Collected Papers
on Olympus

Gary J. Nutt
CU-CS-518-91 February 1991

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

Collected Papers
on Olympus

Gary J. Nuttt

CU-CS-518-91 February, 1991

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309-0430

1This work was supported by NSF Grant CCR-8802283. The author’s electronic mail address is nuti@cs.colorado.edu.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION

ABSTRACT

Collected Papers on Olympus

Olympus is an architecture for interactive, visual, distributed modeling and programming
systems. Since it began as a member of a more general class of distributed systems
named the Strawberry systems (see Nutt, "An Experimental Distributed Modeling Sys-
tem," ACM Transactions on Office Information Systems, 1, 2 (April, 1983), pages 117-
142), it was named after a variety of strawberry:

[Description of the "Olympus strawberry"] Average-sized light red fruit in mid-
season. No runners; vigorous plants bear on branching crowns.

From Sunset New Western Garden Book, Sunset Books, Lane Publishing, 1979,
page 475.

The Olympus study began in 1987 and is still in progress at the time of this writing. The
original goals of the project were to consider systems to support the bilogic precedence
graph (BPG) model, much as the predecessor Quinault system (described in Nutt and
Ricei, "Quinault: An Office Environment Simulator”, IEEE Computer, 14, 5 May,
1981), pages 41-57) had been designed to support information control networks.

As the project progressed, the research first evolved to address models for studying pro-
cess partions (see the ParaDiGM model and VISA system in CU-CS-488-90), and then to
using the basic system to support visual, parallel programming (sec the Phred model and
system in CU-CS-512-91). We also began to understand that we were developing a use-
ful architecture for interactive systems; the study had evolved from one focusing on
specific models to the design of systems to support many different models.

This collection of papers includes three papers:

(1) G.J. Nutt, "A Simulation System Architecture for Graph Models," Advances in
Petri Nets, Springer Verlag, to appear, 1990.

(2) G. I. Nutt, A. Beguelin, I. Demeure, S. Elliott, J. McWhirter, B. Sanders,
"Olympus: An Interactive Simulation System,"” 1989 Winter Simulation Conference
Proceedings, December 1989, pp. 601-611.

(3) G. I. Nutt, "Distributed Simulation Design Alternatives," Proceedings of the SCS
Conference on Distributed Simulation, January 1990, pp. 51-55.

The first paper describes the Olympus architecture (an earlier version of the same paper
was presented at the Tenth International Conference on Application and Theory of Petri
Nets, in Bonn, West Germany, June 1989), the second paper describes how it was used to
support the BPG model, and the third paper speculates about how the architecture could
be used to support distributed simulation systems. Each of the papers has been published
elsewhere, so this collection is just a mechanism for grouping the reprints.

Olympus research continues into areas related to automatic system generation, other
applied languages, and adaptive load balancing. Please contact the author for current
results.

A SIMULATION SYSTEM ARCHITECTURE FOR GRAPH MODELS*

Gary J. Nuttt
- University of Colorado (USA)

ABSTRACT

The paper describes a distributed modeling system architecture, designed to support various graph models of com-
putation, including predicate/transition nets and colored Petri nets. To demonstrate the utility of the architecture, we
describe an implementation for a specific graph model (one that is related to, but distinct from, Petri nets). The
architecture provides for interactive editing and interpretation facilities employing a graphic point-and-select user
interface. A user can define a model, then mark it with tokens and observe the operation of the net through real time
animation. The model and the marking can be rapidly altered, even as an interpretation is in progress. The system
also supports simultaneous use among multiple users, including concurrent editing and interpretation. Thus the sys-
tem supports cooperative model design and interpretation by a group of designers at different nodes in a network of
workstations.

1. INTRODUCTION

The paper describes a distributed modeling system architecture, designed to support various formal graph models of
computation. To demonstrate the utility of the architecture, we describe an implementation for a specific graph
model (one that is related to, but distinct from, Petri nets -- see [9, 20,21, 26)).

Formal graph models are an invaluable tool for analyzing the behavior of a concurrent system prior to its implemen-
tation. A sound model can be used to predict performance, represent concurrency and synchronization, and to
impart fundamental knowledge about the relative merits of alternative designs for the system.

A Petri net can represent control flow, concurrency, synchronization, and nondeterminacy in systems. Petri nets
represent considerable more detail than static models such as precedence graphs. Execution of the Petri net is
represented by the marking sequence of the Petri net, thus there are dynamic aspects represented by the static net
and an initial marking.

Petri net theory is devoted to the study of properties of Petri net variants and their behavior under various markings.
Petri net application focuses on the use of the model family to represent prospective concurrent systems and to
derive an understanding of the behavior of the system based on the properties of the model.

There is a spectrum of applications, ranging from model! instances that can be analyzed for fundamental behavior
such as safety and liveness; to timed Petri nets that predict system performance in terms of resource utilization,
throughput, and turnaround time; to predicate/transition and colored Petri net models that can be used to simulate
the system activity.

The Olympus Modeling System Architecture described in this paper can be used to build tools that support the appli-
cation of Petri nets and other graph models to systems analysis and simulation. In particular, the architecture can be
used to define systems that create and analyze the static version of a model as well as to exercise the dynamic exe-
cution of the model under various initial conditions.

The goal of the paper is to describe the Olympus Architecture for modeling systems, and to illustrate how the archi-
tecture can be used to support dynamic models of computation.

1.1. Background

There are a number of machine-supported, interactive modeling systems in existence, e.g., see PAWS/GPSM
(3, 14], the Performance Analysis Workstation [17], PARET [19], Quinault [22], Raddle/Verdi [13], and GreatSPN
(1].

Each of these systems has a specific, underlying graph model. The companion system is built to implement the syn-

tax of the graph model and to analyze or simulate the semantics determined by the formal behavioral specification
of the model.

* This research has been supported by NSF Grant No. CCR-8802283, NSF cooperative agreement DCR-8420944, and a grant from U S
West Advanced Technologies. This paper is a substantial revision of a paper entitled "A Flexible, Distributed Simulation System” presented at
the Tenth Intemational Conference on Application and Theory of Petri Nets.

T Department of Computer Science, Campus Box 430, University of Colorado, Boulder, CO 80309-0430, (303) 492-7581,
nutt@boulder.colorado.edu

These systems are implemented in bitmap graphics environments in which a designer constructs models in the
language supported by that system. Typically, the user employs a graphic point-and-select editor to construct a
visual model; he may then provide annotation for the model through a wide variety of annotation mechanisms, rang-
ing from popup windows through preparing separate files in a distinct editing session. Systems such as
PAWS/GPSM will also predict performance of the model using queueing network analysis techniques (a GPSM
model is a queueing network).

The dynamics of model operation can be observed by supplying data to the model, then causing the model to exe-
cute in the supplied environment. Most of the systems provide an animation of the simulation execution. The
modeling system may allow the user to observe the operation of the model through the changing state of the model
(in the case of marked models such as Petri nets), or through the display of distributions, gauges, etc.

The operation of a model is ordinarily controlled through the use of checkpoints. That is, the model can have a flag
set at some particular point in the model. When the interpretation encounters the flag, then it suspends execution
and interacts with the user, allowing him to interrogate the state of the execution, change internal conditions in the
model, etc.

The power of these modeling systems is in their ability to allow a user to quickly and easily build a model and then
to view the dynamics of the operation of the model. The designer is able to quickly converge on "correct” models
through this interactive, experimental testbed approach.

Because of the importance of these "what if" type experiments, the modeling system must be very easy to use for
constructing and editing the model, it must allow the designer to easily alter the loading conditions of an individual
experiment, and it must provide intuitive feedback to the designer by providing appropriate measures of the activity
in a language that is familiar to the designer.

Most of today’s modeling systems can be criticized on the following grounds: They often leave the user in a particu-
lar mode during a session, e.g., the user cannot edit if he is in the process of interpreting. It is awkward to change
loading conditions while the model is in execution, since the interpretation can only be interrupted through check-
points. Once the model is being interpreted, any editing change to the model requires that the model be halted and
the editor be started (mode change) in order to accomplish the change. The modeling language is specific to the sys-
tem rather than to the designer. Only a single user can interact with any particular model at any given time.

In the Olympus Architecture, we attempt to address these issues. There are no modes in a modeling session; the
user is allowed to edit the model or the load characterization at any time -- including during interpretation. The
interpreter can be suspended or halted at any time, then restarted or resumed later. Multiple users can be involved in
an individual modeling session.

The logical interpretation and the presentation of the model and its execution are separated into model syntax and
semantics. The model syntax -- the appearance of the model at a workstation screen -- is independent of the logical
specification of the model -- the model’s semantics.

We have built an instance of the Olympus Architecture, bound to a particular graph model. Next we provide an
overview of the example system. '

1.2. An Experiment

The Olympus BPG Modeling System (Olympus-BPG) provides machine support for a specific formal graph model,
Bilogic Precedence Graphs (BPGs) [26]. It provides a model simulation environment, so that a group of designers
can use interactive graphic-based tools to create, maintain, modify, and exercise an interpreted, marked network
model.

Olympus-BPG is an instance of the Olympus Architecture, and is intended to address the general problems
described above with architectural solutions. In addition, Olympus-BPG addresses various other modeling prob-
lems, through specific solutions as opposed to architectural solutions. For example, Olympus-BPG supports
hierarchical refinement of elements of BPG models -- a solution that is specific to BPGs, but which is applicable to
other models that support hierarchy.

Further, the BPG semantics are implemented in Olympus-BPG by a distinct process (optionally on a distinct
machine) from the process that implements the BPG syntax. As a result, the BPG user interface contains a BPG
graph editor and console, while the logical storage and interpretation of the BPG occur in a different environment
interconnected via a well-defined network interface. The presentation syntax of the model is distinct from the
semantics of the model’s execution. The Olympus-BPG interpreter can interact with a BPG viewer/console or any
of a number of types of viewer/consoles.

Instances of Olympus are designed as distributed modeling systems, one aspect of which we have just described.
These systems support groups of users interacting with a single model, thus allowing the system to be a common,
interactive design environment. The concurrency aspects mentioned above (i.e., simultaneous editing and interpre-
tation) provides a very general modeling facility for cooperative model construction.

2. THE OLYMPUS SYSTEM ARCHITECTURE

2.1. Characteristics of Models Supported by the Architecture

The Olympus Architecture is designed to create, store, and interpret a wide class of graph models. The class is large
enough so that the architecture is applicable to many systems, yet specific enough so that there is some advantage to
employing a common architecture for various modeling systems.

Marked graph models supported by the Olympus architecture are of the form
T'=(E, ®,M), A)

where Z is a control flow graph with interpretation ® and marking M, and A is a data flow graph. More specifically,

E=(LE)
here 1'I=H1 UHZU UHK
Il = {pi’l, Py ...} is a finite set of tasks of type i (for 1 < i < K)
E.cIIxITisa finite set of edges interconnecting tasks
o= {fi | 1 <i<|I}} is a set of interpretations for each task,
fi:H — interpretation language O T’
M:ITu E. — {null, ‘:i] is the marking of the graph.
T is a name for a token of unspecified type
A=(RUTD,Ep)
where

R= {rl, Ty } is a finite set of data repositories

ED c (IITxR) U (R ‘xTI) is a finite set of edges interconnecting tasks and repositories

Informally, the graph has one component to represent the flow of control among a set of task nodes, Z. Nodes in the
graph, each representing a task, can be any of K different types, e.g., nodes with disjunctive input and output logic,
or perhaps nodes with disjunctive input logic and conjunctive output logic. Every task node can have an interpreta-
tion. The interpretation is specified in an arbitrary procedural language, or it can be defined by another marked
graph. The data flow graph adds nodes to represent data storage; write operations can be performed by a task if and
only if there is an edge (in E) from the task to the repository, and read operations are represented by an edge from
the repository to the task node. The marking of the control flow graph represent a distribution of tokens on task
nodes and control flow edges, i.e., this model allows tokens to reside on a node or on an edge.

The graphs supported by the architecture are very general, too general for extensive analysis. However, the archi-
tecture is intended to provide a framework in which specific systems for specific graph models can be easily con-
structed. In particular, the architecture can be used to support Petri net models.

Murata [18] defines a Petri net as a 5-tuple, (P, T, F, W, M) where
P= {pl, Py - pm} is a finite set places
T= {tl, by tn] is a finite set of transitions
Fc (PXT)u (T xP) is a finite set of arcs (flow relation)
W:F — (1,2, 3, ...} is a weight function

MO:T - {0, 1,2,3, ...} is the initial marking

PANT=@andPuT=zJ

There are at least two ways that the marked graph model could be used to represent Petri nets: By mapping places
into nodes, or by mapping them into multiarcs. It is necessary to map the places to nodes if the Petri net is to
represent predicate/transition nets [12] or colored Petri nets [15], since they rely on interpretations for places. Qur
example maps places to nodes with disjunctive (OR) input and output logic, and transitions to nodes with conjunc-
tive (AND) logic.

Considering only the case that W:F — 1, a marked graph can represent a Petri nets as follows. Let:
T'=(E,o,M), Q)
E=({LE
= v H2
where
1’I1 =P= {pl, D, ...} is a finite set of tasks with disjunctive input and output logic (places)
H2 =T={ t» D, ...} is a finite set of tasks with conjunctive input and output logic (transitions)
E. =F
fi=f,=0=>0={(Q)

M=MO

Type 1 nodes represent places (nodes with OR logic) and type 2 nodes represent transitions (nodes with AND
logic). As stated above, the general graph model semantic of firing for type 1 nodes is degenerate, inasmuch as
there is no corresponding semantic in Petri nets. To complete the semantics of transition firing (as it reflects on the
activity at a place node), it is necessary to make place "firing" be passive, yielding tokens to downstream transition
nodes as required by the transition’s activity. (This is particularly obvious in situations involving forward conflict.)

It is possible to describe the characterization of Olympus graph models more precisely, and to make the mapping to
Petri nets more specific. However, the goal of this paper is to illustrate an architecture for simulation systems that
can be used to support Petri nets and other models.

The Olympus Architecture isolates the semantics of the firing rules, thus firing rules can be encoded as required
without affecting the operation of other parts of the architecture. The node interpretation mechanism, hierarchy in
node interpretations, data flow, token data, editing, storage, etc. are all independent of the details of the firing rules.

2.2. Characteristics of the Modeling System

The graph model provides a language for describing target systems behavior. A simulation system provides a
medium for expressing models, and for studying these models by observing their reaction to different conditions.
An interactive system (using bitmap workstation technology), creates an environment in which alternatives --
changes in loading conditions, changes in parameters, or changes in the model itself -- are easy to explore.

Olympus systems provide the following specific features to their users:

(1) Itprovides a simple mechanism to interactively create and edit model instances.

(2) Detailed behavior of a model can be expressed as a hierarchical model or a procedural interpretation.
(3) The presentation and the semantics of the model can be represented independently.

(4) The user can exercise a model with complete control over the interpretation, e.g., the user should be able to
interrupt the interpretation at any moment (without setting breakpoints a priort).

(5) When an interpretation is interrupted, the user can browse and change the state of the interpretation prior to
continuation.

(6) If the system is interpreting a model in scaled real time, then the user can change the time scale while the
model is in operation.

(7) The interactive system allows editing and interpretation to proceed in parallel.

(8) Itis possible to reuse large parts of a system instance, within the architecture, to build a comparable modeling
system for related models of computation.

These are general goals, but they are useful guidelines for constructing the modeling system. We now explain how
these goals are addressed in the architecture.

2.3. The Architecture

Any instance of Olympus is a collection of copies of the following modules: Console, Model Storage, Marking
Storage, Task Interpreter, and Repository Interpreter. Optionally, it may also include a Model Editor or an arbitrary
Observer.

Each module can be thought of as an object class, where any particular implementation incorporates specific
instances of the different classes. For a simple Olympus configuration, there may be only one instance of each class
type statically generated when Olympus is started. For example, the Sun implementation of Olympus-BPG imple-
mentation allows for multiple instances of the Console, Model Editor, Task Interpreter, and Repository Interpreter
classes to operate on distinct workstations.

Console
A Console is a window onto the model which illustrates the activity of the other modules; it is used to control
all parts of the system and may also act as a viewport onto the model that is being interpreted. During anima-
tion, it is the medium for displaying the dynamics of the interpretation. The Console determines the details of
the model from the Model Storage and the status of the interpretation from the Marking Storage. Notice that a
Console display is only interested in the marking of a small portion of the model -- a portion small enough to
fit into a window; it also need not operate synchronously with the Marking Storage.

Model Storage \
This module provides information about the model that defines the model or program to be interpreted. For
example, the module responds to messages such as "return the identity of the task that is connected to the
head of this arc," or "return the body of the procedure to be interpreted when this task is fired."

Model Editor
This module is used to define a graph model and place it in the Model Storage. The Model Editor is responsi-
ble for implementing the visual aspects of the model, thus it can be used to map various other model types
into a specific model by translating the model syntax that it supports prior to storage.

Marking Storage _
This module responds to a message to update the BPG marking, or to indicate the current marking of an arc
(as part of an atomic transaction).

Observer)

An Observer is a module that performs system-specific computational tasks. It is characterized by its absorb-
ing information from other parts of the system without providing any particular commands or information
back to the system. Thus an Observer is similar to a Console with no input operations. Observers are used to
analyze a model, to display performance statistics, and other similar tasks.

Task Interpreter ,
The Task Interpreter evaluates a task procedure. Whenever tokens enable a task, the Task Interpreter will
query the Model Storage to obtain a procedure definition, then interpret the procedure on the token. Upon
completion of the interpretation, the Task Interpreter will notify the Marking Storage. The Task Interpreter
will repeat the interpretation cycle on successor tasks as determined by the marking.

Repository Interpreter ‘
A Repository Interpreter is a passive interpreting machine, i.e., it will interpret a procedure for a BPG reposi-
tory when it is requested to do so, but it does not enable any subsequent activity (other than response from the
request). Repository interpretation can be viewed as (remote) procedure call into a monitor. Once the Task
Interpreter calls a Repository Interpreter, the Repository Interpreter cannot respond to another request until it
completes the current operation.

An Olympus instance may be a statically bound set of the modules described above; it is convenient to divide the
groups into the frontend and backend groups as indicated in Figure 1.

The backend -- also called the Olympus server -- is a persistent process that is started independently of any particu-
lar frontend -- also called an Olympus client. (The boxes with rounded corners in the Figure can be roughly equated
to processes, although that view will be refined below.)

The client establishes a network communication socket with the Olympus server when it is initiated; all intercom-
munication between the client and the server take place over the socket. The server obtains commands to perform
storage and interpretation control operations from the socket, and sends display instructions to the client via the
same socket.

Since the client, contains the Editor, the model can be modified even as the Task Interpreter is in execution; the
Console need only be able to multiplex control information to the appropriate module.
2.4. The Olympus Server

In our example instance, four of the modules are implemented in the server, making it necessary for the server to
provide a demultiplexing function to call different modules as required by the client. The server dispatcher is a

Backend (Olympus server)

~

Frontend (Olympus client)

\
>

Figure 1: Olympus System Architecture

cyclic program that blocks on a socket read for the socket connecting the client and the server. Whenever a mes-
sage arrives from a client -- the server can support multiple clients simultaneously using the single client(s)-server
socket pair -- it dispatchs the message to the appropriate module.

The set of messages recognized by the server is listed in [24]. There are three classes of messages: Editing direc-
tives to modify the Model Storage, editing directives to modify the Marking Storage, and control messages to the
Task Interpreter. The dispatcher parses the incoming message, then passes the message to the appropriate module
using procedure call.

The modules that implement the server need not have been implemented as a single process. For example, the pro-
cedure call interface among the modules can be replaced by a remote procedure call interface to achieve functional
distribution. Notice, also, that the modularization is intended to isolate different aspects of the model; the two
storage modules need not know the semantics of interpretation, and the Task Interpreter need not know any of the
details of storage.

Model Storage

The Model Storage is required to remember a model definition from session-to-session, and to remember the details
of a particular model while it is being interpreted. The long term storage is accomplished by saving the definition
on secondary storage (using standard Unix files). The load_model and save_model messages are used to cause the
Model Storage to load/save a model image into primary store from/to the file system. When a model is loaded into
the Model Storage from the file system, the client does not know anything other than the name of the model. The
client can send a redraw message to the Model Storage, which will cause it to send a full description of the model to
the client.

Thus, loaded files are stored entirely in the server process’s virtual memory. There are add_<atom> and
delete_<atom> messages to create atoms in the model; the details of the atom definition can be added and changed
using other messages, e.g., arc_label is used to add a label to an existing arc.

Marking Storage

The Marking Storage is relatively simple; it is only required to remember the current state of the interpretation in
terms of the token distribution on a model. The add_ and delete_token_from arcinode place and replace tokens on
different parts of the model. The two commands to delete_all tokens from arcinode are used to reinitialize a
model.

Task and Repository Interpreters

The semantics of the firing and interpretation of a model class are implemented in the Task Interpreter. The graph
portion of a model defines the control and data flow of the model of operation, while interpretations may be added to

individual nodes.

The Task Interpreter module reads the current marking from the Marking Storage, then determines which task nodes
can be fired in their current state. Firable task nodes are scheduled for interpretation. After the interpretation has
been completed, then the Task Interpreter updates the marking and again determines the set of firable tasks.

Node interpretations are procedures that can be executed on a set of local variables and global data obtained from a
data repository node in the model. That is, when a task is interpreted, then some procedure is interpreted on its local
data; if the graph indicates that the task has read or write access to a data repository, then the procedure may refer-
ence that data repository using a built-in repository access function corresponding to the access-repository pro-
cedure.

Each task interpretation also has an associated time to execute, which defines the real time to be used by the Task
Interpreter if the marking is to be changed in scaled real time, i.., the client is using the server as an animator.
Since such times are often determined by a probability distribution function, Olympus provides a special facility for
obtaining a firing time from a probability distribution function without actually executing an arbitrary procedure.
The more general interpretation specification -- a procedure declaration -- may be expressed in an arbitrary, pre-

compiled language invoked using Sun’s RPC/XDR (Remote Procedure Call/eXternal Data Representation) protocol
[30].

Whenever the Task Interpreter fires a node, it reads the procedural interpretation for the node from the Model
Storage. (Actually, it reads the name and location of the procedure from the Model Storage.) The Task Interpreter
then performs a special nonblocking RPC on the procedure, allowing it to be interpreted by a distinct process, possi-
bly located on another host machine, see Figure 2. The RPC is nonblocking, since the intent is to allow procedures
that define tasks which fire simultaneously to be interpreted simultaneously. When the procedure has been
evaluated, it notifies the Task Interpreter via another nonblocking RPC call, at which time the Task Interpreter can
update the marking.

After carefully evaluating the cost of using remote procedures versus statically-bound procedures [8], we chose to
use RPC to separate the environment in which task interpretations are executed from the environment in which
Olympus executes, and to postpone procedure binding until run time. The particular implementation supports paral-
lel interpretation on distributed computers as a bonus. This allowed us to use the standard system facilities for com-
piling node interpretations, rather than implementing our own facilities. As a consequence, node interpretations can
be written in C, Fortran, Lisp, Prolog, or any other language which produces a compiled object module which can
be invoked using RPC. The Task Interpreter (a client program, in this case) invokes the appropriate procedure (a
server program with the node interpretation) whenever the control flow dictates.

Depending upon the implementation of the firing policy, Uninterpreted models may be nondeterministic at the OR
nodes, i.e., when control flows into an OR node with multiple output edges, the system may place the output token

Backend (Olympus server)

Repository
Interpreter

Task
Interpreter

I

Marking
Storage

Mcedel
Storage

N~

i Task
EInterpretation
e

RS

5

o

Figure 2: RPC Task Interpretation

on any of the edges. Task interpretations for OR nodes can make this decision explicit by executing an arbitrary
algorithm to make the decision, then by calling a built-in procedure to tell the control flow portion of the system
how to place the output token when the interpretation terminates. It is also possible to simply use stochastic func-
tions to randomly choosing an output arc in Olympus.

As described above, the family of graph models may incorporate data flow between tasks and nodes representing
data repositories. The meaning of an edge in the data flow diagram is that the task node may access any repository
to which it is connected (using a data flow arc), although it is not required to do so. The direction of the arc implies
the nature of the access, i.e., arcs from tasks to repositories imply write operations and arcs from repositories to
tasks imply read operations. Each repository implements an access procedure corresponding to the read/write arcs
incident to the repository, and thus to each access-repository procedure call that can exist in a task interpretation.

A repository is implemented as a set of remote procedures. Each repository has default read and write procedures
that are invoked by the task interpretation (using the access function). The user must define repository interpreta-
tions in exactly the same manner as he would specify a task interpretation.

Access procedures provide a mechanism for executing arbitrary repository interpretations, but they do not explicitly
handle data types. Since Olympus uses Sun’s RPC for invocation of these procedures, it also employs the related
external data representation (XDR) for defining the types of the information exchanged between the Task and Repo-
sitory Interpreters.

The server also collects statistics on the operation of any model. Actual measures are only meaningful to the
Olympus user, since some of the tasks and repositories represent resources and queues in the target system, while
others are modeling overhead. Olympus provides a facility for instrumenting any arc or node in the graph, enabling
data gathering on the modeling atom during interpretation. The resulting data are kept in a file for subsequent
analysis. There are currently no additional facilities for analyzing the interpretation of a model.

2.5. Olympus Clients

An Olympus client is used to implement the Console, Model Editor, and various Observers. The server is an engine
that stores and interprets graph models, and the client is the mechanism for implementing any function that can use
the engine. For example, a client that implements a Console and Editor provides a user interface to the server
engine. Because of the separation of the frontend and the backend, and because of the nature of the protocol that is
used to allow the frontend and backend to communicate, the client user interface is almost completely independent
of the operation of the server. In particular, the client Editor is free to use any visual representation of the graph
model stored in the server that fits the need of the user.

One result of the approach is that any Editor that conforms to the client-server intercommunication protocol can be
used with the server. Thus, if the server is implemented to support Petri nets, several different clients can be
developed to present different visual representations of the Petri net (e.g. representations with bars or rectangles to
denote transitions), and to provide different man-machine interaction paradigms. The operation of the server is
oblivious to differences in these client frontends.

Because of the limited assumptions that the server makes about the operation of the client, it is possible for the
client to perform different functions than the Console and Editor tasks. For example, suppose that one wished to
implement a syntax-directed editor for the graph model supported by the server. The conventional approach to con-
structing such an editor is to either implement the parser in the server, or in the editor itself. If the parser is imple-
mented in the server, then the interactions between the client and the server will become inefficient. If the parser is
implemented in the editor, then the editor will become slow (and annoying to use, since the user will tend to be
waiting for the parser to complete even though the current graph may be only an interim state.) Beguelin has used
the Olympus architecture as a framework in which he implements a critic Observer client in addition to an editor
client for his server instance [2] (see Figure 3). The critic is an asynchronous client that parses his graph model
independent of the actual operation of the client that implements the editor. This results in a system with a critic
that is independent of the editor, yet which parses (and otherwise analyzes) the model in the server as the editor is
used to create and modify models.

2.6. General Remarks about the Architecture

While we have not described how hierarchical refinement is handled, it can be seen from the graph definitions that
the server is required to allow task nodes to be defined in terms of a procedural interpretation or by a refined graph.
The server implements functional hierarchy by allowing any interpretation to be specified as a graph. When the
server is interpreting a model and it encounters such a node interpretation, then the server will use the refined node

definition recursively, up to a predefined depth. We will report extensively on our research with hierarchy in a
separate paper.

We have used the remote procedure call idea to interconnect the frontend and the backend, and to connect the Task
Interpreter manager with the actual Task Interpretations. Sun’s RPC is built on top of Berkeley UNIX sockets [16],
which provide a network-wide means for processes to identify remote processes in terms a simple address -- a well-
known address. Since a process’s IPC port is identified by a simple address, any other process can "connect" to the

Backend (Olympus server)

Frontend (Olympus client) ~ W
a NeWS client process \ . —
NeWS server process lmer;?etanon
Repository Code
Console Interpreter -
\\ Task ’ Task
Interpreter Interpretation
L \ I Code
\ Marking
Frontend (Olympus client) \ Storage -
NeWS server process
\ Model é Task
- Storage Interpretation
| [) Code

\ J

Figure 3: Beguelin’s Phred System

process with the well-known socket, i.e., establish communication with the first process using the well-known
address. The Olympus server has a well-known socket address which can be connected to by any number of client
processes at any given time. Each client can send the server a message over the socket, causing the server to take
some action, e.g., update the Model Storage, etc. as an atomic operation. When a client wishes to update its picture
to show token movement, net changes, etc., then it sends a request for an update to the server; the server responds
by placing the update on the socket. Every client is designed to react to updates from the server whether they were
requested or not, thus each client has the most current information sent out by the server. As a consequence, any

Olympus server supports multiple clients, the number depending only on the number of independent client processes
that connect to the server.

Since the client(s) are independent of the Olympus server, editing operations can take place in parallel with the
server’s operation. This allows the user to edit a model while the server is in the process of animating or simulating
its activity. Any change in the status of the model, as maintained by the server, results in an update being sent to the
client(s). Therefore, if one client edits the model, then all clients see-the change at the same time.

Olympus is a very general distributed system, enabling it to provide important interactive simulation facilities such
as multiple users with simultaneous updating of screens. The separation of the work into clients and servers along
with a carefully designed protocol between them allows the frontend to be asynchronous with the backend, yet
allows close interaction of the console with the server.

3. THE OLYMPUS-BPG MODELING SYSTEM

The Olympus architecture has been used to support three different models extensively: BPGs, ParaDiGM [5-7], and
phred [2]. In addition, we have experimented with a Petri net frontend to the BPG backend.

In this Section, we describe the instance of Olympus that has been used to support BPGs. (BPGs are a subclass of
the general modeling system described above; while the details of BPGs are not especially relevant to the architec-
tural discussion, a brief description of the model is provided in the Appendix.)

The Olympus-BPG server has been implemented in a SunOS environment (on Sun 3 and Sun 4 workstations), and
on an Encore Multimax shared memory multiprocessor [25]. Various clients have been built to work with the
server, including a line-oriented console, a SunView interactive editor, a Sun NeWS interactive editor, a Sun NeW$S
performance statistic display, a Sun NeWS interactive editor that employs Petri nets at the user interface, and a
Symbolics LISP interactive editor.

Most of the editor clients are window-based interfaces that employ pointing devices to implement visual BPGs (or
Petri nets). Icons are drawn on the screen, under the control of the Model Editor, then stored in the server using the

messages described above. When a model is loaded into the server, then the server sends messages to the client

(display portion of the client, shared by the Console and the Model Editor) so that it can present the model in its
chosen method.

Node and arc properties are specified through the use of property sheets. Thus, a task can be labeled and an
interpretation can be provided by selecting the task, popping up a property sheet form, and filling in the property
sheet (cf. the Xerox Star interface [29]). Each operation on a property sheet will result in messages being sent to the
Model Storage portion of the server.

The SunView BPG Editor Implementation

The SunView implementation uses standard facilities provided in the SunView library to implement the Console
and a BPG Editor. When the frontend process is created, it opens a window on the desktop, see Figure 4. The win-
dow provides scroll bars and a pallet of icons for editing a model. Model editing operations are accomplished by

using the pallet and one of the three mouse buttons. The Console operations are all invoked via popup menus from
the other two mouse buttons.

Console operations for the Model Editor result in procedure calls, and operations for the remaining modules result in
messages being sent to the Olympus-BPG server.

This Model Editor implementation is limited in its abilities. While it is possible to create a rendering of a BPG, and
to supply interpretations and other details for each node, the Model Editor does not support editing operations such
as moving an object around on the screen. Instead, the original object must be destroyed, then recreated at a new

< CONSULE . 3348 S5 aliP i 432 Eop 5 bt tidor 2

Olympus Version: @.5 (June 28, 1989) .

SHBYAERCEE

O/\Sd of month . N ubHsFlA ionB.5
: \ \\

B shelltool - /bl

fiftiberts cd $
difilbert” cd v
qifitbert% cd d

©)

L
4
d i
Aftibert cd m o————»o——-——»oé:oz—}'o————bo»\o@u o\' m]
tibert’% cd p A \ / A \ ;
ilbart? 1s O é . Node Properties
§;{Rake!(le repare
fifiTberts .,
4017 13813

A Label: demux‘
qif f1berts ../ Description:
i avise Time: constant(8)

°

/ daject? Host name:
[m) » 0
A »
.

Procedure: sel_paper

@ Gl B

\ elect refs

O
A
Fevise lle ect? ¥e jected

> oj ..O
A
Jubmh
O

v

HITIAL zlrpe/
. v »O

Figure 4: The SunView Client Window

screen location. However, it is possible to completely specify a model in the Model Storage.

The structure of the SunView editor was a direct outgrowth of previous work done on the Alto workstation [22]. In
the Alto window environment the mouse was under program control, i.e., it was read like any other device. This
structure was also natural for the very first line-oriented interface, since input events all came from the keyboard.

However, SunView (like many modern window systems) is an event-driven environment. The user defines a
number of event routines, then registers them with the SunView window manager. All execution takes place under

the control of the window manager; thus, execution is driven by the occurrence of events detected by the window
manager, not by the user’s program.

Because of the replacement of SunView by NeWS in Sun environments, the emergence of X Version 11, and
because of the limitations in the design, the SunView client was not a good base from which to build other clients.
Therefore, we have built subsequent frontends in the NeWS environment,

The NeWS BPG Editor Implementation

The requirements for the NeWS implementation included one that would make it easier to reuse the code than was
the case for the SunView client. We had decided that we would build the next client on top of a set of libraries, at a
minimum, and as an object-oriented program if that were feasible (within our other constraints).

The NeWS architecture divides any implementation into two parts: A NeWS server and a NeWS client, i.e., the
Olympus client is implemented as another client and a server, see Figure 3. The NeWS client is responsible for

NN o A RN AE o 2 B TR e e e B e T
Qlympus Edwor - Version 0.4 (Thu Jun i5 09:28.04 MUT 1939)

rejekted

[Q——b= C:Ol‘\ —-—-:XCI: /'O\
=T
O—A

]]
tnd of mon publish

T 4

S 3 N £ W e S 30 3 o b i

Figure 5: The NeWS Client Window

implementing the services of the Console and the Model Editor. The NeWS server is responsible for managing the
display, based on a specific protocol between the client and the server.

The NeWS client Console implements the same function as the SunView Console, i.e., it accepts commands from

the user (via the NeWS server), then routes them to the backend process (Olympus server dispatcher) -- see Figure
5.

The Model Editor is a new design, based on type hierarchies of visual network models. The Model Editor imple-
ments the syntax of BPGs, even though the server implements the visual aspects of BPGs, e.g., a task is drawn as a
circle. The type hierarchy treats model atoms as objects; thus an object may be a node or an arc. Properties that
distinguish arcs and nodes are defined in subclasses. Within the node subclass are additional refinements to distin-
guish between the way the editor treats a task node and a repository node (e.g, arcs between tasks and repositories
are data flow arcs and arcs between tasks are control flow arcs; the appearance of the two arc types is different on
the screen).

The use of object types allows the editor to be built without being dependent upon specific presentation properties of
the nodes. As a result, the same editing functions can be used to construct an editor for BPGs and other models.

In Figure 3, the NeWS server is shown as a collection of lightweight process. Each lightweight process can be dedi-
cated to editing tasks without incurring full Unix process context switching costs whenever work is passed among
them. There is a surrogate lightweight process in the server to direct the other lightweight processes on behalf of the
(Unix heavyweight) NeWs client editor. The surrogate controls a lightweight process to handle input events,
another for output events, and other for specific editing tasks (such as "track the mouse").

Our experimental Petri net editor (used with the BPG server) was built by modifying the NeWS editor. The
modifications did not require server changes (even though the "place firing semantics" were specialized for Petri
nets). The BPG server is the same for the BPG frontend as for the Petri net frontend in this experiment.

3.1. Using Olympus-BPG

Traditional simulation modeling breaks down into a number of phases: Target system studies, model design, model
construction, model validation, parameter sensitivity analysis, and data collection. The phases overlap as new
knowledge is gained in the overall process. For example, it is common to begin the design of the model before the
target system is completely understood; in fact, model construction guides the designer to questions that he did not
think of during the pure study phase. Similarly, validation generally causes the designer to return to model con-
struction, model design, or even target system study.

Olympus systems attempt to provide support to the analyst during all of the phases of the study. During system
study, an editor is used to construct an uninterpreted model of the parts of the target system. As new knowledge is
discovered about the target, it is incorporated into the BPG model. The initial parts of the model design proceed
concurrently with the study of the target system, where BPGs serve primarily as a documenting device.

As the study shifts into model design, the uninterpreted BPG becomes the focus; timing, hierarchical refinements,
and procedural interpretations are provided. The editor is also used to alter the model as the analyst reviews it. The
act of deriving interpretations and refining the control and data flow for the BPG constitutes the model construction
phase.

Detailed validation can be accomplished in a number of ways, almost all of which are outside the scope of this
paper. The animator is the facility that provides the analyst with his initial intuition as to the validity of the model. It
points the analyst at critical parts of the model and leads him or her to ask more detailed question about the opera-
tion of the target system, or to increase detail in the model. Validation almost inevitably leads to modification of the
model, primarily to the specifications of the task interpretations, eg., tuning distribution parameters.

Once the model is judged to be valid, it may be executed on many different loads with many different parameters to
investigate the sensitivity of those parameters on different aspects of the performance. This phase often leads to the
desire to modify the model, since it may not accurately characterize a parameter in the system that exists in the
model. Ordinarily, this means returning to the model design or implementation phase and starting again. With
Olympus, that process is rapid because of the form of the model and because of the integration of the tools in the
model design environment.

3.2. An Example Session

Suppose that we had constructed the single-server queueing system shown in Figure 6. Each node in the graph is
created with a default (unit) time to execute. It is useful to draw the graph, mark the idle nodes, then begin experi-
menting with arrival and service times. These times are specified by time distributions for p, (the arrival distribu-
tion), p, (the CPU service time distribution), and p, (the device service time distribution). lInitially, the "depart”

node (p 6) will randomly choose output edges for a token, hence jobs will randomly request device I/O or be com-
plete.

The model is refined by attaching probabilitics to the two arcs) 6 p7) and (p 6 p8) corresponding to the probability
that a job is complete when it finishes a time quantum. A more precise interpretation can be supplied by writing a C

server idle

2 Py Pe

P, Py
schedule server erver de clean up

busy

arrive

Py)
I/0 busy

I/0 idle

Figure 6: A BPG Queueing Model

procedure for p_ such that a specific output arc is selected to receive a token representing a job (thus BPGs can be
made deterministic by specifying the action in forward conflict situations).

The graph model suggests that there is one server and one I/O device in the system, however, we can simulate two
different I/O devices by initially marking the "I/O idle" node with two tokens. This will allow two different jobs to
be performing I/O -- reside on the "I/O busy" node at one time. Any of these changes to the model be implemented
as the model is being interpreted.

As we continue to use the model, we may wish to distinguish between the two /O devices, perhaps one is slow and
the other is fast. A stochastic model of such operation would simply suggest that a bimodal distribution be used to
specify the firing time for the "I/O busy" node. However, such a model will not prevent us from simulating two
instances of the slow device being in operation at one time.

An alternative is to change the graph to the one shown in Figure 7. The graph editor has been used to copy Dy Dy
and Py 1O add p, ., and to add new arcs connecting the subgraph. It is also necessary to either specify the stochastic
conditions under Wwhich a job uses device 1 or device 2 (by annotating arcs (p1 , pg) and (p1 5 pn) with probabili-
ties) or by writing a deterministic procedure for node P, 5 to specify conditions tsor a job choosing one device or the
other.

4. SUMMARY

We have described the Olympus Modeling System Architecture, designed on a distributed client-server architecture
in which the implementations of the client and the server also employ client-server and remote procedure call
models of computation.

The Olympus Architecture supports very general usage; because of the isolation of interpretation in the server, the
client need not know any details of the model interpretation. The server will support multiple clients operating on a
single model in the server; thus, users can cooperatively construct and analyze a model (or program) using the com-
mon server with their individual clients.

Modeling is most useful when the system that supports it is easy to use, and very flexible. The independence of the
console from the server not only allows the user great freedom in applying different loads to the model, it also
allows the user to dynamically change the load -- the specification of the load or the specific instance of the load --
while the model is being interpreted. More importantly, Olympus allows the user to "correct” the model during
interpretation, instead of requiring that the user halt the model, change it with an editor, recompile it, reinitialize it,
and wait for it to get to the loading condition in which it was halted. If alterations of the model should be performed

server idle

2 p3 p

hedul p4
arrive schedule servel~Yerver clean up
busy
r ro
> P
I/0 1 busy 15

I/0 2 busy P

13

I/0 2 idle

Figure 7: A Two-Device System

while the interpretation is inactive, then the interpretation can be temporarily interrupted, the model changed, and
the interpretation resumed.

Our overall research program is concerned with modeling various aspects of complex systems, particularly distri-
buted computer systems. The fundamental assumption behind our approach is that such systems are sufficiently
complex that a designer can benefit considerably from interactive support systems to experiment with behavior prior
to implementation.

Choosing a particular model on which to base the man/machine interface is very important to the success of the sup-
port system, and very difficult to do so that it is acceptable to a wide range of users. We each have a set of precon-
ceived notions about modeling primitives, often based largely on aesthetics. Olympus provides fundamental opera-
tion as a simulation and animation system allowing one to use a somewhat arbitrary user/model interface.

Our overall research projects center around the application of several different formal models of computation as
bases for interactive system support. In this paper we have described a simulation system while in other projects we
study multi-tiered modeling systems [6,23] and deterministic, visual programming systems [2]. The support sys-
tems for these other studies are all based on the Olympus Architecture.

Finally, we expect to use Olympus as the basis of a cooperative, distributed software development environment.
The current architecture and implementation support multiple users working on a common model with atomic tran-
sactions and simultancous update of state at the clients. We feel that this is a promising basis for general coopera-
tive problem solving systems.

5. ACKNOWLEDGEMENTS

Several people have worked on the Olympus system including Mohammad Amin, Zuraya Aziz, Adam Beguelin,
Mimi Beaudoin, Isabelle Demeure, Steve Elliott, John Hauser, Art Isbell, Nikolay Kumanov, Jeff McWhirter, and
Bruce Sanders.

This research has been supported by NSF Grant No. CCR-8802283, NSF cooperative agreement DCR-8420944, and
a grant from U S West Advanced Technologies.

6. REFERENCES

1.

10.

11.

12.

13.
14.
15.

16.

17.
18.
19.
20.

21.

G. Balbo and G. Chiola, ‘‘Stochastic Petri Net Simulation™, 1989 Winter Simulation Conference
Proceedings, Washington, D. C., December 1989, 266-276.

A. L. Beguelin, ‘“‘Deterministic Parallel Programming in Phred”’, University of Colorado, Department of
Computer Science, Ph. D. Dissertation, May 1990.

J. C. Browne, D. Neuse, J. Dutton and K. Yu, “Graphical Programming for Simulation of Computer
Systems”’, Proceedings of the 18th Annual Simulation Symposium, 1985.

M. Broy, Control Flow and Data Flow: Concepts of Distributed Programmings, Springer Verlag, 1985.

I. M. Demeure, S. L. Smith and G. J. Nutt, ‘‘Modeling Parallel, Distributed Computations using ParaDiGM --
A Case Study: The Adaptive Global Optimization Algorithm’’, Fourth SIAM Conference on Parallel
Processing for Scientific Computing, Chicago, IL, December 1989.

I. M. Demeure, ‘‘A Graph Model, ParaDiGM, and a Software Tool, VISA, for the Representation, Design,
and Simulation of Parallel, Distributed Computations”’, University of Colorado, Department of Computer
Science, Ph. D. Dissertation, June 1989.

I. M. Demeure and G. J. Nutt, ‘‘Prototyping and Simulating Parallel, Distributed Computations with VISA”’,
submitted for publication, May 1990.

R. S. Elliott and G. J. Nutt, ‘‘Remarks on the Cost of Using A Remote Procedure Call Facility”’, University of
Colorado, Department of Computer Science Technical Report No. CU-CS-426-89, February 1989.

C. A. Ellis and G. J. Nutt, “‘Office Information Systems and Computer Science’”, ACM Computing Surveys
12,1 (March 1980), 27-60.

G. Estrin, ‘A Methodology for Design of Digital Systems -- Supported by SARA at the Age of One’’, AFIPS
Conference Proceedings of the National Computer Conference 47 (1978), 313-324.

G. Estrin, R. S. Fenchel, R. R. Razouk and M. K. Vernon, “SARA (System ARchitects Apprentice):
Modeling, Analysis, and Simulation Support for Design of Concurrent Systems’’, IEEE Transactions on
Software Engineering SE-12, 2 (February 1986), 293-311.

H. J. Genrich, ‘“Predicate/Transition Nets”, in Petri Nets: Control Models and Their Properties, Advances in
Petri Nets 1986, Part 1, W. Braver, W. Reisig and G. Rozenberg (editor), Lecture Notes in Computer
Science, Springer Verlag, Berlin, Heidelberg, New York, 1987.

M. L. Graf, “‘Building a Visual Designer’s Environment’’, MCC Technical Report No. STP-318-87, October,
1987.

PAWS/IGPSM marketing brochures, Information Research Associates, Austin, TX, 1988.

K. Jensen, “‘Coloured Petri Nets™, in Petri Nets: Control Models and Their Properties, Advances in Petri
Nets 1986, Part 1, W. Brauer, W. Reisig and G. Rozenberg (editor), Lecture Notes in Computer Science,
Springer Verlag, Berlin, Heidelberg, New York, 1986, 248-299.

S. J. Leffler, R. S. Fabry, W. N. Joy and P. Lapsley, ““An Advanced 4.3BSD Interprocess Communication
Tutorial”’, in Unix Programmer’s Manual Supplementary Documents 1, Computer Systems Research Group,
Computer Science Division, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, April 1986.

B. Melamed and R. J. T. Morris, ‘“Visual Simulation: The Performance Analysis Workstation”’, IEEE
Computer 18, 8 (August 1985), 87-94.

T. Murata, ‘“Peuri Nets: Properties, Analysis and Applications’’, Proceedings of the IEEE 77, 4 (April 1989),
541-580.

K. M. Nichols and J. T. Edmark, ‘‘Modeling Multicomputer Systems with PARET"", IEEE Computer 21, 5
(May 1988), 39-48.

J. D. Noe and G. J. Nutt, “Macro E-Nets for Representing Parallel Systems’’, IEEE Transactions on
Computers C-12, 8 (August 1973), 718-727.

G. J. Nutt, “*The Formulation and Application of Evaluation Nets™”, Ph.D dissertation, Computer Science
Group, University of Washington, 1972.

22. G.J.Nuttand P. A, Ricci, ““Quinault: An Office Environment Simulator’”, IEEE Computer 14, 5 (May 1981),
41-57.

23. G. J. Nutt, “*Visual Programming Methodology for Parallel Computations’’, MCC-University Research
Symposium Proceedings, Austin, Texas, July 1987,

24. G.J. Nutt, ““Olympus: An Extensible Modeling and Programming System’’, Technical Report No. CU-CS-
412-88, Department of Computer Science - University of Colorado, Boulder, October 1988.

25. G.J. Nutt, A, Beguelin, I. Demeure, S. Elliott, J. McWhirter and B. Sanders, “Olympus User’s Manual”’,
Technical Report CU-CS-382-87, Department of Computer Science - University of Colorado, Boulder,
December 1987 (revised June, 1989).

26. G.J. Nutt, ““A Formal Model for Interactive Simulation Systems’’, Technical Report No. CU-CS-410-88,
Department of Computer Science - University of Colorado, Boulder, September 1988 (Revised May 1989).

27. C. Ramchandani, ‘‘Analysis of Asynchronous Concurrent Systems by Timed Petri Nets’’, Ph.D. dissertation,
MIT, 1974.

28. R. R. Razouk and C. V. Phelps, ‘‘Performance Analysis Using Timed Petri Nets”, Proceedings of 1984
International Conference on Parallel Processing, August 1984, 126-129.

29. D. Smith, E. Harslem, C. Irby and R. Kimball, *“The Star User Interface: An Overview’’, Proceedings of the
AFIPS National Computer Conference 51 (1982), 515-528.

30. “*Networking on the Sun Workstation’’, Document Number 800-1345-10, Sun Microsystems, Inc., September
1986.

APPENDIX: THE BILOGIC PRECEDENCE GRAPH MODEL

Bilogic Precedence Graphs (BPGs) are composed from a set of tasks, a set of control dependencies among the tasks,
and a specification of data references among tasks. A BPG can be thought of as the union of a control flow
subgraph and a data flow subgraph. The control flow subgraph is made up of nodes that correspond to tasks and
edges that specify precedence among the tasks. The node set for the data flow subgraph is the union of the task

node set with another set of nodes representing data repositories; edges in the data flow graph indicate data
references by the tasks.

BPGs are directly descended from Information Control Nets [9], which evolved from our work with data flow
models and E nets [20]; and E nets are a derived directly from Petri nets [21]. The control flow subgraph is similar
to the UCLA Graph Model of Behavior (GMB) [10,11] in that it specifies conjunctive ("AND") and disjunctive
("OR") input and output logic specifications for each task. Let small, open circles represent tasks with exclusive OR
logic; and small, closed circles represent tasks with AND logic (see the examples on the left side of Figure Al).
OR-tasks are enabled by control flow into any input arc, and upon task termination, control can flow out on any
output arc. AND-tasks are not enabled until control flows to the task on every input arc, and upon termination
control flows out every output arc. Large circles represent tasks with OR-input logic and AND-output logic;
ordinarily, we only use single input and single output arcs on these circles since we use them to emphasize the
notion of nontrivial processing. Our choice of these primitives is based on our users’ preferences (from the E-net
and ICN studies). Other logic combinations can be built from these primitives, .g., AND-logic input and OR-logic
output is attained by connecting the output of a multi-input, single-output AND-node with to a single-input,
multiple-output OR-node.

As in other marked graphs, the control flow state is represented by tokens (data flow state is not explicitly
represented in BPGs). Thus, one can think of markings and firings of the various tasks in the control flow subgraph
just as in Petri nets. A BPG is activated by marking appropriate tasks with tokens, at which time the BPG firing
rules (control flow logic rules) describe sequences of markings corresponding to control flow among the tasks,

A single-entry, single-exit task directly maps to a Petri net transition with one input and one output place, see Figure
Ala. That is, the task fires whenever a token arrives at the input, and a token leaves the task when it has completed
firing. A BPG AND-task corresponds to a set of Petri net places and a transition, see Figure Alb. The OR-task is
similar to a Petri net with forward/backward conflict, see Figure Alc. Token paths can merge or separate at an OR-
task. As in Petri nets, an uninterpreted OR-task in nondeterministic. (However, we will provide interpretations for
BPG tasks -- see below.)

Data flow is represented by adding data repository nodes to the control flow graph, and arcs interconnecting nodes
and data repositories. (Squares are used to represent data repositories in BPGs.) Data flow in a BPG does not
correspond directly to data flow in a traditional data flow graph (see, for example, [4]). That is, task firing is
specified by tokens in the control flow subgraph, whereas the data flow subgraph represents data references by the
tasks. Thus, an arc from a task to a repository represents the case that the task may write information to the
repository, and an arc from a repository to the task represents that the task may read information from the
repository. An interpretation for the task specifies whether or not the task references the repositories to which it is
connected for any particular task firing. The resulting model is used to represent storage references and inter-task

O O—]—0

a) Single-entry-single-exit

vave

b) AND Control Flow

c) OR Control Flow

Figure Al: BPG Primitives

communication.

Figure A2 is a Petri net model of a simple queueing system with jobs requesting CPU service and I/O service
alternately. The leftmost portion of the Petri net represents the arrival of jobs and the rightmost portion represents
their departure. The places labeled "server idle” and "I/O idle” must initially contain a token for the model to
behave properly. (Multiple servers and multiple I/O devices could be represented by corresponding numbers of
tokens on the respective idle locations.)

Figure 6 is the corresponding BPG. Task p, has AND output logic and OR input logic, so the edge from p, to itself
will cause the task to be cyclic, corresponding to the job arrival portion of the Petri net. When a job is created, a
record describing the job is written to repository I by p i+ Task p, is used to merge two OR paths, and Dy fires only
when the server is idle (there is a token on the edge (ps, p3)) and ghere is a job to serve (a token is on edge (pz, p3)).
Task p, models the job receiving service by reading the details of the job description from r, and writing the
updatecf job status to r,, when the time slice has been completed (p terminates). When the job]leaves the server,
then the server becomes idle AND a decision is made as to whether or not the job is done or requires I/O (task p 6).

Tasks Pg: Pys and P, model the I/O device operation, updating the job status in r, and T, during the process.

While tasks share the firing rule properties of pure Petri net transitions as described in Figure Al, they also employ
the notion of non-zero transition time of E-nets, ICNs, and Timed (Performance) Petri Nets [27,28]. This is the
means for introducing time into the simulation. For example, in Figure 6, the job’s service time is represented by
the amount of time that the token resides on task p "

Each task may have a procedural interpretation, to specify the amount of time required for firing the task. Thus,
task p, can determine the desired amount of service time by evaluating a function such as shown in Figure A3. The
evaluation of the procedure results in a simulated time being returned. (Notice that the interpretation for P,
references repositories r, and r, using the access-repository procedure without specifying read/write commands.
The arcs in the graph description, passed as an argument to access-repository determine the direction of information
flow, i.e., this is the mechanism for data flow in the model.)

The interpretation is evaluated each time the task is fired. Tasks with OR (output) logic may use interpretations to
specify deterministic behavior; the procedure evaluates information available 1o it (from repositories), then selects
an output arc to receive the resulting token. We represent this choice as a second value returned from the

server idle
schedule server

(O
> —>() »{ >
arrive S) —" clean up
—v—
(e
/O busy é
(>

170 idle

Figure A2: A Queueing System

interpretation of an OR-task, i.e.,

(time, out-arc) = f(OR-task)

BPG tasks are hierarchical. Any task may be refined by defining a new BPG which has the same input/output
behavior as the parent task. Using ideas similar to those in macro E-nets [20], it is possible to define subnets that
have the same logical input/output properties as an individual task in the BPG. For example, suppose that the server
task were actually two subservers, only one of which could be busy at any time (this is a hypothetical example to
describe hierarchical nodes in the graph). Then, the sub-BPG shown in Figure A4 would be one hierarchical
refinement of p. Task p, . would be a decision task that decided which of the two units were to be used for this
operation. One unit WOU'& be represented by task p 5 and the other by p a3 Tasks p 44 and p 45 would be used to
produce the correct token response to the outputs of e original p " ' ’ ’

This is a brief, intuitive description of BPGs, particularly as they relate to Petri nets. Part of the motivation for using
BPGs is that they are sufficiently simple, and similar to other commonly used models, that they are natural for
representing the individual events involved in the simulation of a system. (A similar argument was used to justify
the formulation of E-nets [20,21]). The other rationale for using BPGs is that they encompass the semantics of
several other formal models, including other variants of Petri nets, queueing networks, and several CASE models:
by implementing the modeling system so that it interprets the semantics of BPGs, it is possible to provide a user
interface that employs the syntax of these other models at a particular user’s design workstation.

For the interested reader, a more complete and more formal description of BPGs can be found in [26].

e

struct *job;

/* Read T */
access_repository((r,, p 4), job)

/* Change a field in the record read from the repository */
update(job.statistics);

/* Write T, */
access_repository((p n r2), job);

/* Return the amount of time reqired for the task to fire */
return(job.service_time);

}

Figure A3: A Node Interpretation

server idle

from p

to p

Figure A4: A Refined Task

OLYMPUS: AN INTERACTIVE SIMULATION SYSTEM

Gary J. Nutt

Adam Beguelin
Isabeile Demeure

Stephen Elliott

Jeff McWhirter

Bruce Sanders

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430

ABSTRACT

In this paper, we describe the Olympus
Modeling System, a prototype modeling and simula-
tion system we have built to interpret formal models
of computation. Olympus employs a graphical,
interactive user interface that enables one to control
the system as it interprets a model. The system sup-
ports animation and simulation; animation is used to
observe qualitative behavior of a model and simula-
tion is used to obtain quantitative information about
the model’s behavior. The system supports multiple
simultaneous users with fine-grained interaction
between the users and the system,

1. INTRODUCTION

The Olympus Modeling System is an interac-
tive, distributed model interpretation environment
for bilogic precedence graphs (BPGs). BPGs are
interpreted control flow graphs that incorporate con-
junctive (AND) and disjunctive (exclusive OR)
logic. Thus, very general control flow patterns
(alternative, select, fork, and join) are supported by
the model. BPGs also describe possible data flow
among interpreted nodes. Like Petri nets, BPGs
represent the status of the model through a distribu-
tion of tokens on nodes and edges. An interpreted
BPG corresponds to a simulation model of some sys-
tem,

An interactive model interpreter should pro-
vide several basic functions:

(1) It should have a mechanism for interactively
creating and editing model instances.

(2) The user should be able to exercise a model
with complete control over the interpretation,
e.g., the user should be able to interrupt the
interpretation at any moment (without setting
breakpoints a priori).

(3) When an interpretation is interrupted, the user
ought to be able to browse the state of the
interpretation and even change the state prior
to continuation.

(4) If the system is interpreting a model in scaled
real time, then the user ought to be able to
change the time scale while the model is in
operation.

(5) The interactive system should also allow edit-
ing and interpretation to proceed in parallel,
even though there will be times during which
the user might leave the interpreter in an
unusual state.

We address these requirements with Olympus
by defining an underlying formal model for the
simulation, then by implementing the user interface
to the simulation interpreter as an asynchronous sub-
system. This enables the user interface subsystem to
respond immediately to user requests, even while the
simulator is "busy" with other tasks. The two sub-
systems then communicate using conventional inter-
process communication mechanisms.

In the remainder of the paper, we will first
describe BPGs, then the design and implementation
of the current Olympus frontend and backend.
Finally, we will provide a simple example to illus-
trate the use of the system and the model.

1.1. Related Work

There are a number of interactive simulation
systems used for performance prediction. In each
case, there is a pictorial representation of the model
of operation; the analyst uses graphical support tools
to describe the model of operation in the particular
language of representation. Commercial products
are available to support graphical interfaces to simu-
lation software (2,5]. The representation is then
used to define a simulation program of the model.

In some cases, the system focuses only on pro-
viding a graphical editor for constructing a
machine-readable model; the model can then be
translated into a traditional simulation program,
SIMF is one example of this type of system; it pro-
vides an interactive editor for preparing SLAM pro-
grams [19].

In other cases, the system implements the for-
mal model of computation as the basis of the simula-
tion system, but does not provide a graphical user
interface, as was done in our original Olympus
implementation, e.g., see [16].

Newer systems incorporate a visual editor
along with some form of machine to execute the
resulting model (either a translator or an interpreter)
under the control of the modeling system. The user
specifies the model using the editor, then runs the
simulation. Generally, the simulaton can be
invoked to run continuously, or single-stepped
through event executions. Some systems allow the
simulation to be halted so that the model or parame-
ters can be changed, then the simulation can be res-
tarted. The PAWS/GPSM simulation system
[1,4,5], the Performance Analysis Workstation
(PAW) [7], PARET [10], and Quinault [13] are all
examples of this type of system.

GADD [9] is intended to simulate system
modules that interact with other modules using mes-
sages. The focus of the model is on message traffic
analysis, so all modules are simulated by
corresponding simulation modules and the message
traffic maps one-for-one with the target system mes-
sage traffic (cf. Misra’s discussion of distributed
simulation [8]). As a consequence, it is possible to
interconnect simulations with fully-implemented
components, thus providing a testbed debugging
environment.

2. THE BILOGIC PRECEDENCE GRAPH
MODEL

Bilogic Precedence Graphs (BPGs) are com-
posed from a set of tasks, a set of control dependen-
cies among the tasks, and a specification of data
references among tasks. A BPG is the union of a
control flow subgraph and a data flow subgraph.
The control flow subgraph consists of nodes that
correspond to tasks and edges that specify pre-
cedence among the tasks. The node set for the data
flow subgraph is the union of the task node set with
another set of nodes representing data repositories;
edges in the data flow graph indicate data references
by the tasks.

The control flow subgraph is similar to the
UCLA Graph Model of Behavior (GMB) [3, 16] in

that it specifies conjunctive ("AND") and disjunctive
("OR") input and output logic specifications for each
task. Let small, open circles represent tasks with
exclusive OR logic; and small, closed circles
represent tasks with AND logic (see Figure 1). OR-
tasks are enabled by control flow into any input arc,
and upon task termination, control can flow out on
any output arc. AND-tasks are not enabled until
control flows to the task on every input arc, and
upon termination control flows out every output arc.
Large circles represent tasks with OR-input logic
and AND-output logic; ordinarily, we only use sin-
gle input and single output arcs on these circles since
we use them to emphasize the notion of nontrivial
processing.

® |
® @

AND Task

General Task

Figure 1: BPG Primitives

Following Petri nets, the control flow state is
represented by tokens (data flow state is not
represented explicitly in BPGs). Thus, one can think
of markings and firings of the various tasks in the
BPG just as in Petri nets. A BPG is activated by
marking appropriate tasks with tokens, at which time
the BPG firing rules (control flow logic rules)

describe sequences of markings corresponding to
control flow among the tasks.

Data flow in a BPG is represented by adding
data repository nodes to the control flow graph, and
arcs interconnecting nodes and data repositories.
Data repositories are meant to explicitly represent
possible flow of data among individual tasks. The
task interpretation will ultimately determine if data is
read from (written to) a data repository by the task.
The resulting model illustrates storage references
and inter-task communication. Squares are used to
represent data repositories in BPGs.

Figure 2 is a BPG of a simple system with two
customers and one server. The server is represented
by tasks Sy» S,» and s, Tasks s, represents the case
that the server is idle; at initialization, this task con-
tains a token. Task s, is an AND-task which fires
only when there is a to:ken on arc (Sz' s,) and another
on arc (52, s.). Whenever a token resiaes on task S)»
then the server is busy.

Figure 2: A 2-Customer Server

Tasks s, through s, model the customer
requests for service. When a token is on s_, then this
represents the case when the first customer is "think-
ing" and does not require the service; s, represents a
similar state for the second customer. Tasks s, and
s. multiplex tokens (representing requests for ser-
vice) into and out of the server.

In order to ensure that s, has enough informa-
tion to demultiplex a token to the correct "thinking"
task, it reads information from repository T (placed
there by sl) to identify which customer was just ser-
viced. Repository r_ is used in a similar manner to
provide the server busy task (Sx) with the

corresponding information.

Each task may have a procedural interpreta-
tion, to specify the amount of time required for firing
the task, and for performing miscellaneous simula-
tion tasks. Thus, task s, can infer the desired
amount of service time and manage the customer
identity by evaluating a procedure similar to:

10

struct *request;

request = read_repository(r.);
wait(request.service_time);
write_repository(rz, request);

}

The interpretation is evaluated each time the task is
fired. Tasks with OR (output) logic can use interpre-
tations to specify deterministic behavior; the pro-
cedure evaluates information available to it (from
repositories), then selects an output arc to receive the
resulting token. For example, s y might look like:

750
struct *request;

request = read__repository(rz);
if (request.customer == 'first’)
route(s)
6
else
route(s,/,);

}

BPG tasks are hierarchical. Any task may be
refined by defining a new BPG which has the same
input/output behavior as the parent task. While this
is an important aspect of BPGs (to address scaling
problems) we do not discuss it further in this paper.

This is a brief, intuitive description of BPGs.
Part of the motivation for using BPGs is that they are
sufficiently simple, and similar to other commonly
used models, that they are natural for representing
the individual events involved in the simulation of a
system. (A similar argument was used to justify the
formulation of E-nets [11,12]). The other rationale
for using BPGs is that they encompass the semantics
of several other formal models, including Petri nets,
queueing networks, and several CASE models; by
implementing the modeling system so that it inter-
prets the semantics of BPGs, it is possible to provide
a user interface that employs the syntax of these
other models at a particular user’s design worksta-
tion.

For the interested reader, a more complete and
formal description of BPGs can be found in [15].

3. THE OLYMPUS MODELING SYSTEM

The BPG model provides a language for
describing target system behavior, while Olympus
provides a medium for expressing model instances,
and for studying these models by observing their
reaction to different conditions. By constructing an
interactive system to support the model (using bit-
map workstation technology), we have created an
environment in which alternatives -- changes in
loading conditions, changes in parameters, or
changes in the model itself -- are easy to explore.
Furthermore, the design decouples the user interface
from the simulation itself, allowing the user to exer-
cise highly interactive control over the simulation.

Olympus has been implemented in a network
of Sun workstations, using Sun graphics and net-
work software. We briefly describe the architecture
and one of the implementations; additional details
can be found in [14].

3.1. The Architecture

Olympus is an interactive system composed
from a frontend and a backend, see Figure 3. The
frontend implements the user interface, while the
backend provides storage and interpretation of the
model (independent of the frontend implementation).

Backend
BPG
Frontend o Storage
User Interface -
» BPG
Sgggi?ilc LA Interpreter
Service # ’
& Marking
Storage

Figure 3: The Olympus Architecture

The Frontend

The separation of the system into a frontend
and a backend allows the user interface to be.
independent of the simulation details. It also enables
us to decouple the user interface console tasks from
the simulation tasks, yet provide explicit means for
the two parts to interact.

The frontend serves two main purposes: First,
it implements the human factor (and many of the
cognitive) aspects of the interaction between the user
and the machine, i.e., it acts as a user interface.
Second, it implements the syntax of the model or
program specification, e.g., if the model of computa-
tion uses boxes to represent basic blocks of compu-
tation, then the frontend is responsible for drawing
boxes, interconnecting them, etc.

For example, the frontend might take the
approach that the user interface need only support a
keyboard and a 25x80 character screen. In this case,
the model or program is specified to the interface by
typing some linear description of the model. The
human factor aspects of the interface are issues such
as keyboard mappings, escape characters for invok-
ing commands, etc.

At the other end of the spectrum, the frontend
may be based on a point-and-select graphics inter-
face that provides a pallet of model primitives that
can be placed on a "canvas,” and that can be inter-
connected using arcs.

The frontend generates a structured internal
representation of the model that is stored in the
backend. In order to build consistent internal
representations, the frontend performs syntactic
analysis of the graph as it is being constructed by the
user.

To the extent that the syntax of a particular
model or language can be separated from the seman-
tics, then the frontend can be made to be indepen-
dent of the backend. Olympus provides a backend
which implements the semantics of BPGs, so it is
expected that the frontend could implement any of a
number of models or languages of differing syntax
that can be mapped into BPG semantics, see [15].
However, in this paper we only discuss a BPG fron-
tend in use with the backend.

The Backend

The backend is an interpretation engine for
BPGs, i.e., it executes the control flow of the graph,
interpreting nodes as dictated by the BPG model.
The backend reacts to directives from the frontend,
then notifies the frontend of the changing model
status as the interpretation process takes place. The
backend is decomposed into parts to handle storage

of the model, storage of the marking, task interpreta-
tion, and repository interpretation.

Model and marking storage manage records
representing atoms in the model, e.g., a task, and
edge, or an interpretation for models and a
token/task for markings. The task interpreter imple-
ments the BPG control flow semantics. It moves
tokens around on the graph, evaluating interpreta-
tions as required. During evaluation, the task inter-
preter may invoke the repository interpreter as a
function of the interpretation of a specific task.
Thus, the repository interpreter acts as a server to the
task interpreter client.

The frontend and backend communicate using
a client-server protocol unique to Olympus. The
protocol is based on asynchronous message passing
primitives in which messages are formatted for
efficient transformation of editing, interpretation,
and control information between the two com-
ponents. That is, the backend is a server which
responds to commands from the frontend (a client).
For example, when the user creates a new node at
the frontend, the backend server is told to store the
node; the server responds by updating the model
storage and telling the frontend that there is a new
typed object in the model. (The frontend can treat
the object as it sees fit.)

The backend supports single-stepped interpre-
tation of a model, as well as continuous operation.
A single interpretation step refers to the occurrence
of one BPG event, i.e., the initiation or termination
of one task firing.

Continuous operation causes the interpreter to
move tokens from task-to-task in real time, as deter-
mined from the task interpretations. In order to pro-
vide more flexibility for observing the dynamics of
operation, the interpreter also provides a means by
which the frontend can specify the ratio of real time
to time used by the interpreter.

The backend will report summary interpreta-
tion information for each task and repository in the
model. The report includes information about the
activity of each task, expressed in terms of the
number of times that the task was activated, and the
amount of time that the task was active. Repository
reports indicate the number of read and write refer-
ences for the repository.

3.2. AnImplementation

We have built several implementations of the
frontend and backend; here we summarize only the
most recent ones. Figure 4 illustrates an implemen-
tation of the architecture in a network of Sun works-
tations, using Unix (R) processes, graphics, and net-
work protocols.

Backend (Olympus server)

4 R
' y,_‘__—-—\\ Task
Frontend (Olympus client) p Interpratation
(r ™~ epository Code
. Iinterpreter
NeWS client process [
!nt:?;:(etér Task
NeWS server process Intarpretation
\ [Coda
Model ™~
surrogate £ait Marking
or Storage
\\
Modsl [Tock
Storage Intarpretation
\) Code

Figure 4: An Olympus Implementation

S CNLIrE SCrERn OF SNIRSNOL T 1Or 4 PILeCe Of Lhe SCrewn (SNIDSNOL 15 | uuny

i shelitool ~ /oin/csh

J-onnecticn ciosea.

Jomunee? pud

/gcoder /research/garyn/papers/madel ing
Sawneek scresncunp >f1g4. image

R N Al i T

NG,

‘"l R

g resre=T 0 9-”—?"' 3 UG <4 am.n8 SCIOCK.MIR
Frexruxrex 1 garyn 45824 Jul 31 11:96 screen.o
Hraxreinax 1 garyn 46328 Jun 20 11:44 store.o
Pruxtwxrwx 1 garyn 1318 Jul 29 18:50 siringpkg.o
[Fruxnexrex 1 garyn 2851 Jul 31 87:33 tokermgr.o
ruxrwarwx 1 garyn 2624 Jul 38 16:45 transiate.o
Froxrearux 1 garyn 18841 Jun 20 11:44 utils.o
rutnexrux 1 garyn 948 Jul 20 11:68 we.0
E‘GM edit figd.icn

LR g s

Figure 5: The SunView Olympus Frontend

There are several different versions of the
frontend in use: The first point-and-select version is
the most functionally complete, although not the
most aesthetically pleasing. It was built on the Sun-
View [20] window package as a single Unix process.
Figure 5 is the display for this frontend. As an
experiment, we also developed a versicn on a Sym-
bolics Lisp workstation [17], however we have not
continued to maintain this version.

The newest frontend is being implemented as
two Unix processes that conform to Sun’s NeWS$S
model [22]. That is, the Olympus client process is
actually implemented as a NeWS client and a NeWS
server process. The NeWS client implements the
logical aspects of the user interface, while the NeWS
server process -- implemented as a community of
lightweight processes called "in,"” "out,” and "edit" in
Figure 4 -- is responsible for placing images on the
display. Thus, the model editor is the only part of
the frontend that needs to interact with the model

storage in the Olympus server. Also, NeWS allows
its client and server processes to be in execution on
distinct machines.

The Olympus server (backend) is imple-
mented as n+1 Unix processes: The first process
multiplexes among the four interpretation and
storage "subprocesses.” The other n processes are
used to evaluate BPG interpretations.

BPG interpretations can be defined in any
language, provided that the definition can be viewed
as a procedure callable in C. The task interpreter
uses the Sun Remote Procedure Call RPC) facility
[21] to invoke the interpretation procedure whenever
the corresponding task is fired. In order to promul-
gate concurrency in the simulator, we have used the
RPC facility as a remote fork rather than as a pro-
cedure call; thus, n tasks can be interpreted at one
time by starting n RPC servers on different
machines.

The frontend-backend interface is imple-
mented on top of sockets [21], This allows the fron-
tend and backend to be executed on distinct
machines in a network environment.

The separation of the frontend from the back-
end has allowed us to implement the interface so that
there can be an arbitrary number of clients con-
nected to the same server. Each client can send edit-
ing or console requests to the server, and the server
will respond to all clients as if they were one, since
they are connected to the server via a single, shared
socket. This allows multiple users to view a single
server session with full access and viewing rights.
Since the server serializes each transaction, the users
will not cause the server to violate critical sections
or otherwise violate concurrency constraints.

4. AN EXAMPLE

Suppose that we were configuring an internet
as a composition of four different networks. There
are several different configurations that one might
consider, e.g., see Figure 6. In Figure 6a, three gate-
way machines interconnect the four nets; two gate-
ways are used in in Figure 6b, and a single central-
ized gateway is used to interconnect the machines. in
Figure 6c¢.

The gateway machines in the configuration for
Figure 6a should not be as expensive as those in Fig-
ure 6b, and the single gateway in Figure 6¢ should
be the most expensive (highest performance).

The single-gateway configuration may be the
most cost-effective solution, particularly in cases
where hosts on each subnet need to communicate an
equal amount with all other hosts in the internet.
However, a machine that is fast and large enough to
support this configuration may be too costly. In this
case, other configurations should be considered

We will use this general scenario to describe
how BPGs and Olympus can be used to quickly
examine various scenarios (our discussion is far
from complete, due to space limitations).

4.1. Modeling the Internet Configurations

We can reuse part of the model shown in Fig-
ure 2 to represent a gateway machine. In this appli-
cation it is not necessary to re-enable two customers,
so tasks s, through s, are not needed. Consider the
BPG shown in Figure 7: The service request popu-
lation is now modeled by four submodels (g

through g 4) representing the four subnets. !

2

4

8(a) Triple-Gateway Configuration

3

6(b) Double-Gateway Configuration

6(c) Single-Gateway Configuration

Figure 6: Possible Internet Configurations

Each subnet produces a token by firing, then
reenables itself to produce a token at some later
time. Each g has the form:

g0
(

)

The service time of the gateway machine can
be modeled by a constant distribution, or by some-
thing more complex if the gateway machine is more
complex. (For example, the gateway may not be
reliable if it is saturated, i.e., it may drop packets.
Our simple model does not take this into account.)

wait(sample(interarrival_distribution));

The BPG shown in Figure 7 is easily con-
structed in Olympus, and can be viewed as an ani-
mation to gain a qualitative feel for the relative
power required from the single gateway machine to
satisfy various loads (as determined by the g distri-
butions) As the gateway becomes saturated, tokens
will build up on the arc from s,t0s,.

Olympus allows multiple users to view the
animation, and allows the graph to be edited while
the animation is in progress. For example, one could
add a fifth network to the simulation model without
halting the animator.

Figure 8 is a model of the configuration shown
in Figure 6b. In this model, some fraction of the
load from network 2 goes to gateway (server) A and
the other portion goes to gateway B. The relative
speeds of the two gateways can be decreased by
increasing the mean of the service time distributions.

Figure 9 is a model of the configuration shown
in Figure 6a. Again, the loads are split for networks
2 and 3, since they each have two gateway
machines.

Olympus is used to create the models, to
observe their behavior in qualitative terms, then to
obtain quantitative performance data about their
behavior. (The average number of tokens on the
arcs incident into s_, reflects the amount of packets
that need to be buféred at a gateway.)

It is easy to explore a wide variety of gateway
machine performance considerations by adjusting
the service time distribution of the gateway server
tasks. The performance is again reflected by the
token dwell time at arcs that represent the gateway
queues.

5. SUMMARY

Olympus is a working prototype modeling
system. It is currently being used to model memory

access strategies in MIMD machines [18], even
though it continues to be developed.

The frontend/backend architecture has pro-
vided considerable implementation freedom for
focusing on the simulation or on the user aspects of
the system. It has also been the major factor in
meeting the basic requirements described in the
Introduction. Since the frontend is a separate pro-
cess from the simulator, it is responsive to the com-
mands and queries of the user. The backend has
been designed to field messages from the frontend as
part of it’s basic simulation cycle, thus it, too, is
responsive to the user control without undue compli-
cation. Because the frontend and the backend com-
municate using a socket pair, any number of fron-
tends can connect to the socket at one time. The
backend will send all information needed by a fron-
tend to the socket, where each instance of the fron-
tend will react to the information by updating a
screen, moving a token, etc. Messages from the
frontend to the backend will be serialized by the
socket, thus each frontend can act as a console, i.e.,
backend transactions are atomic.

The BPG model provides a graph model of the
computation describing a simulation program.
While we have distributed the simulation program
interpreter (task interpretations are executable on
different machines), we are currently exploring tech-
niques for distributing the model interpretation --
both by distributing the model and by further distri-
buting simulation functions. One goal of this
research is to address simulation strategies that lie
between the conservative Chandy-Misra technique
[8] and the optimistic time warp technique [6].

Our experience with Olympus and BPGs has
shown us that the architecture enables us to imple-
ment systems that meet the goals described above.
However, we continue to refine our language and
our architecture. For example, newer languages will
incorporate data on tokens, and will place more con-
straints on the form of the interpretations (currently,
they are any C procedure). Our current version of
Olympus provides limited support for hicrarchical
BPGs, which we believe is a fundamental require-
ment for scalable systems; we are currently design-
ing new facilities to handle hierarchies more gen-
erally.

ACKNOWLEDGEMENTS

This research has been supported by NSF
Cooperative Agreement DCR-8420944, NSF Grant
No. CCR-8802283, and a grant from U S West
Advanced Technologies.

d4
S5
2
A s, S5
- .//0}3 O
s
3
94

Figure 7: The Single-Gateway Model

91 jlsi} »{)
S, [S
4 5
g 1
S3

93) %2

S S S
4 1 5
% n‘/v‘b NG
S3

Figure 8: The Two-Gateway Configuration

S,
S s Ss
4
0 » 0
Sy .
g 2
S S S5
4 1
95 4@
S3
S
N 2
s s Sg
4 1 ‘O
S3

Figure 9: The Three-Gateway Configuration

6. REFERENCES

1.

10.

11.

12.

13.

J. C. Browne, D. Neuse, J. Dutton and K. Yu,
*‘Graphical Programming for Simulation of
Computer Systems’’, Proceedings of the 18th
Annual Simulation Symposium, 1985.

CACI Simscript II.S marketing information,
CACI Product Company, La Jolla, California,
1988.

G. Estrin, ‘A Methodology for Design of
Digital Systems -- Supported by SARA at the
Age of One”’, AFIPS Conference Proceedings
of the National Computer Conference 47
(1978), 313-324,

S. Iacobovici and C. Ng, ““VLSI and System
Performance Modeling”’, IEEE Micro, August
1987, 59-72.

PAWSIGPSM marketing brochures,
Information Research Associates, Austin, TX,
1988.

D. Jefferson, B. Beckman, F. Wieland, L.
Blume, M. DiLoreto, P. Hontalas, P. Laroche,
K. Sturdevant, J. Tupman, V. Warren, J.
Wedel and H. Younger, ‘‘Distributed
Simulation and the Time Warp Operating
System’’, Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles,
Austin, Texas, November 1987, 77-93.

B. Melamed and R. J. T. Morris, “‘Visual
Simulation: The Performance Analysis
Workstation’’, JEEE Computer 18, 8 (August
1985), 87-94.

J. Misra, ‘‘Distributed-Discrete Event
Simulation’’, ACM Computing Surveys 18, 1
(March 1986), 39-63.

M. Moser, “GADD -- A Tool for Graphical
Animated Design and Debuggin’’, ICC '87
Conference Record, 1987, 38.2.1-38.2.5.

K. M. Nichols and I. T. Edmark, ‘‘Modeling
Multicomputer Systems with PARET"’, IEEE
Computer 21, 5 (May 1988), 39-48.

J. D. Noe and G. J. Nutt, ‘““Macro E-Nets for
Representing Parallel Systems’’, [EEE
Transactions on Computers C-12, 8 (August
1973), 718-727.

G. J. Nutt, “*“The Formulation and Application
of Evaluation Nets’”’, Ph.D dissertation,
Computer Science Group, University of
Washington, 1972.

G. J. Nutt and P. A. Ricci, ‘‘Quinault: An
Office Environment Simulator’’, [EEE
Computer 14, 5 (May 1981), 41-57.

14, G. J. Nutt, ““A Flexible, Distributed
Simulation System’’, Tenth International
Conference on Application and Theory of
Petri Nets, Bonn, West Germany, June 1989.

15. G.J. Nutt, “*A Formal Model for Interactive
Simulation Systems’’, Technical Report No.
CU-CS-410-88, Department of Computer
Science - University of Colorado, Boulder,
September 1988 (Revised May 1989).

16. R. R. Razouk, M. Vemnon and G. Estrin,
“Evaluation Methods in SARA -- The Graph
Model Simulator”’, Proceedings of the
Conference on Simulation, Measurement and
Modeling of Computer Systems, August 1979,
189-206.

17. D. Redmiles, ““Vesuvius Editor for Olympus
(working title)’’, University of Colorado
Department of Computer Science technical
report (in preparation), 1988.

18. C. J. C. Schauble, ““A Memory Access
Simulator for MIMD Machines”, University
of Colorado, Department of Computer
Science, PhD proposal, April 1989.

19. K. L. Stanwood, L. N. Waller and G. C. Marr,
“System Iconic Modeling Facility”’,
Proceedings of the 1986 Winter Simulation
Conference, December 1986, 531-536.

20. “‘SunView Programmer’s Guide”, Document
Number 800-1324-03, Sun Microsystems,
Inc., February 1986.

21. “Networking on the Sun Workstation”,
Document Number 800-1345-10, Sun
Microsystems, Inc., September 1986.

22. NeWS: A Definitive Approach to Window
Systems, Sun Microsystems, Inc., 1987.

AUTHORS’ BIOGRAPHIES

GARY J. NUTT is a Professor of Computer
Science at the University of Colorado. He received
the Ph.D in Computer Science from the University
of Washington in 1972, and has held research
positions at Xerox PARC and Bell Labs, and
managment positions at NBI and Interactive
Systems. His current research interests focus on
modeling and performance for distributed systems.

ADAM BEGUELIN is a Ph.D. candidate in
the Department of Computer Science at the
University of Colorado. He has a B.S. degree with
highest honors in Mathematics and Computer
Science from Emory University in 1985 and an M.S.
degree in Computer Science from the University of
Colorado in 1988. His research interests include
parallel processing, programming languages,

distributed systems, human computer interfaces, and
graphics.

ISABELLE DEMEURE is a postdoctoral
researcher in the Department of Computer Science at
the University of Colorado. She received a Maitrise
de Mathématiques from University Paris VI, France,
in 1981, a Diplome d’Ingénieur from the Ecole
Nationale Supérieure des Télécommunications de
Paris, France, in 1983. She worked as a systems.and
networks software engineer at SESA, in France,
from 1983 to 1985. She was granted the Ph.D
degree in Computer Science from the University of
Colorado in 1989. Her research areas include
distributed computations, modeling, and software
engineering.

STEPHEN ELLIOTT is a software consultant.
He has a B.A. degree in Music from Denver
University in 1982 and an M.S. degree in Computer
Science at the University of Colorado in 1984, His
research interests include programming languages,
networks, and software to support music
composition.

JEFF McWHIRTER is a graduate student in
the Department of Computer Science at the
University of Colorado. He has a B.S. degree from
Oakland University in 1986. His research interests
are in distributed simulation and graph models of
computation,

BRUCE SANDERS is a Professional
Researcher in the Department of Computer Science
at the University of Colorado. For the past two
years, he has also held a teaching appointment in the
Department, developing and teaching a senior-level
software engineering projects course. He received
his M.S. in Computer Science from the University of
Colorado in 1978. Prior to joining the University, he
was a Member of Technical Staff at Bell
Laboratories and has held software engineering and
management positions at NBI and Integrated
Solutions. His interests include graphics, user
interfaces, operating systems, modeling, and
software engineering.

All authors’ address is:

Department of Computer Science
Campus Box 430

University of Colorado

Boulder, CO 80309-0430

(303) 492-7581

DISTRIBUTED SIMULATION DESIGN ALTERNATIVES

Gary J. Nutt)
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430

ABSTRACT

Distributed simulation is a particular instance of distri-
buted computation. Bach distributed simulation program is
composed of a variable part to describe the specific model,
and a fixed part to implement the simulation environment,
e.g., event ordering and simulated time. To exploit parallel-
ism, the simulation must be implemented such that the vari-
able part of the simulation maps onto the concurrent facilities
of the fixed part of the simulation and onto the computer sys-
tem that support the simulation. In this paper, we survey
several factors that must be considered in order to exploit
parallelism in the simulation.

INTRODUCTION

Distributed discrete event simulation is usually
intended to satisfy one of two general criteria: The simulator
is distributed across distinct Iocations since it must conform
to some external constraints such as testbed modeling. Or,
the simulator is distributed across multiple CPUs to decrease
the amount of time required for the simulation to complete
execution on some set of input data.

Testbed simulations require that the distributed com-
ponents meet constraints similar to those found in traditional
process control and real time systems. High-performance
simulations are similar to general parallel programs such as
scientific programs, thus there are far fewer constraints on the
implementation but there is a focused goal of decreased run
time (over serial implementations).

In this paper we address high-performance simulation
applications. The goal is to consider techniques for construct-
ing a simulation program so that it can be executed in a multi-
computer environment with decreased execution time com-
pared to a corresponding single computer environment.

BACKGROUND

Speedup

Distributed software performance may be measured by
the ratio of the time to execute a computation in a serial
environment to the time to execute the same computation
(after partitioning) in a distributed environment. This
speedup ordinarily has an upper bound of N for distributed
systems capable of supporting N individual serial computa-
tions (processes). Empirical evidence often shows that the

t Supported by NSF Grant No. CCR-8802283, a grant from U
S West, and the Center for Software Systems Science.

speedup for a particular implementation -- partitioning stra-
tegy — may be small, even for relatively large values of N,
(see [5, 14] for distributed simulation examples).

In some cases, the limiting factor in speedup is
inherent in the algorithm itself, i.e,, any partitioning of the
computation results in the processes being strictly ordered.
On the other hand, en algorithm may theoretically allow for
N-way parallelism, i.e., the computation is partitioned into N
processes, each of which may be constantly active on useful
computation. A particular implementation of the algorithm is
likely to introduce management overhead (such as scheduling
and context switching), and synchronization delays (one pro-
cess may be delayed waiting for information from another).
Synchronization delays can lead to dramatic decreases in the
speedup, since they are determined by complex factors
related to the process architecture and distribution of func-
tion.

Partitioning Issues

The partitioning of a computation determines both the
menagement and synchronization aspects of the performance.
Important factors involved in choosing a partition are: The
"amount of computation” per synchronization (its granular-
ity), the nature of the communication and synchronization
(IPC) mechanism, and the identification of specific function
to place in a process, e.g., partitioning by data or functional
criteria.

Granularity. Granularity is the ratio of the amount of
computation that a process can accomplish without synchron-
izing with some other process. A large-grained process has
relatively infrequent synchronization operations with other
processes, while a fine-grained process is constantly syn-
chronizing.

Synchronization. Synchronization is accomplished
by exchanging data among processes. The underlying com-
puter architecture that supports the computation will have
considerable influence on the nature of the synchronizing
mechanism. Shared memory multiprocessors provide
hardware that will allow N CPUs to read and write the same
physical memory. Distributed memory systems (networks of
computers) do not support such access, instead, allowing
information to be shared through (generally much slower)
explicit information exchange operations.

Partitioning Criteria. There are two general
approaches to dividing the computation among a set of
processes: Data partitioning refers to the approach in which
computational functions are replicated in each process with a
data stream passing through each process. Functional

partitioning is the approach in which data passes from one
process to another in order to complete a transaction, i.e., the
functionality is distributed instead of the data.

Distributed simulation systems must adjust to these
general criteria for distributed computations if they are to be
efficient for different simulation jobs [2, 15].

Discrete Event Simulation

Discrete event simulators generally take the form
shown in Figure 1: The target system is represented by a
physical model, which is represented by a simulation applica-
tion program. The simulation kernel interprets simulation
applications; the kernel, in turn, is an application program on
the host system. The simulation kernel is a host-specific
application program that interprets arbitrary simulation appli-
cations. It provides an abstract machine environment which
manages simulated time and schedules activity among the
simulation application components (events or processes),

Target System
Physical Model
Simulation Application
Simulation Kernel
Host System

Figure 1: Simulation System Architecture

DATA-PARTITIONED DISTRIBUTED SIMULATION

A distributed simulation is a distributed computation
of the simulation application. With the usual meaning, the
distributed simulation operates on a parallel or distributed
host system. Because the application and the host system are
distributed, the kernel is also distributed, possibly using dif-
ferent criteria than that used in distributing the application.

Each of the simulation application, the simulation ker-
nel, and the host system are an important factor in the ulti-
mate performance of the simulation program. One can form a
general characterization of the approach by considering the
distribution strategies used in the simulation application, ker-
nel, and host system layers.

For example, the Chandy-Misra technique [9] imple-
mented in a message-based host can be characterized as
shown in Table 1. The application represents the target sys-
tem as a functionally-partitioned model where each process
has arbitrary granularity. Logical processes synchronize with
timestamped messages, using the conservative approach (no
logical process can proceed until it is certain that no earlier
event can occur),

Partition
Layer | Granularity | Synchronization | Criteria
Applic | arbitrary timestamped functional
messages
Kemel | large conservative data
Host large messages -

Table 1: Distributed Memory Chandy-Misra Strategy

Each logical task (application portion and kernel por-
tion) is a full simulation, including a local simulated clock;
thus the kernel is replicated at each host node. While the
simulator is data partitioned, the simulation applications are
functionally-distributed across logical tasks using the physical
task partition.

Since applications may have arbitrary granularity,
fine-grained partitions are acceptable, even though they are
likely to introduce large amounts of management overhead,
(since the fixed-cost underlying machinery is exercised on a
per task basis). A shared memory implementation can sup-
port finer-grained processes than distributed memory systems
implementations, since the management overhead is smaller.
Empirical evidence suggests that relatively fine-grained appli-
cations such as queueing network simulations will suffer,
since the distribution strategy is a mismatch between the
application and the host system, e.g., see [14].

The Time Warp technique [8] shares many similarities
with the Chandy-Misra technique, with its primary differ-
ences being in the synchronization strategy in the kernel.
Table 2 represents one view of Time Warp as implemented
on a distributed memory machine. Again, there will be a per-
formance problems with simulation applications made up of
fine-grained tasks.

Partition
Layer | Granularity Synchronization | Criteria
Applic | arbitrary timestamped functional
messages
[Kemel | large optimistic data
Host medium-large | routed msgs -

Table 2: The Time Warp Distribution Strategy

While it is useful to compare situations in which one
of these two techniques -- or some compromise between them
[1] -- is better than the other, the differences are not likely to
be wide for some classes of simulations, since both tech-
niques use a similar design for the three-layer abstract
machine. One could expect the best performance from this
class of simulation implementations in cases where the appli-
cation is constructed as a set of large-grained, message-
passing, functional logical tasks in which there is relative bal-
ance among the amount of computation among the various
logical tasks so that synchronization delays (simulated time
synchronization) is minimized.

Extending Data-Partitloned Kernels

Speedup degradation due to synchronization manifests
itself as blocked processes in the conservative data-
partitioned kernels, and as repeated rollback in optimistic
data-partitioned kernels. The synchronization delays occur
due to unbalanced computational loads among the logical
tasks. Consider a situation in which task A receives syn-
chronization messages from tasks B and C. If B is a fine-
grained task and C is a relatively large-grained task, then A
will run at the rate of C with either conservative or optimistic
techniques.

The problem is that the work for the host processors is
not balanced, forcing the synchronization mechanism to slow

a simulation down to the speed of the slowest simulation
component. This problem is likely to lead to the very large
degradation in speedup.

The alternatives all amount to balancing the load on
the processors. In the techniques discussed above, this
requires that the simulation programmer be aware of the
problem and consequently adjust the run-time loads by
changing the granularity of the logical tasks. That is, the
simulation application must conform to the host platform.
This, in turn, will likely change the criteria for mapping phy-
sical to logical tasks.

In some cases, it is possible to statically analyze the
workload for the logical tasks and to construct a new mapping
which attempts to optimize the granularity on the basis of the
analysis., Alternatively, the simulation kernel could be con-
structed so that adapted to the workload on the various host
Pprocessors.

Static Analysis. There are a number of static analysis
techniques that can be used to accomplish some form of
recognition of parallelism, including simulation (e.g., see [3].
Such analyses can assist the simulation programmer in
defining the application partition. However, it is important to
recognize the difference between executing logical tasks and
executing physical tasks in this analysis, Wagner and
Lazowska point out that in a single CPU, multiple disk
queueing network model that while the time to execute a time
slice on the CPU is much smaller than the time to read or
write a block on the disk (thus allowing the single CPU to
service many jobs that use different disks), the logical tasks
that simulate the CPU and each disk all take about the same
amount of time in the logical task implementation [16]. This
implies that there will be a limit to the realizable parallelism
since the synchronization delays among the CPU logical task
and the disk logical tasks will become a limiting factor,

The static analysis approach is a tool to assist the
simulation programmer in choosing his own task definition.
While it can result in significantly better performance than
simulation applications that are constructed strictly from the
physical process model, it will not address transient behavior
within a simulation.

Adaptive Techniques. Adaptive techniques are simi-
lar to adaptive load balancing techniques. The simulation
kernel monitors the performance of the set of logical tasks,
then adjusts the workload as a function of these observations,
e.g., see [10].

To accomplish adaptive partitioning, it is necessary to
refine each logical task into a set of logical subtasks, each of
finer granularity. The initial logical task is, thus, a collection
of logical subtasks related by precedence (that can be mapped
into messages). The system is loaded with the initial logical
tasks and allowed to execute. If a processor supporting a par-
ticular logical task exceeds some threshold of inactivity, then
it will adapt to the simulation application behavior by migrat-
ing subtasks from predecessor logical tasks (busy processors
should not worry about load balancing, since they are already
saturated).

For example, if tasks B and C are predecessors of task
A, and if task A exceeds the idle threshold, then it could
attempt to do some of the work of either task B or task C.

FUNCTIONAL-PARTITIONED KERNELS

A functionally-partitioned simulation kemel divides
the kernel into subtasks and then distributes their execution
over the host system. Each node in the host system is
intended to support part of the simulation of more than one
logical task, while other nodes support the remaining parts of
the kernel’s work.

The Olympus System [12,13] (and the predecessor
Quinault system [11]) are functionally distributed kemnels,
whose operation is summarized in Table 3.

Partition
Layer | Granularity | Synchronization | Criteria
Applic | arbitrary precedence functional
Kernel | large precedence functional
Host - - -

Table 3: The Olympus Distribution Strategy

An Olympus simulation application is expressed as an
interpreted, directed graph similar to a predicate-transition
(Petri) net [6]. Bach node in the graph has firing rules that
dictate when it should be activated, and an interpretation that
defines the simulation processing that should take place when
the node fires.

For example, Figure 2 is a model of a simple system
with two customers and one server. The server is represented
by tasks s, 8, and 5, Task s, represents the case that the
server is idle; at inifialization, this task contains & token.
Task 55 is an AND-task which fires only when there is a token
on arc’(s,, 8,) and another on arc (s, 33). Whenever a token
resides on task 8 then the server is gusy.

Figure 2: A 2-Customer Server

Tasks s A through s, model the customer requests for
service. When a token is on s_, then this represents the case
when the first customer is "t}ﬁradng" and does not require the
service; s, Tepresents a similar state for the second customer.

Tasks 8, and s, multiplex tokens (representing requests for
scrv1ce) nto ana out of the server.

In order to ensure that s, has enough information to
demultiplex a token to the correct "thinking" task, it reads
information from repository I, (placed there by s) to identify
which customer was just serviced. Repository r'is used in a
similar manner to provide the server busy task 1(s) with the
corresponding information.

Bach task may have a procedural interpretation, to
specify the amount of time required for firing the task, and for
performing miscellaneous simulation tasks. Thus, task s can
infer the desired amount of service time and manage the cus-
tomer identity by evaluating a procedure similar to:

7,()

struct *request;

request = read reposxtory(r %
wait(request.service_ nme),
wnte_reposxtory(rz, request);

}

The interpretation is evaluated each time the task is fired.
Tasks with OR (output) logic can use interpretations to
specify deterministic behavior; the procedure evaluates infor-
mation available to it (from repositories), then selects an out-
put arc to receive the resulting token. For example, 8¢ might
look like:

?5()
struct *request;
request = read_,repository(rz);
if (request.customer == "first’)
route(s 6)
else
route(s,,);
)

A more complete description of the modeling language
(including a refinement of this model) appears in [13].

The IRA PAWS system [4], and others [7], are based
on a similar approach for defining the simulation application.

The kemnel is decomposed into processes for pre-
cedence management, node interpretation, model storage,
and marking storage. The precedence management process
interprets the token flow through the graph, deciding which
nodes in a graph are enabled, invoking a task interpreter pro-
cess to represent firing, and routing tokens as a result of
firing. A task interpreter evaluates an interpretation,. upon
demand by the precedence manager. There may be several
task interpretations associated with a precedence manager,
corresponding to the amount of concurrent activity in the
graph as determined by that precedence manager. It is also
possible for multiple precedence managers to exist at any
given time, each precedence manager handling some portion
of the graph, i.e., a data partitioning strategy is used across
the precedence manager functions of the simulator kernel.

The two storage processes are used to keep a copy of the
model definition (the model storage) and the current state of
the graph interpretation, i.e., the distribution of tokens on arcs
and nodes in the graph.

This approach uses the same idea as data-partitioned
kemels for managing the clock, i.e., within the subgraph
assigned to a precedence manager, time is managed by pre-
cedence constraints (represented by control tokens in the
graph). Conservative or optimistic techniques can be used to
synchronize the precedence manager portions of the kernel;
our current prototype uses a conservative approach.

A model may be "loaded" on the simulator by assign-
ing sets of logical task nodes from the graph model to proces-
sors in the host system. The precedence management portion
of the kernel is replicated at each host processor node. Each
precedence manager determines the model definition from the
model storage, and the current marking from the marking
storage, then schedules task interpretation as appropriate.
Thus if the precedence manager is replicated at some number,
say n, processors, and the i~ precedence manager will distri-
bute task interpretation across ki additional processors, result-
ing in a partition with fromn to gk,- concurrent processes.

=

This will be effective only when there is a nontrivial
amount of computation associated with an interpretation, and
when several logical tasks are managed by a single pre-
cedence manager. If either of these conditions fail, then the
implementation will incur excessive management overhead.

The solution also requires careful assignment of graph
nodes to processors, just as was the case for data-partitioned
kemels. If the simulation displays transient behavior, then
adaptive techniques can be applied.

Adaptive Distribution

A precedence manager is initially assigned a set of
logical task nodes, but may be allowed to adjust the set based
on behavior of the simulation. If a processor detects exces-
sive idle (or ineffective) time, then it should attempt to absorb
more of the work by taking responsibility for interpreting
additional nodes in the graph.

This can be achieved by requiring that the model not
change during the simulation, and by replicating the model at
each host node. Thus, simulation task load balancing is
achieved without task loading, but by adjusting a global task
assignment table through an appropriate protocol.

Thread Distribution

As an alternative to conventional adaptive load balanc-
ing, if the entire graph model is available at each host node
processor, the assignment of logical task nodes from the
graph can be accomplished by allowing the precedence
manager to move through the graph as a thread of control.
The effect is that a data-partition application is executed on a
functionally-distributed kernel -- a precedence manager and a
task interpreter. Since the precedence manager manages only
a single task interpreter, it would ordinarily be combined with
the task interpreter host process.

The difficulty with this approach occurs when the
simulation program initiates simultaneity or when concurrent

threads converge. The concurrency initiation suggests that
the host system should supply an additional host process to
support a new thread of control. When threads converge,
then precedence managers must be designed to merge the
multiple threads back to a single thread in an efficient
manner.

CONCLUSIONS

Distributed simulation is an important application for
distributed and parallel computer systems. We have seen the
emergence of sound technology for implementing the simula-
tion kernel for certain classes of simulation applications, but
which can be very inefficient for cases in which there is little
inherent parallelism in the application or in cases where the
application partition is not well-matched to the kernel or the
host system platform.

There are a number of techniques that can be applied
to distributed simulation in addition to the well-known static
data partitioning techniques. First, since we expect complex
simulation applications to display variable behavior, depend-
ing on the activity in the model, we expect that adaptive tech-
niques will be mandatory for distributed simulation to
become a viable production tool. Secondly, complex simula-
tion applications are likely to have nontrivial computation
associated with events (or logical processes), thus we expect
that functionally-partitioned simulation kemels will contri-
bute to the speedup of model execution for this class of appli-
cations. Our initial experiments with functionally-partitioned
kernels show promise for this class of problems although we
are still relatively early in our experiments.

Just as there is a need for better application program-
ming tools for general distributed computations, there is a
need for better simulation tools for distributed simulation sys-
tems. There is considerable work to be done in order to find
ways for the simulation application writer to be able to make
efficient use of the underlying platforms.

ACKNOWLEDGEMENTS
Jeff McWhirter has been a significant contributor to
the distributed simulation aspects of Olympus.

This work has been supported by NSF Grant No.
CCR-8802283, a grant from U S West, and the Center for
Software Systems Science.

REFERENCES

1. Y. Aahlad and J. C. Browne, ‘‘Balanced Sequencing
Protocols'’, Proceedings of the SCS Multiconference
on Distributed Simulation 21, 2 (March 1989), 58-63.

2. D. Baezner, I. Cleary, G. Lomow and B. W. Unger,
**Algorithmic Optimizations fo Simulations on Time
Warp"’, Proceedings of the SCS Multiconference on
Distributed Simulation 21, 2 (March 1989), 73-78,

3. A. M. Baum and D. J. McMillan, ‘‘Automated
Parallelization of Serial Simulations for Hypercube
Parallel Processors’’, Proceedings of the SCS
Multiconference on Distributed Simulation 21, 2
(March 1989), 131-136.

4.

10.

11.

12.

13.

14,

15.

16.

J. C. Browne, D. Neuse, J. Dutton and K. Yu,
**Graphical Programming for Simulation of Computer
Systems'®, Proceedings of the 18th Annual Simulation
Symposium, 1985.

R. M. Fujimoto, *‘Performance Measurements of
Distributed Simulation Strategies”’, Proceedings of the
SCS Multiconference on Distributed Simulation 19, 3
(July 1988), 14-20.

H. J. Genrich, ‘‘Predicate/Transition Nets'’, in Petri
Nets: Control Models and Their Properties, Advances
in Petri Nets 1986, Part 1, W. Brauer, W, Reisig and
G. Rozenberg (editor), Lecture Notes in Computer
Science, Springer Verlag, Berlin, Heidelberg, New
York, 1987.

T. Y. Hou and M. Y. Chiu, *‘A Hybrid Model for
Distributed and Concurrent Simulation”, Proceedings
of the SCS Multiconference on Distributed Simulation
19, 3 (July 1988), 21-24.

D. Jefferson, B. Beckman, F. Wieland, L. Blume, M.
DilLoreto, P. Hontalas, P. Laroche, K. Sturdevant, J.
Tupman, V. Warren, J. Wedel and H. Younger,
*‘Distributed Simulation and the Time Warp Operating
System®, Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles, Austin,
Texas, November 1987, 77-93.

J. Misra, ‘‘Distributed-Discrete Event Simulation’’,
ACM Computing Surveys 18, 1 (March 1986), 39-65.

D. M. Nicol, *‘Dynemic Remapping of Parallel Time-
Stepped Simulations’, Proceedings of the SCS
Multiconference on Distributed Simulation 21, 2
(March 1989), 121-125.

G. J. Nutt, **An Experimental Distributed Modeling

- System’’, ACM Transactions on Office Information

Systems 1, 2 (April 1983), 117-142,

G. J. Nutt, “A Flexible, Distributed Simulation
System', Tenth International Conference on
Application and Theory of Petri Nets, Bonn, West
Germany, June 1989.

G. J. Nutt, A. Beguelin, I. Demeure, S. Elliott, J.
McWhirter and B. Sanders, ‘‘Olympus: An Interactive
Simulation System’’, Proceedings of the 1989 Winter
Simulation Conference, Washington, D. C., December
1989.

D. A. Reed, A. D. Malony and B. D. McCredie,
‘‘Parallel Discrete Event Simulation Using Shared
Memory'’, IEEE Transactions of Software Engineering
14, 4 (April 1988), 541-553.

S. V. Sheppard, C. K. Davis and U. Chandra, ‘‘Parallel
Simulation Environments for Multiprocessor
Architectures’’, Proceedings of the SCS§
Multiconference on Distributed Simulation 19, 3 (July
1988), 109-114.

D. B. Wagner and E. D. Lazowska, ‘‘Parallel
Simulation of Queueing Networks: Limitations and
Potentials’’, ACM SIGMETRICS Proceedings of the
International Conference on Measurement and
Modeling of Computer Systems, May 1989, 146-155 .

