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Abstract

In this paper, we first discuss computational experience using the SR1 up-
date in conventional line search and trust region algorithms for unconstrained
optimization. Our experiments show that the SR1 is very competitive with
the widely used BFGS method. They also indicate two interesting features:
the final Hessian approximations produced by the SR1 method are not gener-
ally appreciably better than those produced by the BFGS, and the sequences
of steps produced by the SR1 do not usually seem to have the "uniform linear
independence” property that is assumed in some recent convergence analysis.
We present a new analysis that shows that the SR1 method with a line search
is n+1 step g-superlinearly convergent without the assumption of linearly in-
dependent iterates. This analysis assumes that the Hessian approximations
are positive definite and bounded asymptotically, which from our computa-
tional experience are reasonable assumptions.



1. Introduction

This paper is concerned with secant (quasi-Newton) methods for finding a local minimum
of the unconstrained optimization problem
in f(z). 1.1
Iin f(z) (1.1)

It will be assumed that f(z) is at least twice continuously differentiable, and that the
number of variables n is sufficiently small to permit storage of an n X n matrix, and
O(n?) or possibly O(n®) arithmetic operations per iteration.

Algorithms for solving (1.1) are iterative, and the basic framework of an iteration of
a secant method is:

Given current iterate z., f(z.), Vf(z.) or finite difference approximation, and
B, € R™*™ symmetric (secant approximation to V2 f(z,)):

Select new iterate 2 by aline search or trust region method based on quadratic
model m(z. + d) = f(z.) + V f(2:)Td + 1dT B.d.

Update B. to B, such that By is symmetric and satisfies the secant equation
Bysc = yc, where s, = z4 — 2. and y. = Vf(z4) — Vf(z,).

In this paper, we consider the SR1 update for the Hessian approximation,

(yc = B:se)(ye — BcSC)T
B, = Bc + 1.2
* SZ(yc - Bcsc) ( )

and, for purpose of comparison, the BFGS update

T T

YeY: | Bescs; B

By =B, + + :
* c ygyc Szyc

(1.3)

For background on these updates and others see Fletcher [1980], Gill, Murray, and
Wright [1981], and Dennis and Schnabel [1983].

The BFGS update has been the most commonly used secant update for many years.
It makes a symmetric, rank two change to the previous Hessian approximation B., and
if B, is positive definite and sTy, > 0, then B, is positive definite.

The BFGS method has been shown by Broyden, Dennis, and Moré [1973] to be locally
g-superlinearly convergent provided that the initial Hessian approximation is sufficiently
accurate. Powell [1976] proved a global superlinear convergence result for the BFGS
method when applied to strictly convex functions and used in conjunction with line
searches that satisfy the conditions of Wolfe [1968]. The BFGS update has been used
successfully in many production codes for unconstrained optimization.

The SR1 formula, on the other hand, makes a symmetric rank one change to the
previous Hessian approximation B,. Compared with other secant updates, the SR1 up-
date is simpler and may require less computation per iteration when unfactored forms
of updates are used. (Factored updates are those in which a decomposition of B, is
updated at each iteration.) A basic disadvantage to the SR1 update, however, is the
fact that its denominator may be zero or nearly zero, which causes numerical instability.
A simple remedy to this problem is to set B, = B, whenever this difficulty arises, but
this may prevent fast convergence. Another problem is that the SRI update may not



preserve positive definiteness even if this is possible, i.e., when B, is positive definite and
sTy. > 0.

Fiacco and McCormick [1968] showed that if the SR1 update is applied to a positive
definite quadratic function in a line search method, then, provided that the updates are
all well defined, the solution is reached in at most n + 1 iterations. Furthermore, if n + 1
iterations are required, then the final Hessian approximation is the actual Hessian at the
solution. This result is not trie, in general, for the BFGS update or other members of
the Broyden family, unless exact line searches are used.

For nonquadratic functions, however, convergence of the SR1 is not as well understood
as convergence of the BFGS method. In fact, Broyden, Dennis, and Moré [1973] have
shown that under their assumptions the SR1 update can be undefined, and thus their
convergence analysis can not be applied in this case. Also, no global convergence result
similar to that for the BFGS method given by Powell [1976] exists, so far, for the SR1
method when applied to a non-quadratic function.

Recent work by Conn, Gould, and Toint [1988a, 1988b, 1991] has sparked renewed
interest in the SR1 update. Conn, Gould, and Toint [1991] proved that the sequence of
matrices generated by the SR1 formula converges to the actual Hessian at the solution
V2 f(z.), provided that the steps taken are uniformly linearly independent, that the SR1
update denominator is always sufficiently different from zero, and that the iterates con-
verge to a finite limit. (Using this result it is simple to prove that the rate of convergence
is g-superlinear.) On the other hand, for the BFGS method Ge and Powell [1983] proved,
under a different set of assumptions, that the sequence of generated matrices converges
but not necessarily to V2 f(z,).

The numerical experiments of Conn, Gould, and Toint [1988b] indicate that minimiza-
tion algorithms based on the SR1 update may be competitive computationally with meth-
ods using the BFGS formula. The algorithm used by Conn, Gould, and Toint [1988b] is
designed to solve problems with simple bound constraints,i.e, l; < 2; < uj, i = 1,2,..., 7.
The bound constraints are incorporated into a box constrained trust region strategy for
calculating global steps, in which an inexact Newton’s method oriented towards large
scale problems is used. This method uses a conjugate gradient method to approximately
solve the trust region problem at each iteration, and also incorporates a new procedure
that allows the set of active bound constraints to change substantially at each iteration.
In this context, Conn, Gould, and Toint [1988b] conclude that the SR1 performance is, in
general, somewhat better than the BFGS in terms of iterations and function evaluations
on their test problems. They point out that the use of a trust region removes a main
disadvantage of SR1 methods by allowing a meaningful step to be taken even when the
approximation is indefinite. They also point out that the skipping technique used when
the SR1 denominator is nearly zero was almost never used in their tests. They attribute
part of the success of the SR1 to the possible convergence of the updates to the true
second derivatives as discussed above. In Conn, Gould, and Toint [1991], they tested
this convergence using random search directions. These tests showed that, in comparison
with other updates such as the BFGS, the DFP, or the PSB, the SR1 generates more
accurate Ilessian approximations.

The purpose of this paper is to better understand the computational and theoretical
properties of the SR1 update in the context of basic line search and trust region methods
for unconstrained optimization. In the next section, we present computational results we
obtained for the SR1 and the BFGS methods using standard line search and trust region
algorithms for small to medium sized unconstrained optimization problems. We also



report on tests of the convergence of the sequence of Hessian approximation matrices,
{Bk}, generated by the SR1 and BFGS formulas, and of the condition of uniform linear
independence of the sequence of steps which is required by the theory of Conn, Gould,
and Toint [1991]. These results indicate that this assumption may not be satisfied for
many problems. Therefore in Section 3, we prove a new convergence result without the
assumption of uniform linear independence of steps. Instead, it requires the assumption
of boundedness and positive definiteness of the Hessian approximation. In Section 4,
we present computational results regarding the positive definiteness of the SR1 update,
and an interesting example. Finally, in Section 5 we make some brief conclusions and
comments regarding future research.

2. Computational Results and Algorithms

In this section, we present and discuss some numerical experiments that were conducted
in order to test the performance of secant methods for unconstrained optimization using
the SR1 formula against those using the BFGS update.

The algorithms we used are from the UNCMIN unconstrained optimization software
package (Schnabel, Koontz, and Weiss [1985]) which provides the options of both line
search and trust region strategies for calculating global steps. The line search is based on
backtracking, using quadratic or cubic modeling of f(z) in the direction of search, and the
trust region step is determined using the “hook step” method to approximately minimize

the quadratic model within the trust region. The frameworks of these algorithms are
given below.

Algorithm 2.1 Quasi-Newton method (Line Search)

Step 0 Given an initial point zg, an initial positive definite matrix By, and a = 1074, set
k (iteration number)= 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 Compute a quasi-Newton direction

pr = —(Bi + D)7V f(ax)

where pj is a nonnegative scalar such that py = 0 if By is safely positive definite,
else pr > 0 is such that By + i1 is safely positive definite.

Step 3 {Using a backtracking line search, find an acceptable steplength.}
(3.1) Set A\p = 1.

(3.2) If f(zk41) < fzk) + aXeV f(21)T py, then go to Step 4.

(3.3) If first backtrack, then select the new A such that Tr4+1(Ag) is the local min-
imizer of the one-dimensional quadratic interpolating f(zy), V f(zx)T pg, and
Ff(zk + pi) but constrain the new )\ to be > 0.1, else select the new A such
that 241 (Ax) is the local minimizer of the one-dimensional cubic interpolating
f(zr), Vf(z)Tpr, f(@rp1(Aprev)), and f(2r4+1(A2pres)) but constrain the new
Ak to bein [0.1Arc, 0.5Apr¢,].
(zee1(X) = 21 + Ap, and Aprevs A2prey = previous two steplengths.)

(3.4) Goto (3.2).



Step 4 Set @41 = Tp + Agpr.
Step 5 Compute the next Hessian approximation Bjpi;.

Step 6 Set k =k + 1, and go to Step 1.

Algorithm 2.2 Quasi-Newton method (Trust Region)

Step 0 Given an initial point zg, an initial positive definite matrix By, an initial trust
region radius Ag, 71 € (0,1) and 72 > 1, set k = 0.

Step 1 If a convergence criterion is achieved, then stop.

Step 2 If By is not positive definite set By, = By + pp I where uy is such that By = B+ prl
is safely positive definite, else set By = By.

Step 3 {Compute trust region step by hook step approximation.}
Find an approximate solution to

1 ~
min Vf(zr)Ts + §sTBks subject to ||s|| < A
8 n
by selecting

Sk = —(Bk + VkI)'IVf(:ck), vy >0
such that ||sx]| € [0.75Ak,1.5A%], or
Sk = —f?,c'lVf(xk),
i | BV fzo)l] € 15AL.
Step 4 Set aredy = f(zx + sx) — f(zk).
Step 5 If ared; < 107*V f(2x) sk, then
(5.1) set zpy1 = T + k3

(5.2) calculate pred; = V f(z1) sy + 15T Bysi;

d
(5.3) if 222K £ 0.1, then set Agyps = Ap/2, else if 210

predy pred;
2Ag, otherwise Agpy = Ay

(5.4) go to Step T;

5 0.75, then set Agyq =

Step 6 else

(6.1) if relative steplength is too small, then stop; else calculate the A for which
Tk + Agsg is the minimizer of the one-dimensional quadratic interpolating
f(zk), flzk + si), and V f(zx)T si; set new Ay = Ak|lskll, but constrain new
A to be between 0.1 and 0.5 times current Ay.

(6.2) go to Step 3.
Step 7 Compute the next Hessian approximation, Byy;.

Step 8 Set k =k + 1, and go to Step 1.



Procedures for updating A in Step 3 of the line search algorithm are found in Algo-
rithm A6.3.1 of Dennis and Schnabel [1983]. While a steplength Az > 1 is not considered
in the reported results, in our experience permitting Ay > 1 makes very little difference
on these test problems. Procedures for finding v in Step 3 of the trust region algorithm
are found in Algorithm A6.4.2 of Dennis and Schnabel [1983], and are based on Heb-
den [1973] and Moré [1977]. In both algorithms, the procedure for selecting px in Step
2 is found in Gill, Murray, and Wright [1981]. (They give an algorithm for finding a
diagonal matrix D, such that By + D is safely positive definite. If D = 0, then y is set
to 0, else an upper bound b, on py is calculated using the Gerschgorin circle theorem,
and py is set to min{by, by} where by = max{[D];;,1 < i < n}.) In our experience, when
By is indefinite, px is quite close to the most negative eigenvalue of By, so that the
algorithm usually finds an approximate minimizer of the quadratic model subject to the
trust region constraint.

Both algorithms terminate if one of the following stopping criteria is met.

(1) The number of iterations exceeds a given upper limit.

max{|[zg+1)i],1}
max{|f(zrs1)],1}

(2) The relative gradient, ax {}{V HEDIR

gradient tolerance.

}, is less than a given

max{|[zr41)i — [z£)i|}
max{|[zrs1]il, 1}

(3) The relative step, max {

a }, is less than a given step toler-
sisn

ance.

All the algorithms used By = I.

2.1. Comparison of the SR1 and the BFGS Methods

Using the above outlined algorithms, we tested the SR1 method and the BFGS method
on a variety of test problems selected from Moré, Garbow, and Hillstrom [1981] and from
Conn, Gould, and Toint [1988b] (see Table Al in the appendix.) First derivatives were
approximated using finite differences. The gradient stopping tolerance used was 1075,
and the step tolerance was (machine epsilon)l/ 2, The upper bound used on the number
of iterations was 500. As done in Conn, Gould, and Toint [1988b], we skipped the SR1
update if either

|5t (ve = Brsi)l < rllsellllys — Besll,

where r = 1078, or if || Bryq — Byi|| > 108. The BFGS update was skipped if s%yk <
(machine epsilon)'/2)||s||||yx]|. All experiments were run using double precision arith-
metic on a Pyramid P90 computer that has a machine epsilon of order 10-16,

For each test function, Tables A2 and A3 in the appendix report the performance
of the SR1 and BFGS methods using line search and trust region respectively. The
tables contain the number of the function as given in the original source (see Table A1),
the dimension of the problem (n), the number of iterations required to solve the problem
(itrn.), the number of function evaluations, (f-eval.), required to solve the problem (which
includes n for each finite difference gradient evaluation), and the relative gradient at the
solution (rgx). The last column (sp) indicates whether the starting point used is o,
10zg, or 100z, where zo is the standard starting point.

In order to compare the performance of the two methods with respect to the number
of iterations and the number of function evaluations required to solve these problems,



we consider problems solved by both methods and calculate the ratio of the mean of the
number of iterations (or function evaluations) required to solve these problems by the
SR1 method to the corresponding mean for the BFGS method. Table 1 below reports the
ratios of these means, using both arithmetic mean and geometric mean. These numbers
indicate that on the set of test problems we used, the SR1 is 10% to 15% faster and
cheaper than the BFGS method.

Table 2 gives the number of problems where the SR1 method requires at least 5, 10,
20, 30, 40, 50 iterations less than the BFGS method, and vice versa. This table, which
is based on numbers from Table A2, also indicates the superiority of the SR1 on these
problems.

Table 1: Ratio of SR1 Cost to BFGS Cost

Mean Line Search Trust Region

Itrn. | Function Evaluations | Itrn. | Function Evaluations
Arithmetic | 0.82 0.83 0.84 0.88
Geometric | 0.83 0.85 0.84 0.92

Table 2: Comparisons of Iterations

Line Search Trust Region
Iterations Different | 5 | 10 [ 20 [ 30 [ 40 [ 50| 5 [10[20]30[ 40 50
SR1 Better 26120113110 7 |3 |27(20(11}9 |5 |1
BFGS Better 7151221186 |3|1(1]1

2.2. Error in the Hessian Approximation and Uniform Linear Independence

In an attempt to understand the difference between the SR1 and the BFGS, we tested
how closely the final Hessian approximations produced by the line search and trust region
SR1 and BFGS algorithms come to the exact Hessians at the final iterates. Recall that
the Hessian error for the SR1 is analyzed by Conn, Gould, and Toint [1991] under the
assumption of uniform linear independence which we redefine here.

Definition A sequence of vectors {sx} in R™ is said to be uniformly linearly independent
if there exist ¢ > 0, kg and m > n such that, for each k& > ko, one can choose n-distinct
indices k < k; < ... < k, <k + m such that the minimum singular value of the matrix
Sk = sk /Nskells -+ o5 ska/llskall] s > €.

Using this definition, Theorem 2 of Conn, Gould, and Toint [1991] proves the follow-
ing.
Theorem 2.1 (Conn, Gould, and Toint [1991]) Suppose that f(z) is twice continuously

differentiable everywhere, and that V2 f(z) is bounded and Lipschitz continuous, that is,
there exist constants A > 0 and 5 > 0 such that for all z,y € R",

IV /()] < M and [[V2f(2) = V2 f(y)l] < 7]l - y]]-



Let z41 = @k + 8¢ , where {s;} is a uniformly linearly independent sequence of steps,
and suppose that klim {zx} = z. for some z.eR™. Let {B;} be generated by the SR1
hande ol

formula -
(yx — Brs)(yx — Brsy)

st (yx — Brsg)
where By is symmetric, and suppose that Yk > 0, y and s; satisfy

Biy1 = By +

|5k (ys = Bise)l > rllskllllye = Busll, (2.1)

for some fixed 7 € (0,1). Then‘klim |Br — V2 f(z.)|] = 0.
—00

We now present some computational tests to determine to what extent such Hessian
convergence occurs in practice. For these tests we used analytic gradients and a gradient
stopping tolerance of 1071% and computed the quantity

1Bi = V2 f (@)l /IIV2 £ ()],

where z; is the solution obtained by the algorithm, and Bj is the Hessian approximation
at z;. These results are reported in Tables A4 and A5 in the appendix and summarized
in Tables 3 and 4 below. Tables 3 and 4 list for each method, the number of problems
for which ||B; — V2 f(2;)||/||V2f(2:1)|| lies in a given range.

Table 3: Number of Problems with [|B; — V2 f(2)||/||V2 f(21)|| in Indicated Range (Line
Search Methods)

<107 110741079 [ 103,10 ) [ [10~%,10° ) [ [10-L, 1) [ > 1
SR1 4 3 2 8 3| 8
BFGS 3 0 1 10 6] 8

Table 4: Number of Problems with || B;— V2 f(z;)|/||V2f(z/)|| in Indicated Range (Trust

Region Methods)

<1074 [[107%,107%) [[10=3,10") [ (105,10~ 1) | (10-L, 1) | > 1
SR1 5 0 4 5 41 10
BFGS 0 0 5 7 7] 9

While the SR1 seems to produce slightly better final approximations than the BFGS,
there is no evidence from these tables that it significantly outperforms the BFGS with
respect to convergence to the actual Hessian at the solution. Also, in a good number of
cases, neither method comes close to the correct Hessian.

The lack of convergence of the SR1 Hessian approximations to the correct value in
many of these problems may appear to conflict with the analysis of Conn, Gould and
Toint [1991] given in Theorem 2.1. In fact, there are two possible explanations for
this apparent conflict: either the algorithm has not converged closely enough for the
final convergence of the matrices to be apparent ( this is hard to test in finite precision



arithmetic) or an assumption of Theorem 2.1 must be violated. The two assumptions of
Theorem 2.1 that could possibly be invalid are that the denominator of the SR1 is not
too small (2.1), and the uniform linear independence condition. In our experiments, (2.1)
was violated at most once for each test problem, and so this assumption does not appear
to be a problem in the SR1 method. Thus, we decided to test whether the uniform linear
independence condition is satisfied for these problems.

Since the uniform linear independence condition would be very hard to test due to
the freedom to choose m and 7, we have tested a weaker condition. For each value
r=10"%4i=1,2,...,8, we computed the number of steps (say m) required so that the
smallest singular value of the matrix, S composed of the final normalized m steps of the
algorithm, is > 7 (Sm = [si/l|sill, si-1/lls1-1l; - - -5 $1—(m=1)/ 11— (m—1)], Where m > n).
Tables A6 and A7 contain the results of these experiments, which are summarized in
Tables 5 and 6 below. A “*” entry in Tables A6 and A7 means that the smallest singular
value is < 7 even if all the iterates are used.

These results indicate that the uniform linear independence assumption does not seem
to hold for all problems, especially those with large dimensions. Therefore in the next
section we develop a convergence result for the SR1 method that does not make this
assumption.

Table 5: Number of Problems where 0in(S) > 7 for m/n in Indicated Range. - Line
Search SR1 Method

m/n in
T [1,2) | [2,3) | [3—4)[[4—=5) [ [6-10) | Never
1071 7 1 3 3 6 8
1072 12 1 0 3 5 7
1078 12 1 0 4 4 7

Table 6: Number of Problems where 0,,in(Sm) > 7 for m/n in Indicated Range. - Trust
Region SR1 Method

m/n in
T [(1,2) ] [2,3) | [3—4) | [4-5)] [65~10) | Never
1071 4 3 0 3 6 12
1072 12 1 0 3 5 7
1078 13 0 0 3 5 7

3. Convergence Rate of the SR1 Without Uniform Linear Indepen-
dence

As was indicated at the end of the previous section, the condition of uniform linear
independence of the sequence {sx} under which Conn, Gould, and Toint [1991] analyze
the performance of the SR1 method may be too strong in practice. Therefore in this
section we consider the convergence rate of the SR1 method without this condition. We



will show that if we drop the condition of uniform linear independence of {s;} but add
instead the assumption that the sequence {Bj} remains positive definite and bounded,
then the line search Algorithm 2.1 generates at least p g-superlinear steps out of every
n + p steps. This will enable us to prove that convergence is 2n-step g-quadratic.

The basic idea behind our proof is that, if any step falls close enough to a subspace
spanned by m < n recent steps, then the Hessian approximation must be quite accurate
in this subspace. Thus, if in addition the step is the full secant step ——B,:IVf(a:k), it
should be a superlinear step. But in a line search method, for the step to be the full
secant step, Bj must be positive definite, which accounts for the new assumption of
positive definiteness of By at the good steps. In Section 4 we will show that empirically
this assumption seems very sound, although counterexamples are possible.

Throughout this section the following assumptions will frequently be made:
Assumptions

3.1 The function f has a local minimizer at a point z. such that V2f(z.) is positive
definite, and its Hessian V2 f(z) is Lipschitz continuous near z., that is, there exists
a constant ¥ > 0 such that for all z,y in some neighborhood of z,,

IV2f(z) = V2F()Il < 7l = yll-

3.2 The sequence {z;} converges to the local minimizer z,.

We first state the following result, due to Conn, Gould, and Toint [1991], which does not
assume linear independence of the step directions and which will be used in the proof of
the next lemma.

Lemma 3.1 Let {z,} be a sequence of iterates defined by zx4; = x4 + s;. Suppose that
Assumptions 3.1 and 3.2 hold, that the sequence of matrices { By} is generated from {z}}
by the SR1 update, and that for each iteration

Ist (e — Brse)l > rllskl|llyx — Besill (3.1)

where r is a constant € (0,1). Then, for each j, ||y; — Bj+1s;]| = 0, and

~ 2 i—7—2
Iy = Bl < 2 (242) 7 miglssl (32)

for all i > j + 2, where 7;; = max{|lz, — z,|| | 7 < s < p < i}, and 7 is the Lipschitz
constant from Assumption 3.1.

Actually, it is apparent from the proof of Lemma 3.1 by Conn, Gould, and Toint
that, if the update is skipped whenever (3.1) is violated, then (3. 2) still holds for all j
for whlch (3.1) is true.

In the lemma below, we show that if the sequence of steps generated by an iterative
process using the SR1 update satisfies (3.1), and the sequence of matrices is bounded,
then out of any set of n + 1 steps, at least one is very good. As in the previous lemma,
condition (3.1) actually needs only hold at this set of n + 1 steps, as long as the update
is not made when that condition fails.

10



Lemma 3.2 Suppose the assumptions of Lemma 3.1 are satisfied for the sequences {z+}
and {By} and that in addition there exists M for which || Bx|| < M for all k. Then there
exists K > 0 such that for any set of n + 1 steps S = {skj t I <k £-++ < kpyi} there
exists an index k,, with m € {2,3,...,n 4+ 1} such that

l(Bk,, = VEf(@))sknll - 1/n

5kl <
where
es = max {llzg; — 2.1}
and

) kn+1—k1 -2

c=4 [’7+\/ﬁ% (—3—+1 +M+IIV72f(w*)II}-

Proof. Given S, for j =1,2,...,n 4+ 1 define

S; = [ L. ] .
T Ukl s 1777 Ty

We will first show that 3m € [2,n + 1] such that g /||sk,.|| = Sm-1% — w, Sy has
full column rank and is well conditioned, and ||w|| is very small. (In essence either
m =n+1, Syn-1 spans n-space well, and w = 0, or m < n + 1, S, has full rank and
is well conditioned, and sg,, is nearly in the space spanned by S —1.) Then, using the
fact that (By,, — V2 f(2«))Sm—1 is small due to the Hessian approximating properties of
the SR1 update given in Lemma 3.1 above, and that w is small by this construction, we
will have the desired result.

For j € {1,...,n}, let 7; be the smallest singular value of S; and define 7,49 = 0.
Note that

l=my2mn...2741 =0

Let m be the smallest integer for which

LIPS (3.3)
Tm-1
Then sincem <n+1land r =1,
e ()2
m-1 1 m Tm—2
> 6ng—Q)/'n
> epbim, (3.4)

Since zj — 2., we may assume without loss of generality that es € (0, (3)™) for all
k. Now we choose z € R™ such that

[Sm2ll = 7mll2ll, (3:5)

and



where u € R™~ 1. (The last component of z is nonzero due to (3.3).) Let w = S,,z. Then,
from the definition of S,, and z,
Sk

— T =S, u—-w. 3.6
Tonl] ~ Smt (36)

Since 7,1 is the smallest singular value of S,,_; we have that

1
Tm—1
1 Skm
= w -+
— I T Il
flwl] +1

< — 7y
e o f (3.7

lJull - <

”Sm—lu“

By (3.4) this implies that

ull <

(3.8)

Also, using (3.5) and (3.7), we have that
lwl* = [|Sm2|l?

= 7ollzl’

= A0
< 2 () lul+ 277

-
Tm—1
Therefore, since (3.3) implies that 7, < €' ", using (3.3),
2 2
el < €™ + & (llwl + 1)?
: 2/n
< 4ed™(lwll + 1)% (3.9)

This implies that
hell(1 = 2¢5™) < 2¢4™

and hence, [lw|] < 1, since €5 < (§)™. Therefore, (3.8) and (3.9) imply that

(3.10)

lwl| < 4es'™. (3.11)
This gives the desired result that w is small, as well as a necessary bound on |l

Now we show that [|(By; — V2f(2.))Sj-1ll, j € [2,n + 1], is small. Note that this
result is independent of the choice of j. By Lemma 3.1 we have that

5 9 kj—i—Z
I R A
2 kn+l-k1_’2
< 27 (;+1) es]]sil (3.12)
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for all ¢ € {ky,ks,...,kj=1}. Also, letting

1
G; = / V2 f(z; + ts;)dt,
0

we have
1
Gis; = / sz(.’l:i + ts,')s,'dt
0
= Vf(zi1) = Vf(2i)
= Y
and by the Lipschitz continuity of V2 f(z),
g = V2 f(z)sill = [I(Gi—V?f(2.))sill

1
= I [ (V@i t ts) = VS ))sit]
< sl [ 127G 159 - VSt
< llsil [l +tsi — 2.

< vlsilles, (3.13)

where 7 is the Lipschitz constant. Therefore, using the triangle inequality, and (3.12)
and (3.13) we have

(Bx, = V2 f (w*))” ”H < |I(yi — B, )” T I+ lI(yi - Vf(w*))“ 1”H
< (2c+7)es,
where ¢ = -2—‘/- (g + 1) kk“—kl—z, and hence for any j € [2,n + 1]

I(Bs, = V2 F(@)Siall < V(e +7)es. (3.14)
Finally, using (3.6), (3.14) with j = m, (3.11) and (3.10) we have that
”(Bkm - sz(x*))skm”

(Bt = V2 f(2:))(Sm-12 — w)

(.
< |l(Brm = V2 f(24)) Sm—1l|l|u]
+ 1Bk = V2 £ ()| [|w]
< lullvn(2e + 7)es + 1wll(|Brall + 172 £(z)]l)

< (€ (n— 1)/n) \/—(20 + 7)63

G |
+ 4 (M + V2 f(2)])

< 4[Vale+ )+ M4V S]] "

= EEyn s

In order to use this lemma to establish a rate of convergence we need the following
result which is closely related to the well-known superlinear convergence characterization
of Dennis and Moré [1974].

13



Lemma 3.3 Suppose the function f satisfies Assumption 3.1. If the quantities ex =

_ o2
(B 373 chl(x*))sk” are sufficiently small, and if Bysp = —V f(zx), then
k

llzx — z.|| and

o+ o1 = 2.1 < 9271 o B = =Dl 2.

Proof. By the definition of s

V2 f(ze)sk = (V2 f(2x) = Bi)sk — V f(z)

so that ’
sk = —(ek—ex)+ V2 f(2.)7 (V2 f(2.) = Bi)si — V(zx) + V2 (22)(ws — z.)] . (3.15)

Therefore, using Taylor’s theorem and Assumption 3.1,
- 7
ok = 2 + sill < (V2 ()71 [H(sz(z*) = Bi)sill + geﬁ} : (3.16)

Now it follows from (3.15) that if [|V?f(2) 7 [[[[(Bk = V2/(2x))skll/llsell < § then by
Taylor’s theorem,

il < 3o = ol + 192/ (22) 1L s — 2al] < 2o = .1,

if ex is sufficiently small. Using this inequality together with (3.16) gives the result.

Using these two lemmas one can show that for any p > n, Algorithm 2.1 will generate
at least p — n superlinear steps every p iterations provided that By is safely positive
definite, which implies that By is not perturbed in Step 2 and ux = 0. In the following
theorem, this is proved and used to establish a rate of convergence for Algorithm 2.1
under the assumption that the sequence {B;} becomes, and stays, positive definite. In
a corollary we show that this implies that the rate of convergence for Algorithm 2.1 is
2n-step g-quadratic. As we will see in the next section, our test results show that the
positive definiteness condition is generally satisfied in practice. We are assuming here
that if By is positive definite, then it is not perturbed in Step 2, i.e., we are assuming
that “safely positive definite” just means positive definite.

Theorem 3.1 Consider Algorithm 2.1 and suppose that Assumptions 3.1 and 3.2 hold.
Assume also that for all &£ > 0,

sk (v = Brsi)l = rllsellllye — Brsell,

for a fixed r € (0,1), and that 3M for which ||Bi|| < M Vk. Then, if 3K, such that B,
is positive definite for all £ > Ko, then for any p > n + 1 there exists K; such that for
all £ > Iy,

ektp < aei/n (3.17)

where o is a constant and e; is defined as ||z; — z.]|.

14



Proof. Since V2 f(z.) is positive definite, there exists Ky, 8; > 0 and 2 > 0 such that

Bilf(ax) = f(=)]F < llzk = 2. < Balf(ar) = f(o)]F (3.18)
for all k£ > K. Therefore, since we have a descent method, for all [ > k > K, ||z;—2.]] <
'Bzﬂazk — z4||. Now, given k > K; we apply Lemma 3.2 to the set {sk) k41, Skan .
Thus there exists Iy € {k + 1,...,k + n} such that

(B, — V2 f(2.)s1, | 1/n
st “(m > ’

(If there is more than one such index Iy, we choose the smallest.) Equation (3.19) implies
that for ||z;, — .|| sufficiently small, by Theorem 6.4 of Dennis and Moré [1977], Algorithm
2.1 will choose A;; = 1 so that ;41 = z, +s;,. This fact, together with Lemma 3.3 and
(3.19), implies that if e is sufficiently small then

(3.19)

en41 < Gerl ey, (3.20)
for some constant &. Now we can apply Lemma 3.2 to the set
{3k7 Sk4ly«eySktn, 3k+n+1} - {311}

to get 3. Repeating this n — p times we get a set of integers Iy < I < ... < lp_n, with
Iy >k and [,_, < k + p such that

el +1 < dez’/"ezi (3.21)
for each I;. Now letting h; = [f(z;) — f(:c*)]%, since we have a descent method,
hiv1 < hj, (3.22)
and using (3.18) we have that for our arbitrary k£ > K,

1
hl.’ 1 _.<. = €lL+1
+ ,81 +

< e
1

< Yy, (3.29)
B

for :=1,2,...,p — n. Therefore using (3.22) and (3.23) we have that
&By 1/m\P"
heyp < (*5‘2‘62/ ) hy
1
which, by (3.18) implies that

s B ()

Therefore,
p—n+1
Ap— 52 n
e S @ ()

and 3.17 follows.
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Corollary 3.1 Under the assumptions of Theorem 3.1 the sequence {z;} generated by
Algorithm 2.1 is n + 1-step g-superlinear, i.e.,

€ktnt1 -0
ek ’

and is 2n-step ¢g-quadratic, i.e.,

€k+2n
3 <

lim sup
k—00 €L

Proof. Let p=n+1, and p = 2n in Theorem 3.1. O

1

Note that a 2n-step ¢ quadratically convergent sequence has an r order of (\/— ) .

Since the integer p in the theorem is arbitrary, an interesting, purely theoretical question

is what value of p will prove the highest r-convergence order for the sequence. It is not

hal,rd to show that, by choosing p to be an integer close to en, the r order approaches

esn & 1.447 for n sufﬁmently large, and that this value is optimal for this technique of
analysis.

4. Positive Definiteness of the SR1 Update

One of the requirements in Theorem 3.1 for the rate of convergence to be p-step ¢-
superlinear, is that the sequence { By} generated by the SR1 method be positive definite.

* Actually, the proof of Theorem 3.1 only requires positive definiteness of By, at the p—n
out of p "good iterations.” In this section, we present computational results to confirm
that in practice, the SR1 method generally satisfies this requirement.

In Table A8 in the appendix, in the fourth column, we report for each iteration
whether By is positive definite or not. The 5th column reports the percentage of iterates
at which the SR1 update is positive definite, and the 6th column contains the largest
number j for which all of B,_(j-1)--., B are positive definite, where B is the Hessian
approximation at the final iterate. The results of Table A8 are summarized in Table 4,
which indicates that the SR1 formula was positive definite at least 70% of the time
on every one of our test problems. In light of this, and since Theorem 3.1 really only
requires positive definiteness at the “good steps” (at other steps all that is needed is that
f be reduced), chances that superlinear steps will be taken at least every n steps by the
algorithm seem good. Another way of viewing this is that, we know from Theorem 3.1
that out of every 2n steps, at least n will be "good steps” so long as By, is positive definite
at these iterations. Thus, if for example By is posmve definite at 80% of these 2n steps,
at least 30% of the 2n iterates must be "good steps.”

Table 7: Percentage of Iterations with B Positive Definite
% <70 | [70,90) | [80,90) | [90,100) | 100
problems 0 5 12 6 5

We also tested the denominator condition that

|5k (v = Biesi) > vllsellllye — Brsl| (4.1)
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where r = 1078 using standard initial points. The last column in Table A8, which reports
the number of times this condition was violated, indicates that this condition rarely is
violated in practice. This finding is consistent with the results of Conn, Gould, and
Toint [1988b). ,

Finally we present an example that shows that it is possible for a line search SR1
algorithm to fail to have By positive definite at all iterations, and to converge linearly to
the minimizer z.. This shows that the assumptions of Theorem 3.1 cannot be guaranteed
to hold. We then consider the same example in a trust region SR1 algorithm, and show
that it does not suffer from the same problems. This leads us to feel that it may not be
necessary to assume {B}} positive definite in order to prove superlinear convergence for
a trust region SR1 method.

Example 4.1 Let
_ 1 T _ CY‘ _ 1 0
f(a:).-ﬁz x,xo_{o},andl}g—{o 0]

where o < 0. At the first iteration, the algorithm will compute

bo
1+ 6g

-1
1+ 6 0
z1=z0——[ 00 o*+§o} Vf(zo) =

Zg

for some §o > ~0, and accept this point as the next iterate. The SR1 update will produce

Yo — Bosp = 0, so that By = By. The remaining iterates proceed analogously, so that for
each k, By = Bg and

Tk = L z
k+1 = 1+ 6, k
for some §; > —o, meaning that the rate of convergence is no better than linear with
o
constant lo] .
1+ |o|

It is interesting to consider the behavior on the same problem of a trust region SR1
algorithm that exactly solves the problem

1

rg}zn Vf(a:k)Ts + §.STBL.3 subject to ||s|| < Ak (4.2)

8 kL

at each iteration. If there exists po such that By + pol is positive definite and [(Bo +

pol)™YV f(20)|| = Ao, then as in the line search method, z; = T Ho z9 and B; = By.
0

Since aredy =predp, the trust region radius is not decreased. Thus eventually at some

iterate k, we must have [|(Bx + uxI)~1V f(z1)|| < Ag for all px > —Aj, where Ar <0is
the smallest eigenvalue of By. In this case the solution to (4.2) is the step

Try1 = T — (B;C bt )\;J)’*‘Vf(xk) — VE€g

1
= xk—( )xk—veg
l1-¢

for a v # 0 that makes |[sp]] = Ag. (Here e; = (0,1)T is the eigenvector of By
corresponding to the negative eigenvalue.) It is then straightforward to verify that
Ye — Brsp = v(0 ~ 1)eg, Bry1 = I = V2f(z) and 2449 = z,.
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A practical trust region algorithm will not solve (4.2) exactly, but any algorithm that
deals with the "hard case” (when ||(Bx — ApI)TV f(2)|| < Ax) well, such as algorithms
of Moré and Sorenson [1982], will have the same effect. That is, at some point it will set

Trs1 = Tk — (Br + pe) IV f(2x) — v

where vy is a negative curvature direction for By. This implies that v,{ez # 0, which in
turn leads to Byy = I and o419 = z.. Thus the trust region method has the ability,
for this example, to correct negative eigenvalues in the Hessian approximation. This
indicates that it may be possible to establish superlinear convergence of a trust region
SR1 algorithm without assuming a priori either strong linear independence of the iterates
or positive definiteness of {B;}. This issue is currently under investigation.

5. Conclusions and Future Research

We have attempted, in this paper, to investigate theoretical and numerical aspects of
quasi-Newton methods that are based on the SR1 formula for the Hessian approximation.
We considered both line search and trust region algorithms.

We tested the SR1 method on a fairly large number of standard test problems from
Moré, Garbow, and Hillstorm [1981], and Conn, Gould, and Toint [1988b]. Our test
results show that on the set of problems we tried, the SR1 method, on the average,
requires somewhat fewer iterations and function evaluations than the BFGS method
in both line search and trust region algorithms. Although there is no result for the
BFGS method concerning the convergence of the sequence of approximating matrices to
the correct Hessian like the one given by Conn, Gould, and Toint [1991] for the SR1,
numerical tests do not show that the SR1 method is more accurate than the BFGS
method in this regard. One reason for this, as indicated by our numerical experiments,
is that the requirement of uniform linear independence that is needed by the theory of
Conn, Gould, and Toint [1991] often fails to be satisfied in practice.

Under conditions that do not assume uniform linear independence of the generated
steps, but do assume positive definiteness and boundedness of the Hessian approxima-
tions, we were able to prove n + 1-step g-superlinear convergence, and 2n step quadratic
convergence, of a line search SR1 method. We also gave numerical evidence that the SR1
update is positive definite most of the time, and that one of the potential problems of
the formula, that of the denominator being zero, is rarely encountered in practice.

An interesting topic for future research that was mentioned in Section 4 is the con-
vergence analysis of a trust region SR1 method, again without the assumption of uniform
linear independence of steps. It is possible that the assumption of the positive definite-
ness of the Hessian approximations, which we showed is necessary and sufficient to prove
superlinear convergence in the line search SR1 method, may not be necessary to prove
superlinear convergence for a properly chosen trust region SR1 algorithm.
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Appendix

Table A1l: List of Test Functions Numbers and Names.

Number

MGHO05
MGHO07
MGHO09
MGHI12
MGH14
MGH16
MGH18
MGH20
MGH21
MGH22
MGH23
MGH24
MGH25
MGH26
MGH35
CGTo1
CGTo2
CGTo04
CGT05
CGTo7
CGTo08
CGT10
CGT11
CGT12
CGT14

CGT16
CGT17
CGT21

Dimension

O DWW W N

30
30
30 -
30

30
8
30

Name

Beale Function.

Helical Valley Function.

Gaussian Function.

Box 3-Dimensional Function.

Wood Function.

Brown and Dennis Function.

Biggs Exp6 Function.

Watson Function.

Extended Rosenbrock Function.

Extended Powell Singular Function.

Penalty Function 1.

Penalty Function IL

Variably Dimensioned Function.
Trigonometric Function.

Chebyquad Function.

Generalized Rosenbrock Function.

Chained Rosenbrock Function.

Generalized Singular Function.

Chained Singular Function.

Generalized Wood Function.

Chained Wood Function.

A Generalized Broyden Tridiagonal Function.
Another Generalized Broyden Tridiagonal Function.
Generalized Broyden Banded Function.
Toint’s 7-diagonal generalization of Broyden Tri-
diagonal Function (see Toint 1978).
Trigonometric Function (Toint, 1978).

A Generalized Cragg and Levy Function.

A Generalized Brown Function.

MGH: problems from Moré, Garbow, and Hillstrom [1981].
CGT: problems from Conn, Gould, and Toint [1987].



Table A2: Iterations and Function Evaluations — Line Search

Function | n BFGS SR1 sp
itrn. | f-eval TgX itrn. | f-eval TgX
MGHO05 | 2 | 16 58 | 0.7E-06 | 14 52 | 0.1E-05| 1
MGHO7 | 3 | 26 141 | 0.4E-05 | 30 142 | 0.4E-06 | 1
MGHO09 | 3 5 34 | 0.3E-05| 3 26 | 0.2E-07| 1
MGH12 | 3 | 35 157 | 0.5E-06 | 21 99 | 0.6E-06| 1
MGH14 | 4 | 32 186 | 0.7E-05 | 26 160 | 0.5E-05 | 1
MGH16 | 4 | 31 183 | 0.1E-05| 21 133 | 03E-07 | 1
MGH18 | 6 | 43 336 | 0.2E-05 | 37 302 | 0.6E-06 | 1
MGH20 | 9 | 95 | 1020 | 0.2E-05 | 46 532 | 0.8E-051] 1
MGH21 | 10| 34 461 | 0.9E-05 | 34 462 | 0.3E-05| 1
MGH22 | 8 | 45 464 | 0.7E-05 | 36 382 | 04E-05| 1
MGH23 | 10| 135 | 1604 | 0.9E-05 | 204 | 2377 | 0.6E-05 | 1
MGH24 | 10| 25 358 | 0.7E-05 | 25 362 | 0.8E-05| 1
MGH25 | 10| 16 259 | 0.7TE-06 | 16 259 | 0.7E-06 | 1
MGH26 | 10| 27 374 | 0.3E-05 | 27 375 | 0.2E-05| 1
MGH35 | 9 | 25 320 | 0.2E-05| 25 320 | 0.3E-06 | 1
MGHO05 | 2 | 47 154 | 0.3E-07 | 41 139 | 0.1E-06 | 10
MGHO7 | 3 | 29 136 | 0.6E-06 | 38 175 | 0.4E-07 | 10
MGHO09 | 3 | 20 98 | 0.1E-05| 17 102 | 0.3E-06 | 10
MGH12 | 3 | 66 286 | 0.5E-05| 55 259 | 0.5E-05 | 10
MGH14 | 4 | 58 316 | 0.6E-05| 69 379 | 0.1E-06 | 10
MGH16 | 4 | 59 322 | 0.3E-05 | 37 212 | 0.1E-05 | 10
MGH18 | 6 | 45 361 | 0.3E-05| 46 369 | 0.1E-05 | 10
MGH20 | 9 | 95 | 1020 | 0.2E-05 | 46 532 | 0.8E-05 | 10
MGH21 | 10| 57 775 | 0.3E-05 | 60 813 | 0.4E-07 | 10
MGH22 | 8 | 88 977 | 0.9E-05 | 67 793 | 0.3E-05 | 10
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~ Table A2 (continued)

Function

n BFGS SR1 sp
itrn. | f-eval Igx itrn. | f-eval TgX

MGH23 | 10| 177 | 2080 | 0.9E-05 | 192 | 2235 | 0.9E-05 | 10
MGH25 | 10| 41 535 | 0.3E-05| 23 337 | 0.3E-05 | 10
MGH26 | 10| 72 876 | 0.7E-05 | 43 560 | 0.9E-06 | 10
MGHO7 | 3 | 31 174 | 0.4E-06 | 23 113 | 0.6E-07 | 100
MGH14 | 4 | 118 | 625 | 0.5E-06 | 104 | 567 | 0.5E-05 | 100
MGH16 | 4 | 89 472 | 0.2E-05 | 55 303 | 0.3E-06 | 100
MGH20 | 9 | 95 | 1020 | 0.2E-05 | 46 532 | 0.8E-05 | 100
MGH21 | 10| 158 | 2185 | 0.8E-05 | 154 | 1906 | 0.5E-06 | 100
MGH22 | 8 | 129 | 1227 | 0.4E-05| 90 875 | 0.9E-05 | 100
MGH25 | 10 | 472 | 5276 | 0.1E-04 | 335 | 3769 | 0.1E-04 | 100
CGTo1 8| 71 707 | 0.5E-05 | 81 843 | 0.4E-06 | 1
CGT02 |25 36 | 1315 | 0.7E-05 | 43 | 1505 | 0.6E-05 | 1
CGT04 | 20| 85 | 2049 | 0.9E-05 | 49 [ 1291 [ 0.5E-05 | 1
CGTO05 | 20| 311 | 6797 | 0.8E-05 | 180 | 4055 | 0.9E-05 | 1
CGTO7 8 | 129 | 1273 | 0.3E-05 | 116 | 1132 | 0.4E-06 | 1
CGTO08 8 | 141 | 1348 | 0.5E-05 | 140 | 1347 | 0.1E-05| 1
CGT10 |30 | 58 | 2328 | 0.9E-05| 40 | 1770 | 0.7E-05 | 1
CGT11 | 30| 37 | 1686 | 0.3E-05| 32 | 1526 | 0.8E-05 | 1
CGT12 |30 | 264 | 8734 | 0.6E-05 | 199 | 6734 | 0.5E-05 | 1
CGT14 30| 70 | 2699 | 0.5E-05| 100 | 3640 | 0.9E-05 | 1
CGT16 |10 11 203 | 0.4E-05| 11 204 | 0.2E-05 1
CGT17 8 | 134 | 1269 | 0.8E-05 | 92 892 | 0.3E-05| 1
CGT21 |20 12 504 | 0.2E-05 | 11 483 | 0.3E-09 | 1
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Table A3: Iterations and Function Evaluations — Trust Region

Function

n BFGS SR1 sp
itrn. | f-eval rgx itrn. | f-eval rgx

MGHO5 | 2 | 15 57 | 0.3E-06 | 16 68 | 0.5E-05| 1
MGHO7 | 3 | 27 133 | 0.1E-05 | 29 150 | 0.4E-06 | 1
MGH09 | 3 5 38 | 0.3E-05| 3 31 | 0.2E-07| 1
MGH12 | 3 | 32 150 | 0.3E-05 | 26 146 | 0.8E-05| 1
MGH14 | 4 46 265 | 0.4E-07 | 34 247 | 0.5E-05 | 1
MGHI16 | 4 | 33 188 | 0.1E-05 | 20 138 | 0.7E-05 | 1
MGHI18 | 6 | 43 341 | 0.9E-05 | 40 344 | 0.8E-05 | 1
MGH20 | 9 | 88 957 | 0.3E-05 | 46 584 | 0.3E-05| 1
MGH21 | 10| 42 555 | 0.2E-05 | 49 671 | 0.2E-06 | 1
MGH22 | 8 | 41 428 | 0.6E-05 | 26 294 | 0.8E-05| 1
MGH24 [ 10| 24 344 | 0.2E-05 | 24 357 | 0.8E-05| 1
MGH25 | 10| 14 236 | 0.6E-05| 14 236 | 0.6E-05| 1
MGH26 | 10| 27 373 | 0.2E-05 | 24 349 | 0.1E-05| 1
MGH35 | 9 | 24 308 | 0.4E-05| 21 285 | 0.3E-05| 1
MGHO05 | 2 | 45 160 | 0.9E-05 | 36 147 | 0.9E-06 | 10
MGHO7 | 3 | 29 141 | 0.1E-05| 33 171 | 0.4E-05 | 10
MGH09 | 3 | 21 112 | 0.8E-05 | 15 84 | 0.9E-05 | 10
MGHI12 | 3 | 62 | 292 | 0.9E-06 | 19 122 | 0.7E-05 | 10
MGH14 | 4 | 82 443 | 0.6E-06 | 74 | 467 | 0.8E-06 | 10
MGHI16 | 4 | 59 324 | 0.5E-06 | 35 222 | 0.8E-07 | 10
MGH18 6 39 323 1 0.5E-05 | 51 437 | 0.6E-07 | 10
MGH20 9 88 957 | 0.3E-05 | 46 584 | 0.3E-05 | 10
MGH21 | 10| 63 788 | 0.3E-05 | 58 800 | 0.2E-05 | 10
MGH22 | 8 | 94 913 | 0.5E-05| 56 575 | 0.8E-05 | 10




Table A3 (continued)

Function

n BFGS SR1 sp
itrn. | f-eval Igx itrn. | f-eval TgX

MGH23 | 10| 22 337 | 0.4E-05| 113 | 1335 | 0.8E-05 | 10
MGH24 | 10 | 224 | 2609 | 0.1E-04 | 253 | 3140 | 0.1E-04 | 10
MGH25 | 10| 36 488 | 0.7E-05 | 25 371 | 0.3E-05| 10
MGH26 | 10| 87 | 1040 | 0.7E-05| 48 650 | 0.1E-05| 10
MGHO7 | 3 | 34 158 | 0.2E-05 | 22 118 | 0.2E-05 | 100
MGH14 | 4 | 85 471 | 0.1E-05| 69 426 | 0.3E-05 | 100
MGH16 | 4 | 89 472 | 0.4E-06 | 52 311 | 0.1E-04 | 100
MGH20 | 9 | 88 957 | 0.3E-05 | 46 584 | 0.3E-05 | 100
MGH21 | 10| 165 | 1941 | 0.2E-05 | 149 | 2139 | 0.3E-06 | 100
MGH22 | 8 | 116 | 1127 | 0.8E-05| 80 840 | 0.2E-05 | 100
CGTo1 8 | 58 584 | 0.7E-05| 80 848 | 0.8E-05| 1
CGT02 | 25| 45 | 1550 | 0.4E-05| 46 | 1597 | 0.2E-05| 1
CGT04 | 20| 110 | 2579 | 0.3E-05| 89 | 2195 | 0.5E-05| 1
CGTO05 | 20| 323 | 7048 | 0.5E-05 | 156 | 3645 | 0.8E-05 | 1
CGTO07 8 | 123 | 1190 | 0.4E-05 | 139 | 1429 | 0.3E-06 | 1
CGTo8 8 | 130 | 1255 | 0.9E-05 | 146 | 1524 | 0.5E-05 | 1
CGT10 | 30| 58 | 2326 | 0.9E-05| 42 | 1832 | 0.7E-05| 1
CGT11 30| 35 | 1619 | 0.3E-05| 31 | 1493 [ 0.5E-05| 1
CGT12 | 30| 62 | 2454 | 0.8E-05| 44 | 1916 | 0.5E-05| 1
CGT14 |30| 34 | 1582 | 0.8E-05 | 29 | 1452 | 0.5E-05| 1
CGT16 | 10| 11 204 | 0.4E-05| 11 206 | 0.3E-05| 1
CGT17 8 | 83 818 | 0.9E-05| 74 802 | 0.8E-05| 1
CGT21 |20 12 504 | 0.2E-05| 11 485 | 0.3E-09 | 1
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Table A4: Testing Convergence of {B} to V?f(z,) - Line Search
Function | n BFGS SR1
itr | ||y — Bill/IlH] | itr | | Hi = Bifl/TTHill

MGHO05 | 2 | 19 0.458E-04 16 0.686E-05
MGHO7 | 3 | 28 0.274E-04 33 0.175E-06
MGH09 | 3 9 0.918E+4-00 4 0.918E4-00
MGHI12 | 3 | 38 0.545E-04 24 0.147E-03
MGH14 | 4 | 35 0.830E-02 29 0.154E-04
MGHI16 | 4 | 34 0.928E-01 23 0.348E-04
MGH18 | 6 | 47 0.234E401 40 0.234E+01
MGH20 | 9 | 175 0.105E+00 100 0.264E-02
MGH21 | 10| 35 0.804E-01 34 0.645E-01
MGH22 | 8 | 74 0.161E4-01 49 0.160E+01
MGH23 | 10| 178 0.167E+404 215 0.167E+404
MGH24 | 10| 348 0.177E-01 330 0.140E-03
MGH25 | 10| 16 0.748E+04 16 0.748E4-04
MGH26 | 10| 31 0.689E-01 31 0.468E-01
MGH35 | 9 | 28 0.834E+00 26 0.833E400
CGTo1 8 | 73 0.393E-01 83 0.144E-01
CGT02 | 25| 43 0.570E-01 50 0.317E-01

CGT04 | 20| 500 0.133E404 500 0.133E404
CGT05 | 20| 500 0.582E+-03 500 0.503E+03
CGTO07 8 | 138 0.691E-01 124 0.111E-01
CGTo8 8 | 147 0.425E-01 146 0.492E-02
CGT10 | 30| 150 0.134E+03 84 0.185E403
CGT11 |30 44 0.781E-01 37 0.448E-01
CGT12 |30/ 273 0.384E+00 210 0.691E-01
CGT14 | 30| 86 0.279E+-00 107 0.303E4-00
CGT16 |10 18 0.466E-01 16 0.385E-03
CGT17 8 | 216 0.462E+00 125 0.566E-01
CGT21 |20 16 0.124E4-01 12 0.120E+01
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Table A5: Testing Convergence of { B} to V2 f(z.) — Trust Region

Function | n BFGS SR1
itr | | Hy = Bill/I|Hi]] | itr | [[H — Bill/[[ &l

MGHO05 2 | 17 0.235E-02 18 0.102E-05
MGHO07 31 30 0.400E-02 31 0.172E-05
MGHO09 | 3 9 0.918E+00 4 0.918E+400
MGH12 3| 36 0.396E-02 30 0.473E-02
MGH14 4 | 47 0.216E-02 41 0.290E-05
MGHI16 4 | 36 0.809E-01 22 0.369E-04
MGHI18 6 | 47 0.234E401 40 0.234E+01
MGH20 9 | 157 0.261E-01 99 0.176E-02
MGH21 | 10| 47 0.999E+00 51 0.999E+00
MGH22 8 | 77 0.277E+01 43 0.276E+01
MGH23 | 10| 500 0.154E+04 149 0.218E+04
MGH24 | 10 | 287 0.391E-02 202 0.173E+402
MGH25 | 10| 15 0.103E+05 15 0.103E+05
MGH26 | 10| 31 0.906E-01 28 0.234E-01
MGH35 9 | 28 0.880E+00 23 0.880E+00
CGTOo1 8 | 61 0.110E+00 81 0.275E-01
CGTo02 251 51 0.228E+00 50 0.107E+00
CGTo4 20 | 500 0.314E-+04 500 0.248E+04
CGTo05 20 | 500 0.104E+04 500 0.671E+03
CGTo7 8 | 122 0.354E-01 138 0.579E-02
CGTo8 8 | 138 0.532E-01 139 0.405E-04
CGT10 30 ] 115 0.109E+03 82 0.112E+03
CGT11 30| 40 0.982E-01 34 0.690E-01
CGT12 30| 97 0.770E+03 66 0.756E+03
CGT14 30 | 46 0.220E+00 40 0.160E-01
CGT16 10| 16 0.523E-01 15 0.298E-02
CGT17 8 | 200 0.250E+00 123 0.117E-01
CGT21 20| 16 0.124E+01 12 0.120E+01
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Table A6: Testing Uniform Linear Independence of {s;} ~ Line Search

f(x) n | Itr. No. of steps so that o, (Sp)* >

1071071073 ]107* [ 10°°[10-° [ 10-7 | 10-¢
MGHO05 | 2 16 3 2 2 2 2 2 2 2
MGHO7 | 3 | 33 4 3 3 3 3 3 3 3
MGHO09 | 3 | 4 ¥ ¥ ¥ * ¥ ¥ ¥ *
MGH12| 3 | 24 14 5 3 3 3 3 3 3
MGH14 | 4 | 29 10 5 5 4 4 4 4 4
MGH16 | 4 | 23 6 4 4 4 4 4 4 4
MGHIS | 6 | 40 ¥ * ¥ * * * * *
MGH20| 9 | 100| 74 70 67 64 63 62 61 60
MGH21 | 10| 34 * * * * * * * *
MGH22 8 49 * * * * * * * *
MGH23 | 10 | 215 77 77 77 77 77 77 77 77
MGH24 |10 330 | 79 79 79 79 79 79 79 79
MGH25 | 10| 16 * * * * * * * *
MGH26 { 10 | 31 30 16 10 10 10 10 10 10
MGH35 9 26 * * * * * * * *
CGTOo1 | 8 83 26 15 13 13 13 13 13 13
CGT02 | 25| 50 47 28 25 25 25 25 25 25
CGTO04 | 20 | 500 | 87 87 87 87 87 87 87 87
CGTO05 | 20 | 500 | 87 87 87 87 87 87 87 87
CGTOo7 | 8 | 124 76 76 76 42 34 34 34 34
CGTO08 | 8 | 146 | 45 45 45 45 45 45 45 45
CGT10 | 30| 84 * * 60 34 30 30 30 30
CGTI11 |30 37 | 35 33 30 30 30 30 30 30
CGT12 | 30210 98 98 88 88 88 88 88 88
CGT14 | 30| 107 | 59 36 36 36 36 36 36 36
CGT16 | 10| 16 11 10 10 10 10 10 10 10
CGT17 | 8 [ 125 | 67 45 42 34 34 34 34 34
CGT21 | 20| 12 * * * * * * * *

* S = [si/llsill si-1/llsi=all -« s $iem /|| $1=m ], Where m > 7.
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Table AT: Testing Uniform Linear Independence of {sy} — Trust Region

f(x) n | Itr. No. of steps so that o.in(Sm)* >

1071107 [ 1072 [ 107* [ 107> [ 107% [ 107 [ 10°®
MGHO05 | 2 18 3 2 2 2 2 2 2 2
MGHO7 | 3 | 31 5 3 3 3 3 3 3 3
MGHO9 | 3 p) ¥ * ¥ ¥ ¥ ¥ ¥ ¥
MGH12 | 3 | 30 7 6 5 3 3 3 3 3
MGH14 | 4 | 41 8 5 4 4 4 4 4 4
MGH16 | 4 22 5 4 4 4 4 4 4 4
MGHlS 6 40 * * * * * * * *
MGH20| 9 | 99 75 64 63 62 62 61 61 61
MGH21 | 10| 51 * * * * * * * *
MGH22 | 8 | 43 * * * * * * * *
MGH23 | 10 | 149 | 77 77 77 77 77 77 77 77
MGH24 | 10| 202 79 79 79 74 74 74 74 74
MGH25 | 10| 15 * * * * * * * *
MGH26 | 10 | 28 26 18 10 10 10 10 10 10
MGH35 | 9 | 23 ¥ ¥ ¥ * * * * *
CGTo1 | 8 | 81 32 17 13 12 12 12 12 12
CGT02 | 25| 50 * 29 26 25 25 25 25 25
CGT04 | 20| 500 | 88 88 88 88 88 88 88 88
CGTO05 | 20 | 500 | 88 87 87 87 87 87 87 87
CGTO07 | 8 | 138 76 76 50 43 41 41 41 41
CGTo08 | 8 | 139 41 41 41 41 41 41 41 41
CGT10 [ 30| 82 * * 59 36 32 30 30 30
CGT11 | 30| 34 * 31 30 30 30 30 30 30
CGT12 | 30| 66 * * * 60 40 31 30 30
CGT14 | 30| 40 * 33 30 30 30 30 30 30
CGT16 | 10| 15 12 10 10 10 10 10 10 10
CGT17 | 8 | 123 | 73 49 39 34 33 33 33 33
CGT21 | 20| 12 * * * * * * * *

* Smo=[st/llsills si=1/llsi=1lls - - -5 Si=m /||81=m||], where m > n.
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Table A8: Testing Positive Definiteness — Line Search

f(z) n | Itr. | 0: Indefinite ; 1: Positive Definite %pd | 1% | 2%
MGHO05 | 2 14 | 1111111111111 1.00 13 1
MGHO7 | 3 30 | 11111101111011110111111111111 090 | 12| 1
MGHOQ09 | 3 3 11 1.00 | 2 | 1
MGH12 | 3 21 | 11111111111111111111 1.00 120 1
MGH14 | 4 26 [ 1111111101111110111110111 0881311
MGH16 | 4 21 | 10111111111111111211 09518 1
MGH18 | 6 37 | 111111100111111111111111011111111111 092 |11} 1
MGH20 | 9 | 46 | 1111011111111111011111011101101111110

11111011 0841 21} 1
MGH21 | 10| 34 | 111011111110111101001111111111111 085113 1

MGH22 | 8 | 36 | 11111101011111111111111110111111111 09119 (1
MGH23 | 10 | 204 | 111111111111111111101111111111101111
111011101101101001101001111011110111
111111011010001111100111111101110011
111101011111101111010100110101111110
111101101111111010011011101111011001

11111011111101111110111 0771310
MGH24 | 10 | 25 | 111111101110111110111111 0886 |1
MGH25 | 10 | 16 | 111111111111111 100115 0
MGH26 | 10 | 27 | 11101110111011101101110111 07713 |1
MGH35 | 9 | 25 |{-111110110111110111111111 08319 |1
CGToO01 | 8 | 81 | 111111110011010011110101101111110100

110111111011011101100110111011111011

11111111 075 10| 1
CGTO02 | 25| 43 | 111111110011111110011011011011011111

111111 08111} 1
CGTO04 |20 | 49 | 111111111101111111011111101111111111

111111111111 094 122 1

1*: Number of consecutive iterations where By was positive definite immediately prior
to the termination of the algorithm. :

2*: Number of iterations where the SR1 update is skipped because condition (4.1) was
violated.
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Table A8 (continued)
f(z) n | Itr | 0: Indefinite ; 1: Positive Definite %pd | 1% | 2%
CGTO05 | 20 | 180 | 111111111011111011111111111101110111
111111111111111010111101111111110111
111111110111011010001110111111101111
111111111010111111011011111001110111
111111111111310111111111111111111111 | 0.87 | 21 | 1
CGTO7 | 8 | 116 | 111111111111111110111111101000011011
010010011111101011010011011101111011
011111111111111101111011110110111111
1111111 078 [ 13| 1
CGTO08 | 8 | 140} 111111110110111110111011111101101101
111110011011111101101110011011110100
110110000000011110111111001110100111

1110110011010011011111010111111 070 | 6 | 1
CGT10 | 30 | 40 | 111111111111111111111111101111111111

001 : 092 1|1
CGT11 | 30| 32 |1111011101111111110111011111111 0871 8|1

CGT12 |30 | 199 | 111111111110111111110110111101111111
111110110111110111011101110111110111
011111111110111011111101100111111010
110011111111111010101101111111101011
101111110011111011111110110011011111
.110101011101111101 08011
CGT14 | 30 | 100 | 111010111110111011101110011110110111
111111101110111101101111111010101111
111111111111110111111111111 083 {12} 1
CGT16 | 10 | 11 | 1111111111 1.00 10 1
CGT17 | 8 | 92 | 111111011111111101111110111101101111
011111100111111111101111101111111101
1111111110111111111 0871911
CGT21 |20 11 | 1110101111 080 4 1

1*: Number of consecutive iterations where By was positive definite immediately prior
to the termination of the algorithm.

2*: Number of iterations where the SR1 update is skipped because condition (4.1) was
violated.
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