure 2. In this figure, directed arcs
indicate control flow. Data flows in both directions of each arc. We discuss the various modules and control flows
below.

Remote
Host

Local
Host

@ @ remote query
User ‘55;;53

Rev_Remote_Query

Interface

(:)1oc query

©)

Cache -t
Manager

iQueryl

Rcv_Remote Query

Discovery| |Discovery Discovery
Protocol Protocol (. . .) Protocol
Moduyle 1 Modyle 2 Module N

Network @

Discovery

Protocol

Scheduler

and State

Manager

Figure 2: Modular Decomposition and Control Flow of System

The query mechanism presently consists of two major executable components, called Query and
Rcv_Remote_Query. Rcv_Remote_Query is a server that runs continuously on each host running a network
discovery suite. This component accepts TCP connections from clients, and transfers the data for a particular type
of discovered resource information over these connections. In general, a number of different types of information
could be discovered using the architecture described in Section 2 (including, for example, local printers). In the
current prototype, only network and host information is discovered.

Query is a stand-alone executable invoked by the interface module, as illustrated in arc 1 of Figure 2. Query has
four command line arguments: the name of the host to query, the type of resource, the predicate query, and the name
of a file to which the results of the query should be written. If the host to query is not the local host and the data is
not available in the local cache, a TCP connection is made with Rcv_Remote_Query running on the remote host, as
illustrated from both perspectives in the arcs labeled 3 of Flgure 2. On the remote host, Rcv_Remote_Query
retrieves the needed data file, as illustrated in arc 3a of Figure 2. The remote data file is then transferred across the
connection and saved on the local machine in the cache directory under the name RemoteHostName_ResourceType,
as illustrated in arc 2 of Figure 2. If the host to query is the local host, the local cache file is used to satisfy the
query, and the TCP connection/file transfer sequence is not necessary.

-9.

Once the needed data file has been obtained, the query is computed, and the result is written to the output file.
Query predicates currently support only the AND of simple dyadic operators (=, <, and >). The query evaluation
mechanism applies no interpretation to the data. Instead, query evaluation is based on simple string comparison
operations. This has the advantage that one query mechanism can serve for all query types. The disadvantage of
this approach is that field names used within the query must correspond exactly to those used in data files, or com-
parisons will fail. This problem will eventually be eliminated by generating queries in a semi-automatic fashion, by
having the user select query fields and operators from a menu, and then having the interface form the specific query
before passing it to the query module.

Arc 4 of Figure 2 represents the protocol scheduler and state manager scheduling one of the network discovery
protocols. Arc 5 represents the memory-resident state representation being dumped to the cache files on disk.

4.2. Discovery Protocol Suite

We have implemented discovery mechanisms based on three different sets of discovery protocols. The first set
of protocols uses EtherHostProbe to sequence through a range of machines on a local network segment, to discover
the Ethernet addresses of each node on the network, and then probes the ARP cache to determine the Internet
address associated with each of these hosts. It then issues a Domain Naming System lookup, to determine the host
name associated with each node.

The second protocol set uses RIPQUERY to probe the network with RIP request packets on a local network seg-
ment, to determine the gateway topology of the network.

The third protocol set uses broadcast "ping” to discover the hosts on a remote network segment. To reduce the
problem of broadcast storms, we are modifying this protocol to use a sequentially incremented Time-To-Live
mechanism similar to Van Jacobson’s traceroute program, so that a broadcast directed at a remote network will
reach that network with TTL = 1.

Currently the various parts of the prototype are not integrated. The user interface can cause data files to be
transferred from a cache, but this cache must be filled by running discovery protocol modules manually. Moreover,
there is no mechanism to manage partial state as it is accumulated from the various discovery protocols. We are
currently completing the integration of these picces.

4.3. User Interface and Visual Representation

The user interface for the network visualization tool is implemented on top of the X windowing environment,
using the OpenLook-based XView toolkit. Using this interface, users select the type of information to be
discovered/displayed, and the remote network to observe. Currently the user must simply know which remote net-
works support discovery servers. In the future, the system will support an automated means for discovering this
information.

The prototype currently supports a single network representation that is oriented towards allowing users to
"zoom" in and out on multiple parts of a large internet. Hosts and links are arranged in a series of concentric rings
around a central distinguished host, and the name of each host is displayed in an oval. Each ring indicates an addi-
tional network routing hop from the distinguished host. For example, a node two rings away would indicate that
there are two gateways between that node and the distinguished node. In a network that has multiple paths between
nodes, the shortest link path (as opposed to the current route) between nodes is used for chosing which ring each
node is placed on. However, all links are shown, including links for longer routes. The distinguished host can be
changed at will, providing a different perspective on network topology. The reason for chosing this representation
is to make effective use of the screen space. It is essentially an n-ary tree mapped on to a series of rings.

Currently, there is no way for a user to specify that uninteresting information be removed from the display. We
will do this by allowing the user to select a particular network and collapse all of the nodes in that network into a
single display node. Similarly, users will be able to collapse networks. In this way, the user will be able to "zoom"
in on several parts of a large internet simultaneously. Abstraction will be done automatically when there are too
many hosts or networks for a given ring.

The output of the tool is shown in the screen dump from running the tool on part of the University of Colorado
local area internet, in Figure 3. This figure only shows a subset of the hosts in the internet, to reduce crowding on
the screen. For the present this effect was achieved by manually editing the cache file entries, but the same effect

-10-

will eventually be achieved by using the abstraction mechanism described above. In this figure, the central node
(piper) is a gateway, and the nodes above and below this node represent hosts on the two networks between which
this gateway exists.

= LANView

- = a

7 fred = uke)
e e N
(cuble)oe -_ *O" hop per

<N iy S\

sisy “piper
——— _)

Y

(bazille) Com, -) ’——"'"‘? cassatt
\-“' <
I e e / /(_

Figure 3: Screen Dump From Example Network Discovery Session

5. Summary and Future Work

In this paper we have presented an architecture for discovering characteristics of large internets, and displaying
this information to a user visually. Our approach uses a very loosely coupled architecture that does not require glo-
bal agreement over a particular network management standard, such as SNMP. Instead, we use a number of dif-
ferent network protocols and information sources to derive information about networks, cross-correlating this infor-
mation when necessary to determine important characteristics or to uncover inconsistent information.

An explicit component of our approach is the recognition that different sources of network information have dif-

ferent characteristics with respect to timeliness, expense, danger of generating network problems, and completeness.
Our architecture gives the network administrator control over which discovery protocols are used, and how

-11 -

frequently each is scheduled, to allow the system to be tailored to local perceptions of the relative importance of the
various discovery protocol characteristics. Moreover, our architecture focuses on supporting network management
in large scale internets. The support here takes the form of caching and predicate queries to reduce traffic generated
by network visualization, as well as a user interface that allows differing network representations depending on the
type of information and scale of network being monitored.

Our high level goal is to explore the extent to which one can integrate and manage a heterogeneous, administra-
tively decentralized network by viewing it as an instance of a resource discovery problem. Moreover, our use of
multiple protocols to support network visualization indicates an interesting light in which to view resource
discovery. In a sense, resource discovery acts as a "glue" to allow non-network sophisticates to understand impor-
tant characteristics of a complex network environment, by correlating and extracting relevant information from a
multitude of protocols, and presenting this information visually.

The architecture we have presented can be used to discover a number of different types of information, For
example, in addition to network-related information such as topology and protocol usage, the architecture could be
used to discover the existence of printers and other shared devices.

We have built a prototype implementation of this architecture that can collect information using a few network
protocols, and display the information using a particular network representation. We are currently extending this
prototype to incorporate other discovery protocols and network representations; to manage partial state as it is accu-
mulated from the various discovery protocols; and to support explicit as well as implicit protocol scheduling modes.
Once the prototype is more mature, we will deploy a collection of servers around the global TCP/IP Internet, in an
experimental effort to determine the extent to which this paradigm can successfully support network management
and network integration functions in such a large, decentralized environment.

Acknowledgements

We would like to thank Trent Hein for implementing one of the discovery protocols used in this system, We
thank Carl Malamud, Evi Nemeth, Mike Smith, Curt Stevens, and Alex Waterman, who provided feedback on an
earlier draft of this paper.

This material is based upon work supported in part by NSF cooperative agreement DCR-8420944, and by a
grant from AT&T Bell Laboratories.

6. Bibliography

[Case et al. 1989]
J. Case, M. Fedor, M. Schoffstall and C. Davin. A Simple Network Management Protocol (SNMP).
Req. For Com. 1098, Apr. 1989.
[Comer 1988]
D. E. Comer. Internetworking with TCP/IP: Principles, Protocols, and Architecture. Prentice Hall,
Englewood Cliffs, NJ, 1988.
[Kislitzin 1990]
K. Kislitzin. Network Monitoring by Scripts. Lisa IV, Oct. 1990.
[Lougheed & Rekhter 1990]
K. Lougheed and Y. Rekhter. A Border Gateway Protocol (BGP). Req. For Com. 1163, June 1990.
[Malamud 1991]
C. Malamud. Analyzing DECnet/OSI Phase V. Van Nostrand Reinhold, New York, NY, forthcoming,
1991.
[Mills 1983] D. L. Mills. DCN Local-Network Protocols. Req. For Com. 891, Dec. 1983.

[Plummer 1982]
D. C. Plummer. An Ethernet Address Resolution Protocol -- Or -- Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware. Req. For Com. 826,
Nov. 1982,

[Postel 1979]
J. Postel. Assigned Numbers. Req. For Com. 758, USC Information Sci. Institute, Aug. 1979.

-12-

[Postel 1980]
J. Postel. User Datagram Protocol. Req. For Com. 768, USC Information Sci. Institute, Aug. 1980.

[Postel 1981a]
J. Postel. Internet Control Message Protocol. Req. For Com. 792, USC Information Sci. Institute, Sep.
1981.

[Postel 1981b]
J. Postel. Internet Protocol - DARPA Internet Program Protocol Specification. Req. For Com. 791,
USC Information Sci. Institute, Sep. 1981.

[Reissig 1990]
W. C. Reissig. Dynamic Network Management Using the Simple Network Management Protocol
(SNMP). Tech. Rep. 90-08-04, Comput. Sci. Dept., Univ. Washington, Seattle, WA, 1990. M.S.
Thesis.

[Rosen 1982]
E. C. Rosen. Exterior Gateway Protocol (EGP). Req. For Com. 827, Bolt Beranek and Newman Inc.,
Oct. 1982.

[Schwartz 1989]
M. F. Schwartz. The Networked Resource Discovery Project. Proc. IFIP XI World Congress, pp.
827-832, San Francisco, CA, Aug. 1989.

[Schwartz & Wood 1990]
M. F. Schwartz and D. C. M. Wood. A Measurement Study of Organizational Properties in the Global
Electronic Mail Community. Tech. Rep. CU-CS-482-90, Dept. Comput. Sci., Univ. Colorado, Boulder,
CO, Aug. 1990. Submitted for publication.

[Schwartz 1990]
M. F. Schwartz. A Scalable, Non-Hierarchical Resource Discovery Mechanism Based on Probabilistic
Protocols. Tech. Rep. CU-CS-474-90, Dept. Comput. Sci., Univ. Colorado, Boulder, CO, June 1990,
Submitted for publication.

[Schwartz & Tsirigotis 1991]
M. F. Schwartz and P. G. Tsirigotis. Experience with a Semantically Cognizant Internet White Pages
Directory Tool. To appear, J. Internetworking Research and Experience, 1991.

[Schwartz et al. 1991]
M. F. Schwartz, D. R. Hardy, W. K. Heinzman and G. Hirschowitz. Supporting Resource Discovery
Among Public Internet Archives Using a Spectrum of Information Quality. To appear, Proc. 11th IEEE
Int. Conf. Distrib. Comput. Syst., Arlington, TX, May 1991.

[Schwartz 1991]
M. F. Schwartz. Resource Discovery and Related Research at the University of Colorado. Tech. Rep.
CU-CS-508-91, Dept. Comput. Sci., Univ. Colorado, Boulder, CO, Jan. 1991. Submitted for
publication.

[Silicon Graphics Computer Systems 1990]
Silicon Graphics Computer Systems. ~ NetVisualyzer Application Guide. Technical product
documentation, July 1990.

[Stine 1990] R. Stine, editor. FYT on a Network Management Tool Catalog: Tools for Monitoring and Debugging
TCP/IP Internets and Interconnected Devices. Req. For Com. 1147, SPARTA, Inc., Apr. 1990.

[Sun Microsystems 1990]

Sun Microsystems. SunNet Manager — Installation and User's Guide. Sun Microsystems, Inc.,
Mountain View, CA, Oct. 1990. Part No: 800-5512-05.

