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Abstract

Building user interfaces with tool boxes has limitations.
Most of them allow users to build basic interfaces
efficiently on a high level of abstraction, However, when
users have needs for new building blocks, which cannot be
composed of existing ones, users have to fall back on the
low level of abstraction provided by conventional
programming languages. Agentsheets address this problem
by introducing an intermediate level of abstraction between
high-level building-blocks and the level of conventional
programming languages. They provide means for the
incremental definition of the behavior as well as of the
“look” of artifacts. This paper gives a short introduction to
Agentsheets and then elaborates the concepts in form of a
case study describing the process of building a new front-
end for a commercial expert system with Agentsheets.

1. Introduction

Agentsheets, similar to spreadsheets, are based on a grid
structure. The elements of the grid are called agents. Every
agent represents its state in form of a graphical depiction.
The agglomeration of all agent depictions results in the
graphical representation of an artificial world. Figure 1
delineates a simple simulation of a Turing machine
consisting of agents modelling pieces of tape, the head
moving on the tape, and a gas container.
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Figure 1: “Turing Machine” Agentsheet

Users interact with the Agentsheet by operating on
agents with the mouse (e.g., clicking, dragging). For
example the Turing machine gets started by dragging the
gas container onto the Turing machine head. The Turing
machine gets “programmed” by dragging new tape and

head agents into a second Agentsheet representing valid
transition.

The intended application domain of Agentsheets is
visual programming [13]. The definition of semantics in
the Agentsheet paradigm is based on spatial reasoning
primitives like neighborhood and distance, e.g., the Turing
machine head perceives the tape by checking the depiction
of the tape agent immediately below it. Spatial reasoning
can be used to express higher-level concepts like data-flow
[6, 18] flowcharts [4], Nassi-Shneiderman structure
diagram (NSD) [4], and augmented transition network
(ATN) [4] to name just a few of them. We do not consider
Agentsheets to be a visual programming system by itself.
Instead, we think of Agentsheets as a tool that helps one
to build visual programming systems.

Visual programing cannot completely replace
conventional programming languages. Many abstract
conceptions can be pleasingly represented by arranging
icons [1], plotting data-flow, etc. Nevertheless, it is our
strong belief that there will always be situations in which
a textual representation is more concise and more desirable
than a graphical one. This is especially the case if a visual
programing system is only a syntactic variant of a
conventional programming language.

In situations in which a graphical representation is
inadequate, either because the pure-graphics approach
would be very long-winded or the set of building-blocks
provided is too restricted, a user will be forced to resort to
programming on a much lower level of abstraction. The
step between a building-block level and the level of a
conventional programming language used to implement
the building-blocks is what we call the “Representation
Cliff.” These users not only have to understand the
underlying programming language, they also have to
know about the possibly very complex transformation
between the language constructs (e.g., a library consisting
of a large set of functions) and the graphical
representation.

Agentsheets provide a higher level of fall-back than just-
graphical-building-block based approaches by introducing a



spatial reasoning layer between the building-block level,
representing graphical primitives, and the conventional
programming level (Figure 2). This does not completely
eliminate the need to access the conventional
programming level by the user, but it does allow users to
resort to a higher level of abstraction in most cases.
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Figure 2: Levels of Abstraction

2. The Agentsheet Paradigm

Agentsheets are based on principles of object-oriented
programming [5, 11] as well as on graphical extensions of
spreadsheet programming [7, 10, 16]. Details regarding the
use of Agentsheets are deferred to the case study section.

2.1. Agents

An agent [3] is a thing (or person) empowered to act for
a client. The client, in turn, can be another agent or the
user of the Agentsheet. Every agent consists of:

» Sensors. Sensors are methods of the agent that are
either actively triggered by the user (e.g., clicking at an
agent), or that are used to poll other agent’s state. The
built-in classes of agents provide a default behavior
defining reactions to all sensors. In order to refine this
behavior, sensor methods can be shadowed or extended
making use of the object-oriented paradigm.

» Effectors. A mechanism to communicate with other
agents by sending messages to agents using relative or
absolute grid coordinates. The messages, in turn,
activate sensors of the agents to be effected.
Additionally, effectors also provide means to modify
the agent’s depiction or to play sounds.

= State. Describes the condition the agent is in.

« Depiction. The graphical representation of the state,
i.e., the look of the agent.

 Instance-of. Link to the class of the agent.

2.2. Galleries

The incremental construction approach of Agentsheets is
not limited to the behavior of agents. A tool called gallery
allows the incremental composition of depictions as well,

The gallery serves the following functions:

e Clone depictions. A new depiction in the gallery is
created by cloning an existing one. In the simplest
case, cloning involves only copying. However, cloning
might include an additional transformation called the
cloning operation. The set of cloning operations
currently contains: unary operations (copy, rotate
multiples of 90 degrees, flip horizontally or vertically,
inverse) and n-ary operations (and, or, x-or). The
gallery not only shows the depictions, it also makes
the relationships among the depictions explicit; what is
a clone of what (for an example see Figure 5).

e Re-clone depictions. Modification of a depiction can be
propagated to the dependent depictions by re-cloning
them.

e Palette. Instantiation of agents. The gallery acts as a
palette from which depictions can be chosen and
dragged into an Agentsheet.

= Edit depictions. A depiction consists of a bitmap and a
name which can be edited with a depiction editor. The
depiction editor is just another Agentsheet in which
each agent represents a single pixel of the selected
agent’s bitmap. These agents make use of their mouse-
click sensors in order to flip their depiction from black
to white or vice versa.

» Save and load depictions. The gallery is a database
containing depictions and relations. The set of

depictions can be stored to files and retrieved fron{ﬁlies

« Link depictions to classes. Every depiction is
associated with an agent class. This link is used when
instantiating agents.

3. Configuration Charts: A Case
Study

The Agentsheet is a general purpose paradigm which has
been used for visual programming, user interface
prototyping, and simulation. However, rather than giving
a shallow description of several different toy utilizations
we chose to elaborate on Agentsheets by describing a real-
world application in more depth.

KEN [14, 15] is an expert system predominantly used to
configure small to medium sized power plants. The
configuration task includes the selection of components
from a very large repertoire. A repertoire usually consists
of 5§ to 30 binders. The composition of components is
dependent on physical (e.g., mechanical, electrical) and
financial constraints.

There are basically three KEN user types:

» End-User. A sales person employing KEN side by side
with a client to configure a complete system. The



configuration is a very interactive process in which the
sales person and the client explore many “what if...”
scenarios to optimize the functionality/price ratio of a
plant.

« Knowledge Engineer. Mediating between expert and
expert system. The knowledge engineer has a very good
knowledge of the expert system and a basic
understanding of the problem domain.

« Expert. Providing the problem domain knowledge.
Most experts are not programmers, i.c., they either do
not have time to acquire programming experience or
they are simply not interested in doing any
programming.

Once a knowledge base for a certain type of plant has
been created, configuring a new plant can be achieved by
relatively inexperienced end-users. The knowledge
acquisition, however, is less than satisfactory. The
situation model [2], the conceptual model of the problem
domain, employed by experts is very different from the
underlying system model of KEN (see Figure 3). In order
to bridge this gap a knowledge engineer is employed to
transform the expert's conceptions into the system model
(frames and demon functions in this case).

Situation Model

System Model

Figure 3: Situation Model vs. System Model

Although KEN has a powerful frame-based [9]
knowledge representation, it does not provide a higher
level of abstraction relating to the configuration domain.
That is, the knowledge engineers have to “re-code” similar
chunks of expert knowledge over and over again in the
same way. Furthermore, it is almost impossible for an
expert to maintain a given knowledge base because (a) the
transformations made by the knowledge engineers are
“compiled” into the knowledge representation, and (b) the
text-based knowledge representation has a very strong lisp
flavor and is, therefore, not very appealing to the experts.

3.1, Situation Model: “Natural” Knowledge
Representation

Independent of any expert system based approaches,
most experts in the field of configuration have developed
their own paper-and-pencil knowledge representation
schemes. Many of these experts express procedural
knowledge (e.g., the sequence in which certain
components can be constructed) employing a flow-chart
like graphical representation. In the following, we will
call this representation configuration chart (or CC for
short). Figure 4 shows an actual CC drawn by an expert.
Typical applications involve between ten and a few
hundred of these sheets.
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Figure 4: Chart used by an expert
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An analysis of charts from different experts revealed a
common set of CC primitives:

o If-then-else branching: Apply a relation to component
attributes (e.g., height > width).

+ Sequences. Execute a list of chronologically ordered
actions.

» Assignments: Assign a value to an attribute.

« Tables: Describe the relationship among a set of
attributes using a matrix representation.

Additionally, CCs also contain non-sequential
primitives similar in their semantics to process
synchronization primitives like the join operation. These
kinds of semantics are very hard to express in ordinary
flow-charts.



3.2. Design Goals

In order to make KEN accessible to an expert without
the need for a human mediator the new user interface
should:

1. enable experts to express their knowledge very
efficiently. Experts usually are very busy persons
interested in making the most out of their limited time.

2. allow users to do simple things simply but also
support more complex tasks. If the interface can only
tackle toy-world examples and does not scale up it will
be of no use. The interface has to provide mechanisms
to deal with complex structures.

3. be maintainable by the knowledge engineers. Instead of
being a mediator between the expert and the expert
system the knowledge engineer should mainly observe
frequent transformations from the situation model to
the system model required by experts. Then, he should
have the ability to incorporate these transformations
into the interface.

4. help users to map their goals to functionality provided.
The old interface provides little guidance for the
knowledge acquisition; the first encounter of KEN by
an user happens in a empty text-oriented editor window
showing a blinking cursor in the upper left corner.

5. allow the incremental construction of the behavior and
the “look™ of new functionality. The specification of
new CC primitives should be possible based on
existing ones.

6. support a two-dimensional representation of the
problem domain resembling the situation model of
users. The paper-and-pencil representations of experts
arc typically two-dimensional. The new interface
should reflect this fact to narrow the gap between
situation model and system model.

7. provide functionality exceeding the possibilities of
existing paper-and-pencil schemes representing
situation models. In order to be motivated to move
from one representation to another, experts have to be
rewarded by additional functionality that helps them to
accomplish tasks in a better way.

The objective of the following sections is to show how
these goals were achieved with Agentsheets, what special
advantages the Agentsheet solution has, where it is
limited, and how these findings can be generalized to other
systems.

3.3. Configuration-Charts and Agentsheets

So far, the discrepancy between the situation model and
the system model has been discussed. Furthermore, CCs
have been identified as an appropriate means to capture the
situation model. The following section will elaborate how

CCs can be represented by Agentsheets, and how the link
from the Agentsheet-based CC representation to the
conventional text-based knowledge representation can be
accomplished.

Configuration Charts Primitives

Every CC primitive is represented by a single agent. We
distinguish between wire agents defining the semantics of
data propagation, and control-unit agents representing
typical chunks of procedural expert knowledge like if-then-
else conditionals, case statements, hierarchical links to
nested CCs, database queries, calls to arbitrary (Lisp)
functions, and join operations. Figure 5, below, delinecates
the corresponding gallery.
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Figure 5: Control Units

Configuring Cars

A simple Car configuration example taken from a one-
week KEN course is used as scenario describing
interactions between end-users and the Agentsheet-based
system. The goal is to create a simple car expert system
recommending a car type based on the engine size and the
make. Although there are many issues involved (e.g., slot
cardinality, slot type, dimensions, bounds, print names,
etc.), the conceptual model of the problem can be reduced
to a rather trivial decision tree.

A task description of the Car configurator example, and
two galleries containing wire agents and control-units
agents were given to three users with the goal of
specifying the example using the Agentsheet-based CC



interface. Two of the three users have never been exposed
to KEN.

By selecting depictions from the galleries and dragging
them into an initially empty Agentshect the users
composed a CC like the one pictured in Figure 6.
Additionally, every case statement had to be associated
with the attribute of the component to be defined
employing a option-click sensor of control-units agents.
The option-click operation has been explained to the users
during the task.
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Figure 6: The Car configuration sheet

At the click of a button, the CC generates the
established text-based knowledge representation. Even with
the simple car example the equivalent frames and demon
function definition is certainly less than intuitive to a
casual user. The demon functions resulting from our Car
example are shown below:

(DEMON DERIVE-FROM-ENGINE-SIZE-1
(TRIGGER-TYPE IF-WAS-ADDED)
(PLACED (FRAME CAR)
{SLOT ENGINE-SIZE))
{NEEDED—SLOTS ENGINE-SIZE)
(IF (= (FACT 'ENGINE-SIZE :FACET 'BASICFRAMES::VALUE) '1.4))
(THEN (CONCLUDE 'MAKE 'VW :FACET 'RANGE) :
{CONCLUDE 'MAKE 'FORD :FACET 'RANGE)))

{DEMON DERIVE-FROM-ENGINE-SIZE-2

{TRIGGER-TYPE IF-WAS-ADDED)
(PLACED (FRAME CAR)

{SLOT ENGINE-SIZE))
(NEEDED-SLOTS ENGINE-SIZE)
(IF (= (FACT 'ENGINE-SIZE :FACET 'BASICFRAMES::VALUE) 'l1.8))
(THEN (CONCLUDE 'MAKE 'AUDI :FACET 'RANGE)

(CONCLUDE 'MAKE 'OPEL :FACET 'RANGE)))

{DEMON DERIVE-FROM-ENGINE-SIZE-3

(TRIGGER-TYPE IF-WAS-ADDED}
(PLACED (FRAME CAR)

(SLOT ENGINE-SIZE))
(NEEDED-SIOTS ENGINE-SIZE)
(IF (= (FACT 'ENGINE-SIZE :FACET 'BASICFRAMES::VALUE) '2.0))
(THEN (CONCLUDE 'MAKE 'BMW :FACET 'RANGE}

(CONCLUDE 'MAKE 'SAAB :FACET 'RANGE)))

It took all users less than ten minutes to accomplish the
task. Taking a KEN course, users were only able to setup
the same example, using the lisp-flavored textual
representation, after about eight hours training. This
comparison is not entirely fair because the course also
includes a basic Common Lisp introduction. Nonetheless,

the magnitude in difference appears to justify future
research,

Does the Agentsheet Approach meet the Design
Goals?

We now review the initial design goals and describe how
they have been addressed by Agentsheets. Does the
Agentsheet-based interface

1. enable experts to express their knowledge very
efficiently. The Car configurator task revealed a major
increase in performance to accomplish a task.

2. allow users to do simple things simply but also
support more complex tasks. The Car configurator has
shown that end-users can define a simple knowledge
base with very little effort. Moreover, a hierarchical
means of capturing knowledge, provided by the so-
called hyperagent mechanism of Agentsheets, will
probably help to manage more complex systems.
Hyperagents allow nesting of CCs. More generally,
hyperagents are used to embody abstractions. A
hyperagent is a placeholder for an entire Agentsheet.
For applications like CCs, hyperagents serve as a
hierarchical navigation tool similar to a hypertext
system.

3. support maintenance by the knowledge engineers. Most
extensions to the CC semantics can be addressed on the
level of spatial reasoning rather than on the level
of conventional programming languages (Common
Lisp in this case).

4. help users to map their goals to functionality provided.
The gallery provides a means to visualize potential
operations applicable to a task. The gallery serves the
function of a palette containing concepts priming the
expert towards a solution. Some users were distracted
by the cloning graph representation of the gallery
because the cloning relationships are completely
irrelevant to them. This problem has been overcome by
copying the depictions from the gallery into an
Agentsheet that serves as a palette.

5. allow the incremental construction of the behavior and
the “look” of new functionality. The object-oriented
structure of agents eases the reuse of existing
functionality and therefore allows the incremental
extension of system built with Agentsheets based on
inheritance.

Many new depictions were just variations of existing
ones and, therefore, could be cloned. For example the
wire gallery consisting of 15 different wire depictions
(straight, 1-shapes, t-shapes, and crossings) could all be
cloned from just two basic wire types: a I-shaped wire
and a straight wire (see Figure 7). Moreover, the
cloning relationships has been used to derive the



semantics of the cloned depictions, e.g., a depiction
cloned by rotation suggests the creation of a sibling
class by “rotating” the methods of the class linked to
the source of cloning. The relationship between
cloning operation and class creation is, however, not
always clear. It will be the subject of future research.
]
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Figure 7: Wire Gallery

6. support a two-dimensional representation of the
problem domain resembling the situation model of
users. Agentsheets are inherently two-dimensional, i.e.,
clements of paper-and-pencil representations of
situation models can be mapped one-to-one to agent
depictions.

7. provide functionality exceeding the possibilities of
existing paper-and-pencil representations of situation
models. Agentsheets have inherent direct manipulation
[12] properties: dragging of agents, sensors to react to
clicking. This interactive nature of agents is employed
to provide immediate feed back to the user. In contrast
to paper-and-pencil representations, users can operate
actively on Agentsheets.

4. Discussion

Agentsheets, in their current stage, arc used by a casual
user, however, they are not ready to be extended by the
casual user. In the Car configurator case study this turned
out to be irrelevant because the designer of new agent
classes, the knowledge engineers, were familiar with
object-oriented programming. This is of course not
generally true, i.e., many users have not been exposed to
object-oriented programming. Also, McLean points out
that concepts of object-oriented programming can be very
hard to grasp for non-programmers [8]. Moreover, most
users just want to get their job done. That is, they do not
see any immediate reward in learning yet another
programming language.

Although the style of programming on the spatial
reasoning level of Agentsheets can be compared in its
simplicity with formulas of spreadsheets, it still reflects
some aspects of the underlying Common Lisp layer. Our

current research is concerned with the replacement of this
procedural programming style with a more declarative one.
One idea is to attach Prolog predicates having a two-
dimensional argument structure [17] to agents.

5. Conclusions

Object-oriented techniques have been used for a while to
define the behavior of objects. However, the use of a
gallery representing cloning relationships among
depictions of objects, and the fact that these cloning
relationships can be used to derive new behavior make
Agentsheets a new, unique approach to design and
implement user interfaces.

In the hands of occasional programmers, or knowledge
engineers in our case study, Agentsheets have shown to be
an efficient means for creating and extending intelligible
applications. The ability to define the behavior and the
look of agents in terms of existing agents empowers users
to construct the specification of their applications
incrementally [2].
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