Architecture-Independent Parallel Query Evaluation
In Volcano

Goetz Graefe
Diane Davison

CU-CS-500-90

o
CLlfi’jTUmiversity of Colorado at Boulder
- DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Architecture-Independent Parallel Query Evaluation
in Volcano

Goetz Graefe, Diane Davison

CU-CS-500-90 November 1990

Department of Computer Science
University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309-0430

(303) 492-7514
(303) 492-2844 Fax
graefe@boulder.colorado.edu

Architecture-Independent Parallel Query Evaluation in Volcano
Goetz Graefe, Diane Davison

University of Colorado at Boulder

Abstract

To investigate the tradeoffs of shared-memory and distributed-memory parallel computer architectures for
database query evaluation, we have designed and implemented a query execution system called Volcano.
Its exchange operator shields the data manipulation operators from all parallelism issues, thus encapsulat-
ing parallelism. It has recently been extended to support not only shared-memory but also distributed-
memory and hierarchical architectures, i.c., a closely-tied group of shared-memory machines. In this
report, we detail design and implementation of the operator, report on performance observations, and argue
that the parallel database server of the future should be a modular hierarchical design.

1. Introduction

From a large number of research projects and their benchmarks, e.g. [4, 5, 13-15, 19, 30, 31, 33, 39,
43, 45, 46, 49, 51, 53, 59, 60, 64, 68], it is obvious that database query evaluation can benefit significantly
from parallel processing. However, it is not clear which of two computer architectures is best suited for
database systems. The strongest arguments for shared-memory systems are that they allow fast and cheap
communication, synchronization, and load balancing; the arguments for distributed-memory systems is that
they are scalable and can avoid bottlenecks due to bus saturation. What, then, is the best architecture to

use, or what circumstances determine the best architecture?

In order to investigate this question experimentally, we have designed and implemented a query
evaluation system called Volcano that allows parallel execution of a large set of operators on either archi-
tecture [32]. Due to separation of data manipulation and control of parallelism, only one, novel operator
deals with parallelism issues; all other operators (which could be called the "work" operators, e.g., file
scan, sort, and join) were designed, implemented, debugged, and tuned in an easy and familiar single-

process environment and then parallelized by combining them with this new operator.

All operators are implemented in the iterator paradigm, also called lazy evaluation, demand-driven
dataflow, or synchronous pipelines. This means that each operator is realized through three functions
called open, next, and close. Iterators can be nested in complex trees or plans in which each operator is
scheduled by its consumer and schedules its producer or producers by means of calls to these procedures,

making query evaluation in a single process self-scheduling with minimal overhead and therefore very

efficient.

The module responsible for parallel execution and synchronization is called the exchange iterator in
Volcano. Notice that it is an iterator with open, next, and close procedures; therefore, it can be inserted at
any one place or at multiple places in a complex query tree. Figure 1 shows a complex query execution
plan that includes data processing operators, i.c., file scans and joins, and exchange operators. The
exchange operator can be freely combined with all other operators, and it can be used multiple times in a

query evaluation plan.

Print
Exchlange
|
Join
Join Exchange
Exchange Exchange File Scan
File lScan File |Scan

Figure 1. Operator Model of Parallelization.

Figure 2. Vertical and Horizontal Parallelism.

Figure 2 shows the processes that could have been created by the exchange operators with suitable
argument settings in the query plan of the previous figure. The join operators are executed by three
processes while the file scan operators are executed by one or two processes each, typically scanning file
partitions on different devices. To obtain this grouping of processes, the "degree of parallelism" arguments
for the exchange operators have to be set to 2 or 3, respectively, and partitioning functions must be pro-
vided for the exchange operators that transfer file scan output to the join processes. The exchange opera-
tors operate on both sides of the process boundaries; for example, the top-most exchange operator is part of
four processes, namely the print process and all three join processes. The file scan processes can transfer
data to all join processes; however, data transfer between the join operators occurs only within each of the
join processes. Unfortunately, this restriction renders this parallelization infeasible if the two joins are on
different attributes and partitioning-based parallel join methods are used (rather than fragment-and-
replicate methods [4, 16, 18, 61]). For this case, a variant of exchange is supported in Volcano’s exchange
operator called interchange which would be placed between the two joins. This variant is described in [29,

32].

The implementation of Volcano proceeded in three phases. First, only single-process query evalua-
tion was supported. Second, parallel query processing on shared-memory systems was supported using the
exchange operator as described in [29, 32]. This version of Volcano and its exchange operator was a
proof-of-concept prototype for the operator model of parallel query evaluation and for the integration of
parallelism and extensibility. Third, the exchange operator was modified further to support both shared-
memory and distributed-memory machines. The third phase, its motivation, design, implementation, and

conclusions, are the subject of this report.

When extending the exchange operator to support query processing on distributed-memory
machines, we did not want to give up the advantages of shared memory, namely fast communication and
synchronization. A recent investigation demonstrated that shared-memory architectures can deliver near-
linear speed-up for limited degrees of parallelism; we observed a speed-up of 14.9 with 16 CPUs for paral-
lel sorting in Volcano [30]. To combine the best of both worlds, we have built our software such that it
runs on a closely-tied group, e.g., a hypercube or mesh architecture, of shared-memory parallel machines.

We can now investigate query processing on hierarchical architectures and heuristics of how CPU and I/O

power as well as memory can best be placed and exploited in such machines.

Figure 3 shows a generic hierarchical architecture. The important point is the combination of local
busses within shared-memory parallel machines and a global interconnection network between machines.
The diagram is only a very general outline of such an architecture; many details are deliberately left out
and unspecified. The network could be implemented using a bus (such as an ethernet [50]), ring, hyper-
cube, mesh, or point-to-point connections. The local busses may or may not be split into code and data or
by address range to achieve higher bus bandwidth, less bus contention, and hence higher scalability limits
for the use of shared memory. Design and placement of caches, disk controllers, terminal connections, and
local- and wide-area network connections are also left open. Tape drives or other backup devices would

probably be connected to local busses.

Modularity is a very important consideration for such an architecture, i.e., the ability to add, remove,
and replace individual units. For example, it should be possible to replace all CPU boards with upgraded
models without having to replace memories or disks. Considering that new components will change com-
munication demands, e.g., faster CPUs might require more local bus bandwidth, it is also important that the

allocation of boards to local busses can be changed. For example, it should be easy to reconfigure a

Interconnection Network

hl|B

Local{Bus Locyl|Bus Locil|Bus
CPU CPU CPU
CPU CPU CPU
CPU CPU CPU
Local|Bus Local{Bus Locil|Bus
Memory Memory Memory

Figure 3. A Hierarchical-Memory Architecture.

F S

machine with 4x16 CPUs into one with 8x8 CPUs.

This architecture may also be exploited for reliability and availability. Tandem’s mirroring architec-
ture could be recreated by pairing shared-memory machines and their storage devices. Long-distance log-
ging, task migration, and recovery could also be designed and implemented [10, 48]. High availability also

requires that components can be replaced while the rest of the machine is still operating.

Most of today’s parallel machines are built as one of the two extreme cases of this hierarchical
design: a distributed-memory machine uses single-CPU nodes, while a shared-memory machine consists of
a single node. Software designed for this hierarchical architecture will run on either conventional design as
well as a genuinely hierarchical machine, and will allow exploring tradeoffs in the range of alternatives in
between. Thus, the operator model of parallelization also offers the advantage of architecture- and

topology-independent parallel query evaluation.

The remainder of this report is organized as follows. After a survey of related research in Section 2,
Section 3 provides a brief overview of Volcano. Volcano’s exchange operator is described in Section 4,
both for shared memory and disiribuied memory. Section 5 contains performance measuremenis for Vol-
cano to support the arguments for both shared-memory- and distributed-memory query evaluation. Section

6 contains a brief summary and our conclusions from this effort.

2. Related Work

There are several hardware designs that attempt to overcome the shared-memory scaling problem,
e.g., the DASH project [2, 23, 44], and the Wisconsin Multicube [24, 25]. However, these designs follow
the traditional separation of operating system and application program. They rely on page or cache-line
faulting and do not provide typical database concepts like read-ahead and dataflow. Lacking separation of
mechanism and policy in these designs almost makes it imperative to implement dataflow and flow control

for database query processing within the query execution engine.

Many database research projects have investigated hardware architectures for parallelism in database
systems. Stonebraker compares shared-nothing (distributed-memory), shared-disk (distributed-memory
with multi-ported disks), and shared-everything (shared-memory) architectures for database use [63] based

on a number of issues including scalability, communication overhead, locking overhead, and load

balancing. His conclusion is that shared-everything excels in none of the points considered, shared-disk
introduces too many locking and buffer coherency problems, and that shared-nothing has the big benefit of
large scalability. Therefore, he concludes that overall shared-nothing is the preferable architecture for

database system implementation.

Bhide and Stonebraker compare architectural alternatives for transaction processing [6, 7] and con-
clude that a shared-everything (shared-memory) design provides best performance. To achieve high per-
formance, reliability, and scalability, Bhide suggests considering shared-nothing (distributed-memory)
machines with shared-everything parallel nodes. The same idea is mentioned by Pirahesh et al. [55], but

neither of these authors elaborate on the idea’s generality or potential.

For query processing, customized parallel hardware was investigated for numerous database machine
projects but largely abandoned after Boral and DeWitt’s influential analysis [8] that compares CPU and I/O
speeds and their trends and concludes that I/O is most likely the bottleneck in future higﬁ-performance
query execution, not processing. Therefore, they recommend moving from research on custom processors
to methods for overcoming the I/O bottleneck, e.g., by use of parallel readout disks, disk caching and
read-ahead, and indexing to reduce the amount of data to be read for a query. Other investigations came to
the same conclusion that parallclism is no substitute for effective storage structures and query execution
algorithms [12, 62]. Subsequently, both Boral and DeWitt embarked on new database machine projects,
Bubba and Gamma, that ran customized software on standard processors with local disks [1, 9, 13-]. For
scalability and availability, both projects used distributed-memory hardware with single-CPU nodes, and

investigated scaling questions for very large configurations [20, 21].

Tandem has been using distributed-memory hardware for a long time, mostly for reliability and
fault-tolerance reasons. It did not reconsider its hardware for its NonStop SQL product and its parallel
query processing facilities [15, 68]. Since Tandem uses its own hardware, it is not clear how easily the

product could be moved to a hierarchical architecture.

The XPRS system, on the other hand, is being built on shared memory [64, 65]. Its designers believe
that modern bus architectures can handle up to 2,000 transactions per second (TPS). They provide
automatic load balancing and faster communication than shared-nothing machines and are equally reliable

and available for most errors, i.e., media failures, software, and operator errors [34, 35]. However, we

believe that attaching 250 disks to a single machine as necessary for 2,000 TPS [64] requires significant
special hardware, e.g., channels or I/O processors, and it is quite likely that the investment for such
hardware can have greater impact on overall system performance if spent on general-purpose CPUs or
disks. Without such special hardware, the performance limit for shared-memory machines is probably
much lower than 2,000 TPS. Furthermore, there already are applications that require larger storage and
access capacities, e.g., the Japanese national social insurance database planned for about 1,000 disks of 400

MB each [52].

Richardson et al. [57] performed an analytical study of parallel join algorithms on a hierarchical
architecture. They assumed a group of "clusters” connected with a global bus with multiple microproces-
sors and shared memory in each cluster. Disk drives were attached to the busses within clusters. However,
their analysis suggested that the best performance are obtained by using only one cluster, i.e., a shared-
memory architecture. We contend that their results are due to their parameter settings, in particular small
relations (typically 100 pages of 32 KB), slow CPUs (e.g., 5 psec for a comparison, about 2—5 MIPS), a
slow network (a bus with typically 100 Mbit/sec), and a modest number of CPUs in the entire system
(128). It would be very interesting to see the analysis with larger relations (e.g., 1-10 GB), more and faster
CPUs (e.g., 1,000 x 30 MIPS), and a faster network (e.g., a modern hypercube or mesh with hardware rout-
ing). In such machines, multiple clusters are likely to be the better choice. On the other hand, communica-
tion between clusters will remain a significant expense. Wong and Katz developed the concept of "local
sufficiency” [67] that might provide guidance in declustering and replication to reduce data movement

between nodes. Other work on declustering and limiting declustering includes [11, 17, 22, 37, 38].

Kitsuregawa and Ogawa are have designed a new database machine called SDC [42]. Although the
SDC machine uses a hierarchical architecture (plus some custom hardware like the Omega network and a

hardware sorter), the effect of the hardware design is not evaluated in [42].

3. Volcano System Design

In this section, we provide an overview of the modules in Volcano. Volcano’s file system is rather
conventional. It includes modules for device, buffer, file, and B*-tree management. For a detailed discus-

sion, we refer to [26].

The file system routines are used by the query processing routines to evaluate complex query plans.
Queries are expressed as complex algebra expressions; the operators of this algebra are query processing
algorithms. All algebra operators are implemented as iterators, i.e., they support a simple open-next-close

protocol similar to conventional file scans.

Associated with each algorithm is a state record. The arguments for the algorithms are kept in the
state record. In queries involving more than one operator (i.e., almost all queries), state records are linked
together by means of input pointers. The input pointers are also kept in the state records. They are pointers
to a QEP structure which in turn points to the three procedures implementing the operator (open, next, and
close) and to a state record. All state information for an iterator is kept in its state record; thus, an algo-
rithm may be used multiple times in a query by including more than one state record in the query. An
operator does not need to know what kind of operator produces its input, and whether its input comes from

a complex query tree or from a simple file scan.

Figure 4 shows the state record for the filter iterator which is a fairly general single-input operator
useful for printing, updates, projection, and others purposes. The upper rectangle represents a QEP struc-
ture; holding a pointer to it permits calling the iterator functions and passing them the state record address
as argument. The lower rectangle represents the state record with sections for arguments, input, and local
state. The input arrow points to another QEP structure to allow any of the filter functions to invoke the

operator that produces the input stream for the filter operator.

\

> open-filter ()
> next-filter ()
> close-filter ()

Iterator : Local
Arguments

Figure 4. Data Structures for a Filter Operator in a Query Plan.

Calling open for the top-most operator results in instantiations for the associated state record, e.g.,
allocation of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated
recursively. In order to process the query, next for the top-most operator is called repeatedly until it fails
with an end-of-stream indicator. Finally, the close call recursively "shuts down" all iterators in the query.
This model of query execution matches very closely the one being included in the E programming
language design [56] and the algebraic query evaluation system of the Starburst extensible relational data-

base system [36].

The tree-structured query evaluation plan is used to execute queries by demand-driven dataflow. The
return value of next is, besides a status value, a structure called NEXT RECORD that consists of a record
identifier and a record address in the buffer pool. This record is pinned (fixed) in the buffer. The protocol
about fixing and unfixing records is as follows. Each record pinned in the buffer is owned by exactly one
operator at any point in time. After receiving a record, the operator can hold on to it for a while, e.g., in a
hash table, unfix it, e.g., when a predicate fails, or pass it on to the next operator. Complex operations like
join that create new records have to fix them in the buffer before passing them on, and have to unfix input

records.

For intermediate results, Volcano uses virtual devices. Pages of such a device exist only in the
buffer, and are discarded when unfixed. Using this mechanism allows assigning unique RID’s to inter-
mediate result records, and allows managing such records in all operators as if they resided on a real (disk)
device. The operators are not affected by the use of virtual devices, and can be programmed as if all input

comes from a disk-resident file and output is written to a disk file.

In order to ensure extensibility at the instance level, set processing and instance (record) interpreta-
tion are very cleanly and consistently separated. All operations on records, e.g., comparison, moving, and
hashing, are performed by support functions that are passed to the operators using function eniry points.
To support both compiled and interpreted query execution, there is an argument associated with each sup-
port function. For interpreted query processing, a generic predicate interpreter is passed as support func-
tion and the code to be interpreted is passed as an argument. For compiled query processing, the argument

can either be ignored or used for constants, e.g., for a value with which to compare database values.

The uniform iterator interface allows combining operators into arbitrarily complex query evaluation
plans. Furthermore, the operator set can easily be extended and new operators be integrated with existing
ones. In fact, Volcano grew over time and new operators were added repeatedly, e.g., for the studies
reported in [27, 40, 41]. This extensibility at the operator level proved particularly valuable when porting
Volcano to a (shared-memory) parallel architecture, and led to the "operator model" of parallelizing a
query execution system [29]. The new "parallelism” operator, called exchange in Volcano, is the focus of

the next section.

4. Implementation of Parallelism in Volcano

In this section, we describe how Volcano’s exchange operator works. The other operators, e.g., for
scans, sort, join, etc., are described elsewhere [27, 28, 31, 32, 40]. The shared-memory exchange operator
is discussed in [29, 32]. In this report, we detail how the exchange operator was ported to distributed-

memory and hierarchical architectures.

During the port to distributed and hierarchical memory, all encapsulation properties of the exchange
operator were maintained, i.e., it continues to shield the other operators from all parallelism issues, e.g.,
process management, data transfer, and flow control. The important property of the operator model of
parallel query evaluation and of Volcano’s exchange operator is that all other operators can be imple-
mented without regard to parallelism or a specific parallel hardware architecture. The "work” operators are
designed, implemented, debugged, and tuned in an easy and familiar single-process sequential environ-

ment.

Before a query can be started, query-independent server processes are created on all participating
nodes and can be allocated as the need arises. We first describe the mechanisms for shared memory, and

then proceed to distributed memory.

4.1. Shared Memory

The first function of exchange is to provide vertical parallelism or pipelining between processes.
The open procedure allocates a new process after creating a data structure in shared memory called a port

for synchronization and data exchange. The exchange operator then takes different paths in the old and

10

new processes.

The old process serves as the consumer and the new process as the producer in Volcano. The
exchange operator in the consumer process acts as a normal iterator, the only difference from other itera-
tors is that it receives its input via inter-process communication rather than iterator (procedure) calls. After
allocating the new process, open_exchange in the consumer is done. Next exchange waits for data to
arrive via the port and returns them a record at a time. Close_exchange informs the producer that it can

close, waits for an acknowledgement, and returns.

In the producer process, the exchange operator becomes the driver for the query tree below the
exchange operator using open, next, and close on its input. The output of next is collected in packets,
which are arrays of NEXT RECORD structures. The packet size is an argument in the exchange iterator’s

state record, and can be set between 1 and 215

records. When a packet is filled, it is inserted into a linked
list anchored in the port and a semaphore is used to inform the consumer about the new packet. Records in
packets are fixed in the shared buffer and must be unfixed by a consuming operator. When its input is

exhausted, the exchange operator in the producer process marks the last packet with an end-of-stream tag

and passes it to the consumer.

The alert reader has noticed that the exchange module uses a different dataflow paradigm than all
other operators. While all other modules are based on demand-driven dataflow (iterators, lazy evaluation),
the producer-consumer relationship of exchange uses data-driven dataflow (eager evaluation). A run-time
switch of exchange allows augmenting data-driven dataflow with flow control or back pressure using an
additional semaphore. If the producer is significantly faster than the consumer, the producer may pin a
significant portion of the buffer, thus impeding overall system performance. If flow control is enabled,
after a producer has inserted a new packet into the port, it must request the flow control semaphore. After a
consumer has removed a packet from the port, it releases the flow control semaphore. The initial value of

the flow control semaphore determines how many packets the producers may get ahead of the consumers.

Notice that flow control and demand-driven dataflow are not the same. One significant difference is
that flow control allows some "slack" in the synchronization of producer and consumer and therefore truly
overlapped execution, while demand-driven dataflow is a rather rigid structure of request and delivery in

which the consumer waits while the producer works on its next output. The second significant difference is

11

that data-driven dataflow is easier to combine efficiently with horizontal parallelism and partitioning.

The second function of the exchange operator is to provide intra-operator or horizontal parallelism.
Intra-operator parallelism requires data partitioning. Partitioning of stored datasets is achieved by using
multiple files, preferably on different devices [54, 58]. Partitioning of intermediate results is implemented
by including multiple queues in a port. If there are multiple consumer processes, each uses its own input
queue. The producers use a support function to decide into which of the queues an output record belongs
(or actually, into which of the packets being filled by the producer). Using a support function allows

implementing round-robin-, key-range-, or hash-partitioning,.

If an operator or an operator subtree is executed in parallel by a group of processes, one of them is
designated the master. When a query tree is opened, only one process is running, which is naturally the
master. When a master allocates a new process in a producer-consumer relationship, the new process
becomes the master within its group. The first action of the master producer is to determine how many
slaves are needed by calling an appropriate support function. If the producer operation is to run in parallel,

the master producer allocates the other producer processes.

After all producer processes are allocated, they run without further synchronization among them-
selves, with two exceptions. First, when accessing a shared data structure, e.g., the port to the consumers
or a buffer table, short-term locks must be acquired for the duration of one linked-list insertion. Second,
when a producer group is also a consumer group, i.e., there are at least two exchange operators and three
process groups involved in a vertical pipeline, the processes that are both consumers and producers syn-
chronize twice. During the (very short) interval between synchronizations, the master of this group creates

a port which serves all processes in its group.

When a close request is propagated down the tree and reaches the first exchange operator, the master
consumer’s close_exchange procedure informs all producer processes that they are allowed to close down
using the semaphore mentioned above in the discussion on vertical parallelism. If the producer processes
are also consumers, the master of the process group informs its producers, etc. In this way, all operators

are shut down in an orderly fashion, and the entire query evaluation is self-scheduling.

12

4.2. Distributed Memory

After the shared-memory version of Volcano’s exchange operator had proven the validity of the
operator model of parallel query execution, a distributed-memory version was the natural extension. In this
section, we describe this extension in more detail. The goals for the design and implementation of
Volcano’s distributed-memory exchange operator were the following. First, the distributed-memory
software architecture should support conventional distributed-memory machines like a hypercube as well
as shared-memory machines and hierarchical machines with shared-memory parallel nodes. Second,
encapsulation should be preserved, i.e., work operators should not be concerned with parallelism such that
these operators can be designed, implemented, debugged, and tuned without regard to parallelism in any
form. Also, no separate scheduler process should be required, or even a scheduler node as in Gamma [13].
Third, the exchange operator should only provide the mechanisms for parallel query execution, leaving
policy decisions to the query optimizer. Fourth, data transfer should be as fast as possible, in particular,
shared-memory techniques should be used within each node. Message passing should be used only across
node boundaries. Fifth, process and communication setup times should be short to allow speedup even for
queries on small datasets. Thus, Volcano employs a pool of server processes at each node, also called
primed processes [34]. Sixth, the code should be portable to environments other than the prototype

development environment of UNIX workstations.

One of the preconditions for distributed-memory query processing is the ability to ship plans and
programs across the network. For the query plans, the open-next-close triple of functions required for each
operator was extended by two more functions called pack and unpack. They are used to format a tree-
shaped query evaluation plan into a network packet and reassemble the plan at the receiving site. For the
support functions, the provisions for both compiled and interpreted query processing turned out to be very
useful. For distributed-memory query execution, Volcano uses interpreted support functions. The predi-
cate interpreter is part of the server (or primed) processes, and each pack routine must include interpretable

code in the network packet.

Figure 5 shows a simple query evaluation plan with three operators called P, T, and §. These opera-
tors could be any work operators, €.g., scan, aggregation, print, etc. We restricted ourselves to single-input

operators in Figure 5 because a complex tree would have made the example harder to follow. Any query

13

Print (P)

Exchange (X)

Filter (T)

Exchange (Y)

Scan (S)

Figure 5. Simple Query Plan.
evaluation plan, e.g., the one shows in the introduction, could be executed on a distributed-memory or

hierarchical machine.

Figure 6 shows a possible parallelization on four nodes for the plan in the previous figure. Again, as
for the shared-memory case, other parallelizations would have been possible with Volcano’s mechanisms,

but this will serve as our example. The four rectangles represent nodes; they could be autonomous comput-

Node 0 Node 1 Node 2 Node 3

Figure 6. Nodes, Processes, and Operators.

ers in a distributed system or nodes in a distributed-memory parallel machine. The circles represent
processes; let them be called O; ; where O isone of P, T, and S, i is the node number, and j is the process
number for the respective operator on that node. For example, the bottom left-most and right-most

processes in Figure 6 are called So and S32

The processes called O; o perform the role of local masters. While all processes can send and receive
data, only local master processes exchange control messages across node boundaries. The processes O g
are not only the local masters on node O but also the global masters that facilitate glocal synchronization
where necessary. In a way, they perform, beyond their data manipulation tasks, the role of the scheduler

process required for example in Gamma [13, 14, 20].

Figure 7 shows the messages required between nodes to initiate the process structure shown in the
previous figure as well as the appropriate data paths. Of course, some of the details here are particular to
our choice to build the first prototype of distributed-memory Volcano on top of the UNIX operating sys-

tem, and would change if a different operating system were available.

First, after P has initiated T, T sends a request message to known ports at nodes 1 and 2, indi-
cated by solid arrows. This request message includes a packed query evaluation plan and information on
how to reach Pgg. On each receiving node, one process in the process pool receives the request packet,

assumes the role of local master T; ¢ on node i, and allocates the other local processes, €.g., T'; 1.

Node 0 Node 1 Node 2 e
< wmzz2Tioc =TT
Time -------------------------------------
<.-nu2:::::::
.-——"E:E:><-::-..‘_‘-~..—:-:—;—:-;‘»t—;-::__—_”-‘—_”
P - <1 ’

Figure 7. Control Messages.

15

Second, the producer processes 7T; ; (actually, this is the X operator in the T; ; processes) connect to
the consumer process P g using the UNIX connect system call, as indicated by dashed arrows. These con-
nect calls establish all data paths from T operators to the P operator. At this point, the X operator is ready

to transfer data.

Third, when the T operators open their input operator Y, all Y operators in all T} ; processes syn-
chronize to ensure that all processes have reached this point. They first synchronize locally, led by each

local master, and then the local masters synchronize with the global master, indicated by dotted arrows.

Fourth, Ty initiates Sop. Soo sends request packets to the local masters for the S;; processes.
Query evaluation plans are only included in packets to those nodes in which the plan is not available yet,

node 3 in the example.

Fifth, all producers S connect to all consumers T to establish all required data paths. At this point,

setup is completed and all processes are ready to produce and transfer data.

Processes now act on their own trying to produce data as fast as possible and to ship them to their
consumer processes. In other words, data-driven dataflow is used between processes both within and
across node boundaries. Process performance is limited by four factors, namely processor performance,
I/O performance, speed of input from other processes, and flow control. Flow control is implemented
within each node as described above and in [29, 32]. For flow control across node boundaries, the standard

UNIX and TCP/IP mechanisms are used, namely a limited buffer associated with each connection.

In general, the mechanisms used for data transfer across node boundaries are organized similarly to
those within nodes. There is only one main difference, dictated directly by the accessibility of memory.
For data exchange across node boundaries, there are no packets with pointers to records in the shared
buffer pool. Instead, each sender maintains a set of virtual files, one for each remote consumer. Each time
a packet fills up, it is sent across the network. The receiver also maintains a virtual file into which the net-
work packet is read. Note that the organization of virtual files requires only one copy step beyond the copy

implicit in the send and receive network operations, namely to assemble packets for individual consumers.

Shutting all processes down is quite simple. Within each node, the mechanisms described above for

shared memory are used. Among nodes, each process flushes all its output data to the appropriate reci-

16

pients and then exits, i.e., the process returns to the pool of waiting server processes. The waiting and syn-
chronization required for shared memory is not needed for distributed memory because processes do not
share records in the buffer pool, so there is no need to delay closing files until all consumers have unpinned

their records in the files.

At the current time, the exchange operator is operational in Volcano as described so far. The next
step is to include all special modes of operation, e.g., merging multiple sorted streams or replication [29,
32], that currently work only on shared-memory machines. Following that, we plan on investigating suit-
able mechanisms for error and exception handling in extensible multi-process multi-processor query execu-

tion.

In summary, the recent extensions to Volcano’s exchange operator provide the mechanisms for
parallel query processing in shared-memory, distributed-memory, and hierarchical machines. The
modified exchange operator retains all encapsulation properties designed and implemented in the shared-
memory version. It effectively shields the work operators from all parallelism issues. Beyond process
management, data transfer, and flow control, the new exchange operator also hides the machine architec-
ture from the work operators. We believe that this separation of data manipulation and parallelism contri-
butes significantly to Volcano’s extensibility and portability and will allow rapid development and parallel-
ization of more operators on more systems in the near future. The first prototype implementation relies on
UNIX and TCP/IP because this was the most convenient development environment for us; we hope to port

the system and its new exchange operator to other distributed-memory parallel machines in the near future.

5. Performance Observations

In this section, we report on experimental performance measurements and argue that hierarchical

architectures are indeed promising for database query evaluation.

From a number of projects and reports, it is well known that both data and program parallelism (par-
titioning and pipelining) can provide significant speedup. Frequently, linear speedup could be obtained,

e.g. [13,15].

Figure 8, taken from a tuning study reported in [30], shows performance measurements for sorting

1,000,000 records of 100 bytes each, a standard database benchmark [3], with varying degrees of

17

1400 ldeal Speedup . | 10
LA 15

1200 — . ";/’ — 14
2 13

Pid Final 12

1000 Speedup [

Time 10
[seconds] 8004\ abo Sgee}(;lué)
(solid g (ashe
lines) 600 — Initial Speedup 7 lines)

-6
400 - Initial Time [~ j
. . - 3
20 IB"! Final Time | ,
.".’ - 1

O —TT T T T 71

T T T T T T 1
1 23456 7 8 910111213141516

Number of Processors and Disks
[0 Initial, A Final Measurements

Figure 8. Shared-Memory Sorting 1,000,000 Records of 100 Bytes.
parallelism on a (shared-memory) Sequent Symmetry [47]. The time measurements are shown using solid
lines and refer to the labels on the left. The speedups are shown with dashed lines and refer to the labels on
the right. The initial times and speedups, i.e., the starting point of the tuning study, are marked with (0's

while the final ones are marked with A’s. The ideal speedup is also shown by the dotted line.

There are three important conclusions to be drawn from Figure 8. First, a comparison of the dashed
and dotted lines shows very close to linear speedup with the fully tuned software. Thus, shared-memory
machines are perfectly reasonable platforms for parallel database query evaluation. Second, it is immedi-
ately obvious that the final times are significantly lower than the initial ones, and that the speedup for the
initial software was far from linear. Thus, the tuning improved the parallel behavior as well as the absolute
performance. On the other hand, it means that in order to successfully exploit a shared-memory machine,
careful tuning might be necessary. Third, the speedup is close to linear only within a certain range; obvi-
ous for the initial software but also visible for the tuned software. We suspect that experiments with much
higher degrees of parallelism, e.g., 32 or 64 CPUs and disks, would have revealed a limitation in speedup
even for the fully tuned software. Thus, shared-memory machines do not scale to very high degrees of

parallelism.

18

Distributed-memory machines have been shown to deliver both good basic performance and linear
speedup to high degrees of parallelism, e.g., Bubba [9], Gamma [14], and Tandem [15]. A careful simula-
tion study that was thoroughly verified with a working prototype (for small degrees of parallelism) demon-
strated further that such machines can be scaled to very large degrees of parallelism [20, 21]. Thus, very
high performance database machines and servers can probably be built based on distributed-memory

machines.

For Volcano’s exchange operator, we obtained some preliminary performance measurements to
show that speedups can be achieved with the operator model on distributed-memory machines. We meas-
ured exchanging records between Volcano processes on a network of Sun SparcStations (about 12 MIPS
RISC) running SunOS connected via an ethernet. The test query only created and exchanged records, i.e.,
there was no data manipulation in this experiment. Since we were primarily interested in exchange perfor-

mance, we eliminated disk I/O by using only virtual devices.

Figure 9 shows the performance of distributed exchange, comparing local data exchange between
processes with exchange across a network with two or four machines. Measurements are shown for 0,
1,000, 10,000, and 100,000 records. Measurements for 0 records are included to assess the overhead of

allocating and deallocating all processes and data paths. For each data point in the figure, we took five to

204
18 —
16
14
12
10

6

100,000 Records

Time
[seconds]

Dotted: 1000 Records

Dashed: 0 Records
4] 10,000 Records

24

0_ (YRR PFVEPETEVERIRERE LS it i

T I]
1 2 4

Number of Machines

Figure 9. Volcano Distributed-Memory Performance.

19

ten measurements and reported the mean of all observed times. It is interesting to note that just as for
shared memory, obtaining acceptable and reasonably consistent measurements in the distributed-memory
environment required a fair amount of tuning [30]. Tuning to-date for distributed memory involved slack
in flow control, packet size, and timeouts for various network system calls. We hope that we can obtain

better performance on the same hardware and OS platform by February 1991.

There are two interesting observations possible from the curves. First, allocating remote processes is
not much slower than local processes. Thus, the attempt to minimize initialization and cleanup overheads
was effective, and we can hope that reasonable speedups can be obtained even for relatively small data
sets. Nonetheless, the overhead of our operating system still weighs heavily in these measurements.
Second, for large amounts of data, performance improves for more nodes, in spite of the fact that for more
machines, more records travel across the network. For N machines, 1/N of each process’ output remains
in the same machine, while the remainder is exchanged across the network (Y2 of all records in a network
of two nodes, % for for nodes). Thus, we can hope that for large set cardinalities, the exchange operator

may permit close to linear speedup.

Figure 9 represents only the cost of the exchange operator, without regard to work operators like
scan and join, Recall that no data manipulation or physical I/O was performed during these measurments.
Thus, the figure shows the performance of distributed exchange in the worst and most critical light. If data
sets are partitioned and smaller amounts of data are processed at each network node, the speedup for all
work operators is linear or even super-linear if merge levels during sorting or recursion levels during hash
overflow resolution can be avoided. Thus, even if the exchange performance is not linearly improving but

about constant for multiple nodes, query processing performance still improves.

We realize that the absolute execution times might not be as fast as one could hope for considering
the hardware used, but we suspect that the UNIX and TCP/IP communication software (the only effective
development platform available to us at the time) introduced significant overhead. Furthermore, we
suspect that some network packets might have collided on the ethernet and therefore introduced delays.
Wang and Luk observed similar network limitations for parallel join algorithms on multiple workstations,
even though they used an operating system with faster communication (V-Kernel) [66]. Our overhead

could be reduced on a distributed-memory machine with simplified and streamlined communication, e.g.,

20

an iPSC/2 as used in Gamma [14]. Nonetheless, the important point is that Volcano’s exchange operator
for distributed-memory machines does allow speedups in data transfer in addition to linear speedups in data
manipulation. Considering the designs and implementations of distributed-memory database machines
(Bubba, Gamma, Tandem) with less communication overhead, there is no reason why Volcano should not

deliver similar speedup and scaleup results on a more suitable hardware and operating system platform.

In summary, we have observed near-linear speedup in shared-memory machines, but realize that the
useful degree of parallelism based on shared memory is limited. For a distributed-memory ensemble of
workstations, we have observed some, although not linear speedup. However, considering the small over-
head for establishing and terminating process groups and data paths, we believe that Volcano’s exchange
operator will permit linear speedup for distributed memory machines if the communication overhead due to
operating system and network hardware can be reduced. Nonetheless, the communication cost between
nodes will remain higher than communication cost via shared memory. By supporting both shared and dis-
tributed memory and their combination, Volcano’s exchange operator will be able to exploit both of them
and hopefully allow very high query processing performance on forthcoming hierarchical computer archi-

tectures.

6. Summary and Conclusions

In this report, we have reported on extensions of earlier work on parallel query evaluation and on
encapsulation of parallelism in a novel operator, called the exchange operator in Volcano. In a previous
article, we reported on the shared-memory version [29]; here we detailed the design and implementation
for distributed-memory parallel machines. Encapsulation of parallelism in a single operator, the important
and new property of the operator model introduced in [29], has been maintained during the extension from
the shared-memory version to the distributed-memory version of the exchange operator. Therefore, the
other operators did not require any modifications, neither when extending Volcano from single-process to
shared-memory parallel query processing nor when extending it further to distributed-memory architec-
tures. One and the same implementation of these operators can be used very efficiently in single-process,
single-machine, or multi-machine query evaluation. Thus, the exchange operator makes the design and

implementation of all other query processing algorithms and operators architecture-independent. Due to

21

the uniform iterator interface, the exchange operator could even parallelize new operators unknown at this

time, e.g., a particularly efficient three-way join algorithm.

Volcano’s design and implementation also supports a hierarchical combination of the two conven-
tional architectures, i.e., a networked group of shared-memory machines. At least one such closely-tied
machine has been built, the Evans & Sutherland ES-1, and at least two currently active computer manufac-
turers are considering this general hardware architecture. We plan on porting Volcano to these new archi-
tectures as soon as such machines become available. Current parallel machines, both shared-memory and
distributed-memory, are extreme cases of the hierarchical design. A conventional shared-memory machine
represents a single node in this new architecture, while a conventional distributed-memory machine uses
nodes with single CPUs. Hence, software running on the hierarchical design runs, without modification, on

both conventional designs.

The hierarchical design offers significant advantages of both conventional designs, and therefore
over both conventional designs. For small degrees of parallelism, using shared memory allows fast syn-
chronization and communication. For large degrees of parallelism, distributed-memory designs offer sca-
lability to very large machines without the danger of bus saturation inherent in shared-memory architec-
tures. Both of these advantages are significant not only for database query evaluation but also for all other
applications, numerical and non-numerical ones alike. However, different applications, even different
algorithms, have different communication-to-computation ratios. Therefore, the maximal degree of paral-
lelism to which shared-memory machines can be scaled varies for different applications. Furthermore, as
different hardware components (CPUs, busses, memories) become faster at different paces, the
computation-to-communication time ratio might change. Thus, it seems essential for successful future
architectures to be modular, meaning that CPUs, memories, etc. can be replaced individually and recon-

nected using busses and network interconnections to optimally exploit the hardware for an application,

For database applications, the connectivity of CPUs and memories to I/O devices is another impor-
tant consideration. Boral and DeWitt argued that I/O is the most likely bottleneck in database machines
[8], and designed two independent prototype database machines in which storage devices are connected
closely to the CPUs [9, 14]. Since I/O typically places significant load on a system’s bus, the I/O load has

to be considered, too, not only the communication-to-computation ratio. For future database machines or

22

database servers, the different 1/O requirements of different applications further support the argument that
interconnection topologies should be modular, in particular the assignment of processing units and disks to

local busses and local busses to network interconnections.

If indeed future parallel architectures use hierarchical designs based on shared-memory parallel
nodes connected by high-speed networks, the new version of Volcano and its exchange operator are a
powerful experimental vehicle for parallel database query evaluation. The entire Volcano system is
designed and implemented to provide mechanisms for experimentation with and exploration of policies
[32]; the exchange operator that encapsulates all parallelism issues for shared-memory, distributed-

memory, and hierarchical hardware architectures is an excellent example for this design principle.

References

1. W. Alexander and G. Copeland, ‘‘Process and Dataflow Control in Distributed Data-Intensive
Systems’’, Proceedings of the ACM SIGMOD Conference, Chicago, IL., June 1988, 90-98.

2. D. P. Anderson, S. Tzou and G. S. Graham, ‘‘The DASH Virtual Memory System’’, Technical
Report 88/461, UC Berkeley CS Division, November 1988.

3. Anon. et al., ‘““A Measure of Transaction Processing Power’’, Datamation, April 1, 1985, 112-118.

C. K. Baru, O. Frieder, D. Kandlur and M. Segal, “Join on a Cube: Analysis, Simulation, and
Implementation’’, Proceedings of the 5th International Workshop on Database Machines, 1987.

5. M. Beck, D. Bitton and W. K. Wilkinson, ‘‘Sorting Large Files on a Backend Multiprocessor’’,
IEEE Transactions on Computers 37 (1988), 769-778.

6. A, Bhide and M. Stonebraker, ‘‘A Performance Comparison of Two Architectures for Fast

Transaction Processing’’, Proceedings of the IEEE Conference on Data Engineering, Los Angeles,
CA., February 1988, 536-545.

7. A. Bhide, ““An Analysis of Three Transaction Processing Architectures”, Proceedings of the
Conference on Very Large Databases, Long Beach, CA., August 1988, 339-350.

8. H. Boral and D. J. DeWitt, ‘‘Database Machines: An Idea Whose Time Has Passed? A Critique of
the Future of Database Machines’’, Proceeding of the International Workshop on Database
Machines, Munich, 1983.

9. H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith and P.
Valduriez, ‘‘Prototyping Bubba, A Highly Parallel Database System’’, IEEE Transactions on
Knowledge and Data Engineering 2, 1 (March 1990), 4-24.

10. D. Burkes and R. Treiber, ‘‘Design Approaches for Real-Time Transaction Processing and Remote
Site Recovery”’, Digest of Papers, 35th CompCon Conference, San Francisco, CA., Feb-Mar 1990.

11. G. Copeland, W. Alexander, E. Boughter and T. Keller, “‘Data Placement in Bubba’’, Proceedings
of the ACM SIGMOD Conference, Chicago, IL., June 1988, 99-108.

12. D.J. DeWitt and P. B. Hawthorn, ‘‘A Performance Evaluation of Database Machine Architectures’’,
Proceeding of the Conference on Very Large Data Bases, Cannes, France, September 1981, 199-213.

13. D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar and M. Muralikrishna,
*““GAMMA - A High Performance Dataflow Database Machine’’, Proceedings of the Conference on
Very Large Data Bases, Kyoto, Japan, August 1986, 228-237.

23

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

3L

32,

33.

D. J. DeWitt, S. Ghandeharadizeh, D. Schneider, A. Bricker, H. I. Hsiao and R. Rasmussen, ‘‘The
Gamma Database Machine Project’’, IEEE Transactions on Knowledge and Data Engineering 2, 1
(March 1990), 44-62.

S. Englert, J. Gray, R. Kocher and P. Shah, ‘“A Benchmark of NonStop SQL Release 2
Demonstrating Near-Linear Speedup and Scaleup on Large Databases”’, Tandem Computer Systems
Technical Report 89.4 (May 1989).

R. Epstein and M. Stonebraker, ‘“‘Analysis of Distributed Data Base Processing Strategies’,
Proceedings of the Conference on Very Large Data Bases, Montreal, Canada, October 1980, 92-101.

M. T. Fang, R. C. T. Lee and C. C. Chang, ‘‘The Idea of Declustering and Its Applications’,
Proceeding of the Conference on Very Large Data Bases, Kyoto, Japan, August 1986, 181-188.

O. Frieder, *‘Multiprocessor Algorithms for Relational-Database Operators on Hypercube Systems”’,
IEEE Computer 23, 11 (November 1990), 13.

S. Fushimi, M. Kitsuregawa and H. Tanaka, ‘‘An Overview of The System Software of A Parallel
Relational Database Machine GRACE’’, Proceeding of the Conference on Very Large Data Bases,
Kyoto, Japan, August 1986, 209-219.

R. Gerber, ‘‘Dataflow Query Processing using Multiprocessor Hash-Partitioned Algorithms™, Ph.D,
Thesis, October 1986.

R. H. Gerber and D. J. DeWitt, ‘“The Impact of Hardware and Software Alternatives on the
Performance of the Gamma Database Machine”, Computer Sciences Technical Report 708 (July
1987), University of Wisconsin — Madison.

S. Ghandeharizadeh and D. J. DeWitt, ‘‘Hybrid-Range Partitioning Strategy: A New Declustering
Strategy for Multiprocessor Database Machines’’, Sixteenth International Conference on Very Large
Data Bases, Brisbane, Australia, 1990, 481.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. L. Henessy, ‘‘Memory
Consistenicy and Event Ordering in Scalable Shared-Memory Muitiprocessors’”, Proc. 17th Annual
Int'l Symposium on Computer Archzrecture ACM SIGARCH Computer Architecture News 18, 2
(June 1990), 15.

J. R. Goodman and P. J. Woest, ‘“The Wisconsin Multicube: A New Large-Scale Cache-Coherent
Multiprocessor’’, Computer Sciences Technical Report 766 (April 1988), University of Wisconsin —
Madison.

J. R. Goodman, M. D. Hill and P. J. Woest, Scalability and Its Application to Multicube, University
of Wisconsin — Madison.

G. Graefe, ‘‘Volcano: An Extensible and Parallel Dataflow Query Processing System’’, Oregon
Graduate Center, Computer Science Technical Report, Beaverton, OR., June 1989,

G. Graefe, ‘‘Relational Division: Four Algorithms and Their Performance”’, Proceedings of the
IEEE Conference on Data Engineering, Los Angelos, CA, February 1989, 94-101.

G. Graefe and K. Ward, ‘‘Dynamic Query Evaluation Plans’’, Proceedings of the ACM SIGMOD
Conference, Portland, OR, May-June 1989, 358,

G. Graefe, ‘‘Encapsulation of Parallelism in the Volcano Query Processing System’’, Proceedings of
the ACM SIGMOD Conference, Atlantic City, NJ., May 1990, 102.

G. Graefe and S. S. Thakkar, ‘‘Tuning a Parallel Database Algorithm on a Shared-Memory
Multiprocessor”’, submitted for publication, also CU Boulder Comp. Sci. Tech. Rep. 470, April 1990.

G. Graefe, ‘‘Parallel External Sorting in Volcano™, submitted for publication, also CU Boulder
Comp. Sci. Tech. Rep. 459, February 1990.

G. Graefe, ‘‘Volcano, An Extensible and Parallel Dataflow Query Processing System”’, submitted for

~ publication, also CU Boulder Comp. Sci. Tech. Rep. 481, July 1990.

G. Graefe, “‘Parallelizing the Volcano Database Query Processor’’, Digest of Papers, 35th CompCon
Conference, San Francisco, CA., Feb-Mar 1990, 490-493,

24

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.

5L

52.

53.

J. N. Gray, ‘“Notes on Database Operating Systems’’, in Operating Systems: An Advanced Course,
vol. 60, Springer, New York, 1978, 393-481.

J. Gray, ‘A Census of Tandem System Availability Between 1985 and 1990”’, Tandem Computers
Technical Report 90.1, Tandem Computers, January 1990.

L. M. Haas, W. F. Cody, J. C. Freytag, G. Lapis, B. G. Lindsay, G. M. Lohman, K. Ono and H.
Pirahesh, ‘‘An Extensible Processor for an Extended Relational Query Language’”, Computer
Science Research Report, San Jose, CA., April 1988.

H. 1. Hsiao and D. J. DeWitt, ‘‘Chained Declustering: A New Availability Strategy for
Multiprocessor Database Machines’’, Proceedings of the IEEE Conference on Data Engineering,
Los Angelos, CA, February 1990, 456.

K. A. Hua and C. Lee, ““An Adaptive Data Placement Scheme for Parallel Database Computer

Systems’’, Sixteenth International Conference on Very Large Data Bases, Brisbane, Australia, 1990,
493,

B. R. Iyer and D. M. Dias, ‘‘System Issues in Parallel Sorting for Database Systems’’, Proceedings
of the IEEE Conference on Data Engineering, Los Angelos, CA, February 1990, 246.

T. Keller and G. Graefe, ‘“The One-to-One Match Operator of the Volcano Query Processing

System’’, Oregon Graduate Center, Computer Science Technical Report, Beaverton, OR., June
1989.

T. Keller, G. Graefe and D. Maier, *‘Efficient Complex Object Assembly in the REVELATION
Project’, in preparation, November 1990.

M. Kitsuregawa and Y. Ogawa, ‘‘Bucket Spreading Parallel Hash: A New, Robust, Parallel Hash
Join Method for Skew in the Super Database Computer (SDC)”’, Sixteenth International Conference
on Very Large Data Bases, Brisbane, Australia, 1990, 210.

S. C. Kwan, “‘Extemnal Sorting: I/O Analysis and Parallel Processing Techniques®’, Ph.D. Thesis,
January 1986.

D. Lenoski, K. Gharachorloo, J. Laudon, A. Gupta, J. Hennessy, M. Horowitz and M. Lam, ‘‘Design
of Scalable Shared-Memory Multiprocessors: The DASH Approach’, CompCon Spring 1990,
Stanford, CA, . '

R. Lorie, J. Daudenarde, G. Hallmark, J. Stamos and H. Young, ‘‘Adding Intra-Transaction
Parallelism to an Existing DBMS: Early Experience’’, IEEE Database Engineering 12, 1 (March
1989), 58-64.

R. A. Lorie and H. C. Young, ““A low communication sort algorithm for a parallel database
machine’’, Fifteenth International Conference on Very Large Data Bases, Amsterdam, The
Netherlands, 1989, 125.

T. Lovett and S. S. Thakkar, *‘The Symmetry Multiprocessor System’’, Proceedings International
Conference on Parallel Processing, August 1988.

J. Lyon, ‘“Tandem’s Remote Data Facility’’, Digest of Papers, 35th CompCon Conference, San
Francisco, CA., Feb-Mar 1990.

J. Menon, ““A Study of Sort Algorithms for Multiprocessor Database Machines’’, Proceeding of the
Conference on Very Large Data Bases, Kyoto, Japan, August 1986, 197-206.

R. M. Metcalfe and D. R. Boggs, ‘‘Ethernet: Distributed Packet Switching for Local Computer
Networkks’’, Communications of the ACM 19,7 (July 1976), 395-404.

K. P. Mikkilineni and S. Y. W. Su, ““An Evaluation of Relational Join Algorithms in a Pipelined
Query Processing Environment”, IEEE Transactions on Software Engineering 14, 6 (June 1988),
838.

M. Mori, K. Sazuki, H. Abe and K. Itoh, ““A Very Large Data Base System to Serve National
Welfare’’, Proceeding of the Conference on Very Large Data Bases, Kyoto, Japan, August 1986,
496-501.

M. C. Murphy and D. Rotem, ‘‘Effective resource utilization for multiprocessor join execution’”,
Fifteenth International Conference on Very Large Data Bases, Amsterdam, The Netherlands, 1989,

25

54.

55.

56.

57.

58.

59.

61.

62.

63.

65.

67.

68.

67.

D. A. Patterson, G. Gibson and R. H. Katz, ““A Case for Redundant Arrays of Inexpensive Disks
(RAID)”’, Proceedings of the ACM SIGMOD Conference, Chicago, IL., June 1988, 109-116.

H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu and P, Selinger, ‘‘Parallelism in Relational Data Base
Systems: Architectural Issues and Design Approaches’, Proceedings of the International
Symposium on Databases in Parallel and Distributed Systems, Dublin, Ireland, J uly 1990, 4.

J. E. Richardson and M. J. Carey, ‘‘Programming Constructs for Database System Implementation in
EXODUS"", Proceedings of the ACM SIGMOD Conference, San Francisco, CA., May 1987, 208-
219,

J. P. Richardson, H. Lu and K. Mikkilineni, ‘‘Design and Evaluation of Parallel Pipelined Join
Algorithms”’, Proceedings of the ACM SIGMOD Conference, San Francisco, CA., May 1987, 399-
409.

K. Salem and H. Garcia-Molina, “‘Disk Striping”’, Proceedings of the IEEE Conference on Data
Engineering, Los Angeles, CA., February 1986, 336.

B. Salzberg, A. Tsukerman, J. Gray, M. Stewart, S. Uren and B. Vaughan, *‘FastSort: An Distributed
Single-Input Single-Output External Sort™’, Proceedings of the ACM SIGMOD Conference, Atlantic
City, NJ., May 1990, 94. '

D. Schneider and D. DeWitt, ‘A Performance Evaluation of Four Parallel Join Algorithms in a
Shared-Nothing Multiprocessor Environment’”, Proceedings of the ACM SIGMOD Conference,
Portland, OR, May-June 1989, 110.

J. W. Stamos and H. C. Young, ‘A Symmetric Fragment and Replicate Algorithm for Distributed
Joins’’, Technical Report RJ7188 (December 5, 1989), IBM Almaden Research Lab.

H. S. Stone, “Parallel Querying of Large Databases: A Case Study’’, IEEE Computer 21, 10
(October 1987), 11-21.

M. Stonebraker, **The Case for Shared-Nothing’, IEEE Database Engineering 9, 1 (1986).

M. Stonebraker, R. Katz, D. Patterson and J. Ousterhout, ‘“The Design of XPRS"", Proceedings of
the Conference on Very Large Databases, Long Beach, CA., August 1988, 318-330.

M. Stonebraker, P. Aoki and M. Seltzer, ‘‘Parallelism in XPRS"’, UCB/Electronics Research Lab.
Memorandum M89/16, Berkeley, February 1989.

X. Wang and W. S. Luk, ‘‘Parallel Join Algorithms on a Network of Workstations’’, Proceedings of
the International Symposium on Databases in Parallel and Distributed Systems, Austin, TX.,
December 1988, 87.

E. Wong and R. H. Katz, “‘Distributing a Database for Parallelism”’, Proceedings of the ACM
SIGMOD Conference, San Jose, CA., May 1983, 23-29.

H. Zeller, “‘Parallel Query Execution in NonStop SQL”, Digest of Papers, 35th CompCon
Conference, San Francisco, CA., Feb-Mar 1990, 484-487.

26

