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Abstract

We present a method for assessing the usability of language constructs which we have ap-
plied to the design of a language for parallel numerical computing. The language designer selects
a suite of sample problems and analyzes the process users would have to go through to write pro-
grams for those problems. The decisions users must make are examined, and the facts and princi-
ples they must apply to make the right choices are noted. This inventory of \knowledge and
reasoning required to use a language can be used to compare alternative language constructs,
identify weak points in a language design, and construct helpful user documentation. We believe
this approach can be especially valuable in the design of languages for parallel computing, where
the need to explore novel constructs coexists with the need to make languages readily usable by sci-

entists and engineers who are not computer specialists.

1. Introduction.

Parallel computation is an extremely active area of research. In particular there have been a significant num-
ber of new languages proposed that are specifically designed to support parallel computation. Designers of these lan-
guages face the challenge of devising implementable constructs capable of expressing a wide range of computations.
These constructs must also be understood and used by scientists and others who wish to exploit the power of parallel
machines while investing as little effort as possible in mastering the tools.

Little attention has been paid to this latter aspect of the design problem, either in recent work on parallel lan-
guages or in earlier language design efforts. Work on software usability has concentrated on “end user” applications

like word processing rather than on programming [2]. Textbook accounts touch lightly on the need to consider users’
mental processes, which lie at the center of any consideration of usability, as an aspect of the language design prob-
lem [1, 3].

The challenge of parallel computing offers an opportunity to make progress in this area of design. Parallel
languages must introduce new language constructs, and so offer wide scope for the development and application of
new design methods. Equally, the intended role of parallel languages in supporting uscful work by scientists, engi-
neers, and others who are not computer specialists creates a need for design methods that can make these languages
as easy to understand and use as possible. We describe here a method, the Programming Walkthrough Analysis, that
may contribute to this design enterprise.

1. This research is supported, in part, by AFOSR grant AFOSR-85-0251, NSF Cooperative Agreement DCR-8420944, and NSF Coop-
erative Agreement CDA-8420944.



2. Background.

Evaluations of programming languages usually focus on the character of programs in the language. More
rarcly, and usually implicitly, operations on programs are considered. For example, can separately written programs
be combined easily? From the user’s perspective, these evaluations neglect key aspects of the use of a language
which engage the user’s cognitive faculties. Is it easy to write a program in the language, given a specification of a
problem? Is it easy to understand a program once written?

The Programming Walkthrough Analysis is intended to allow language designers to come to grips with
some of these issues. In particular, it focuses on the process of writing programs in a language rather than on the char-
acter of the resulting programs. For example, the analysis allows that programs in a language might be long and com-
plex but yet simple to write or, more likely, that programs in a language might be short and elegant but yet very
difficult to write.

This analysis can be helpful in design in a number of ways. First, analysis of a number of sample problems
can provide an indication of where the trouble spots in a design lie. It is easy for a designer to misjudge the natural-
ness of a design because of the familiarity bred by the design process. The walkthrough analysis helps to see the de-
sign from the perspective of a user who is not familiar with it, without the overhead of getting real users to try the
language. Second, the analysis can be used to compare design alternatives. Often there are alternative approaches to
issues in language design, and differences in the decisions users must make can supplement or modify the intuition
that often guides such choices. Third, the results of the analysis form an inventory of the knowledge users must have
to use the language effectively. This inventory can be used to make sure that documentation includes what is needed.

In the remainder of this Section we first describe the Programming Walkthrough Analysis, then we describe
the parallel language we will use in our example. In Section 3, we present a simple example to illustrate the analysis
and discuss the results of using a more complex series of examples. In Section 4, we discuss the benefits and limita-

tions of the analysis. Finally, in Section 5, we suggest areas for future research.

2.1 The Programming Walkthrough Analysis.

To use the Programming Walkthrough Analysis to evaluate a language the designer chooses a suite of one or
more specific problems whose solutions will be evaluated. He or she then writes programs for these problems in the
language, keeping track of the decisions that must be made to produce the program. All decisions made in the process
of developing the solution are noted, including decisions about choice of data structure and algorithm that may be
made before any code for the solution is written. The designer also notes what basis is available for making each de-
cision, that is, what facts and principles should be used to make the right choice.

It is this basis that is the key to the Programming Walkthrough Analysis. A little thought about what a user
must do to write a program reveals immediately that users of a language must know much more than the definitions
of the various constructs of the language. They have to know, for example, how to combine low-level structures into
complexes that correspond to meaningful parts of problems [4]. They may have to know in what order decisions
about data structures and algorithms should be made. While some of this knowledge may be part of general program-
ming knowledge that every user of the language can be expected to know, some is specific to a particular language,
and must in some way be made available to its users. We call this latter knowledge “doctrine”.

The sequence of user decisions, together with the indication of the doctrine behind each, becomes the focus
for the evaluation. A language will look good for a given problem if few decisions are required, or if only a small
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amount of doctrine is required for each decision. A language will look bad if many decisions are required, or if the
doctrine is lengthy and/or complex. These decisions will require extensive problem-solving for users of the language,
so that writing the program can be expected to be difficult and error-prone.

The usability of the language is influenced not only by the nature of the doctrine required by individual prob-
lems but also by the doctrine needed to solve a class of problems for which the language might be used. If the same
compact and simple doctrine suffices to write a wide range of programs this is good; if different problems require
very different doctrine this is bad. In this bad case users will have to know a lot of doctrine to get their work done.
Additionally, some of this doctrine will probably be conditional in character, contributing to the difficulty for users
because the doctrine contains ideas that are sometimes, but not generally, applicable.

Thus developing a body of doctrine adequate for general use of a language is an important part of assessing
the language’s usability. We do this by an iterative process, starting with draft doctrine which we hope will cover
most of the ground. We then walk through a suite of sample problems, noting all decisions for which the draft doc-
trine is inadequate or incorrect. We then refine the doctrine and repeat the process, until the doctrine is adequate, or
until it becomes clear that the language design permits no sufficiently simple body of doctrine to cover these prob-
lems. In the latter case we can accept the weakness of the design or we can try to change the design so as to avoid the
issues that the problems raised.

We will illustrate the programming walkthrough analysis by presenting an analysis of a particular pair of al-
ternative language constructs. We did eight walkthroughs for the entire analysis. We will present in some detail the
simplest walkthrough and then our results for the complete set of walkthroughs pertaining to these alternatives. First,
we present a brief summary of the parallel language that we draw our examples from.

2.2  DINO

DINO is a language for programming distributed memory parallel computers which is designed primarily
for doing regular numerical problems in a data parallel fashion. DINO is based on the philosophy that the program-
mer must say something about the way in which the problem is parallelized. To this end, it attempts to provide the
programmer with high-level constructs for distributing data to processors and specifying inter-processor communica-
tion.

Essentially, DINO allows the programmer to declare a structured virtual parallel machine on which the com-
putations will be performed, to declare the way that each piece of global data is to be distributed among these proces-
sors, and to specify communication patterns among the processors. The programmer then writes code for the
computation that occurs on a typical processor, using a simple syntax to specify when communications should take
place. The compiler handles all the other details of process initialization and termination, distribution of global data,
and communications.

There are four major concepts in DINO: environments, distributed data, composite procedures, and commu-
nications. Environments are virtual processors. DINO allows the programmer to declare a structure of environments,
that is, a collection of virtual processors usually organized as an array which is suited to the specific problem. Then
the programmer specifies how data structures are distributed among the environments. This specification allows for
replication as well as partitioning and, additionally, tells DINO what the communication patterns among the environ-
ments will be. The programmer next writes the code for a typical environment as a composite procedure. When that
procedure is called, each environment will execute the same code using its portion of the distributed data, resulting in
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a single program multiple data form of parallelism. Finaily, communications occur in two ways. The first is parameter
distribution and return when a composite procedure is invoked. This is handled automatically by DINO. The second
is when the programmer specifics communication between environments in a structure. The programmer need only
specify the name of the data to be sent or received and where (lexically) the communication occurs and DINO han-
dles the rest.

In addition to this general description, it will be helpful for the reader to be aware of the following points of
DINO syntax: (1) It is a superset of C. (2) Sends and receives are specified by “decorating” a variable name with a
“#” either in a write context (send) or a read context (receive). (3) DINO has a syntax for referencing sub-arrays. For
more information on DINO, see [5].

3. An Illustration of the Programming Walkthrough Analysis using DINO.

We present an illustration of the use of the Programming Walkthrough Analysis in the context of DINO, For
this illustration, we will explore the differences between a pair of alternative language constructs. We first present the
doctrine we developed for DINO before doing these walkthroughs. Second, we look in some detail at a walkthrough
generated by applying one of our alternative language constructs to one simple example from the set of examples we
selected for this illustration. Third, we present the results of doing walkthroughs on the entire set of examples. Final-
ly, we discuss the results of this process.

3.1 The Doctrine for DINO.
Here is our initial draft of the DINO doctrine, somewhat abbreviated:

1. ‘You must know the doctrine for the language C.
1L Before proceeding to create a DINO program for the particular problem, make sure you
know:

A. The basic algorithm for the solution;

B. A basic idea about how the solution will be parallelized; and

C. A good idea of the data structures necessary for the solution.
II1. There are four steps necessary to create the DINO program:

A. Chose a structure of environments --- chose a structured virtual machine on which to
do the problem.

1. Chose constants that will be used to identify the name of a specific environment.

B. Determine how the principal data structures should be distributed among the environ-
ments in the structure you selected:

1. For each data structure, determine the basic partitioning; or
2. Decide if it should be replicated. Then,

3. If you chose partitioning, decide where any copies (used for communication)
should go.

C. Write a composite procedure that specifies the computation on each environment:

1. Write the code just to do the computation.
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2. Insert any necessary receives

a. Arule of thumb is to put them as late as possible.

b. Another rule is to put as much data as possible into a single receive.
3. Imsert any corresponding sends:

a. Arule of thumb is to put them as early as possible.

b. Another rule is to put as much data as possible into a single send.

D.  Write a host procedure to specify the computation on the host.

3.2 Exploration of Alternative Constructs.

In DINO, communication is currently designated by appending a “#” to a reference to a distributed variable.
If the reference occurs in a write context, then the communication will be a send; if the reference occurs in a read con-
text, the communication will be a receive. One consequence of this particular syntax is that there are always two dif-
ferent things happening in any communication. In the send case, a new value is assigned to a distributed variable and
that value is sent to other processors. In the receive case, a new value is received for a distributed variable, and that

value is produced for consumption in an e:xpression.2

Our issue is to explore an alternative syntax that would separate out these two functions. So we propose an
alternative syntax to DINO where a send is generated by the statement “Send(X);” where “X” is some distributed
variable. This statement would not assign a value to the variable. Similarly, “Recv(X)” would generate a receive but
not produce a value. Write and read would be designated with normal C syntax. We call the current syntax of DINO
the “#” alternative and the proposed change the “Send/Recv” alternative.

We selected four examples, all designed to exhibit strong or weak points of one alternative or the other. We
then constructed one DINO programs for each example using each of the alternative approaches. Here is the walk-
through generated by using the “#” alternative with our simplest example.

3.3 Example Walkthrough.

Our example problem is a trivial one. We wish to pass an integer from one processor to another. The integer
should start at “1” and be incremented each time it is received. Each processor should retain its integer and when the
entire computation is finished, all these integers should be returned to the host as a vector. We use the “#” alternative
in this example.

We set out each conceptual step that we take, annotating it with the references to the piece(s) of doctrine that
were necessary to take that step:

+  The algorithm for the solution and the way that it is parallelized are obvious from the problem
statement. (II.A and I1.B)
+  Since the problem requires a result vector, we will use a vector as our data structure to store the in-

teger retained by each processor. We call that vector A. (II.C)3

+  Since our principal data structure is a vector and we will want to put one element of that vector on

2. Of course, in C, you can throw away this value.
3. We omit the portion of the walkthrough in which the user determines the appropriate DINO declarations to implement each of these
steps for brevity’s sake.
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each environment, we chose a vector of environments (recall that in DINO, an environment is a vir-
tual processor). (II1.A)

‘We partition our vector A one element to an environment. (IILB.1)

Each environment will have a copy of the value of A from the environment to the left of it. We will
use those copies to communicate the value of the data from left to right. (II1.B.3)

Initially we decide our code is “A[id] = A[id - 1] + 1;”. Note that “id” is a declared
DINO constant that evaluates to the index of the current environment. (III.C.1 and I)
But then we realize that this doesn’t work on the first environment. So our code becomes:
if (id == 0)
Alid] = 1;
else
A[id] = A[id - 1] + 1;
Doctrine point III.C.2 tells us we need to receive the value of A[id - 1] but does not tell us just
how to do this. In the “#” alternative we need to decorate the read of A[id - 1] with “#”, result-
inginthe code “A[id] = A[id ~ 1]1# + 1;”,and we add a point of doctrine to cover this sit-
uation (see point IILC.2.c below). (I11.C.2)

Now point III.C.3 tells us we need to send A [1d]; again, we need to add a point to doctrine to say
just how to do this (see point III.C.3.c below). The resulting code has “A[idl# = 1;” and
“Afidl# = A[id - 11# + 1;”.(ILC.3)

However, we realize that this will generate an unnecessary send in the last environment. So we
modify our code to look like:

if (id == 0)
Alid]l# = 1;
else
if (id !'= N - 1)
Alidl# = A[id - 1]# + 1;
else
Alid]) = A[id - 1]1# + 1;
The host procedure (ignoring the output) is one line, “test (a[]) #; . (IILD)

Note that in this process, we have discovered two additional points of doctrine that must be added -- how to

receive a value and how to send a value. Because these points are specific to one of the alternatives we are testing,

they will be added to the version of the doctrine that is associated with that alternative.

Results of other Examples.

In a manner similar to that set out above, we do walkthroughs for each example we wish to use, one for each

alternative. In several additional places, we find that additions to the doctrine are necessary. The following are addi-
tional points of doctrine that are specific to the “#” alternative when we have completed walkthroughs for all the ex-

III.C.2.c.  Todo areceive, locate a read of the variable you are interested in at the right place
(lexically) and decorate it with a “#”.
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II.C.2.d.  If there is no read at the right place, you can create one as in “A#; ”. This causes A to
be read and its value to be discarded. A side effect is that a new value for A is re-
ceived first.

NI.C3.c.  Todo asend, locate a write to the variable you are interested in at the right place (lex-
ically) and decorate it with a “#”.

HNI.C.3.d.  If there is no write at the right place, you can create one as in “A# = A;” Only the
side effect of sending the value of A will actually occur.

NI.C.3.e. Remember in a simple C statement, reads occur before writes. Therefore if you deco-
rate both a read and a write in one statement, the receive associated with the read will
occur before the send associated with the write.

The following are additional points of doctrine that are associated with the Send/Recv alternative:

HI.C2.c.  Todoareceive, at the right place (lexically) insert the statement “Recv (X) ; ” where
X is the variable whose value is to be received.

NI.C3.c.  Todoasend, at the correct place (lexically) insert the statement “Send (X) ; ” where
X is the variable whose value is to be sent.

Finally, in the process of doing these walkthroughs, we found an additional point of doctrine that applied to
both alternatives. It was:
NI.C.1.a.  Write code for the middle first. Middle is used in two senses: middle spacially mean-
ing not on the edge of a data structure or not on the edge of a block of a data structure
that is resident on one environment; middle temporally meaning not the first or last it-
erations of loops. Then look at all of the edge cases one at a time to see if the code
must be modified.

3.5 Results and Implications for DINO

We can draw several useful results from this walkthrough analysis: (1) We have gained additional informa-
tion about our proposed alternative constructs. (2) We have found some additional general information about DINO
that is unrelated to the alternatives we set out to explore. (3) We have obtained information that would be extremely
useful in constructing user documentation. We look at each of these in turn.

As we saw, the doctrine for the “#” alternative is more complex than that needed for the Send/Recv alterna-
tive. This suggests that this alternative would be harder to learn and use. We could respond to this finding by adopting
the Send/Recv approach, or by secking ways to make the “#” alternative work better. Much of the complexity of the
“#” approach comes from the need to force sends and receives at points where there are no corresponding writes or
reads, as covered in doctrine points II1.C.2.d and II1.C.3.d. We cannot present the analysis here, but we can identify
what type of problem leads to these situations, and we can propose other language features that deal with them with-
out the need for these points of doctrine. Thus the walkthrough analysis can help in developing design alternatives as
well as choosing among them.

This example makes another point about the use of the walkthrough results. While the “#” needs more doc-
trine, it also sometimes needs less code. A final choice of design would have to weigh this fact as well as the walk-
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through result. Implementation issues would have to be considered as well. So the point is not that the walkthrough
analysis delivers the ultimate verdict on design alternatives. Rather, the value of the method is that it permits a more
fully informed decision to be made.

The example also shows that the walkthrough turned up information for which we were not looking. The
doctrine about treating the “middle” of a problem first does not bear on the design alternatives, but does point up an
area of the overall design that might repay attention. Perhaps more support can be provided in the language for the
“edges” of problems, for example by detecting and suppressing unneeded final sends. Because of the ability of the
walkthrough to turn up issues like this we have found it useful as a way to explore a design, even when no specific al-
ternatives are to be considered.

Finally, the example shows how an inventory can be made of what users really need to know to use DINO.
In preparing documentation for the language we are including not only the usual definitions of language constructs
but also the doctrine, in explicit form. We also are including walkthroughs of two sample problems, to help users un-
derstand how the doctrine can be used to solve problems. Historically, this kind of direct guidance to users has been
the province of programming courses and textbooks. We want DINO users to find out as soon as they get the software
what they need to know to do useful work.

4. Discussion of The Programming Walkthrough Analysis.

We believe the value of the Programming Walkthrough Analysis is that it provides a systematic method for
identifying usability problems in a language design. As such it provides a way for designers to include usability in the
design debate along with expressiveness and implementability. It can be used to compare design alternatives, as in the
example; to help formulate new alternatives in response to problems; to look for problem areas in a design even when
no alternatives are under consideration; and to guide the development of documentation.

We find that these benefits more than repay the modest investment required, but there are limitations that
must be kept in mind. First, the results will only be as good as the problems that are analyzed. In comparing alterna-
tives problems must be chosen that place the alternatives in a realistic context, as they might appear when actual users
confront the language. Using only very simple problems, such as the one that generated our example walkthrough
above, runs the risk of missing key issues that would arise in real use.?

A second limitation is that intuition and designer’s judgement play a big part in the use of the method. One
could say that the method replaces a designer’s vague and unfocussed intuitions about usability with more concrete
and focussed ones. The designer does not have to decide whether alternative A is more natural than alternative B, but
does have to decide whether the doctrine for A is more complex than that for B. An important gain is that considering
how alternatives A and B work out in the process of writing particular programs is much easier than deciding their
merits in the abstract. It also appears useful to recognize, as the method requires, that a language design must be eval-
uated in such a way that not just the design itself, but also the knowledge needed to apply it, must be weighed.

5. Future Extensions.

Writing isn’t the only thing people must do with programs. We think the walkthrough approach can be ex-
tended to examine other tasks, including first of all reading programs. The same principles can be applied: examine

4. Other examples we used in the analysis were more complex.
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the process of reading and inventory to knowledge needed to carry out the task successfully. Similarly, debugging is

also a critical task, and one that is especially difficult for parallel languages. In a like manner, the walkthrough ap-

proach can be extended to examine the usability of language constructs from the perspective of detecting and correct-

ing programming errors.

(1]
(2]

(3]

(4]
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