A Comparison of the Intel iPSC/860 and the

Suprenum-1 Parallel Computers

Oliver A. McBryan

CU-CS-499-90 November 1990

A COMPARISON OF THE INTEL iPSC/860 AND THE
SUPRENUM-1 PARALLEL COMPUTERS

Oliver A. McBryan*

Department of Computer Science
University of Colorado
Boulder, CO 80309

ABSTRACT

We compare the Intel iPSC/860 and SUPRENUM-1 parallel computers using a well-known
scientific application algorithm. The algorithm, the Shallow Water Equations, is frequently used
as a model for both oceanographic and atmospheric circulation. We describe the steps involved
in implementing the algorithm on the iPSC/860 and on the SUPRENUM-1, and we provide
details of performance. Surprisingly we have found that the SUPRENUM-1 provides better per-
formance on both a single node and multiple node basis, despite the much higher theoretical
peak rate of the 1860 nodes.

Using the latest Intel PGI compiler we have measured 4.63 Mflops per node on the
iPSC/860, with efficiencies of 92.7% on 16 nodes, and 91.6% on 128 nodes. Earlier measure-
ments with the standard Greenhills compiler yielded only 2.7 Mflops per node on the iPSC/860.

With an early version of the SUPRENUM-1 compiler we have measured 5.11 Mflops (64-
bit arithmetic) for single node performance, and efficiencies of 88.3% with 16 nodes (72 Mflops
aggregate performance). While a 256 node SUPRENUM-1 was not yet available for measure-
ment, we provide a simple static load-balancing algorithm for hierarchical systems which
effectively extends the observed single-cluster efficiency for grid algorithms to large systems.

* Research supported in part by the Air Force Office of Scientific Research, under grant AFOSR-89-0422

1. INTRODUCTION

The Shallow Water Equations are a standard model for atmospheric and oceano-
graphic processes and implementations of the algorithm have been used as benchmarks
for vector and parallel supercomputer performance for many years!234, The Shallow
Water algorithm is very memory intensive, involving 14 variables per grid point, and
accesses these using nine-point stencils, non-linear expressions and essential divisions.
The combined effect provides a decidedly non-trivial test of any computer system. We
have recently implemented the benchmark on the Intel iPSC/860 and SUPRENUM-1
MIMD parallel supercomputers and report on our experiences in this paper. The goal of
the study was to estimate effective system performance for typical scientific users. For
this reason we used only pure Fortran software, and have also minimized modifications
to that software.

The Intel iPSC/860 hardware is described briefly in section 2. We ran our tests on
a 128 node iPSC/860 at NASA-Ames Research Center, using both the Greenhills and
the Portland Group (PGI) Fortran compilers. Since the PGI compiler delivered code
that ran at almost twice the speed of the Greenhills code, we will present details only
for PGI-compiled runs.

The SUPRENUM-1 architecture is described briefly in Section 3. We ran our tests
on the SUPRENUM-1 prototype hardware at SUPRENUM GmbH which was running
the Peace 3.0 operating system software. The prototype has only 16 processors,
although a 256 processor system will be available in November 1990.

While the underlying hardware of the iPSC/860 and of the SUPRENUM-1 are
quite different, the software environments for parallel programming are quite similar. In
fact SUPRENUM supports iPSC communication library calls, allowing iPSC programs
to run unchanged. We developed the SUPRENUM version of the application in this
way, using an iPSC implementation that had been developed previously on an iPSC
simulator”,

As we will see, the Shallow Water equations ran at high parallel efficiency on both
the iPSC/860 and SUPRENUM-1. Therefore single-node performance suffices to
characterize overall performance. The Shallow Water code ran on a single iPSC/860
node at 4.63 Mflops and at 5.11 Mflops on a SUPRENUM-1 node (see Table 1). The
performance on 16 nodes was 68.62 Mflops for the iPSC/860 and 72.14 Mflops for
SUPRENUM-1. We also measured 542.64 Mflops on the full 128 node iPSC/860.
Corresponding parallel efficiences were 92.7% and 91.6% for the iPSC/860 and 88.3%
for the SUPRENUM-1. While we had access to only a 16-node SUPRENUM-1, a
256-node version will be available shortly.

Intel iPSC/860 parallel efficiencies are higher than for SUPRENUM due to the
lower message startup costs of the iPSC/860. The new Intel PGI compiler (beta release,
October 1990) showed a dramatic improvement over the Greenhills compiler, but the
compiler is having real difficulties coping with the heavy memory access patterns of the

-3-

Shallow Water benchmark. In fact we tested very small grids on a single node - small
enough to accommodate all variables at all grid points entirely in cache - but did not
obtain significantly better performance. We did not attempt to develop assembly
language routines for the critical subroutines, which would likely be the best way to
achieve better performance.

SUPRENUM-1 performance of over 5.1 Mflops per node was quite surprising,
especially as the code was not vectorized in any way. Two SUPRENUM characteristics
that we had expected to affect performance are the message startup cost (2-3 msecs.)
and the fact that a division requires 11 cycles. We conclude that the SUPRENUM com-
piler is doing an excellent job of locating vectorizable statements, and of generating
efficient pipelined vector instructions to implement such statements. Numerical results
agreed to high precision with those from other machines. We expect that even higher
per-node performance could be achieved by utilizing explicit optimizations, and by cod-
ing computationally intensive segments using SUPRENUM Fortran’s array extensions
(Fortran 90).

Based on the performance observed in the above experiments, we would extrapo-
late SUPRENUM-1 performance to 1150 Mflops on a 16 cluster, 256 processor system.
We comment on the validity of this extrapolation in section 8 where we provide a sim-
ple load-balancing algorithm to reduce inter-cluster communication overhead by a factor
of 8. This would exceed iPSC/860 performance by more than a factor of 2, because
with the current iPSC generation of hypercubes, the largest systems are constrained to
128 processors. Intel has however announced plans to develop rectangular grid arrays
with much larger numbers of processors (Touchstone Delta).

2. THE SUPRENUM-1 SUPERCOMPUTER

The German SUPRENUM-1 computer couples up to 16 processor clusters with a
network of 200 Mbit/sec busses. The busses are arranged as a rectangular grid with 4
horizontal and 4 vertical busses (global busses). Each cluster consists of 16 processors
connected by a fast bus, along with I/O devices for communication to the global bus
grid and to disk and host computers. There is a dedicated disk for each cluster. Indivi-
dual nodes can deliver up to 20 Mflops (64-bit chained) or 10 Mflops (64-bit unchained)
of computing power and support 8 Mbytes of memory. Each node includes both a
Motorola 68020 and a Weitek-based vector processor. The high bandwidth of the bus
network makes this an interesting machine for a wide range of applications, including
those requiring long-range communication. No more than three communication steps
are ever required between remote nodes.

SUPRENUM supports a send/receive model of communication which is not unlike
that supported by Intel. The primary difference is that SUPRENUM Fortran is an

-4 -

extension of standard Fortran, in which task control and communication are incorporated
into the language, rather than being implemented through library calls as on the iPSC.
SUPRENUM also supports Fortran 90 array extensions which avail of the vector
hardware. However we have not used the vector extensions in our experiments.

SUPRENUM software is characterized by the best support for scientific applica-
tions to be found among the various distributed memory MIMD vendors. The effort
invested in development of libraries of high-level grid and communication primitives
greatly eases the effort of moving applications to the computer, and also provides sub-
stantial high-level portability to other systems, since the communication library can be
implemented in terms of low level primitives on any distributed system. In order to
evaluate the effectiveness of both systems in the same way we have not used the
SUPRENUM grid library in the studies reported on here.

3. THE INTEL iPSC/860 SUPERCOMPUTER

In fall 1989 Intel announced an i860-based version of the well-known iPSC/2
hypercube. The iPSC/860 systems are basically standard iPSC/2 hypercubes with the
node processors replaced by Intel i860 processors. In terms of raw floating point perfor-
mance the peak rate is thereby increased by a factor of 10 over even the VX vector
board available with the iPSC/2 - to 60 Mflops. In practice it is unlikely that more than
40 Mflops can be realized due to the memory model used by the i860. Some simple
vector type kernels, hand-coded in assembler, are currently running at from 28 to 38
Mflops/node. Well-designed Fortran programs currently yield about 5-10% of peak due
to the poor state of the i860 Fortran compilers. Several major i860 compiler efforts are
underway and will undoubtedly improve substantially on the early results. Because the
communication facilities of the iPSC/860 are those of the iPSC/2, the system is con-
strained to a maximum of 128 nodes.

While the iPSC/860 utilizes the slow iPSC/2 communication hardware and
software, communication proves to be much faster on the i860 system than on the
iPSC/2. This is because most of the message startup communication overhead is
software overhead involved in negotiating the communication protocol. Because the
i860 is so much faster than the 80386, the software overhead is correspondingly
decreased. The effect is to reduce messaging time by about a factor of three.

Intel has also announced plans to develop a rectangular grid version of the
iPSC/860. There will be § communication paths per node, allowing 4 bidirectional
channels as required for a two-dimensional grid. With the new communication struc-
ture, the iPSC will be freed from the constraint of a maximum of 128 nodes. Indeed
Intel has announced plans to build a 2048 processor version of the iPSC.

-5-

4. THE SHALLOW WATER EQUATIONS BENCHMARK

We will describe the implementation of a standard two-dimensional atmospheric
model - the Shallow Water Equations - on the Intel iPSC/860 and SUPRENUM-1 com-
puters. These equations provide a primitive but useful model of the dynamics of the
atmosphere. Because the model is simple, yet captures features typical of more com-
plex codes, the model is frequently used in the atmospheric sciences community to
benchmark computers!2, Furthermore, the model has been extensively analyzed
mathematically and numerically®’.

The shallow water equations, without a Coriolis force term, take the form
ou oH

ot ox
v oH
— -fu+—=0,
ot
oOP dPu OPv
+ + =0,
ot ox oy
where u and v are the velocity components in the x and y directions, P is pressure, {
ov du
is the vorticity: { = 5— —— and H, related to the height field, is given by:
X

H=P+ (u2 + vz)/2 . It is required to solve these equations in a rectangle
a <x £b,c <y <d. Periodic boundary conditions are imposed on u, v, and P, each
of which satisfies f (x+b,y) = f (x+a.y), f(x,y+d) = f (x,y+c).

A scaling of the equations results in a slightly simpler format. Introduce mass
fluxes U=Pu and V=Pv and the potential velocity Z={/P, in terms of which the equa-
tions reduce to:

ou oH

— -ZV+—=0,
ot ox

ov 0

—+ZU +— =0,
t ay

oP oU oV

ot X y

5. DISCRETIZATION

We have discretized the above equations on a rectangular staggered grid with
periodic boundary conditions. The variables P and H have integer subscripts, Z has
half-integer subscripts, U has integer and half-integer subscripts, and V has half-integer

and integer subscripts respectively.

Initial conditions are chosen to satisfy V¥ =0 at all times. We time difference
using the Leap-frog method. We then apply a time filter to avoid weak instabilities
inherent in the leap-frog scheme:

F(n) =f(n) +a (f(n+l)_2f(n)+f(n—1)) ,

where o is a filtering parameter. The filtered values of the variables at the previous
time-step are used in computing new values at the next time-step. For a complete
description of the discretization we refer tol.

6. SERTAL FORTRAN IMPLEMENTATION

The Fortran code implementing the above algorithm involves a 2D rectangular grid
with variables: u(i,j), v(@i.j),pG.j), z(i.j), psi(i,j), h(i,j). Here the first index
represents the y direction. There are three main loops, two corresponding to the leap-
frog time propagation of various quantities, and one for the filtering step. Execution of
these three loops completes a single time step, which is then repeated until the desired
temporal simulation interval has been achieved. A typical code sequence, used in the
updating of the U, V and P variables, is:

do 200 j=1,n
do 200 i=1,m
unew(i+1j) = uold(i+1 j)+
tdes8* (z(i+1 j+1)+z(i+1 j))*(cv(i+1 j+1)+cv(ij+1)+cv(iyj)
+cv(i+1 ,j))-tdtsdx* (h(i+1 j)-h(i,j))
vnew(ij+1) = vold(i j+1)-tdts8*(z(i+1 j+1)+z(i,j+1))
*eu(i+1 j+1)+cu(ij+1)+cu(ij)+cu(i+1,j))
-tdtsdy*(h(i,j+1)-h(ij))
pnew(ij) = pold(i j)-tdtsdx*(cu(i+1,j)-cu(i,j))
-tdtsdy*(cv(i j+1)-cv(ij))
200 continue

Each such loop is followed by code to implement the periodic boundary conditions.
Note that there are such loops for both the horizontal and vertical boundaries, and in
addition some corner values are copied as single items.

Excluding the boundary computations, the three major loops in a time step involve
65 arithmetic operations per grid point (with division counted as a single operation).
The complexity of the memory access patterns required to implement the above loop

-7 -

explain the difficulty the iPSC/860 compilers have in providing good performance?.

7. iPSC/860 AND SUPRENUM IMPLEMENTATIONS

To speed the implementation effort we decided to test the idea of porting a generic
MIMD parallel version of the Shallow Water Equations to the SUPRENUM-1. The
work was based on a parallel code developed by McBryan and Pozo®. Actually the
code was developed for a generic class of MIMD parallel computers, based on the
assumption of a single process per node model. The code was developed and tested
using a simulator for the generic model8®. The simulator supports both the Intel iPSC/1
and iPSC/2 communication protocols. The code developed for the simulator was used
without change on the iPSC/860.

SUPRENUM supports a library interface allowing both Intel iPSC/1 and iPSC/2
communication interfaces to be utilized. It suffices to declare the main program of both
the host and node processes to be SUPRENUM tasks, while the rest of each program
may remain as a pure Intel iPSC program. This approach greatly reduces code
modifications that would be required to develop a complete SUPRENUM-1 implementa-
tion from scratch. In fact the code was ported and fully compiled within a few hours.
The program ran immediately and gave correct results on the first try. This demon-
strates the advantages of developing MIMD codes initially using simulators, and
transferring to hardware only when the simulations are running correctly.

Since the algorithm involves rectangular grid arrays, and a nine-point stencil, the
parallelization of the code is straightforward. A logical mapping of the processors to a
two dimensional array is selected. Thus if P = P _P_, is a factorization of the number
of processors P, then we regard the processors as arranged in a P, xPy logical grid.
The large arrays representing physical variables (u, v, etc.) are then decomposed into
equal sized blocks, with one block assigned to each processor. For simplicity we
assume that the x and y grid dimensions are exact multiples of the corresponding pro-
cessor numbers P and Py. Each such block is then stored in an array of the same
shape, but which has an extra boundary row or column provided on each of the four
sides. These extra boundary points are used to maintain copies of the true (i.e. interior)
boundary points of the four neighboring processors. The three main loops of the time
step are decomposed into equivalent loops performed by each processor on the interior
points of the block assigned to that processor. Following each loop, the boundary
values are updated by copying the appropriate values from neighboring processors, fol-
lowing a synchronization to ensure that all neighbors have completed changes. Because
the current application requires periodic boundary conditions, the logical processor grid
is defined to be periodic - i.e. is a torus.

- 8-

There is an essential simplification that occurs in the case that either P, or Py is 1
- in which case the logical rectangular processor array reduces to a line of processors, or
a ring in the case of periodic boundary conditions. In this case two of the four com-
munications required within each main loop are not needed, reducing substantially the
communication overhead. As mentioned previously, the Shallow Water code uses
periodic boundary conditions in each dimension. Normally periodic boundary condi-
tions require copying data between processors at opposite edges of the processor array.
In the case that one or other of P, or Py is 1, the periodic boundary condition in the
corresponding dimension may be implemented by in-memory copying, rather than by
communication.

A final optimization of the communication structure was required to get the peak
performance. Before each of the main loops in the algorithm, the boundary data for the
various physical variables (P,U,V,Z,H) used in that loop need to be copied from
neighboring processors. Typically two or three variables are needed from a specific
direction, although the number needed may depend on the direction. Because of the
high communication startup cost of SUPRENUM-1 (at least 2 msecs), and the
moderately high startup cost on the iPSC/860 (.3 msecs), it is essential to limit the
number of individual communication requests. This was accomplished by packaging
several communications of different physical variables in a single direction into one
large communication packet. For some steps this reduced startup overhead by a factor
of three.

In the final SUPRENUM-1 implementation we also replaced the Intel iPSC/2 com-
munication calls by explicit calls to SUPRENUM PFortran equivalents, thereby saving an
extra copying of each data array to a communication buffer. SUPRENUM PFortran sup-
ports explicit I/O statements for send/receive communication which allow multiple
arrays to be communicated in a single operation.

8. AN ALGORITHM TO INCREASE MULTI-CLUSTER EFFICIENCY

Because multi-dimensional grids are easily imbedded in hypercubes, iPSC/860
parallel efficiency remains essentially constant with increasing number of processors.
This is borne out by our measurements in the following section.

SUPRENUM-1 is however an hierarchical architecture (with nodes as the bottom
level, and clusters as the second level), and consequently one can expect that single-
cluster efficiencies will drop as one goes to multi-cluster systems due to the increased
communication overhead in traversing the bus grid that interconnects the top level of the
hierarchy. We now show that for multi-dimensional rectangular grid algorithms, these
extra overheads may be trivially reduced by a factor of C/2, where C is the number of
nodes in a cluster.

9.

First we note that with strip rather than square 2D subgrids, communication can be
restricted entirely to one grid direction (x direction to ensure that the Fortran column
direction, y, is within single processors). By assigning processors of each cluster to
consecutive intervals of the x direction, only the first and last processor in a cluster will
ever send data out of the cluster, while the remaining processors simply exchange data
with their left and right neighbors. Thus communication between clusters will be
extremely simple, and in fact the first and last processor of each cluster could be
assigned a smaller amount of work to perform, to balance for the increased communica-
tion time to be expected at those nodes. The same comments apply in 3D, provided
that the word "plane” replaces "column".

Consider the horizontal dimension of a grid which has been decomposed so that
each cluster contains n columns (or planes), with n; columns stored in "interior" nodes
of the cluster and n, columns in the first and last nodes. Let ¢, denote the communica-
tion time to send a column between nodes in a cluster, and ¢, denote the extrra time
required to communicate between clusters. If a denotes the time to perform the
required arithmetic computation on one column, then we may describe the per-node
elapsed time of interior and boundary nodes (assuming no communication overlap) as:

tp=an;+2c, t2=an2+201+02,

Imposing load balancing requires that £, = ¢,. In addition we have a constraint on the
number of columns in a cluster: n = (C-2)n+2n,. These equations lead to the result:

ty=a*n/C + 2c1 + 2¢,/C .

Note that ¢ = a*n/C + 2¢ is the per-node elapsed time assuming only a single cluster
is in use. Thus load balancing allows effective time to be increased by only 2¢,/C,
rather than the ¢, which we would increase by without load balancing. In the case of

SUPRENUM-1, where C is 16, this allows a decrease by a factor of 8 in the costs of
inter-cluster overhead.

The arguments above are independent of the dimensionality of the grid, provided it
is decomposed along only one direction. Of course such a decomposition typically
requires more data transfer than for sub-square or sub-cube decompositions, although
this may be balanced by the efficiencies of longer vector length and fewer communica-
tion startups. Finally we note that a similar load-balancing could be used for grids that
are decomposed into sub-squares or sub-cubes, but to much less effect. In the sub-
square case 12 of the 16 processors in a SUPRENUM cluster would incur the increased
overhead, allowing only a minor improvement in performance from load balancing. For
very large clusters, one could gain a factor of O (T) decrease in inter-cluster overhead
for sub-squares, or O (C 1/3) for sub-cubes, using similar arguments.

- 10 -

9. PERFORMANCE RESULTS: iPSC/860 vs. SUPRENUM-1

All measurements were performed on a 128 processor iPSC/860 and on a 16-
processor SUPRENUM-1 cluster (no larger SUPRENUM system was available). The
Shallow Water code was exactly the standard sequential code, modified only to take
account of communication as described in the previous section.

On SUPRENUM-1, no attempt was made to introduce Fortran 90 vectorization
constructs, or to otherwise adapt the code to known features of the SUPRENUM com-
piler. The code was compiled with both the vectorizer and optimizer switches (options
"-opt -vec -strength -strip_length"). Similarly, on the iPSC/860 we did not attempt to
write i860 assembler code. The Fortran was compiled with the i860 PGI compiler (beta
release) using the options "-O3 -WO0,nodepchk -Mvect". All arrays were arranged to be
fully visible to the compiler - i.e. the compilers were aware of the static dimensions.

We present the measured results in Table 1. The table indicates the number of
processors P, their arrangement as a logical P, xPy rectangular processor array, the
computational domain size M, xMy and the resulting per processor sub-grid domain size
N, XN, .

The iPSC/860 performed at 4.63, 68.62 and 543.64 Mflops respectively on 1, 16
and 128 processors. Corresponding multiprocessor efficiencies were 92.7% and 91.6%.

The SUPRENUM-1 performed on a 128x128 grid at 4.10 Mflops on a single pro-
cessor. Performance on a 16-node cluster was measured at 72.14 Mflops on a 512x512
grid. This corresponds to approximately 108% efficiency relative to linear scaling of the
single processor results. Thus we appear to have the unusual situation of super-linear
speedup.

The reason we have observed superlinear speedup is that the standard Shallow
Water benchmark is a square grid program. Thus the obvious parallel test would be to
solve the equations on as large a square grid as the machine accommodates. On a sin-
gle processor there is only one possibility: a 128x128 grid. However on 16 processors,
while total grid size is restricted to the 512x512 square, one now has some leeway as to
how to decompose the grid: as horizontal, or vertical strips, or sub-squares for example.
Depending on the choice, the sub-grids stored in the individual processors may be non-
square. The most favorable sub-grids for SUPRENUM-1 are vertical strips, since these
provide the longest vector length within individual processors. Indeed we see from the
table that the best single-node performance is realized for that case: 32x512 sub-grids.
Vertical strips also have another advantage: they require communication in only two
rather than four directions.

To make a really fair comparison to a single processor one should therefore con-
sider rectangular grids for the single processor case: in the second SUPRENUM-1 line
of the table we include the 1 processor performance for a grid of the same dimensions
as the optimal subgrids for 16 processors. The resulting 1-grid performance increases to

- 11 -

5.11 Mflops. If this value is used to measure 16-processor efficiency one arrives at a
quite respectable, but sublinear, value of 88.3% efficiency.

Alternatively one could make the comparison of 1 and 16 processor results using
square sub-grids in both cases. As seen from the table the resulting performance is
56.89 Mflops, corresponding to an efficiency relative to the 1 processor square grid of
86.6%, which is totally consistent with the conclusion based on skewed grids.

For the iPSC/860 we also investigated the effect of varying the single-processor
domain shape. We found that the best performance occurred with grids that were close
to square. In fact long vertical strips of the type that are optimal for SUPRENUM-1
gave very poor performance on the iPSC/860 (off by a factor of 2.5). The iPSC/860
nodes therefore definitely do not appear as vector processors with the current compilers.
For a more detailed discussion of these issues we refer to°.

TABLE 1: SHALLOW WATER PERFORMANCE ON iPSC/860 AND SUPRENUM-1
SYSTEM P Px Py Mx My Nx Ny Mflops
iPSC/860 1 1 1 128 128 128 128 4.502
iPSC/860 1 1 1 256 64 256 64 4.628
SUPRENUM-1 1 1 1 128 128 128 128 4.104
SUPRENUM-1 1 1 1 32 512 32 512 5.107
iPSC/860 16 16 1 512 512 32 512 62.763
iPSC/860 16 2 8 512 512 256 64 68.616
SUPRENUM-1 16 4 4 512 512 128 128 56.889
SUPRENUM-1 16 8 2 512 512 &4 256 64.103
SUPRENUM-1 16 16 1 512 512 32 512 72,142
iPSC/860 128 16 8 2048 1024 128 128 542.638

The SUPRENUM-1 lines in the table above involve at most 16 processors. Based
on these numbers, we extrapolate to a performance of about 1150 Mflops (64-bit) on a
full 256 processor SUPRENUM-1. In practice performance may drop somewhat relative
to the above extrapolation due to the need to access the global communication bus when
using more than 16 processors. As pointed out in the previous section, such overheads
are easily reduced by a factor of 8 by using a static load-balancing approach.

- 12 -

Furthermore since message startup costs are dominating the communication overhead,
we suspect that the slower speed of the global bus will not have a major impact. While
this may prove overly optimistic, there will be potential gains from improvements to the
SUPRENUM Fortran which may well balance any communication losses (in fact a new
SUPRENUM compiler was released while this paper was being prepared, but was not
used here). Another feature enhancing potential 256 processor performance is the fact
that when a larger 2048x2048 grid is decomposed, the optimal decomposition by strips
of size 8x2048 will result in better vectorization of the node programs due to longer
vector lengths.

ACKNOWLEDGEMENTS

We would like to thank NASA-Ames Research Center for providing access to their
iPSC/860. We would also like to thank Dr. S. Griffin and Dr. D. Scott of Intel
Scientific Computers for helpful discussions about iPSC/860 optimization of the Shallow
Water equations.

We would like to thank SUPRENUM GmbH for providing access to the
SUPRENUM-1 prototype, and especially Dr. R. Vogelsang, of SUPRENUM GmbH, for
facilitating access to the Intel iPSC/1 library emulation on the SUPRENUM-1. We also
thank M. Lemke and W. Krotz-Vogel of SUPRENUM GmbH for helpful comments
concerning efficiency issues.

References

1. G.-R. Hoffman, P.N. Swarztrauber, and R.A. Sweet, ‘‘Aspects of using multipro-
cessors for meteorological modeling,”” in Multiprocessing in Meteorological
Models, ed. D. Snelling, pp. 126-195, Springer-Verlag, Berlin, 1988.

2. O. McBryan, ‘“New Architectures: Performance Highlights and New Algorithms,’
Parallel Computing, vol. 7, pp. 477-499, North-Holland, 1988.

3. O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Mpyrias SPS-2 Com-
puter,”” CS Dept Technical Report, University of Colorado, Boulder, 1990.

4. O. McBryan and R. Pozo, ‘‘Performance Evaluation of the Evans and Sutherland
ES-1 Computer,”” CS Dept Technical Report, University of Colorado, Boulder,
1990.

5. O. McBryan and R. Pozo, ‘‘Performance of the Shallow Water Equations on the
Intel iPSC/860 Computer,”” CS Dept Technical Report, University of Colorado,
Boulder, 1990.

6. R. Sadourny, ‘“The dynamics of finite difference models of the shallow water equa-
tions,”” JAS, vol. 32, pp. 680-689, 1975.

- 13 -

G.L. Browning and H.-O. Kreiss, ‘‘Reduced systems for the shallow water equa-
tions,’” JAS, to appear.

O. McBryan and E. Van de Velde, Hypercube Algorithms and Implementations,
SIAM I. Sci. Stat. Comput., 8, pp. 227-287, 1987.

O. McBryan, ‘‘Software Issues at the User Interface,’’ in Frontiers of Supercom-
puting II: A National Reassessment, ed. W.L. Thompson, MIT Press, to appear.

