A Testbed for Improving the Performance of
Parallel Programs and Systems

Dirk Grunwald, Gary Nutt, David Wagner,
William Waite and Benjamin Zorn

CU-CS-512-91 February 1991

&
Lr%jUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

A Testbed for Improving the Performance of
Parallel Programs and Systems

Dirk Grunwald Gary Nutt David Wagner
William Waite = Benjamin Zorn

Department of Computer Science
Campus Box #430
University of Colorado, Boulder 80309-0430

February 1991

Abstract

This report is an expanded version of a proposal submitted to the NSF in November 1990 to
be funded starting in June of 1991. In the proposed project, we will study parallel computing
systems and the parallel programs that use those systems. To support this study, we need various
kinds of trace data from a representative sample of programs running on parallel hardware, tools
to collect this data, and a suite of programs characterizing a variety of parallel computations.
Ultimately the purpose of the work is to improve the performance of real programs running on
real hardware and to allow meaningful predictions about proposed techniques.

We currently have access to an interesting and diverse set of scientific parallel programs and
are porting this collection to our testbed environment. We will continue to collect a variety of
reference programs during the grant period. As useful trace data, tracing tools, and analysis
tools become available, we will distribute the data, tools, and significant reference programs to
interested researchers at other sites.

The alternative to a single, concentrated effort in this area is for each researcher to develop
a suite of reference programs and data collection tools, and then to collect the appropriate data.
That alternative is not only inefficient, but also leads to difficulties in comparing results across
research groups.

Contents

1 Introduction 3
L1 Goals . .o o e 3
1.2 Summary of the Research Plan 4

2 Project Description 5
2.1 Objectives o e e e 5

2.1.1 Representative Parallel Programs 5
2.1.2 Datatobe Collected 7
213 Tools . . . e e 8
2.1.4 Distribution L L 9
2.1.5 Operating System Analysis, 9
2.2 Related Work L e 9
2.2.1 Address-Level Tracing i 9
2.2.2 Higher-Level Profiling and Tracing 11
2.2.3 Operating System Design 12
23 Research Plan e 12
2.3.1 Collecting Representative Parallel Programs 12
23.2 Tools e e 14
23.3 Distribution 16
2.3.4 Operating System Analysis 17

3 Impact of the Proposed Research 18

4 Bibliography 20

A Reference Program Descriptions 25

B Research Interests of Individual Investigators 27
B.1 Process Placement (Grunwald), 27
B.2 Interactions Between the OS and Runtime System (Zorn) 29
B.3 Workloads for Multiprocessor Scheduling Investigation (Wagner) 31
B.4 Graph-Driven Program Performance (Nutt) 34

1 Introduction

This report describes the planning for a project to capture data about the behavior of parallel
programs at a number of levels, making that data and the means of collecting it available to the
research community.

1.1 Goals

Our goals are to provide trace data at a variety of levels from a representative sample of programs
running on parallel hardware, tools by which such data can be collected, and a suite of programs
characterizing a variety of parallel computations. This material is needed as a basis for a wide range
of measurement and evaluation tasks, whose ultimate purposes are to improve the performance
of real programs running on real hardware and to allow meaningful predictions about proposed
techniques.

We believe that a single, concentrated effort should be made in this area. The alternative is for
every researcher to develop their own benchmark program suite and data collection tools, and then
to collect the appropriate data. That alternative is not only inefficient, but also leads to difficulties
in comparing results across research groups. Our own group is an example of this problem. Each of
us is either currently conducting work based on the kind of material we are proposing to collect, or
is contemplating such work. This proposal consolidates the effort needed to support our projects.

In the remainder of this section we briefly justify each of the specific products mentioned above:

e A suite of representative parallel programs.
e Tools for generating and analyzing traces.

e Traces of program behavior at several levels.

Memory system researchers have relied heavily on traces, first to study interleaved memories,
e.g., see [68]; and then virtual memory systems, e.g., see [12, 58]. Today, traces are used heavily
for comparing the performance of different memory hierarchy systems, especially those involving
memory caches, e.g., see [66, 6, 2, 15, 67, 23].

OS file systems, database management systems and I/O systems have all benefited from trace-
driven evaluation. Traditionally, event traces have been used for a variety of such performance
comparisons cite cheng:traces,sherman:cacm?72,sherman:sscs73,sherman:sscs76. Our own group has
used tracing for system performance studies in the past [49], and we currently use this approach
in evaluating programming language runtime systems (Zorn [81]) and multiprocessor scheduling
algorithms (Grunwald [26]). If a collection of large, detailed event traces from significant parallel
applications is made widely available to researchers in diverse fields, the overall benefit of a common
set of observations of parallel program behaviors should be considerable.

A particular event trace represents a view of a single execution of a single program. It may or
may not be similar to other executions of the same program or to executions of other programs.
Statistical analysis of a number of such traces can be used to establish signatures characterizing
various kinds of behavior. Because event traces are very large, it is not possible to store many
of them for this kind of analysis. Users of event traces must be able to determine whether the
appropriate signatures differ significantly from those of their local workload. Thus they need to be
able to generate and analyze traces of programs in their workload for validation purposes.

Standard benchmarks are important because they allow meaningful comparison across a variety
of experiments. Without such a program suite, it is impossible to know whether different results are
significant or are simply artifacts of the experimental data. Benchmarks suite can also be validated
over many hardware and software architectures, guaranteeing that all interesting signatures are
covered without excessive redundancy.

1.2 Summary of the Research Plan

The project will concentrate on the following tasks:

e Acquire and retarget a variety of parallel applications of general interest.

o Instrument the applications and the underlying system so that appropriate traces can be
collected and correlated.

e Package the traces for distribution.
o Generalize the collection and analysis software for a variety of machines.

¢ Make the application programs portable via preprocessors and/or configuration tools.

These subtasks have been investigated independently by others, and we will use as many of the
existing tools and techniques as possible.

Because of the unique nature of the Department of Computer Science at the University of Col-
orado [59] we currently have access to an interesting and diverse set of scientific parallel programs.
Our first major task will be to port this collection, augmented with other publicly-available pro-
grams from different application areas, to our testbed environment (initially a 20-processor Encore
Multimax system).

The preliminary tracing work will employ only user-level programming techniques including
interpretive execution [26, 81], source code instrumentation, and other generally-available tracing
tools such as gprof. As a first use of the data, these traces will be evaluated for utility by using
them in an ongoing study of process placement on distributed memory architectures (see Section
B.1). These projects will also be used to develop appropriate signatures.

As useful trace data continues to become available, it will be distributed to other interested
parties. This distribution process will require that we develop standard methods for compressing
trace data and making it available to a wide audience via appropriate media.

Trace generation and analysis software will also be distributed as they prove their worth. These
programs will almost certainly not be parallel, and therefore their portability problems are reason-
ably well-understood. Nevertheless, most will require more effort than the trace data to distribute
in a useful form.

Finally, we will undertake the distribution of significant benchmark programs. While our pro-
grams and data are specific to particular environments, it is our intent to construct our benchmarks
so that they operate in a relatively platform-independent manner. We have little experience in this
area, but we believe that widely-available packages like C threads and standard approaches to
portability will allow us to attain this goal.

2 Project Description

The project is part of an ongoing effort to improve the performance of large-scale parallel programs
running in a logical shared memory multiprocessor environment. We are looking at the system con-
sisting of the program, compiler and runtime support as a whole. It is an empirical study, in which
we must develop a representative set of parallel programs, analyze the execution of those programs
in existing environments, and then predict the effects of proposed changes of the environments.

2.1 Objectives

The first task is to obtain appropriate test data. We believe that a single, concentrated effort
should be made in this area and the results shared among all interested parties. This will avoid
redundant effort and simplify the comparison of results across research groups.

We will use our data to evaluate current operating system designs in the context of high-
performance parallel computing. This study will not only shed light on operating system support
of parallel computation, but also motivate and validate the data collection process. Our objectives
for the project are therefore to:

o Collect representative parallel programs

Collect trace data describing the execution of those programs

Construct appropriate tools and methodologies for instrumentation

Distribute the programs, data, and tools

Evaluate multiprocessor operating system designs

Each of these objectives is expanded in the following subsections. Qur intent in these subsections
is to indicate the scope of the work associated with each objective. Section 2.3 explains how the
objectives will be achieved.

2.1.1 Representative Parallel Programs

We are focus our attention on programs suitable for medium grain ensemble systems [31, 32] —
systems composed of numerous processors that may communicate through shared memory or via
an interconnection network. SIMD data-parallel programs, systolic algorithms or massively parallel
image processing applications will not be as well-represented as medium grain ensemble programs
largely for one pragmatic reason: collecting data from such massively data-parallel programs is
intrinsically more difficult than for medium grain ensemble systems. We may address such programs
after gaining more experience with the current reference programs.
We have classified the medium grain ensemble systems along the following dimensions:

¢ Application Domain
e Structure of Parallelism

¢ Communication Mechanism

Application Domain The fundamental driving force behind this work is to be able to achieve
high performance of real programs using real operating systems and real parallel hardware. An
implicit assumption is that the underlying computational support facilities are a limiting factor
in execution of several real programs. We distinguish four different categories of such demanding
parallel application programs.

Scientific programs are those used in physics, atmospheric sciences, mechanics and similar areas.
We assume that most of these programs are written in FORTRAN (although this is not required),
were initially written as sequential algorithms, and were parallelized either by hand or using par-
allelization tools. We assume that these programs are limited by floating-point computation, in-
put/output and available memory.

Engineering programs are those used in engineering, and in particular, electrical engineering.
We differentiate these programs because many are concerned with optimization, and tend to be
integer intensive rather than floating-point intensive. The majority of these sample programs are
written in C, and are explicitly coded for parallelism.

Computer Science programs are similar to engineering programs, but address a different spec-
trum of domains including parallel discrete event simulation, optimization problems, and applica-
tions in artificial intelligence. We expect that most of the programs will be written in C and are
explicitly coded for parallelism.

Research programs are those that are too small to be complete applications, but are still valuable
indications of parallel program activity. Examples of these programs are sample implementations
of new parallel algorithms or other small “toy” problems demonstrating a particular technique.

Structure of Parallelism We are also concerned the kind of parallelism available in each pro-
gram. In general, scientific programs involving physical models are parallelized by transforming DO
loops to some parallel form, either DOALL or DOACROSS. The resulting program can be represented
by a fork-join graph, showing the dependence of each task on the others. Such programs are said
to have static parallelism because repeated execution of the same program using the same data
produce the same number of tasks and the same fork-join graph. They can be statically scheduled
by assigning a processor for each task prior to execution, or dynamically scheduled by assigning
processors at execution time.

Other programs are adaptively parallel, changing the available parallelism at execution time. For
example, a game-tree search program may choose to decompose the problem differently depending
on the number of processors available, their relative speeds, and contention for various memory
locations.

Communication Mechanism The two prominent communication models are the shared mem-
ory and message passing models. Applications which are written to employ one mechanism can be
supported in a hardware system that naturally caters to the opposite mechanism, e.g., the software
in a distributed memory system can mimic shared memory [40], and a shared memory system can
employ message passing [1]. The important performance factors relating to communication are the
way programs are structured and the way data can be recorded. In certain cases, programs can use
either model [10]; these are particularly valuable, because they will allow researchers to compare
the effect of different communication models.

l Trace Data | Uses |

Memory Addresses Cache studies, process placement studies

Symbolic Memory Distributed cache studies, process placement

References studies, memory hierarchy design

Page References Virtual memory policies (local and net-
worked), smart runtime systems, database
systems

Synchronization Events | Scheduling policy studies, OS design studies

System Calls OS design studies

Table 1: Summary of data collection and analysis objectives.

2.1.2 Data to be Collected

We intend to record program activity at many different levels of abstraction, including address
references (both absolute and symbolic), virtual memory activity, system calls, and synchronization
activity. Table 1 summarizes the data collection and analysis objectives of this study. The trace
data will provide information on general performance, paging behavior, cache behavior, functional
program behavior for parallel applications, function calls, process/thread spawning and destruction,
dynamic precedence relationships among processes, resource contention, and program behavior in
terms of abstract events. This complete set of measurements is necessary for the study of many
system software issues; the remainder of this section briefly characterizes each measurement and
its uses.

Memory Address Traces Address traces simply record the instruction and data access ad-
dresses developed during program execution. Sequential address traces have long been used to
validate cache memory designs, e.g., see [66]. A small number of parallel address traces exist, and
have been used to validate distributed cache memory designs, e.g., see [2].

Symbolic Memory Reference Traces Symbolic traces provide more information than simple
address traces by providing a symbolic memory reference as well as a physical memory address.
Thus, accesses to array elements in a FORTRAN program would be recorded by the array name
and the appropriate subscripts. For example, memory address 0xf£f££f0056 may be a reference to
A(4,47).

Currently, symbolic memory reference traces are not widely used because they are difficult to
construct. However, we expect them to be very useful for examining distributed cache or network
virtual memory, because one can specify the mapping from individual arrays to physical addresses.
Automatically partitioning data to compensate for cache line size or page sizes may have a dramatic
effect on cache coherence protocols.

Page Reference Traces Page traces are similar to address traces, but at a more coarse level:
Only references to individual memory pages are recorded. In practice this is a filtered version of the

address traces, but this form is a more convenient and compact representation suitable for certain
studies.

We expect these traces to be used in conjunction with operating system traces and synchro-
nization traces, to study the tradeoffs of system paging policies on application behavior.

Synchronization Event Traces These event traces record the interactions of processes in a
multiprocess application. It is simple to record the birth and death of each process. Recording
additional synchronization events is more difficult because a “high level” synchronization event
may be composed of many small synchronization events. For example, when several processes meet
at a barrier, each process may first acquire a semaphore that guards the barrier. These latter
synchronizations are an artifact of the barrier implementation. Our traces will record only the
higher level actions, such as the barrier join in this example.

These traces can be used to determine the effectiveness and appropriateness of extant syn-
chronization primitives. Certain synchronization patterns may emerge that would benefit from
specialized operating system or architectural support. In addition, these traces will furnish the
correct level of behavioral detail for studies of multiprocessor scheduling policies.

System Call Traces These traces record the interaction of processes with the operating system.
For many application domains, particularly engineering and scientific applications, these traces are
compact because such applications do not interact extensively with the operating system. System
call traces provide information on the I/O activity of a program and indicate what operating system
facilities limit the performance of particular applications.

In conjunction with synchronization traces and page reference traces, system call traces can be
used to study the effectiveness of operating system policies on I/O allocation, asynchronous I/0,
and scheduling operations. More importantly, these traces can be used to study the interaction of
processes in new high-performance computing environments.

Profile Data Program profile information is also very helpful in characterizing the behavior
of parallel programs. Where trace collection extracts the linear sequence of events that make
up a program execution, profiling counts numbers of events and correlates the information with
a structured view of the program’s execution (such as the dynamic call graph). Profiling can
collect CPU usage, synchronization statistics, processor usage and memory usage. Profiling has
the advantage of being even less intrusive and generating less data.

2.1.3 Tools

Three requirements on the tools developed for this project are:
e The data must be collected without perturbing the program being monitored.
o The Jarge volume of data generated must be compactly stored or processed on-the-fly.
¢ Information from different levels of execution must be collected and correlated.

In order to meet these requirements, we plan to utilize existing methods and make modifications
or develop new methods if those are not adequate.

We will also cooperate with colleagues to develop a standard format for trace information, thus
making it easier for researchers to write programs that evaluate the traces. Dennis Gannon of
Indiana University and Sue Utter of Cornell are currently working toward establishing standard
trace formats (they organized a session about this subject at the Supercomputing ’90 Conference).
We plan to actively participate with these researchers in the design and use of standard trace
formats.

2.1.4 Distribution

As useful trace data becomes available, we will distribute it to interested parties at other sites. Trace
generation and analysis software will also be distributed as it proves its worth. These programs
will almost certainly not be parallel, and therefore their portability problems are reasonably well-
understood. Nevertheless, most will require more effort than the trace data to distribute in a useful
form. Finally, we will undertake the distribution of significant reference programs. While our
programs and data are specific to particular environments, it is our intent to construct our reference
programs to operate in a relatively platform-independent manner. We believe that widely-available
packages, such as Mach C threads, and standard approaches to portability will allow us to attain
this goal.

2.1.5 Operating System Analysis

We will evaluate current operating system designs with the trace data and propose changes with
the specific goal of supporting high-performance parallel computing.

This work will provide validation of the usefulness of our traces. It would be naive to expect
that our first attempt at measuring program behavior would provide all that is required for actual
performance analyses. By having a concurrent subproject that uses our data, tools and reference
programs, we will have a valuable source of feedback to guide the main effort of this project.

In addition, a study of operating system design in this context has considerable intrinsic and
extrinsic merit. Not only does it touch upon many issues that are of interest to the computer science
operating system community, but also it has the possibility of identifying mismatches between
operating systems and programs from the target application domains. These mismatches might be
corrected by changing the operating system design or the compilation strategy for the applications.

2.2 Related Work
2.2.1 Address-Level Tracing

* Address traces, whether virtual or physical, are the most challenging form of trace data to collect.
Because programs generate at least one address reference for every instruction executed, the cost
of collecting address reference information from executing programs is very high. While the sheer
volume of data complicates the task, the act of tracing itself perturbs the program execution. If
this perturbation is significant, it may greatly alter program synchronization or scheduling and
render the trace unrepresentative of any actual execution of the program.

Historically, hardware instrumentation introduces the least program perturbation [50]. Agarwal
et al. used the ATUM system (Address Tracing Under Microcode) to record the address traces
of four VAX processors [2]. The machine microcode of a four-processor VAX was modified by
Digital Equipment engineers to generate address reference strings, slowing the execution speed by

a factor of twenty. This method sufficed for a single, shared bus architecture. It is impractical for
hierarchical memory architecture, where no single interrupt can halt all processors simultaneously.
In this case, a hardware monitor is needed. Malony et al. directly recorded the address references of
two clusters in the CEDAR system using hardware probes [43]. This did not slow program execution,
but collecting and storing the traces presented a daunting task in data acquisition.

Alternate approaches instrument the executing program itself. As the program executes, it
performs its normal tasks and also records address references. Borg et al. describe a method for
modifying the executable code to extract address traces from programs executing on the Titan
processor [15]. The Titan work is significant because the traces collected include a “seamless” mix
of references from different programs and the kernel. A major aspect of the Titan approach was to
minimize the interference of reference collection on program execution. As a result, the overhead
of trace collection was further reduced—program execution was dilated by a factor of eight to ten.
The Titan group also used on-the-fly simulation, in which the address trace is consumed directly by
a simulation. This results in cache analyses based on billions of addresses, rather than the tens of
millions common at that time. This work showed that very long address traces provide significant
information that cannot be determined in any other way.

Stunkel and Fuchs describe the more general approach taken by the TRAPEDS system, in
which the executable code was modified to produce address traces during execution [67]. While the
TRAPEDS overhead is as large as the ATUM overhead (again a factor of twenty), it forms the basis
of more efficient address collection methods for parallel programs. The TRAPEDS approach is also
an example of on-the-fly simulation. Because a number of processes in a hypercube were being
traced, the simulations using the data were executed concurrently with the applications generating
the trace.

Two recent research projects modify the approach taken by Borg et al. to further reduce data
collection overhead. Both of these approaches take the position that traces from a single user
program are of interest, and they do not trace execution within the kernel. In the MPtrace project
the executable file is pre-processed, adding trace generation code only where necessary [23]. This
technique greatly reduced the overhead of trace collection—program execution was slowed by a
factor of only three. MPtrace is also significant because multiprocessor traces were collected using
this technique.

Larus further reduces trace collection overhead using a technique called AE (Abstract Execu-
tion) [37]. With AE, the compiler is modified to produce two object files. The first is the program,
with small modifications. The second is an abstract version of the program that, when executed,
will produce exactly the same reference stream as the original program (hence the term abstract
execution). When the original program runs, it produces a small data file that contains address
references that could not be predicted in the abstract execution (e.g. certain data references). The
resulting file is directed into the abstract version of the program which can then duplicate the
reference behavior exactly.

The AE approach to trace collection is significant in two ways. First, the amount of trace data
collected is reduced significantly (by a factor of 50-500). Second, the execution overhead imposed
by AE is quite small, dilating the execution time by a factor of only 2-3. We plan to use the
abstract execution model of trace collection to collect traces at various levels of execution.

While traces of virtual address references can be used to measure the performance of cache
and virtual memory implementations, higher-level traces are also needed. Brewer, Dongarra and
Sorenson developed the MAP tool [16] as a visual aid for programmers attempting to increase

10

memory locality in FORTRAN programs designed for hierarchical cache architectures. This tool
annotated a FORTRAN program to automatically emit a trace of array references. FORTRACE
performs a similar source to source translation on FORTRAN programs [69]. The annotated program
directly records every symbolic address reference in the program. FORTRACE extends MAP, because
it also simulates the parallelism in DOALL and DOACROSS loops.

Symbolic data reference information is used to study possible reorganizations of the program
objects in memory. For example, Zorn’s thesis investigated the performance of different garbage
collection algorithms using symbolic data references [81]. Grunwald’s thesis uses symbolic data
references to investigate the communication costs in multiprocessors [26].

2.2.2 Higher-Level Profiling and Tracing

Gprof is a program execution profiler that samples the program counter to provide information
about where a program spends its time [25]. Statistical sampling is one technique that we will
consider to reduce the amount of data collected.

Mprof is tool that relates program memory allocation to the dynamic call graph, indicating
what subroutines were truly responsible for allocation [82]. Mprof is interesting because it maps
allocation information exactly onto the dynamic call graph, whereas gprof does only a probabilistic
mapping.

Parasight is a low-overhead tool that can be used to dynamically instrument parallel programs
on the Encore Multimax [5]. Parasight can be used to gather coarse-grained execution information,
much as the gprof does for sequential Unix programs. It can also be used to gather much finer-
grained profiles using a dynamically linked function profiler.

Quartz is a profiling tool for parallel program performance debugging developed at the Uni-
versity of Washington [4]. Using a combination of existing compiler support (for gprof) and an
instrumented thread library, it keeps track of normalized processor time, which is the time spent
executing a routine normalized to account for the level of parallelism displayed by the program
during execution of that routine. The claim is that normalized processor time is a useful metric for
identifying bottlenecks in parallel program performance.

IPS-2 is a second generation of a performance measurement system written by Miller et al. at
the University of Wisconsin [44]. Miller uses a combination of function call counting (as in gprof)
and an instrumented runtime system to collect function-call level profiles of parallel programs. This
data is made available to the user through a sophisticated user interface that provides views of the
performance at different levels of granularity.

IPS-2’s fundamental goal, which is to provide information to the programmer so that he can
improve the performance of his program, is complementary to our own objectives, which are to
provide information to operating system, compiler, and runtime system designers to better match
those systems to the applications that use them. Because of this difference in goals, however, the
data collected by IPS-2 are a subset of the data we are proposing to collect. This difference also
means that there is no benchmarking component of the IPS-2 project.

The Crystal package from the University of Illinois records all communication in a message
passing application running on an Intel iPSC/2 [62, 63].

Finally, CASPER is an extremely general-purpose trace collection mechanism for UNIX System
V [8]. CASPER is most notable for its ability to intermingle trace data from the user and kernel
levels; this is accomplished by implementing it as a UNIX device driver.

11

2.2.3 Operating System Design

Needless to say, a great many operating system design decisions have been motivated by measure-
ment studies of real programs in execution; unfortunately, in most cases these measurement studies
have not been given as much attention in the literature as the systems that were spawned by them.
In this section we mention a representative sample of such systems.

The Accent system’s copy on write mechanism, which was later adopted by Mach, was motivated
by measurement studies of interprocess communication patterns [7, 24].

The design of the Sprite network file system protocol was based on a study of UNIX file system
call traces [54].

Bershad’s LRPC (lightweight remote procedure call) service was motivated by a study of RPC
call patterns, which revealed that an overwhelming fraction of all remote procedure calls contain a
very small number of simple data types as parameters [13].

Finally, the CASPER tool mentioned in the previous section has been used to compare the
performance of the VM and region approaches to virtual memory management in UNIX System
V [19]. This study was used to guide the design of the virtual memory management implementation
of UNIX System V Release 4.0.

2.3 Research Plan

We have conceived of a four-year plan to meet the specific objectives discussed in §2.1. The three
fundamental parts of the research are:

e collecting and standardizing reference programs.
e using traces derived from these programs to analyze system behavior.
o distributing trace data, analysis tools and reference programs to the research community.

We stated five specific objectives for the work in Section 2.1. In this section, we present our
research program. Each subsection provides a general discussion of the approach to be used to
address objectives, the resources that we intend to devote to realizing that objective, and the time
period in which the work is to be carried out.

2.3.1 Collecting Representative Parallel Programs

Because of the unique nature of the Department of Computer Science at the University of Colorado
[59], we currently have access to an interesting and diverse set of scientific parallel programs. Our
first major task will be to port this collection, augmented with other publicly-available programs
from different application areas, to our testbed environment.

In §2.1.1 we described how we classify programs according to Application Domain, Structure of
Parallelism and Communication Mechanism. Table 2 gives examples of parallel programs in each
Application Domain that we intend to use. Note that Table 2 is not intended to be erhaustive.
Each reference program is described in more detail in Appendix A.

We are acquiring these programs and porting them to our Encore Multimax (20 NSC 32032
processors) as a testbed for establishing the suite of reference programs. We will also begin our
user level trace data gathering, and analyze that data to the extent possible. This work is currently
being pursued as an unfunded project.

12

Program Language | Communication Source
Name Model
Scientific Applications
Perfect Club ForTRAN | Shared Memory University of Illinois, Center for Supercom-
puter Research and Development
Shallow FoRrRTRAN | Shared Memory, National Center for Atmospheric Research
Distrib. Memory
FORCE Suite Forck | Shared Memory University of Colorado
Finite Element Force | Shared Memory University of Colorado, Aerospace
Weather & Pollution | FORTRAN | Shared Memory Environmental Protection Agency
Engineering Applications
Pthor C Shared Memory Stanford University
LocusRoute C Shared Memory Stanford University
Puppy C Shared Memory University of California, Berkeley.
MaxFlow C Shared Memory Stanford University
MinCut C Shared Memory Stanford University
Computer Science Applications
Mul-T C Shared Memory MIT and DEC Cambridge Research Lab
Synapse C++ Shared Memory University of Washington
VM_pRAY C Distrib. Memory IRISA, Rennes, France

Research Applications

Presto Suite

Ct+

I Shared Memory

I Rice University

Table 2: Summary of Reference Programs with Static Parallelism

13

2.3.2 Tools

The objective of §2.1.2 requires collecting data from many different levels of program execution.
We plan to use existing techniques in cases where they are suitable, and enhance or rework these
approaches if they are not adequate for our purposes. In the remainder of this section we indicate
the approach we plan to take when collecting each of the kinds of data described in §2.1.2.

Memory Address Traces Because of the generality and storage compactness of the Abstract
Execution approach described in §2.2, our initial tool development will extend the AE package.
Our variant, SPAE! will use Symbolic and Parallel Abstract Execution. Our goals are to:

¢ Record direct address traces of parallel applications, executing in a known reference environ-
ment on a fixed number of processors.

e Be able to generate symbolic address traces for parallel programs.
o Measure architecture-independent parallelism when possible.

The first component, parallel abstract ezecution, will function similarly to the existing AE sys-
tem, but allow the tracing of parallel applications. We expect that the instrumentation interference
introduced by SPAE will be small because the existing AE has a small execution dilation (2-3 times
normal execution). The data currently collected by AE includes the instruction reads and data
read/writes. Our modifications will also record global timestamps on basic block entry so that we
can synchronize data from different processors, and thread context switch events so that we can
trace the execution of logical threads rather than the execution of larger-grained processes. For
certain long-running programs, the trace compression of AE will probably not suffice. To solve this
problem, we will modify SPAE to support on-the-fly execution of a simulation while the program
trace is being gathered. This involves executing the program schema whenever data is available,
rather than collecting the data for later execution.

Symbolic Memory Reference Traces Symbolic data references can be collected just as virtual
memory references are, except that the program source must be analyzed when the tracing code is
being inserted to correctly attribute each reference to the proper program variable. Small modifica-
tions to the current AE system will make this possible. Other tools collect symbolic data references,
including the FORTRACE system [69] for FORTRAN programs and Zorn’s MARS system [81] for
Lisp programs.

SPAE also will use symbolic abstract execution to address the needs of symbolic execution. SPAE
must allow remapping of program data, to reflect repartitioning of program arrays, and we will
pursue two implementations:

o The first strategy converts the data reference stream to actual symbolic addresses using the
program symbol table associated with the instrumented program. This can be done each time
the trace is “replayed,” obviating the large storage associated with a symbolic trace. This
method will not capture all symbolic references (such as references to dynamic arrays), but
will capture symbolic references to all identifiers available in the symbol table of the traced
programs.

! Spae (spi) is a fourteenth century Scottish term, meaning to spy or foretell.

14

e The second strategy is less flexible, but significantly more efficient. In the first method,
we implement remapping by converting data references to symbolic form and then mapping
those symbolic forms to new virtual addresses. Instead, we can directly map the raw data
references to new virtual addresses, with a user specified mapping function. The mapping
function would be pre-computed using program symbol table information. This method will
suffice for studies interested in remapping data structures, while not precisely identifying each
reference to a particular data structure. This remapping process should be relatively efficient.

Both methods require information in excess of that provided by most symbol tables, such as
array dimensions and information on automatic variables. This data, available from the program
source code, can be gathered either automatically, through extensions to the compiler, or by hand,
since it needs to be collected only once: at the time the program is added to the reference suite.
Neither symbolic tracing technique will be adequate for all programs; some programs use unnamed
storage, such as that allocated dynamically. However, we expect symbolic tracing to be of little
interest for those programs. ‘

Another use of SPAE will be to remove architectural parallelism constraints for certain FORTRAN
programs. The semantics of two common parallel loop constructs, DOALL and DOACROSS are satisfied
by sequential iteration execution. We can simulate unbounded loop-level parallelism for DOALL loops
by recording the time at the beginning of the entire loop. The time of beginning of each iteration
would be reset to this recorded time, and the references for all iterations would be collected and
sorted by the time stamp. A similar method would be used for DOACROSS loops, but the times
for each iteration would be affected by the time of the corresponding post and wait events that
synchronize dependent iterations. (A similar technique is used in the FORTRACE package.) Because
SPAE is based on AE, which accepts only C programs, we expect to modify a version of F2C, a
ForTRAN to C translator, to recognize the DOALL and DOACROSS loops, emitting a C program
suitable for processing by SPAE.

Synchronization Event Traces We plan to record all process creation, destruction, and syn-
chronization events. The most difficult aspect of collecting this information is that different refer-
ence programs use different routines for multiprocessing and synchronization—some programs use
operating system-provided routines while others use library packages implemented on top of the
operating system. We plan to instrument the most commonly used thread libraries, such as the
Argonne parallel library [31]. This approach has the advantage that anyone using these libraries
can benefit from our instrumentation, if they choose to. Later, as part of instrumenting the kernel,
we will collect information from kernel-provided multiprocessing routines.

One concern is that certain parallel programs will be tailored to execute on a fixed number of
processors. Since we would like to be able to generate traces that are independent of the number
of processors actually used, we would like to eliminate such dependencies, or at least note when
they occur. To accomplish this task, we plan to hand-instrument these reference programs. Such
hand-instrumentation, in combination with the instrumentation of the parallel libraries, will allow
us to collect very detailed traces of the parallel behavior of the reference programs.

For message passing applications, we hope to use extant tools, such as the University of Illinois’
Crystal package [62, 63]. In some cases, where synchronization or communication does not depend
on the number of physical processes, we may be able to simulate the execution of the Intel iPSC/2,
providing more detailed information than is provided by Crystal.

15

System Call Traces The easiest way to collect traces of the interaction between the user program
and operating system would be to modify the user library routines to add information to a trace
file each time a system call is about to be performed. For example, the C open function could be
modified, appending a record to the trace buffer each time it is called. The method is simple and has
the advantage that no modifications to the kernel are required. A second alternative is to instrument
the kernel routines directly. This approach has numerous advantages. Kernel behavior, such as
page faults, which are not part of the system call interface, could also be measured. Furthermore,
we could record the interactions between processes, allowing us to study issues affecting resource
sharing. For either library instrumentation or system instrumentation, traces from long-running
programs may be problematic.

A third alternative would be to process the object file to produce an abstract representation
of its system call behavior, much as AE currently abstracts its memory reference behavior. The
abstracted program would be compact and capable of generating very long system call traces.
By recording time stamps and cross correlating the traces, we can also approximate a record of
process interactions. This method is also of interest because we want to evaluate the effectiveness
of applying the basic idea of abstract execution to many different levels of trace collection.

Profile Data There have been several notable approaches to the gathering of profile information,
such as gprof [25], mprof [82], Quartz [4], and Parasight [5], and we intend to use these tools
unchanged. These tools are briefly described under related work (§2.2).

2.3.3 Distribution

Three problems must be solved in order to effectively distribute trace data, analysis programs and
reference programs:

o The amount of data represented by many traces is physically large
¢ Analysis programs must run on a wide variety of hardware

¢ Reference programs must run on a wide variety of parallel hardware

A “small trace” (e.g. a raw address trace representing 1-5 seconds of execution) will typically
occupy about 5 megabytes, while larger traces could require more than 2 gigabytes. Abstract
execution might reduce these sizes by a factor of 100. This range of sizes implies a range of
distribution media. We plan to use anonymous FTP over the Internet to distribute traces up to
about 10 megabytes in size, and magnetic tape for larger data sets. Industry-standard 9-track tape
at 6250bpi can store about 150 megabytes on a 2400’ reel, and this capacity can also be reached by
a DC6150 cartridge using QIC150 format. We are currently capable of writing both of these kinds
of tapes, and most installations that would be interested in our data can read one or the other.
Many installations, ourselves included, now use Exabyte tape drives for normal disk backup. These
drives write cartridges that hold 2.2 gigabytes and therefore could be used for the large traces. As
discussed in §2.1.3, we intend to cooperate with colleagues to develop a standard representation for
trace data.

As the resource collection grows, we see the need for using the NSFNET to distribute traces,
tools, and reference programs. Part of our proposal is to obtain funding to be able to gain access

16

to NSFNET. In this case, we would again use anonymous FTP (or similar tools) to accomplish
distribution.

Standard techniques for increasing program portability [46] should suffice to make the anal-
ysis programs available on a wide variety of hardware. The reference programs present a more
challenging problem because many of them depend on non-standard support packages. To make
such programs portable, we must either make the support packages portable or make the programs
adaptable [56] with respect to support packages. Both of these approaches are available to us, and
we will decide which to use on a case-by-case basis.

Various forms of trace data have begun to be collected. Initially, we have used relatively
unsophisticated tools, since we have not yet begun the tool development research. As the tracing
tools are developed the nature of the trace data will be more comprehensive, as described earlier
in the report.

The efforts for data collection and distribution will become production-oriented after the first
year of the project. The research in later years will result in new programs, tools, and data but
the mechanism for distribution will be relatively standardized.

The porting effort for reference programs will begin at the beginning of the second year of
the project. Some standardization will be attempted as the reference programs are collected, but
during the second and third years we will expend considerable effort to convert selected reference
programs to a portable computational platform.

2.3.4 Operating System Analysis

Our measurements will provide an enabling technology for studies of new operating system design
methodologies, and the choices necessary to target an operating system towards a specific applica-
tion class. In this particular case, we intend to use simulation models, trace-driven or derived from
our measurement data, to answer questions such as:

e Where is extra operating system implementation effort most likely to result in increased
application performance? Some examples of services that have shown promise of performance
benefits from being tailored to a particular application or class of applications include remote
procedure call [13], scheduling [64], and virtual memory management [1].

¢ Would the movement of some services typically associated with the operating system kernel
into user space improve performance? Alternatively, how could the interface between operat-
ing system mechanism modules and user-level policy modules be improved? This desirability
of doing this has been argued before, most notably by the Hydra [76], Eden[3], and Mach [1]
systems, but their motivation was flexibility, not performance.

e Do certain parts of the operating system need to interact more than they typically do now?
As an example, it will be possible to characterize the page reference behavior of a process
immediately before and after synchronization points, perhaps suggesting ways in which the
virtual memory and synchronization subsystems of the operating system should cooperate.
(If synchronization were performed outside the kernel, then this would point out what parts
of the virtual memory subsystem needed to be exposed outside the kernel as well.)

e Would it be advantageous for certain hardware exceptions to be handled directly by user
code? The idea is to give user policy modules direct control, although for security, some

17

of the mechanism needed to implement those policies might still be in the operating system.
Nevertheless, this would be more efficient than vectoring to the operating system, transferring
control to the user policy module, and then transferring control back to the operating system.
Plus, in some instances it might not be necessary to involve the operating system at all,
leading to significant overhead reduction. For example, dynamically-typed languages such as
Lisp can use an efficient trap mechanism to implement features such as generic arithmetic [33].
Our measurements would show which kinds of trap exceptions common enough to merit this
treatment.

Such questions take on more than merely academic significance with the advent of highly config-
urable operating systems such as Choices[18], where policies and mechanisms can be chosen at the
time the kernel is configured.

The operating system analysis develops results based on the tracing work, and is an underlying
motivator for the entire project. This research provides considerable feedback to the earlier phases,
so it begins at a relatively low level of effort early in the project and grows to a major effort in the
latter part of the work.

The measurements obtained in this study will also be used by the individual researchers to to
further there own specific research interests. In Appendix B, the related research projects of several
of the investigators are briefly reviewed.

3 Impact of the Proposed Research

The proposed research will have a large impact on a number of areas in computer science and
high-performance computation. The measurement data generated by this study will drive research
projects in memory cache, distributed system, operating system, compiler, and runtime system
design. This research will pave the way for making inexpensive, medium-grained ensemble systems
a competitive alternative to special-purpose supercomputers for scientific computation.

The distribution of reference programs and measurement data will obviate the need for every
researcher to establish and measure his or her own benchmarks. More importantly, the “science”
in Computer Science has sometimes been criticized for its lack of carefully controlled experimental
conditions and repeatability of results by different researchers. By establishing a standard collection
of portable parallel programs and traces, we will take an important step toward remedying this
situation.

Despite a large number of earlier studies of program behavior, we have found no study that has
done all of the following:

e Traced a significant number of programs.

®

Traced applications at a variety of levels.

Cross-correlated events between traces of distinct entities.

¢ Emphasized the distribution of program traces.

Furthermore, there exist few studies that address any of these points with regard to parallel and
scientific programs.

18

The parallel program testbed project is an ambitious undertaking supported by five principal
investigators (authors of this technical report) and their students and colleagues. The project is
expected to extend for four years, ultimately culminating in a continuum of applied studies of
system performance. At the time of the writing, the investigators are actively involved in the
research and in seeking funding to support the program.

19

4

Bibliography

References

(1]

5]

(6]
[7]
(8]
9]

[10]

AcCCETTA, M., BARON, R., BoLosky, W., GoLuB, D., Rasuip, R., TEVANIAN, A., AND YOUNG,
M. Mach: A New Kernel Foundation for UNIX Development. In Proc. 1986 Useniz Summer Conference
(1986), Usenix Foundation, pp. 93-112.

AcArwaL, A., SiTEs, R. L., AND HorowITZ, M. ATUM: A new technique for capturing address

traces using microcode. In Proceedings of the Thirteenth Annual International Symposium on Computer
Architecture (June 1986), pp. 119-127.

ALMES, G., BLACK, A., Lazowska, E., AND NoE, J. The Eden System: A Technical Review. IEEE
Transactions on Software Engineering SE-11, 1 (Jan. 1985), 43-58.

ANDERSON, T., AND Lazowska, E. Quartz: A Tools for Tuning Parallel Program Performance. In
Proc. ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (Boulder,
CO, May 1990), ACM, pp. 115-125.

ARAL, Z., AND GERTNER, I. Non-Intrusive and Interactice Profiling in Parasight. In Proc.
ACM/SIGPLAN Symposium on Parallel Programming: Ezperience with Applications, Languages, and
Systems (July 1988), ACM, pp. 21-30.

ARCHIBALD, J., AND BaER, J. L. Cache coherence protocols: Evaluation using a multiprocessor
simulation model. ACM Transactions on Computer Systems 4, 4 (November 1986), 273-298.

BaLL, J., BURKE, E., GERTNER, 1., LANTZ, K., AND RAsSHID, R. Perspectives on Message-based
Distributed Computing. In Proc. 1979 Networking Symposium (New York, 1979), IEEE.

BARKLEY, R., AND D.CHEN. CASPER the Friendly Daemon. In Proc.Summer 1988 USENIX Con-
ference (San Francisco, CA, June 1988), USENIX Association, pp. 251-261.

BEGUELIN, A. Deterministic Parallel Programming in Phred. PhD thesis, University of Colorado,
Department of Computer Science, Boulder, Colorado 80309-0430, 1990.

BEGUELIN, A., AND NuTT, G. A visual parallel programming language. Tech. rep., Department of
Computer Science - University of Colorado, Boulder, October 1990. Submitted for publication.

BEGUELIN, A. L., AND NutT, G. J. Collected papers on phred. Tech. rep., Department of Computer
Science - University of Colorado, Boulder, January 1991. Technical Report No. CU-CS-511-91.

BeLADY, L. A. A study of replacement algorithms for virtual storage computers. IBM Systems Journal
5, 2 (1966), 78-101.

BeRrsuAD, B. High Performance Cross-Address Space Communication. PhD thesis, University of
Washington, Seattle, WA, June 1990. Available as Department of Computer Science and Engineering
Technical Report No. 90-06-02.

Bersuap, B., Lazowska, E., aAND Levy, H. PRESTO: A System for Object-Oriented Parallel
Programming. Software Practice and Ezperience 18, 8 (Aug. 1988), 713-732.

Borag, A., KessLEr, R. E., Lazana, G., aND WaLL, D. W. Long address traces from RISC

machines: Generation and analysis. Tech. Rep. 89/14, Digital Equipment Corporation Western Research
Labortory, Palo Alto, CA, Sept. 1989.

BREWER, O., DONGARRA, J., AND SORENSEN, D. Tools to aid in the analysis of memory access
patterns for fortran programs. Technical Memorandum 77, Argonne National Labs, Mathematics and
Computer Science Division, June 1988. (available via netlib).

20

[17]
[18]

[19]

(33]

[34]

Cavrvanan, D., AND KENNEDY, K. Compiling programs for distributed-memory multiprocessors. The
Journal of Supercomputing 2, 2 (1988).

CAMPBELL, R., Russo, V., AND JOHNSTON, G. The Design of a Multiprocessor Operating System.
In Proc. USENIX C++ Workshop (1987).

CuEN, D., BARKLEY, R., AND LEE, T. P. Insuring Improved VM Performance: Some No-Fault Poli-
cies. In Proc. Winter 1990 USENIX Conference (Washington, D.C., Jan. 1990), USENIX Association,
pp. 11-22.

DeMERS, A., WEISER, M., Haves, B., BoEaM, H., BoBRow, D., AND SHENKER, S. Combining
generational and conservative garbage collection: Framework and implementations. In Conference
Record of the Seventeenth ACM Symposium on Principles of Programming Languages (January 1990),
pp. 261-269.

DEMEURE, I. M. A Model, ParaDiGM, and a Software Tool, VISA, for the Representation, Design and
Simulation of Parallel, Distributed Computations. PhD thesis, University of Colorado, Boulder, August
1989.

DEMEURE, I. M., AND NuTT, G. J. Collected papers on visa and paradigm. Tech. rep., Department of
Computer Science - University of Colorado, Boulder, August 1990. Technical Report No. CU-CS-488-90.

EGGERs, S., KEPPEL, D., KOLDINGER, E., AND LEvVY, H. Techniques for efficient inline tracing
on a shared-memory multiprocessor. In Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems (Boulder, CO, May 1990).

FITZGERALD, R., AND RasHID, R. The Integration of Virtual Memory Management and Interprocess
Communication in Accent. ACM Transactions on Computer Systems 4, 2 (May 1986), 147-177.

GrAHAM, S. L., KESSLER, P. B., AND McKUsIck, M. K. An execution profiler for modular programs.
Software—Practice and Ezperience 13 (1983), 671-685.

GRUNWALD, D. C. Heuristic Load Distribution in Circuit Switched Multicomputer Systems. PhD thesis,
University of Illinois at Urbana-Champaign, Department of Computer Science, August 1989.

GRrRUNWALD, D. C., NazieF, B. A. A., AND REED, D. A. Empirical comparison of heuristic load
distribution in point-to-point multicomputer networks. In Proceedings of the Fifth Distributed Memory
Computing Conference (1990).

GruNWALD, D. C., AND REED, D. A. Benchmarking hypercube hardware and software. In Hypercube
Multiprocessors (1987), M. Heath, Ed., Society for Industrial and Applied Mathematics, pp. 169-177.

HALSTEAD, JR., R. H. Multilisp: A language for concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems 7, 4 (October 1985), 501-538.

HupAk, P. A semantic model of reference counting and its abstraction. In Conference Record of the
1986 ACM Symposium on LISP and Functional Programming (Cambridge, MA, June 1986), pp. 351
363.

Jamieson, L. H., GannNoNn, D. B., aND DouagLas, R. J., Eds. Characterizing Parallel Algorithms.
MIT Press Series in Scientific Computation. MIT Press, 1987, ch. 4.

JAMIESON, L. H., GANNON, D. B., AND Dougras, R. J., Eds. Programming Paradigms for Nonshared
Memory Parallel Computers. MIT Press Series in Scientific Computation. MIT Press, 1987, ch. 1.

JouNsoN, D. Trap architectures for Lisp systems. In Proceedings of the 1990 ACM Conference on
LISP and Functional Programming (Nice, France, June 1990), pp. 79-86.

KALE, L. V., AND SHU, W. The Chare-Kernel language for parallel programming: A perspective.
Tech. Rep. UITUCDCS-R-89-1451, University of Illinois at Urbana-Champaign, Department of Computer
Science, 1304 W. Springfield, Urbana, II, May 1989.

21

(35]
[36]
(37]

(38]

(39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]

[53]

KEesSSLER, R., AND LivNEY, M. An analysis of distributed shared memory algorithms. Tech. Rep.
TR-825, University of Wisconsin, Dept. of Computer Science, Feburary 1989.

Kuck, D. J., AND Papua, D. A. High-speed multiprocessors and their compilers. In Intl. Conference
on Parallel Processing (August 1979), IEEE, pp. 5-16.

Larus, J. Abstract execution: A technique for efficiently tracing programs. Tech. Rep. 912, University
of Wisconsin, Dept. of Computer Science, Feburary 1990.

LEUTENEGGER, S., AND VERNON, M. The Performance of Multiprogrammed Multiprocessor Schedul-
ing Algorithms. In Proc. ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (May 1990), pp. 226-236.

L1, K., AND HUDAK, P. Memory coherence in shared virtual memory systems. In Proceedings of the
Fifth Annual ACM Symposium on Principles of Distributed Computing (1986), pp. 229-239.

L1, K., AND HuDAK, P. Memory coherence in shared virtual memory systems. ACM Transactions on
Computer Systems 7, 4 (November 1989), 321-359.

L1, K., AND SCHAEFER, R. A hypercube shared virtual memory system. In The 1989 Proceedings of
the Intl. Conference on Parallel Processing (1989), pp. I-125 — I-132.

MAJUMDAR, S., EAGER, D., AND BuNT, R. Scheduling in Multiprogrammed Parallel Systems. In Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (May 1988).

MaLoNny, A. D., REED, D. A, AND W1sHOFF, H. Performance Measurement Intrusion and Pertur-
bation Analysis. Tech. Rep. CSRD No. 923, Center for Supercomputing Research and Development,
October 1989.

MILLER, B., CLARK, M., HOLLINGSWORTH, J., ET AL. IPS-2: The second generation of a parallel

program measurement system. IEEE Transactions on Parallel and Distributed Systems 1, 2 (April
1990), 206-217.

MoHR, E., KRANZ, D., AND ROBERT HALSTEAD, J. Lazy task creation: A technique for increasing the
granularity of parallel programs. In Proceedings of the 1990 ACM Conference on LISP and Functional
Programming (Nice, France, June 1990), pp. 185-197.

MuxwoRTHY, D. T., Ed. Programming for Software Sharing. D. Reidel, Dordrecht, Holland, 1983.

NEeLsoN, R. A Performance Evaluation of a General Parallel Processing Model. In Proc. ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems (May 1990), pp. 13-26.

NEeLsoN, R., AND TANTAWI, A. Approximate Analysis of Fork/Join Synchronization in Parallel Queues.
IEEE Transactions on Computers 37 (1988), 739-743.

Nog, J. D., anp NutT, G. J. Validation of a trace-driven cdc 6400 simulation. In AFIPS Proceedings
of the Spring Joint Computer Conference (1972), vol. 40, pp. 749-757.

Nutt, G. J. Computer systems monitors. IEEE Computer 8, 11 (November 1975), 51-61.

NuTT, G. J. A Simulation System Architecture for Graph Models. In Advances in Petri Nets 90,
G. Rozenburg, Ed. Springer Verlag, 1990. To appear.

Nurr, G. J., BEGUELIN, A., DEMEURE, 1., ELLioTT, S., MCWHIRTER, J., AND SANDERS, B.
Olympus: An Interactive Simulation System. In 1989 Winter Simulation Conference (Washington,
D.C., December 1989), pp. 601-611.

OUSTERHOUT, J. Scheduling Techniques for Concurrent Systems. In Proc. 3rd Intl. Conf. on Distributed
Computing Systems (Oct. 1982), pp. 22-30.

22

(54]

[62]

[63]

[64]

[65]

[68]

[69]
[70]

[71]

QusTeErRHOUT, J., CosTa, H. D., HarRISON, D., KunzE, J., KUPFER, M., AND THOMPSON, J. A
trace-driven analysis of the UNIX 4.2 BSD file system. In Proceedings of the Tenth ACM Symposium
on Operating System Principles (Orcas Island, WA, December 1985), ACM, pp. 15-24.

PorLycHrONOPOULOS, C. Multiprocessing versus Multiprogramming. In Proc. Int. Conf. on Parallel
Processing, Volume II (1989), pp. 223-230.

PooLE, P. C., AND WAITE, W. M. Portability and Adaptability, vol. 30 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, 1973, pp. 183-277.

PoweLL, M., AND MILLER, B. Process migration in DEMOS/MP. In Proc. 9th ACM Symp on Op.
Sys. Principles (1983), pp. 110-110.

R. L. MarTsoN, J. Gecsel, D. R. Svutz, AND I. L. TRAIGER. Evaluation techniques for storage
hierarchies. IBM Systems Journalg 2 (1970) 78-117.

R. ScHNABEL, E. A. Effective Use of Parallel and Distributed Computing. Tech. rep., Department of
Computer Science - University of Colorado, Boulder, 1989. NSF CISE II Proposal.

RAMKUMAR, B., AND KALE, L. V. Compiled execution of the reduce-or process model on multipro-
cessors. Tech. Rep. UTUCDCS-R-89-1513, University of Illinois at Urbana-Champaign, Department of
Computer Science, 1304 W. Springfield, Urbana, Il, May 1989.

RosING, M., AND SCHNABEL, R. An overview of DINO—a new langauge for numerical computation
on distributed memory multiprocessors. Tech. Rep. CU-CS-385-88, University of Colorado, Department
of Computer Science, Boulder, CO, March 1988.

RuporpH, D. C. Performance Instrumentation for the Intel iPSC/2. Master’s thesis, University of
Hlinois at Urbana—Champaign, Department of Computer Science, July 1989.

RuporpH, D. C., AND REED, D. A. CRYSTAL: Operating System Instrumentation for the Intel
iPSC/2. In Proceedings of the Fourth Conference on Hypercube Concurrent Computers and Applications
(Monterey, CA, March 1989).

ScoTT, M., LEBLANC, T., AND MARSH, B. Multi-Model Parallel Programming in Psyche. In Proc.
ACM/SIGPLAN Symposium on Principles and Practice of Parallel Programming (Mar. 1990), ACM,
pp. 70-78.

Sevceik, K. Characterizations of Parallelisin in Applications and Their Use in Scheduling. In Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (May 1989),
pp- 171-180.

SmiTH, A. J. Cache memories. ACM Computing Surveys 14, 3 (September 1982), 473-530.

STUNKEL, C. B., AND Fuchs, W. K. TRAPEDS: Producing traces for multicomputers via execution
driven simulation. In Proceedings of the 1989 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (May 1989), pp. 70-78.

TERMAN, F. W. A study of interleaved memory systems by trace driven simulation. In Proceedings of
Sympostum on Simulation of Computer Systems (1976), pp. 3-9.

TorTY, B. ForTrace Users Manual. Univ. of Illinois, 1304 W. Springfield, Urbana, 11, 1990.

TowsLEY, D., RoMMEL, C., AND STANKoOVIC, J. Analysis of Fork-Join Program Response Times on
Multiprocessors. IEEE Transactions on Parallel and Distributed Systems 1, 3 (July 1990), 286-303.

TUCKER, A., AND GUPTA, A. Process Control and Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors. In Proc. Twelfth ACM Symposium on Operating Systems Principles (Dec.
1989), ACM, pp. 159-166.

23

[72] WAGNER, D. Conservative Parallel Simulation: Principles and Practice. PhD thesis, University of
Washington, Seattle, WA, 1989. Available as Department of Computer Science and Engineering Tech-
nical Report 89-09-03.

[73] WAGNER, D. A Methodology for the Evalution of Multiprocessor Scheduling Policies. NSF Proposal,
1990.

[74] WAGNER, D. Discussion of interaction between operating systems and runtime systems for parallel
applications. Private communication, August 1990.

[75] WOLFE, M. Semi-automatic domain decomposition. In Proceedings of the Fourth Conference on
Hypercube Concurrent Computers And ApplicationsVolume I (1989), ACM.

[76] WuLF, W., CoHEN, E., CorwiN, W., JoNES, A., LEVIN, R., PiErsoN, C., AND PoLLACK, F.
HYDRA: The Kernel of a Multiprocessor Operating System. Communications of the ACM 17, 6 (June
1974), 337-345.

[77] ZaHORIAN, J., LAZowska, E., AND EAGER, D. Spinning Versus Blocking in Parallel Systems with

Uncertainty. In Proc. International Symposium on Performance of Distributed and Parallel Systems
(Dec. 1988).

[78] ZaHORIAN, J., Lazowska, E., AND EAGER, D. The Effect of Scheduling Discipline on Spin Overhead
in Shared Memory Parallel Systems. Tech. Rep. 89-07-03, University of Washington, Seattle, WA, July
1989.

[79] ZanORIAN, J., AND McCANN, C. Processor Scheduling in Shared Memory Multiprocessors. In Proc.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (May 1990),
pp. 214-225.

[80] ZAvas, E. Attacking the process migration bottleneck. In Proceedings of the Eleventh ACM Symposium
on Operating Systems Principles (Austin, TX, November 1987), ACM, pp. 13-24.

[81] ZorN, B. Comparative Performance Evaluation of Garbage Collection Algorithms. PhD thesis, Uni-
versity of California at Berkeley, Berkeley, CA, November 1989. Also appears as tech report UCB/CSD
89/544.

[82] ZorN, B., AND HILFINGER, P. A memory allocation profiler for C and Lisp programs. In Proceedings
of the Summer 1988 USENIX Conference (San Francisco, CA, June 1988).

24

A Reference Program Descriptions

Perfect Club is a suite of FORTRAN programs intended to be representative of actual commercial,
scientific or engineering programs. As distributed, the programs are written in standard,
sequential FORTRAN. We will use publicly available parallelization tools such as ParaScope
and Parafrase-II, or commercial tools such as KAP, to produce parallel versions of the Perfect
Club suite.

Shallow is a FORTRAN program that models shallow water equations using finite difference meth-
ods. The shallow water code was originally written by P. Swartztrauber of NCAR; we will
use a parallel version due to R. Sato, also of NCAR. The program has appeared in the
book, “Multiprocessing in Meteorological Models,” eds. G. R. Hoffman, and D. F. Snelling,
Springer-Verlag 1988, pp. 125-196.

FORCE Suite is a collection of programs collected by Harry Jordan at the University of Colorado.
They represent a broad range of kernels of scientific programs which have been modified for
parallelism. The FORCE language was developed by Dr. Jordan to provide a portable parallel
programming language for scientific applications; it is a superset of FORTRAN.

Finite Element Solver is a large (100,000+ lines) FORCE program written by Dr. Charbel
Farhat at the University of Colorado at Boulder. We will use the version developed for the
Cray supercomputer. Other versions exist for the Intel iPSC/2 and Connection Machine.

Weather & Pollution are a set of FORTRAN programs that model weather conditions and pol-
lution dispersal. These models are used by the Environmental Protection Agency to predict
effects of acid rain and dispersion of other pollutants. These are a suite of sequental FORTRAN
programs that will be parallelized.

Pthor is a parallel, distributed time event-driven logic simulator written in the C language by
Larry Soule at Stanford. It has frequently been used as a reference parallel program in
studies of distributed cache simulations. The program uses a widely ported set of tasking
primitives.

LocusRoute is a parallel wire routing program written in the C language by Jay Rose, formerly
of Stanford, and currently at Toronto. This program has also been used to study distributed
cache systems, is relatively portable and widely used. Numerous data sets describing layouts
are available.

Puppy is a parallel program for placement of macro-cell circuits which uses a parallel version of
simulated annealing, developed by Andrea Casotto at Berkeley. This program has been used
in other studies at the Univ. of Washington.

MaxFlow is a parallel program to solve the maxflow problem in flow networks. The program is a
parallel version of the algorithm proposed by Goldberg and Tarjan. It was written in the C
language by Francisco Javier Carrasco at Stanford University.

MinCut finds the minimum cutset of a graph using simulated annealing. It was written in the C
language by Todd Mowry and John Dykstal of Stanford.

25

Mul-T is an implementation of a parallel Lisp language system. The Mul-T system extends the
T language (a dialect of Scheme) with multiprocessing features, including futures. Mul-T
is the work of Robert Halstead at DEC Cambridge Research Lab, who has cooperated with
researchers from the MIT ALEWIFE project. Mul-T currently runs a handful of parallel Lisp
programs, mostly solving computer science problems.

Synapse is a parallel discrete-event simulation environment that uses conservative synchronization
mechanisms. Synapse was implemented by one of the PIs (Wagner) when he was a graduate
student at the University of Washington [72].

VM_pRAY is a distributed ray-tracing application for the Intel iPSC/2 that uses software virtual
memory to cache objects being ray-traced in local memories.

Presto Suite is a collection of programs that demonstrates the features of the Presto parallel run-
time system [14]. The Presto Suite was written in C++ by John Bennett of Rice University.

26

B Research Interests of Individual Investigators

B.1 Process Placement (Grunwald)

The classical model of uniformly accessible shared memory is a useful, albeit fallacious, abstraction
for the construction of parallel programs. Bus-based systems are limited in their parallelism and
memory bandwidth. Network-based computers, or multicomputers, are more scalable, yet suffer
from a complex programming model.

My previous research [26, 27] focused on the initial placement of processes in applications
explicitly tailored for multicomputers. I am currently expanding this research in three areas:

1. Placement of explicit process-level programs.
2. Loop-level scheduling on multicomputers.

3. Network Virtual Memory polices for scientific applications.

Placement of explicit process-level programs. In my thesis research, I simulated the exe-
cution of eight program traces using a simulated modern multicomputer system with a variety of
distributed load distribution strategies. Some programs traces were captured from actual programs
while others were synthetic workloads. The parameters for the synthetic workloads were derived
from a benchmark study [28] of existing multicomputer systems.

My study was complicated because there are few workload datasets representing the execution
of actual multicomputer programs. Hence, I used both captured and synthesized workloads. The
Chare Kernel [34] is a portable environment for distributed computation using chares, or small, very
lightweight process with restricted control flow. The total number of processes and the execution
time of each process are unknown at compile time. I used four captured workloads from Chare
Kernel programs; two were C programs and two were compiled ROPM Prolog [60] programs. The
externally observable behavior of each Chare Kernel process was recorded in a log by executing the
programs on a shared memory multiprocessor. Computation time was measured using a microsec-
ond timer and scaled to simulate a processor executing approximately ten million instructions per
second. The synthesized workloads were generated from abstract descriptions of program behavior.
These workloads provide a range of process behavior absent in the captured workloads.

Although the range of process activities (total computation time, total number of messages sent
and average message size) spans two orders of magnitude, the model programs may not be truely
representative of multicomputer programs. As part of my NSF Research Initiation Grant, I am
currently collecting additional multicomputers programs and program traces; support from grant
would facilitate gathering additional traces and sharing those traces with others.

Loop-level scheduling on multicomputers. Multicomputers are commonly used for scientific
applications. The process dependence structure of such computationly intensive programs must be
clarified for studies of process distribution and redistribution. Programs with small processes, such
as those traced in my thesis, benefit from process distribution, yet can not benefit from process
redistribution; the time to redistribute processes will outweigh the time needed to finish the com-
putation for most processes. Although multicomputer operating systems provide less functionality
than traditional distributed operating systems, the time to create and destroy processes may be

27

similar. TLi [41] measured the operating system overhead of context switching and communica-
tion on the Intel iPSC/2. His measurements do not differ dramatically from those of traditional
operating systems, where process migration was found to be expensive [57, 80].

In part, the problem is with the programs being traced. The goal of my original distribution
study was to distribute highly parallel languages, such as parallel functional or logic languages.
Recent research [17, 75] has examined the automatic translation of FORTRAN programs to dynamic
process models for multicomputers. Process distribution mechanisms should be applicable to these
numerically intensive programs using runtime scheduling of loop iterations.

Thus, I propose to collect program traces from a wider range of program models and characterize
the computation and communication behavior of those programs. Due to the paucity of program-
ming environments supporting dynamic process creation for multicomputers, the measurements will
come from both multicomputer environments and shared-memory multiprocessor environments. In
particular, I am constructing tools to analyse FORTRAN programs that have been transformed
by PARAFRASE [36] to execute on parallel systems; these programs express parallelism using DOALL
and DOACROSS loops.

Network Virtual Memory polices for scientific applications. Several researchers [39, 41,
35] have investigated network virtual memory or distributed shared memory and have proposed to
use such mechanisms to simplify the use of multicomputers. Employing such software smoke and
architectural mirrors, programs can be made to run on architectures with a highly non-uniform
memory hierarchy. However, multicomputers are commonly used for scientific applications, which
are typically performance driven programs using large amounts of memory and I/0. For these
applications, the utility of network virtual memory must be balanced against any commensurate
performance degradation.

We have constructed a generalized distributed cache simulator for networks supporting relatively
large (page sized) messages. We will use SPAE traces to drive the simulations, varying invalidation
policies, transport mechanisms and mappings of arrays to memory to examine their effects on total
application performance.

28

B.2 Interactions Between the OS and Runtime System (Zorn)

It is generally acknowledged that writing parallel programs is a difficult task made more difficult
by the abundance and variety of parallel hardware. I believe that more sophisticated program
language runtime systems can reduce the effort of writing parallel programs while at the same time
improving the performance of these programs on a variety of parallel computers.

One approach to providing parallelism is to add language features the require support from the
runtime system. Futures, as suggested by Halstead [29], allow the programmer to explicitly fork
a computation whose value is implicitly joined by the runtime system at a later time. Lazy task
creation has been suggested as an implementation technique for futures [45]. While these techniques
take advantage of a complex runtime system to improve the performance of parallel programs, they
also require changes to existing programming languages to implement.

Another approach to improving performance is to make the runtime system more sophisticated
without changing the language definition. Performance tools such as gprof [25] and mprof [82] take
this approach. My research will focus on improving the performance of parallel programs using
sophisticated runtime systems without requiring changes to the definition of application implemen-
tation language. In particular, three aspects of performance improvement will be considered.

Predicting Task Lifespans. Excessive parallelism can significantly reduce performance of
a parallel application if there are far more tasks than processors. A more desirable situation
arises when there are as many large tasks executing as there are processors. If the creation of
short-lived tasks can be predicted, they can also be eliminated. By identifying creation sites, the
runtime system can attempt to correlate task lifespan with creation sites. Various researchers
have used different techniques to identify dynamic program event sites, including using the static
code location [30], the current stack pointer [20], a single dynamic caller [25], and the entire
caller chain [82]. My research will use a truncated caller chain in a method I call backtrace site
identification (BSI), which is a general technique for identifying the locations of dynamic program
events.

The system call traces collected in this study, including task creation information and function
call information, will allow me to study the correlation between task creation site and lifespan, and
determine if this information can be used to reduce the creation of small tasks.

Adaptive User-Managed Virtual Memory Policies. Using the same technique of back-
trace site identification, I can identify the program sites that account for the most page faults for
a given memory size. These sites are likely to be places in the program where memory use as-
sumptions break down. For example, operating systems generally assume that recently referenced
pages are the most likely to be referenced again, and implement a pseudo-LRU replacement policy.
However, in a particular program a function may sequentially scan a large array data structure.
The best replacement policy in this case is last-in, first-out. By identifying sites where the stan-
dard policy fails, the runtime system can provide the information to make an adaptive replacement
policy more effective than the default policy.

To accomplish this research, address reference traces will need to be correlated with program
function call information. Larus’ Abstract Execution (AE) tool provides such information [37].
While traces from parallel programs are not essential for this investigation, parallel programs present
substantial challenges to conventional memory management policies because their behavior often
differs from the time-shared program workload that traditional policies were designed to handle.

29

Negotiating with the Operating System. A final component of the research will be to
consider possible interactions between the operating system and the program via the language
runtime system. Current parallel languages, such as Schnabel’s DINO [61], require that the compiler
determine the degree of parallelism expected at runtime. This approach is effective when parallel
hardware is used by a single user and the compiler knows how many processors will be available
to the program. A more realistic scenario is that the hardware is being time-shared, and that the
number of processors available to the program will depend on the workload of the multiprocessor.
In this scenario, the degree of parallelism should not be decided until runtime. Furthermore, a
dialogue should be carried out between the operating system and runtime system.

Zahorajan and McCann investigate the performance of a system where the number of processors
available to an application changes during its execution [79]. Their results indicate that dynamic
scheduling of processors to applications is superior to static scheduling. Wagner is considering
an even more interactive algorithm, where the operating system provides the application with an
option to accept a particular processor allocation, or to wait for possibly more processors later [74].
This model of the operating system, where applications have a role in determining resource allo-
cation, differs from the traditional one where the operating system is completely responsible. The
traditional role is effective when runtime systems are simple, because it reduces the work required
of the programmer, who does not necessarily want to make resource allocation decisions. With
more complex runtime systems, the programmers job is still easy because the runtime system can
interact with the operating system in deciding how the schedule significant resources.

In this phase of my research, I will investigate performance improvements associated with dy-
namically determining the degree of parallelism an application needs (instead of having it done
statically by the compiler). Also, in cooperation with other researchers on this grant, I will inves-
tigate the potential benefits of different operating system/runtime system dialogues.

30

B.3 Workloads for Multiprocessor Scheduling Investigation (Wagner)

As shared-memory multiprocessors become less expensive, they become attractive alternatives to
conventional computer architectures for many applications. Presently, shared-memory multipro-
cessors are used chiefly in two fundamentally different ways: as dedicated batch servers for parallel
computations, or as high-throughput timesharing machines for sequential computations. Most
significantly, shared-memory multiprocessors are seldom used to timeshare parallel computations,
because there are few existing scheduling policies that are adequate for this type of use. Time-
sharing parallel computations on a multiprocessor is desirable for exactly the same reason that
timesharing sequential computations on a uniprocessor (or multiprocessor) is desirable: to increase
processor utilization.

However, timeshared scheduling of parallel computations is more difficult than scheduling se-
quential computations because there are so many more parameters involved. In addition to the
percent of a given processor’s time to allocate to a particular job, there are also these: the number
of processors to allocate to a job; whether or not the allocation can be changed during the lifetime
of the job; whether or not to co-schedule the tasks that make up a job [53]; whether an applica-
tion is using spinning or blocking for synchronization purposes [77, 78]; whether or not lightweight
“threads” are being multiplexed on top of operating system tasks by the user level [64]; etc. Be-
cause of these complications, there may be a substantial benefit to widening the interface between
the user level and the operating system level, to allow the application level to interact (negotiate)
with the scheduler — to request resources, provide hints, etc.

Some of the research issues in this area include: how to trade off the number of processors
allocated with the amount of time allocated; how to encourage the use of parallelism; how to prevent
greedy users from acquiring an unfair share of the processing resources, and how to reconcile this
goal with the immediately preceding one; how to adapt scheduling to a changing load; how to
identify process thrashing; and how to widen the interface between the application level and the
operating system level.

This situation has fostered a recent spate of research into multiprocessor scheduling policies
[42, 38, 47, 55, 65, 70, 71, 79]. Unfortunately, while proposals for new scheduling policies are
plentiful, there does not seem to be a well-developed methodology for evaluating their performance.
Iidentify two aspects of current methodology that are flawed: unrealistic workloads and evaluation

metrics that are not appropriate for the multiprocessor environment. The consequences of this are
threefold:

1. Synthetic workloads that are not realistic may be driving the investigation of scheduling
policies whose benefits are illusory.

2. The lack of standard workloads for policy evaluation makes the meaningful comparison of
results from different research groups difficult if not impossible.

3. Policies that have been identified as good performers may actually be undesirable for some
multiprocessor environments, because they strongly discourage parallel computation.

The first two of these problems can be effectively addressed using the data and resources of the
Testbed project described previously in this report. The third point is discussed in more detail
in [73].

31

In the discussion that follows, I define a task to be the smallest schedulable unit of computation,
and I define a job as a computation that consists of some number of tasks, possibly with precedence
constraints between the tasks. I assume that there are no precedence constraints between jobs.

Workload Parameterization Most previous work in this area has analyzed the performance of
scheduling algorithms on synthetic workloads. A notable exception to this is the study by Tucker
and Gupta, which utilized real benchmark programs on a production multiprocessor and operating
system [71]. The use of benchmarking to evaluate system-level software such as a scheduler is fairly
uncommon because of the large amount of implementation effort required for a comparative study.
Furthermore, the results of a benchmarking study are difficult to extrapolate to other hardware
and software platforms. For these reasons, most performance studies of multiprocessor scheduling
policies have used analytic or simulation techniques, which leads to consideration of synthetic
workloads.

For analytic studies, synthetic workloads are clearly necessary, and certain assumptions must
be made for the sake of mathematical tractability. Examples of such assumptions are exponentially
distributed task times, geometrically distributed number of phases in a fork-join job, etc. For
simulation studies, however, there is much greater latitude in the parameterization of the workload,
and one should endeavor to make the workload as realistic as possible. In fact, it would be feasible
to drive a simulation from traces of actual parallel programs, as is commonly done in cache and
virtual memory performance studies,? although this has not been done to my knowledge.

Proceeding under the assumption that synthetic workloads are a “necessary evil”, it is then
necessary to choose the types of jobs in the workload and the characteristics of each of those job
types. Examples of job types are fork-join [42, 47, 48, 70, 79], static task graph (of which fork-join
is a special case) [79], and randomly synchronizing tasks [38]. The parameterization of each of
these job types is no simple matter. Parameters that must be chosen may include: the distribution
of the number of tasks in a job; the distribution of total job demand; the correlation between
number of tasks and job demand, if any; the distribution of the number of phases in a fork-join
job, and the number of tasks in each phase; the distribution of the the inter-synchronization time
for randomly synchronizing tasks; the overhead of context switching; and so forth. The problem is
that while each of these job types seems realistic enough, there is no assurance that a particular
parameterization of one of them bears any resemblance to those encountered in a real workload. I
feel very strongly that synthetic workloads that are not realistic may be driving the investigation
of scheduling policies whose benefits are largely illusory.

My goal for this portion of the project is to formulate synthetic workloads that I can be confident
are representative of real workloads. My strategy will be to statistically analyze the trace data
obtained from the Testbed to produce parallel program profiles that can be used to parameterize
stochastic simulations. The measurement data provided by the Testbed will also allow me to drive
simulations directly from program traces to validate the fidelity of the profiles.

Workload Standardization Since nearly every study uses a different workload, its results are
difficult, if not impossible, to compare to others. For example, Leutenegger and Vernon found that

2T do not propose the use of memory address traces for this purpose, which contain far too much information.
A much less detailed trace, containing only the amount of computation between synchronization points, is all that
would be required.

32

round-robin policies outperformed first-come-first-served /run-to-completion, whereas Zahorjan and
McCann found exactly the opposite [38, 79].

I intend to make the traces and profiles produced by this research available on request to
other researchers in the performance analysis community. The media distribution infrastructure
developed by the Testbed project will greatly facilitate this task. It is hoped that eventually these
traces and profiles will will become commonly-enough used to allow comparisons of results across
different studies.

33

B.4 Graph-Driven Program Performance (Nutt)

The Olympus projects have addressed several facets of parallel programming, assuming that the
computation has been specified as a formal graph model. After briefly describing the spectrum
of individual projects, we identify the relationship between this testbed project and the Olympus
projects.

Olympus Architecture. Olympus systems are distributed, interactive, visual systems for cre-
ating, manipulating, storing, and exercising formal graph models [51]. An architecture for such
systems has been developed to support various graph models. The architecture has been shown to
be useful in that it addresses several specific issues in such systems:

1. Olympus systems are modeless. All of the system’s facilities are available to the user at all
times.

2. Parts of the system that are concerned with the graph model syntax and semantics are
implemented as distinct modules (processes) in the architecture. This allows the user interface
to the system to be largely independent of the model semantics.

3. Olympus systems support multiple users simultaneously. If one user modifies the graph model,
then all users detect the modification at the same time.

4. Graph models can have sophisticated interpretations in a wide variety of languages. Olympus
systems will execute those interpretations upon the command of the user.

5. Olympus system are easily extensible so that modules (processes) can be added to perform
model-specific analysis.

Current work on the architecture is focused on facilities to reuse the architecture for radically
different formal graph models.

BPG-Olympus Modeling System. The “charter” instance of the Olympus architecture is the
BPG-Olympus modeling system [52]. This system is an interactive, distributed modeling system
based on bilogic precedence graphs — a formal graph model similar in representative power to
predicate-transition (interpreted Petri) nets. The system has been used to explore concepts of such
systems, and to support simulation studies of other researchers.

PN-Olympus Modeling System. This instance of the Olympus architecture is an adaptation
of the BPG-Olympus system to interpreted Petri nets. It is being used as a support tool for
constructing various performance models.

ParaDiGM Modeling System. ParaDiGM is a two-level modeling system intended to describe
computations for distributed memory systems [21, 22]. The goal of this study was to provide
computer support to the distributed programmer that would allow him or her to experiment with
various process partitions, and to be able to understand the impact of each strategy on the ultimate
performance of the resulting implementation. The work culminated in a prototype modeling system,
loosely based on the Olympus architecture.

34

Phred Parallel Programming System. Phred is a visual parallel programming language di-
rected at application programmers [9, 11]. The goal of the Phred project was to derive a parallel
programming language, based on a formal graph model, that could be analyzed for possible nonde-
terministic operation. The supporting system is based on the Olympus architecture, and allows the
user to develop a Phred program as an annotated graph model. The model is parsed and analyzed
in parallel with its construction, using a nonintrusive critic that is distinct from the graph editor.

Adaptive Load Balancing. This aspect of the study is in its formative stages, and is the most-
closely related to the testbed effort. The basic idea is to assume that a computation has been
specified as a directed graph model of the general form of an annotated precedence graph or Petri
net. The graph model generally determines the order in which subcomputations are scheduled —
based on control or data flow. The annotations associated with each node in a graph define the
detailed subcomputation.

Given that a computation has been defined by an annotated graph model, then one could dis-
tribute the execution of the corresponding program by assigning different nodes to different proces-
sors. (This is analagous to Grunwald’s process placement, but is based on different assumputions
about the program specification than he uses.) The assignment might be static, dynamic, or
dynamic-adaptive. Static assignment is straight-forward: the strategy for distribution is based on
observable properties of the graph. Dynamic assignment suggests that runtime properties are used
to adjust the assignment as the program executes; we emphasize the the importance of detecting
the balance of work on the assigned processors by concentrating on dynamic-adaptive techniques
for balancing the work.

The strategy that will be followed in this study is to ensure that the entire annotated graph
model (program) is easily-accessible to each processing node, e.g., by providing each with a copy
of the model. The state of the computation is represented by the distribution of tokens across
the graph model; this distribution is partitioned across the processors in the system so that the
processor that has been assigned node i also maintains the status of the computation at node i. In
this case, process migration is accomplished by migrating the status of a node from one processor
to another.

Synchronization among processors is determined by the flow of tokens among processors as
dictated by the graph model. Whenever a processor is idled, then there are no tokens in the
nodes assigned to the processor. The idle processor can only receive tokens — and more work - by
receiving tokens from the “upstream” processors. Thus an idle processor might be able to adapt to
the existing load conditions by assuming tokens that are queued on nodes in an upstream processor.

This is the general idea that we will pursue for the adaptive load balancing study. The study
will make considerable use of the Olympus architecture for modeling the specific strategies, and
possibly as the basis of a implementation.

Olympus and the Testbed Study. The testbed study can be used to observe properties of
program behavior at various levels of detail. In partcular, the traces can be made at abstract levels
corresponding to basic blocks of computation. These are natural “subcomputations” that can be
mapped to nodes in a directed graph. Our intent is to use the trace date to define directed graph
models of observed computations, then to use those models to drive the load balancing study.

35

The continuing architectural work is aimed at suporting a wide class of graph models; the load
balancing work requires that a graph model be used to define the computation. The testbed traces
can be used to derive a class of directed graph models. Thus the steps in this project are to:

1. Tailor the tracing tools so that they produce trace information from which an appropriate
subcomputation graph can be inferred.

2. Define the formal graph model that can be inferred from the trace and which can be used for
the load balancing study.

3. Create an Olympus instance that supports the derived graph model.

4. Explore adaptive load balancing strategies in the Olympus instance.

As a practical matter, the trace information can be abstracted to synthetic programs, based on
the signatures of different classes of programs. Thus, a generated set of event traces of synthetic
programs can be used in lieu of actual program traces, provided that the synthetic programs are
representative of the actual programs.

36

