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Problem-Centered Design for Expressiveness and Facility
in a Graphical Programming System.

Abstract

This paper presents a case study in the use of problems in
design. Problems, concrete examples of proposed use, were
used to describe the intended function of a graphical
programming system and to manage the growth of the space
of design alternatives for the system. They were also used to
evaluate not only the expressiveness of alternative designs,
the quality of solutions to problems supported by the
designs, but also their facility, the ease with which
hypothetical prospective users could find workable solutions
to the problems. The problem-centered design process
provides a view of design rationale in which the strengths
and weaknesses of design alternatives in dealing with
specific problems, rather than abstract connections among
design issues, are central.

1. INTRODUCTION

This paper presents a design case study which illustrates new approaches
to some important design questions in human-computer interaction. First,
how can the rationale for large numbers of complex, interacting design
alternatives be managed? Second, how can usability considerations be
introduced into the design of programming languages? Third, how can the
evaluation of design alternatives in programming languages take into
account not only the nature of programs but the nature of the process by
which programs must be produced?

Each of these issues is approached by placing problems, concrete examples
of the intended use of the system being designed, at the center of the
design process. Design alternatives are linked to problems which
demonstrate concretely what an alternative does well or poorly. Design



rationale is expressed in these linkages. The expression may be explicit, in
cases where someone composes a statement of the abstract issues involved
in applying an alternative to some problem, or it may be implicit, when the
description of an alternative and an associated problem are left as they are
as a concrete example of an advantage or disadvantage of the alternative.

Problems are also central to shaping the usability of the design as a
programming system. Problems are used to weigh the expressiveness of a
candidate design, that is, to determine whether solutions to problems can
be expressed within the design. They are also used to assess what we call
the facility afforded by a design. Two designs that permit similar solutions
to a problem may yet differ greatly in how much mental work is needed to
discover the solutions starting from the statement of the problem. A design
offers superior facility if it is easy to get from the statement of a problem
to a solution within the design.

We develop each of these points and their background in the balance of this
introduction. We then describe the case study, showing in more detail the
application of the ideas and the results obtained. We close with a discussion
of the lessons we draw from the case study.

1.1 Problem-centered design.

Our use of problems is an outgrowth of earlier work suggesting the value of
detailed analysis of examples of use in user interface design (Gould, 1988;
Carroll and Rosson, 1990; see also Young, Barnard, Simon, and Whittington,
1989). Because of the complexity of the sequences of events that constitute
successful use of a user interface, and because of the cost of using live user
testing to explore the advantages and disadvantages of differing designs,
these authors advocated the preparation of detailed scenarios that included
each step a user would take in using a design. By preparing a scenario a
designer could verify that a given task could actually be accomplished with
a design, and by examining the scenario he or she could identify parts of
the interaction that were complicated, imposed high memory demands, or
were awkward in other ways. The cognitive walkthrough procedure (Lewis,
Polson, Rieman, and Wharton 1990) is an example of the use of scenarios to
examine the mental processes required in performing a task with a given
design.

In our adaptation of these ideas we use the term problem to refer to a task
description that is independent of any system that might be used to solve
it. We reserve the term scenario for a description of how a problem might
be solved using a particular design. Thus a problem could be used to
compare two designs by developing scenarios for the problem with each
design and comparing the scenarios. Using this terminology problems, not
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scenarios, turned out to be the chief organizing elements in our design
process. This is because problems can be used to evaluate many different
candidate designs, whereas scenarios are tied to particular designs or
families of related designs.

1.2 Design rationale.

The papers in this special issue develop the arguments for giving design
rationale an important place in the management of design. In our case
study two reasons predominated. First, our design project was part of a
larger project seeking to strengthen the role of cognitive theory in system
design (Doane and Lemke, 1990), and as part of this we needed to keep
track of the extent to which cognitive considerations did or did not play a
role in the design. Second, and of more general relevance, we needed to
manage a large, shifting set of design alternatives. We needed to recall why
Idea A had been chosen over Idea B at some stage in design, because Idea
B had resurfaced and looked attractive in connection with some new issue.

Our efforts to keep track of our design decisions and the reasons for them
led us to give problems a key role for two reasons. First, we found that
problems nearly always provided the basis for rejecting design
alternatives. We seldom abandoned an idea on abstract grounds; rather, we
composed a concrete problem that showed why the idea wouldn't work.
Recording the reasons for such decisions was easy if we just described the
problems, and very hard if we tried to present abstract characterizations of
the design issues instead. Second, we found problems easy to think about,
remember, and discuss. Design debates were punctuated with references to
problems rather than abstract design issues.

1.3 Programming languages, expressiveness, and facility.

As Newell and Card (1985) pointed out, the field of programming language
design has been untouched by any explicit consideration of usability. While
the work of Brooks (1977), Soloway and colleagues (Soloway and Ehrlich
1984; Spohrer, Soloway, and Pope 1985), Green and colleagues (Sime, Green
and Guest, 1977; Green, Bellamy and Parker, 1987), and others has
produced insights into mental processes in programming, and how language
features help or hinder them, language designers are apparently unaware
of this work. Language designs are presented and evaluated mainly on the
basis of the characteristics of programs rather than the characteristics of
the mental processes needed to produce programs. In an excellent text
MacLennan (1987) provides a clear summary of guiding principles of
language design; it contains no reference to mental processes.
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The clear reason for this state of affairs is that language designers have
lacked the means to evaluate the mental processes involved in language
use, or even a clear conceptual framework in which to pose the problem.
Mackinlay's work on graphical representations (Mackinlay 1986) provides
a useful start. He distinguishes expressiveness and effectiveness as
evaluation criteria for representation schemes. A representation scheme
meets the expressiveness criterion for a display task (for example, showing
which states of the United States do and do not share borders) if it can be
used to convey accurately the information required by the task. For
example, wusing nested contours to represent states, under the
interpretation that two states share a border if the contour for one is inside
the contour for the other, fails this criterion, because "nested within" is a
transitive relation and "shares a border with" is not. A representation
scheme is effective if the resulting display can be processed easily by a
human viewer. Thus a display which uses the areas of objects of different
shapes to convey magnitudes which must be compared will not be effective
because people are poor at comparing the areas of different shapes.

The expressiveness criterion can usefully be brought over into the
programming domain. A language satisfies the expressiveness criterion for
a problem if there is a program in the language that solves the problem. In
practice it is useful to blur the expressiveness idea to permit us to reject
programs that solve a problem but are unreasonably long or complex, since
most languages include computationally universal features, or
approximations to them. This gives us a graded notion of expressiveness:
one language is more expressive than another for a problem if it permits a
shorter or simpler program that solves the problem.

Mackinlay's effectiveness criterion is also relevant to programming
languages, if one considers the important matter of the ability of people to
understand what a program does. Our focus, however, has not been on the
comprehensibility of programs but rather on the difficulty of writing them.
We propose the term facility to describe the degree to which programs in a
language are easy to write, not in the sense of physical effort but in the
sense of mental effort. Given a statement of a problem, it is easy to write a
program to solve the problem in a language with high facility for that
problem. Using a language with low facility one would find that
considerable problem solving, trying and rejecting alternative approaches,
would be required.

In assessing facility we have adapted the cognitive walkthrough method
mentioned earlier (Lewis et al 1990). In our approach one outlines the
mental steps required to develop a program from a problem statement, and
looks for steps that are unlikely to occur, given the user's knowledge. In
making this assessment the designer can choose any sequence of mental



steps he or she chooses. If all of the steps are straightforward this sequence
is probable, and the language gets high facility marks. But if any steps do
not seem likely the rating suffers.

In applying this idea it immediately became clear that no programming
language is likely to show high facility without assuming some background
knowledge on the part of users. This can be illustrated by Soloway's work
on learning Pascal. Knowledge of the statements of Pascal is not adequate to
write programs. Rather, one must know about plans that show how to
combine statements into groupings that perform a function that can be
linked to the problem. For example, the "accumulator variable" plan shows
how to use iteration to calculate the sum of a collection of values. The plans
can be seen as bridges that connect what the user wants to do (calculate the
average of some rainfall measurements) to the statements of Pascal
(assignment, iteration), often via knowledge of some mathematical
abstractions (sum). A Pascal programmer who knows about sums, iteration,
and assignments, but not about accumulator variables, has a long,
frustrating problem solving episode ahead.

We call the background knowledge that must be available to use a language
doctrine. Evaluating a language for facility really means evaluating the
language and its doctrine. A language can show poor facility in two ways.
First, it can require a lot of doctrine, because its features are hard to relate
to the kinds of problems it is supposed to be used to solve. Second, on a
particular problem, even with its doctrine, it may be impossible to develop
a solution without extensive problem solving.

2. THE CASE STUDY
2.1 The system and its goals.

The ChemTrains system is a tool intended to permit users without
programming background to construct animated graphical models of
systems for which they have a qualitative behavior model, such as
document flow in an organization or a Turing machine. The original design
direction was shaped by three influences. First, work by one of us, CL, on
solar flare forecasting had revealed a need for a graphical modeling system
that could be used to produce animated models of solar activity. It
appeared that a tool able to do this job would also be useful in many other
domains. Second, the NoPumpG spreadsheet-based graphics system (Lewis
in press, Wilde and Lewis 1990) had provided a satisfyingly simple way to
control graphics, but only by constructing algebraic formulae to describe
motions. Thus users had to erect a system of physical and mathematical
abstractions to link their problem to its solution. This suggested the



desirability of a graphics system controllable in qualitative, not
quantitative terms. Finally, the work on qualitative physics by Forbus
(1984) and others suggested the power of qualitative representations.

The initial design sketch, prepared by CL and Victor Schoenberg, provided
an outline still recognizable despite the intervening design work described
here. ChemTrains models were to show objects moving among places on the
screen along visible or invisible paths which were specified graphically, not
quantitatively. Objects participated in reactions, like chemical reactions,
which could modify them or delete them. Like chemical reactions,
ChemTrains reactions were thought of as occurring only when the objects
involved appeared in the same place on the screen. The name ChemTrains
was suggested by the role of these reactions and the role of paths, thought
of as railroad tracks.

This early design was developed using two problems as illustrations of the
intended functionality. The Office problem, of which a later version is
shown in Table 1, showed how documents might flow in an organization,
including copying and the use of distribution lists. The Bunsen Burner
problem, also in Table 1, was a trivial qualitative physics problem showing
how the control of a gas burner could affect the phase of water in a beaker.

2.2 Developing the design space.

This initial design direction obviously left many points to be investigated,
including how movement along paths was to be controlled, how reactions
would be specified, the nature of objects, and more. Informally, the design
space began to grow in the following manner.

The Office and Bunsen Burner problems were the first examples of what we
came to call raw problems. These are complete descriptions of things
someone might want to do with the system and which the system is
intended to support. Taken together, the raw problems represent the
functional objectives of the system as it has evolved. Brief descriptions of
the six raw problems are shown in Table 1. (The complete problem
statements, together with complete documentation of other aspects of the
case study, are in Rieman, Bell and Lewis , 1990.)

In attacking the raw problems with some version of a design, some aspects
of the problem were easily dealt with while others caused trouble. We
developed micro problems by pulling out the key parts of raw problems
that illustrated trouble in the design. For example, matching a memo "to
office” with a distribution list called "office" is a micro problem derived
from the Office problem.



Table 1. Brief descriptions of the six raw problems.

(The descriptions used in the walkthroughs were more detailed.)

Bunsen Burner. Show how the flame of a bunsen burner responds when
the user moves a control knob to the off, low, or high position. Show water
in a beaker above the flame changing from ice to water to steam as the
flame changes.

Office. Show three offices and a copy room. A memo addressed to any
one of office holders travels to that person's office and is destroyed. A
memo addressed "to office” travels to a copy room, where copies are made
that travel to each of the office holders.

Tic-Tac-Toe. The simulation should play a non-losing game of tic-tac-toe
against the user.

Maze. Simulate an intelligent mouse searching a maze for cheese. A
technique is described by which a real mouse can keep track of its progress
through the maze, using crumbs and string. The maze is specified, but the
simulation should work if the maze is changed.

Petri Net. Show the operation of Petri Net transitions, which fire and
generate a new token on their output place when tokens are found on both
of their input places. A specific network of transitions is specified, but a
general solution is required.

Turing Machine. Show the operation of a Turing machine, which includes
a moving read/write head, a tape, an internal state variable, and a set of
rules describing the head's actions. A specific task, changing a string of bits
on the tape to even parity, is specified, but a general solution is required.




Consideration of micro problems led to the proposal of design alternatives.
Where one design had trouble another design could be suggested that could
deal with the trouble.

Comparison of design alternatives led to formulation of new micro
problems. Design alternative B might outdo design alternative A on micro
problem 1, but what about this new situation, micro problem 2? Micro
problem 2 shows what's wrong with B and good about A.

Often these new, emergent micro problems could be embedded in an
existing raw problem, either by focusing attention on some hitherto
neglected aspect of one of them or by extending the scope of one. But other
times the new micro problems seemed to bring out something the system
should be able to do, but that no existing raw problem required. This led to
the addition of new raw problems.

The Tic Tac Toe and Maze raw problems were added in this way, in
response to the claims by one of us (BB) that the initial design was too
limited. BB could not show the value of his proposed more powerful
features on the trivial Office and Bunsen Burner problems, but was able to
persuade the group that the system should be able to cope with the more
complex Tic Tac Toe and Maze examples. Two other raw problems, Turing
Machine and Petri Net, were added simply as a way to check that the
evolving design could cover a range of applications, not to capture any
particular kind of micro problem.

2.3 Examples of the evolution of the design space.

The space of design alternatives grew quite rapidly. Figure 1 gives a sketch
of the alternatives, along with the raw problems and micro problems that
gave rise to them. The growth processes just described can be illustrated
using the alternatives shown.

Example 1: Micro problem derived from raw problem, design alternative
spawned by micro problem.

The Turing Machine raw problem requires coordinating the movement of
the read head of the machine with changes of state. In an early ChemTrains
design movement was controlled by predicates, called filrers, attached to
the ends of paths. To make the read head move therefore required
changing the object representing the head so that it would be accepted by
the appropriate filter. There were two difficulties with this. First, it then
became necessary to change the head object again when it got to its
destination, so that it would not keep moving. Second, it was necessary to
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coordinate the action of filters with the reaction rules that changed the
machine state and symbols on the tape. Together these difficulties meant
that one transition rule for the Turing Machine had to be represented by
several ChemTrains reaction rules. This constituted the moving head micro
problem.

Contemplating the moving head problem led to the idea that movement
control could be combined with reaction rules. Indeed, the micro problem
made it obvious that some such combination would be necessary if Turing
Machine transitions were to be economically represented. This line of
thought led to the formulation of a new design alternative, the anteroom
approach. In this approach rules could specify that objects should be
placed in anterooms at the ends of paths, from which they would be moved
along the associated paths.

Example 2: Micro problem spawned to evaluate design alternatives.

Two kinds of internal structure were considered for objects. In the simpler
view objects were simply bundles of values, while in the alternative they
were bundles of attribute-value pairs. To show the weakness of the bundle
of values approach, an example was proposed in which objects were to
carry three numerical attributes, pressure, volume, and temperature.
Without attribute names associated with the numerical values it would be
impossible to determine which number represented which attribute.

Example 3: Design alternatives not rooted in problem, micro problem
spawned by comparison of design alternatives.

Though raw problems and micro problems played a powerful part in
producing design alternatives, not all of the alternatives shown in Figure 1
arose that way. The before-after vs. operations alternatives were not
spawned in connection with any specific problem but rather arose from
consideration of how rules might most naturally be written. In the
before-after approach a rule would be specified by describing the relevant
state of the model before the rule applied, and then showing the state that
would be produced by the rule. In this approach one would not say
explicitly that an object was to be deleted, for example, but rather would
simply include it in the "before" description and omit it from the "after"
description. In the operations approach the "before" conditions would be
described as for before-after, but the action of the rule would be described
as a collection of operations on objects, like "delete memo." This approach
permits the user to say explicitly what is supposed to happen.

Though consideration of these contrasting approaches was sparked by
concern for natural expression rather than by a specific problem, the
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comparison spawned the formulation of a new micro problem, the
modification problem, which was framed as a part of the Office raw
problem. In the modification problem a memo is to have its destination
changed for rerouting but carry the same content. In the operations
approach to rules, this is easy to arrange. By specifying a modification
operation to be applied to the memo one can easily indicate that only the
destination is to be changed, while other aspects, including the content,
should be left alone. But in the before-after approach there is trouble. The
crux of the problem is the need to indicate that the memo appearing in the
"after" description is really the same one that appears in the "before"
condition, that is, to indicate that the original memo is being changed rather
than that the original memo is to be deleted and a new, unrelated memo is
to be created. The simplest before-after approach cannot make this
distinction; some machinery must be added, such as explicit links between
objects in "before" and "after", or the inclusion of variables in the "before"
descriptions whose bindings can be used in the "after" description.

Example 4. Reframing a raw problem in response to design difficulties.

The Office raw problem also contained another micro problem, distribution
list interpretation, that together with modification seemed to require the
operations approach to rule specification, or to require that variables be
used in the before-after approach. It was difficult to find an attractively
simple presentation for rules that dealt with these micro problems.

One of the designers, JR, noted that modification and distribution list
interpretation were not required subproblems of Office, but rather arose
from one approach to solving it. JR pointed out that we were intent on
building a model of distribution lists that would work for any memo and
any distribution list, including ones created after the model was built,
whereas the Office raw problem only required that we demonstrate how a
typical distribution list worked. This goal could be achieved without
treating memos and distribution lists as structured objects at all, just by
providing rules that would produce the correct copying and routing for
known memos and distribution lists. This recasting of the Office problem
made it possible to ignore the modification and distribution list micro
problems, if desired, and thus opened the way for a variety of simpler
designs.

Example 5. Micro problem derived from raw problem, design alternative
spawned by micro problem.

The original ChemTrains design prescribed that reaction rules could only
operate when all participating objects were in the same place. This
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Figure 2a. A simple Petri net in which Figure 2b. Drawing ChemTrains places
two transitions, shown as horizontal around the transitions and their associated
lines, share one of three input places, input places permits tokens relevant to
shown as circles. each transition to interact.

Figure 2c. Drawing ChemTrains places Figure 2d. If objects inside any place are
around each input place permits the allowed to interact, the token, shown as a
position of tokens to be controlled, shaded circle, can interact with any of the

paint markers shown as boxed color names.

Figure 2e. By adding catalyst objects, shown as irregular polygons, and restricting
interactions by Clayton's Membrane Rule (see text), rules which include the catalyst
can permit tokens to interact within a place enclosing a transition, while rules which
do not include the catalyst can restrict the interaction of tokens and paint markers,

Figure 2. Micro problems in the Petri Net raw problem.
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limitation was motivated by CL's intuition that it would make rules simpler
and easier to understand than if objects situated anywhere could freely
interact.

This restriction on interaction caused immediate difficulty in handling the
Petri Net raw problem. Figure 2a shows part of that problem. The circles in
the diagram represent input places (not to be confused with ChemTrains
places!) and the vertical lines represent transitions. The rules of operation
for a Petri net specify that when one or more rokens are in each input place
for some transition one token is absorbed from each input place and a
single token is passed out of the transition (along the paths leading to the
bottom of the diagram.) Notice that a token in the middle input place may
trigger the firing of either transition, depending on where other tokens are.

In considering what ChemTrains places should be set up to model the Petri
net there is obvious trouble. One would like to have a place enclosing both
input places for each transition, since tokens in the input places need to
interact to trigger the transition. But since the middle input place is shared
by two transitions, these places would have to overlap, something not
contemplated in the original ChemTrains design. Thus the shared input
place micro problem, part of the Petri Net raw problem, directly spawned a
new design alternative: permit ChemTrains places to overlap.

Example 6: Micro problem derived from raw problem, solution method
suggested by micro problem, micro problem spawned by solution method,
design alternative spawned by micro problem.

Continuing with the Petri Net problem, if one lays out overlapping
ChemTrains places as shown in Figure 2b one now has the problem of
distinguishing tokens in the two input places that are inside each
ChemTrains place. This is necessary because the transition is triggered not
by any two tokens but only by one token in each input place. A natural
way to approach this, given that ChemTrains places can overlap, is to
include smaller ChemTrains places inside the overlapping ones, one for each
input place, as shown in Figure 2c. Tokens in these places can then be kept
separate. But how can one detect when the two input places are both
occupied? There was no direct way in the original ChemTrains design to
specify that an object or objects had to be in specified places for a reaction
rule to apply.

This micro problem of identifying the tokens' location spawned not a design
alternative directly but an approach to a solution, which in turn led to
design alternatives. The approach is called painting: the idea is that when a
token is in a particular input place it is "painted" a color associated with
that place. Assigning colors to input places in such a way that each
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transition has input places of two different colors, the rule that fires a
transition can apply just when there is at least one token present of each of
the two colors.

But how is painting to be controlled? Suppose a marker of the appropriate
color is placed in each input place, and a rule is provided that modifies the
color of any token in the presence of that marker. This paints too much: any
token anywhere within the large place enclosing an entire transition will be
in the same place as the marker in its input place and also the marker in
the other input place. Thus the token in Figure 2d could get painted by the
black marker or by the white marker since the token and both  markers
are enclosed in the outer place. This is the controlling paint micro problem.

It might seem possible to solve this problem by redefining when objects
are considered to be in the same place. After all, the white marker in Figure
2d is not in the same inner place as the token. Perhaps rules should only
apply when the participating objects are all in the same innermost place.
But this throws the baby out with the bath: under this rule the painted
tokens can no longer trigger the transition, because they are in different
innermost places!

This difficulty is skirted in a new design alternative spawned by the
controlling paint micro problem. Under Clayton’s  Membrane Rule any
reaction must occur in a single place, all participating objects must be
somewhere inside that place, and at least one participating object must be
immediately within the place, that is, not further enclosed by any smaller
place. So the token in Figure 2d can't be painted by the white marker,
because neither the token nor the marker is immediately within any place
that includes the other. To get the painted tokens to trigger the transition a
new catalyst object is placed inside the outer place, as shown in Figure 2e,
and included in the condition for the rule that fires the transition. Now the
outer place includes painted tokens of the required colors, and immediately
encloses the catalyst object, so the rule can apply.

Example 7: Raw problems added to represent abstract concerns, micro
problem motivates design alternative.

As mentioned earlier, one of us, BB, was concerned that the original
ChemTrains designs and its derivatives were too limited to solve many
realistic problems. He felt that features of existing rule-based systems, such
as control of conflict resolution (what to do when more than one rule could
apply) and structured representations of objects, places and paths would be
needed. CL and JR rejoined that these features would be difficult to
understand, and that it was not clear they would be needed for problems of
interest. To develop the argument BB proposed two additional raw
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problems, Tic Tac Toe and Maze, and these were accepted as within the
intended scope of ChemTrains. BB believed these problems would expose
the limitations of existing ChemTrains designs.

The Tic Tac Toe problem quickly brought out a difficulty with the
prohibition of interaction among objects in different places, the same design
limitation that was dealt with, after some redesign, in the Petri Net
problem. Since the Tic Tac Toe model plays a game against a user the model
should make a move only when it is the model's turn to move, so there has
to be some indication of whose turn it is. But since this turn indicator must
interact with any other objects that are involved making a move, a complex
arrangement of overlapping places would be required. For example, finding
two O's and a blank in any row, column, or diagonal suffices to identify a
win for O, but the places representing all of the pieces of the board would
have to be extended to enclose the object representing the turn. BB showed
that this problem could easily be avoided simply by allowing rules to test
for the presence of objects in multiple places. Thus the micro problem turn
control spawned the design alternative of permitting rules to test for
objects in multiple places.

2.4 Collapsing the design space.

It became apparent that development of new micro problems and design
alternatives could go on indefinitely. It was also clear that while we could
produce designs that were expressive enough to solve the raw problems
using many combinations of the features we had proposed, we could not
assess the facility that different combinations of features would afford
without examining the combinations in detail. Individual design features in
themselves did not promise facility or the lack thereof; only by examining
the process required to solve a problem with a complete design could we
determine this.

We closed down the exploration of further design alternatives and defined
three complete designs, ZeroTrains, ShowTrains, and OpsTrains, which
represented distinct ways of choosing alternatives within the space. In
ZeroTrains the simpler alternative was chosen whenever possible. Thus for
example ZeroTrains retained the restriction that rules could apply only to
objects in a single place. OpsTrains chose alternatives for power, influenced
strongly by BB's experience with the OPS family of rule-based systems (see
Forgy 1984). Thus OpsTrains views places as a kind of object, allows objects
to be nested, and permits variables in rules. ShowTrains differs from the
other two designs along a different dimension, concreteness. In ShowTrains
rules are not expressed in any notation but rather are specified by
demonstration, a technique suggested by Maulsby's work on specifying
procedures by example (Maulsby, 1989). The ShowTrains user always



Table 2. Design features of the ChemTrains variants.

Z: ZeroTrains S: ShowTrains

Feature

O: OpsTrains

Z

PLACES
separation of graphic for place
attributes of places
hideable places
nameable places
overlapping places
nested places

OBIECTS
structured objects
attribute-value pairs
nameable objects
hideable objects

PATHS
named path ends
named paths
one way
two way
filters
path traversal in reactions

RULES

global scope of rules

group of events in rule

places as well as objects in rules

Clayton's Membrane Rule

before&after specification

use of variables

graphic specification of modification
and creation without variables

specification by demonstration

no conflict resolution

rule ordering

specificity and recency

absence testing
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works within the context of the model, pointing out the objects that figure
in the condition of a rule and then manually making the changes that
should occur if the rule applies. Table 2 collects the design alternatives
included in Figure 1 and shows which alternatives were chosen in each of
these three designs.

As is evident in Table 2 the three designs we chose come nowhere near
exhausting the possible combinations of design alternatives in the design
space. But the designs do permit us to compare the consequences of
designing by three distinct intuitions that we found increasingly in conflict
in design discussions. We could not settle by discussion whether the power
of OpsTrains would make it easier to apply than ZeroTrains, or whether the
concreteness of ShowTrains would make it easier to understand and use
than the other two designs.

2.5 Evaluating expressiveness.

The first step in evaluating the three designs was to attempt to find
solutions to all six raw problems using each design. We were confident from
discussion of the various design features that this would be possible, and
some last minute adjustment to the designs was permitted in preparing the
solutions. The decision to include Clayton’s Membrane Rule in ZeroTrains,
for example, was made only after some effort was put in confirming that
good solutions not only to Petri Net but also Bunsen Burner depended on it.
As expected reasonable solutions were found for all the problems for each
design.

2.6 Development of doctrine and evaluation of facility.

The next step in the evaluation of the designs was to examine the mental
steps required to develop solutions to the raw problems starting from the
problem statements and drawing on a body of doctrine provided with the
design. We began by preparing an initial statement of doctrine reflecting
the steps that seemed to be involved in producing the solutions constructed
in the expressiveness assessment. We then worked through each problem
repeatedly, looking for points in the solution process where the doctrine
provided inadequate or inaccurate guidance. The goal was to produce
doctrine that as often as possible would provide a direct link between an
aspect of a problem on the one hand, and a specific part of a solution in a
design on the other.

As the doctrine developed it sometimes happened that a new solution to a
problem was adopted. Some of the original solutions had reflected insight
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into a design that could not be conveyed readily in doctrine, or had resulted
from a good deal of trial-and-error problem solving. Some of these could be
replaced by solutions which could be derived more readily from a
reasonable body of doctrine.

The Bunsen Burner solution in ZeroTrains illustrates this joint evolution of
doctrine and solutions. In the original solution the place containing the
flame was expanded to include both the beaker and the various places for
the control. This is an economical solution to the problem of allowing the
parts of the burner setup to interact under the ZeroTrains restriction that
interacting objects must be in the same place. But it proved hard to
formulate doctrine that could reliably indicate which of two or more places
to expand in situations like this. After examining the requirements of this
and other problems the doctrine shown as item D17 in Table A-lc was
developed. It leads to a less economical solution, because a catalyst object is
needed, but the doctrine seems to provide direct guidance in a wide range
of cases.

We also found the need to revise the statements of the raw problems
during this phase of the process. The original problem statements often
permitted different approaches to the problems, which in turn led to
different solutions. For example, the Maze problem as originally stated
could be solved by following walls or by marking routes that have been
explored. Different approaches could have been dictated by different
doctrine for the designs, but they were not. We therefore selected one
approach for each problem and specified it in the problem statement. This
avoided differences in the solutions that were not traceable to differences
in the design but just to the solution approach adopted.

The process of examining and modifying doctrine consisted of tracing out a
path from a problem statement to a solution, using the doctrine at each step
to determine what to do next. This analysis is similar in spirit to the
cognitive walkthrough used for user interface evaluations by Lewis et al
(1990). In the cognitive walkthrough the focus is on the adequacy of cues
provided by the user interface to guide choices the user must make. In our
analysis the focus is on the adequacy of the doctrine. We call our variant a
"programming walkthrough." A programming walkthrough evaluates the
facility of the underlying design indirectly: a design has high facility if
there is a body of doctrine for it that guides each step in the solution
process, and which is not large or complex.

The doctrine for the three designs is excerpted in Tables A-la, A-1b, and
A-1c. While differences in form and content make precise comparison
impossible, it appears that three designs required about the same amounts
of doctrine. Taking an item of doctrine to be a statement of a choice to
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make or action to take, together with some statement of the conditions in
which it is relevant, OpsTrains has 21 items, ShowTrains 24, and ZeroTrains
26.

We concluded this phase of the design effort by producing “walkthroughs of
record” for each of the six raw problems in all three designs. In these
walkthroughs, the doctrine and design features were fixed across all
problems. Each walkthrough took as its starting point a written description
of a raw problem. The walkthrough then described the sequence of
problem-solving activities and system interactions that the programmer
would need to follow in arriving at a solution. At every point, the
programmer’s critical decisions were justified by citations to specific items
of doctrine and features of the problem. Since the designs and doctrine had
been developed with these six problems as targets, the walkthroughs were
a chance to exhibit each design in the best possible light.

2.7 Programming walkthroughs of the Bunsen Burner Problem

In this section we describe a walkthrough of record for each of the three
designs, using a single raw problem, Bunsen Burner. The problem asks the
programmer to simulate the operation of a bunsen burner, showing how
the burner flame changes as a user drags a control knob into one of three
positions: off, low, and high.  The simulation must also show how water in a
beaker above the flame changes phase, from ice to water to steam, as the
flame changes. Table 3 shows the full problem statement. The full text of
the walkthroughs describing the solution path are shown in Tables A-2a,
A-2b, and A-2c, at the end of this report. Those tables refer to specific
items of doctrine for each system, shown in Tables A-la, A-1b, and A-lc.

Table 3. Statement of Bunsen Burner problem used in walkthroughs

Purpose: Show how changing the position of the control on a bunsen burner
affects the state of the water in a beaker.

Task Description: Show a bunsen burner with a beaker of water on top of it. Also
on screen, separated from the burner, show a control with positions high, low,
and off. Allow the user to manipulate the control. When the control is in the
high position, a large flame should be visible between the burner and the beaker,
and the water should be shown as a cloud of steam (the cloud should stay in the
beaker). When the control is in the low position, a small flame should be visible
and the water should look like plain water. When the control is in the off
position, no flame should be visible and the water should be shown as a cube of
ice.
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OpsTrains Solution Path. We present the OpsTrains walkthrough first
because it is the easiest to understand. In OpsTrains, objects and places
are not different elements: any object may contain other objects. An object
is identified by its shape and by the objects it contains.

The doctrine for OpsTrains tells the programmer what to do as a first step,
but no further order of action is specified. Doctrinal rules suggest
appropriate actions to take in various situations. For the bunsen burner
simulation, the doctrine tells the programmer to start by drawing the
visible objects of the simulation. The programmer draws the bunsen
burner, the beaker, and the control panel, which is made up of three
separate rectangles in which the control may be located, marked by the
text strings “off,” “lo,” and “hi.” Drawing an object in OpsTrains causes the
object to be created. Additional items of doctrine induce the programmer
to draw a place for the flame to appear, enclosing an object whose graphic
is the text string “off.” Both the “off” object and the flame-place object are
defined to be invisible when the simulation runs (Figure 3a).

An item of doctrine now suggests that the programmer specify the
OpsTrains reaction rules that describe the activity in the simulation. The
same item of doctrine describes the general procedure for specifying a
reaction rule: set up the simulation window the way it will appear when
the reaction is to occur, then copy-and-paste the relevant patterns of
objects and paths into both the “condition” and “action” sides of a new
reaction rule. Finally, modify the action side of the reaction rule to show its
results, which may involve deleting objects, creating new objects, or
sending objects along paths. Two additional items of doctrine map the
general idea of reactions into the specific needs of the problem for deletion
or creation.

Guided by this doctrine, the programmer begins to specify the reaction rule
that causes the flame to change from “off” to a low-flame appearance when
the control is moved into the low position. As the programmer is specifying
the reaction rule, another item of doctrine becomes applicable. The
appearance of the flame when the control is moved into the Low position is
irrelevant; whether it is a high flame or the invisible “off” object, it should
be transformed into a low-flame graphic. The doctrine advises the
programmer to make the flame’s appearance a variable in the condition of
the rule. The programmer follows this advice, marking the flame with a
graphic “V” that indicates its variability.

For the bunsen burner simulation, a total of six reaction rules are required.
Three reaction rules change any flame object to a low flame, high flame, or
the invisible “off” marker when the control is in the low, high, or off
position. Three more reaction rules are needed to transform any phase of
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the water to ice, liquid, or steam, depending on whether the object in the
flame-place is “off,” low-flame, or hi-flame. The walkthrough shows that
the programmer enters each of the reaction rules as a direct result of the
application of doctrine to the problem statement. The graphic versions of
the reaction rules are shown in Figure 4.

ShowTrains Solution Path. The final ShowTrains solution is similar to
OpsTrains, but the walkthrough shows a solution path that requires many
more decisions on the part of the programmer. In ShowTrains, elements of
the simulation may be either objects, places, or paths. Where the
OpsTrains programmer merely had to decide that some real-world thing
would be an object, the ShowTrains programmer has to decide whether it
will be a place or an object, and the walkthrough must show how the
design, doctrine, and problem combine to justify each decision. ShowTrains
is further complicated by the fact that objects, places, and paths have both
a name and a graphic.

The ShowTrains doctrine advises a sequence of basic activities, then
presents additional suggestions that the programmer should consider in
case of difficulty. For the bunsen burner simulation, the ShowTrains
programmer, guided by the first item of sequential doctrine, begins with a
paper sketch of the simulation. The programmer then decides, again with
help from doctrine, what should be places, objects, and paths, and creates
these things in the simulation window (Figure 3b).

The objects needed for the bunsen burner simulation are the control knob,
the flame, and the water. The places needed are the three positions for the
control knob, the place representing the beaker, and the invisible place
where the flame appears. The programmer must assign names to each
object and place, and the walkthrough cites doctrine that guides the naming
process, which is critical since the names will be tested by the reaction
rules.

The next item of doctrine advises the programmer to specify the

ShowTrains reaction rules that describe the simulation’s action. In
ShowTrains, reaction rules are specified by demonstrating them in the
simulation window itself. = Variables in the OpsTrains sense are not

available, but by highlighting or graying out items on the screen, the
demonstration can specify that either the graphic, the name, or both the
name and graphic of an element are to be tested in the reaction rule’s
condition. It is also possible to indicate that objects must be contained
together in some common place, but that any place will do. The doctrine
describes, using examples, what should or should not be highlighted, and
the system provides defaults that are intended to be appropriate for most
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situations. = The walkthrough cites these items as justification for the
programmer’s demonstration of the first reaction rule for the bunsen
simulation, which sets the flame to a low-flame graphic when the control is
in Low. The demonstration proceeds roughly as follows:

The programmer sets up the screen as it would look when the control has
just been moved from off to low. Now the programmer demonstrates the
conditions that cause the reaction to occur by highlighting the name of the
flame object (but not its graphic) and the name of the control-knob object
(but not its graphic). The highlighting of the place where the objects reside
is also significant, but the default highlighting is correct for the bunsen
burner simulation. Finally the programmer demonstrates the result of the
reaction: the null graphic of the flame object is to be replaced by a
low-flame graphic.

As with OpsTrains, a total of six rules are needed, three to set the graphic of
the flame depending on the position of the control, and three to set the
graphic of the water based on the graphic of the flame. In the second three
rules, it is the graphic of the flame that is significant, whereas in the first
three it was the location of the control knob, a distinction that the doctrine
induces the programmer to map into appropriate highlighting.

The final items of sequential doctrine drive the programmer to test the
simulation and to draw graphic elements for inert objects that should
appear in the simulation, including a ring stand, the burner body, and a
hose between the burner and the control.

ZeroTrains Solution Path. In the ZeroTrains design, the elements from
which a simulation must be built are places, objects, and paths. These
elements are simple graphics, with no names. Places may be nested or
overlapped, but objects can’t contain other objects. Reactions have fewer
options in ZeroTrains than in OpsTrains or ShowTrains, and the ZeroTrains
final solution 1is significantly different from the solutions in the other
designs.

The walkthrough of the ZeroTrains solution path begins similarly to the
walkthrough for ShowTrains. Guided by sequential doctrine, the
programmer first makes a sketch of the problem on paper. Using this
sketch, the programmer makes an initial identification of what will be
places, objects, and paths. The programmer then begins to list, on paper,
the events that will take place in the simulation, such as: when there is no
flame in the burner the water will turn to ice. These will eventually
become the simulation’s reaction rules.
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Doctrine requires that the events be specified only in terms of objects (not
places).  Where existing objects are insufficient to describe an event,
doctrine tells the programmer to create additional objects. In the Bunsen
Burner problem, events must occur when the control knob is in different
positions, but the positions refer to places, not objects. In the walkthrough,
the programmer creates objects with the text strings as their graphics to
identify each of the control locations.

Doctrine also guides the programmer through the steps required because
ZeroTrains can’t test for the absence of objects. The programmer creates a
“noflame” object representing the absent flame, then lists the events that
create and delete that object as the control is moved.

The ZeroTrains design adheres to the initial ChemTrains principle that
things can interact only when they are together in the same place. Where
the events list shows conditions in one place changing objects in another
place, the programmer has additional work to do. For simple simulations,
doctrine spells out the programmer’s activity quite clearly, and the
walkthrough shows that the bunsen problem fits within this category. The
programmer creates a large place that overlaps the flame place, the beaker
place, and the places where the control knob may rest. A “catalyst” object,
with the text-string “C” as its graphic, is also created, and this is placed in
the large place, outside of any other place (Figure 3c). The programmer
adds the existence of the catalyst object to the conditions of each event that
involves objects in more than one of the original places. This doctrinal
guidance allows the programmer to use “Clayton’s Membrane Rule”,
described earlier, without understanding it, at least in simple problems.

Finally doctrine guides the programmer through the last step of the
solution:  translating the events list into reaction rules in the ZeroTrains
graphic reaction-editor window. This is fairly simple, since the events list
is written in terms of objects occurring in the same place, exactly what the
reactions require. However, nothing can be variablized in a ZeroTrains
reaction, so events specifying “a or b” in their condition must be entered as
two separate reaction rules. Twenty-four reaction rules are required for
the final solution.

2.8 Comparing the programming walkthroughs

Comparison of the walkthroughs for the three designs revealed a consistent
pattern of differences, clearly attributable to particular design decisions.
The comparison does much to resolve the conflicts of intuition that
bedevilled our efforts to evaluate these design decisions earlier in the
development of the design.



27

Overall, the power-oriented OpsTrains design showed the greatest facility.
The central ideas of the problem statement could be translated quite
directly into OpsTrains rules guided by doctrine of about the same size and
complexity as for the other designs. ShowTrains placed second, with many
solutions reachable about as directly as OpsTrains, but others requiring
considerable problem-solving even with the doctrine supplied. ZeroTrains
placed last, with each solution requiring work directly attributable to
getting around ZeroTrains’ “simplifying” assumptions. Overall, the
comparison provides no support for the intuition that the simplicity of the
ZeroTrains design would pay back in simple, clear doctrine what it lost in
power.

The differences exposed by the walkthroughs can be attributed to a few
key design choices. ZeroTrains was hurt especially by two limitations. Since
rules could involve only objects in a single place much work was required
to contrive this situation, by adding new places and catalyst objects, as in
the Bunsen Burner problem, or by sending “messenger” objects on a circuit
of places to be processed.

ZeroTrains also suffered badly from the inability to test for the absence of
objects. Tests for absence occurred naturally in a number of the problems,
and in each case the ZeroTrains solver had to laboriously convert these
tests into other, directly expressible tests.

Both ZeroTrains and ShowTrains lacked explicit variables, as were available
in OpsTrains. This lack had minor impact on these small-scale problems,
since it was not unreasonable to provide multiple similar rules to cover
cases OpsTrains could cover in a single, variabilized rule. ShowTrains'
distinction between the name of an object and the graphic for it permits
different objects in a class to be handled by a single rule, but almost all
ShowTrains solutions still required more rules than OpsTrains.

It is not surprising that variables permitted more economical solutions in
OpsTrains. It is perhaps more surprising that the use of variables did not
require substantial doctrine. The OpsTrains doctrine guides the user in an
approach similar to that used in Query by Example (Zloof 1975), in which
the user first writes a rule with no variables that handles a specific case.
The user then replaces some constants by variables to produce a rule that
handles other cases. As in Query by Example this approach appears to allow
the OpsTrains user to create rules that use variables in a fairly complex
way, for example to require that designated parts of two different objects
must be the same, without really understanding much about how the
variables work.
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Our evaluation may overstate the advantages of OpsTrains' use of variables
in one respect. Making effective use of variables requires representing
objects in such a way that groups of related objects can be easily described.
For example, in the OpsTrains Tic Tac Toe solution each cell in the first row
of the board contains a "row 1" marker, each cell in the second row "row 2",
and so on for each row, column and diagonal. By writing a rule that refers
to three cells marked, say, "row 1", and then replacing "row 1" by a variable
one obtains a rule that applies to any row, column or diagonal.

But how does one decide to place these markers? Related questions arise
about the choice of names and graphics for ShowTrains objects. The
doctrine for these systems provides general guidance, but we suspect that
some problem-solving not required in ZeroTrains may still be needed.

Another OpsTrains feature greatly simplified the approach to one problem,
the Maze. OpsTrains rules can test for configurations of paths, places, and
objects, rather than just objects as in ZeroTrains or places and objects as in
ShowTrains. This permits the OpsTrains user to test for the presence of a
path leading to an unvisited place in the Maze problem. This test avoids the
need to impose an order on the exploration of maze branches, which
complicates the solutions in ZeroTrains and ShowTrains.

It is important to note the difference between the expressiveness
evaluation of the designs, based just on the characteristics of the solutions
supported by them, and this facility analysis which examines the process of
arriving at solutions. Consider as an example the ZeroTrains requirement
that rules involve only one place. It might appear that simply examining
the solutions available with and without this restriction would suffice to
establish its cost. But in fact the restriction does not make solutions much
bigger. Only in the programming walkthroughs does it become obvious that
meeting the ZeroTrains restriction requires a great deal of extra work. This
can be clearly seen in the Bunsen Burner example.

The success of OpsTrains challenges the widely-held intuition (see for
example MacLennan 1987, p. 547) that languages should contain a
minimum number of concepts. Until the programming walkthroughs were
complete it seemed quite likely to us that the power of OpsTrains would
exact a cost, that understanding how to select among and apply its larger
number of capabilities would require more doctrine or more problem
solving. This did not happen, because the features of OpsTrains matched the
naturally-arising statements of problems more directly than did the limited
features of (especially) ZeroTrains. If added features in a language make it
easier to relate the language to real problems they confer a significant
advantage.
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2.9 Evaluation using reserve problems.

The whole design process up to this point was strongly shaped by the set of
raw problems. The growth of the design space and the evaluation of
alternative complete designs for expressiveness and for facility relied on
these problems. The economy and coherence gained by concentrating on a
few problems is accompanied by a risk: what if the resulting designs were
narrowly tuned to look good on these problems, but would fail on other
problems that were within the intended scope of ChemTrams but were not
included in the raw problem set?

To address this problem we held a number of raw problems in reserve, not
using them in design discussions or in the evaluation process. These reserve
problems included one of the original motivating problems for ChemTrains,
modeling sunspot development, which was discussed briefly at the very
start of the design process and then withdrawn from consideration. We
added to this other problems that we encountered in the literature or in
other work and that seemed within the intended scope of ChemTrains. Brief
descriptions of the reserve problems are shown in Table 4.

After completing the expressiveness and facility evaluation of the three
designs on the original raw problems we did walkthroughs for each design
on each reserve problem. Neither the designs nor the doctrine used in the
earlier evaluation were allowed to change, in keeping with the goal of
detecting narrow focus in design or doctrine resulting from our
concentration on the original raw problems earlier in the design process.

The analyses using the reserve problems produced results generally
consistent with those from the original raw problems. The advantage of
OpsTrains over the other designs in both expressiveness and facility was
even greater than in the original raw problems because the reserve
problems tended to be bigger. The lack of variables in ZeroTrains, and the
limitations on variablization in ShowTrains, meant that many, many more
rules were required under these designs than in OpsTrains, a fact already
apparent in the earlier analyses but of more consequence for the bigger
reserve problems.

While the analyses of the reserve problems did not change our assessment
of the three designs very markedly they did reveal that some potentially
important design issues were not adequately raised by the original raw
problems. Three of the reserve problems, Doorbell, Sunspots, and
Grasshopper, involved time-dependent processes, which had not figured in
any of the original raw problems. None of the three designs had adequately
direct ways of representing such processes.
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Table 4. Brief descriptions of the four reserve problems.

(The descriptions used in the walkthroughs were more detailed.)

Doorbell. Simulate an electromechanical doorbell. At the push of a
button, current generates a magnetic field, pulling on an arm that rings a
bell and opens the circuit. A spring pulls the arm back and the cycle
repeats.

Grasshoppers. Grasshoppers hatch, consume resources, change to adults,
lay eggs, and die. Show how availability and importance of resources
affects the population of adult grasshoppers over many generations. See
Varley, Gradwell and Hassell (1973).

Sunspots. Show how a tube of magnetic field lines bends and rises above
the surface of the sun, causing sunspots to appear. Then show how the
tube rises even higher, the field lines separate and reconnect, and a solar
flare is produced. Draws on Patrick McIntosh, personal communication
(1990), Noyes (1982), Tandberg-Hanssen and Emslie (1988).

Copier. Show how an office photocopier operates. Actions to simulate
include transfer of charge, transfer of toner particles conditional on charge,
and coordinated motion of the paper and an internal belt. See Shrager
(1984, 1987).

The reserve problems also exercised the ability to represent structured
objects more fully than the original problems. In the Grasshopper problem,
for example, it was natural to think of the state of a grasshopper as
combining several componerits reflecting food and water needs, stage of
maturation, and the like. This was difficult to represent in ShowTrains and
ZeroTrains.

The ability in OpsTrains to move paths around was useful in the Doorbell
problem to open and close a circuit. This feature was not used in any of the
original raw problems.

None of the designs provided rotation of the graphics for objects. This is
needed to portray the motion of segments in a moving belt in the Copier
problem.

The doctrine for the three designs stood up quite well to the reserve
problems. Even more than with the designs themselves we had been
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concerned that our doctrine might have been tailored to the requirements
of the original raw problems, but there were few indications that different
doctrine would have worked better for the reserve problems. Both
ShowTrains and ZeroTrains had in fact included some "advanced" doctrine
that was not needed in the original raw problems, but this was not needed
for the reserve problems either.

All in all the reserve problems confirmed the conclusions drawn from the
original raw problems, but did reveal that the original problems did not
cover all aspects of the intended design space. This difficulty could be met
in part by including more complex raw problems in the starting set for
design development.

3. METHODOLOGICAL LESSONS FROM THE CASE STUDY
3.1 The role of problems in developing design alternatives.

Problems played three key roles in the growth of the design space for
ChemTrains. Raw problems defined the functional scope of the intended
design. Directing design effort at these problems kept the design activity
focussed on issues that had to be dealt with for a design to succeed.

Micro problems played two roles. First, micro problems were used to
evaluate or compare design alternatives by capturing difficulties associated
with the use of some design alternative. In this role they can be seen as
children of design issues. But micro problems are also the parents of design
issues, in that they served to promote the formulation of new design
alternatives to deal with the difficulties they represented.

In all of these roles two characteristics of problems seem to be critical.
First, they are concrete. We do not think we could have prepared an
abstract specification of the functional requirements of ChemTrains. Or
rather, we could have, but only by beginning with a list of raw problems
and trying to describe abstractly the characteristics apparently required in
these problems. We simply lacked abstract concepts and categories
adequate to describe what ChemTrains should do. Collecting raw problems
was easy and natural.

The concreteness of micro problems was equally important. Occasionally an
issue arose in abstract form, as in the case of conflict resolution, because it
was familiar from previous work. But usually issues arose as difficulties
whose nature needed to be clarified before we could describe it. A concrete
micro problem was the natural way to clarify a difficulty, and to
communicate it. Design discussions were punctuated by momentary
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suspensions in which someone would grope for a micro problem; the
problem having been found and described, the discussion would leap
forward.

Occasionally abstract formulations of issues emerged from noting the
relationships among a family of micro problems. For some reason these
issues never became an active focus for discussion, though they would be
brought up from time to time. For example, we noted that overlapping
places, overlapping objects, and messenger objects sent from one place to
another all served related purposes in communicating across places. But
despite occasional resolutions to do so we never explored this idea, but
remained focussed on the issues embodied in concrete problems. Our
behavior agreed with Boy's observation (submitted) that designers develop
experiential cases but not formal theories.

A second key point about the problems we used, as noted by Ray McCall
(personal communication, 1990), is that they all represent pieces of the
intended scope of the ChemTrains design. This is obvious for the raw
problems: we could not accept failure on any of the raw problems without
changing the scope of the design. For micro problems the relationship is
conditional, but still strong. As noted earlier, micro problems were children
of current design alternatives, and embodied some difficulty for that
alternative. Since micro problems were nearly always parts of raw
problems, they could not be neglected without neglecting a raw problem or
abandoning a design alternative.

In the context of the design process, then, both raw and micro problems
represented work that had to be done. Debates about them were not in
danger of being irrelevant unless some specific design alternatives
eventually proved unworkable.

3.2 The role of problems in design rationale.

We first became aware of the role problems played in our design process
when we attempted to record design rationale, as part of the overall project
objective to explore the role of cognitive theory in system design. We
initially attempted to record the issues under debate and the relationships
between them in an IBIS-like way (see Fischer, Lemke, McCall and Morch
and Conklin and Yakemovic, submitted). We tried to show issues deriving
from issues, as in that framework, but we got bogged down. One problem
was that it was not easy, as already noted, for us to give abstract
statements of the issues we dealt with. Indeed, even preparing the diagram
of the design space in Figure 1 required us to develop abstract descriptions
of design alternatives that we did not use in the original design discussions
and hence did not have ready to hand. But a second, related difficulty was
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that the problems kept getting in the way. We found that we thought about
design alternatives and their strengths and weaknesses in terms of the
micro problems they were connected to. But there was no direct way to
incorporate this organizing material, the problems, into the issue structure.
The same issue would arise in the Options, Questions and Criteria
framework described by MacLean, Young, Belotti and Moran (submitted.)

As soon as we recognized the organizing role of problems it became very
easy to map out our design discussions (though not always to think of
terms that would be meaningful outside the context of the specific
problems we dealt with). One of us (JR) created a Hypercard stack that
captured much of the design space diagrammed in Figure 1.

The structure of problems and design alternatives we created contains the
design rationale for ChemTrains in a way that is both implicit and concrete.
We wrote no statements explaining that we chose alternative A for reason
R. But by examining the micro problems associated with a design
alternative one can reconstruct these reasons readily, in the form of
concrete, specific examples of situations in which that alternative deals
with difficulties encountered by other alternatives.

Despite the naturalness of capturing our design rationale in this form we
did not keep any up-to-date record of it. Besides the obvious overhead
associated with any recording process, we see two reasons for this. First, we
found we could keep the rationale in our heads during design discussions.
Even though these discussions took place over a long period of time and
with many interruptions, we did not feel that we were losing our grasp of
the issues or revisiting already plowed ground. The concreteness of the
problems probably was important in allowing us to remember them and
the alternatives tied to them.

A second reason we did not keep our rationale up to date was that we
became confident of our ability to reconstruct the problem structure if we
needed to. This is closely related to the point just made, but meant that
even though we intended to produce a record of the design rationale we
felt little pressure to produce it as we worked. In retrospect we are glad
that we recorded as much material as we did, because in fact our recall of
matter discussed following the creation of the Hypercard stack is not as
complete as we could wish.

3.3 The role of problems in evaluating expressiveness and
facility in programming languages.

The use of concrete problems in the ChemTrains design meant that we
could not only compare the solutions afforded by different designs but also
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the processes involved in thinking of the solutions. We could address the
facility as well as the expressiveness of the designs.

Like other walkthrough methods (Lewis, Polson, Rieman and Wharton
1990) the programming walkthrough can be seen as a partial substitute for,
or preparation for, prototype evaluation. It can give an indication of
probable weaknesses in a design without the expense and effort of building
a prototype and testing it.

Of course the facility evaluation must be seen as tentative. Not having
implemented even prototypes we cannot be sure that the designs could
really work as intended. Further, our ability to map out the actual
problem-solving processes of users is obviously limited. We nevertheless
feel that the attempt to do so moves design debates about programming
language design a step away from intuition and taste, where they have
been. A designer can try to demonstrate that his or language supports a
natural approach to a task by anatomizing the specific sequence of
decisions needed to accomplish the task. A critic can point to a particular
decision as unmotivated or unguided by knowledge plausibly possessed by
users.

Our work also points up the importance of Soloway’s concept of plan, not
only to the analysis of the use of existing languages but also to the design of
new languages. A language design should be viewed as including not just
the features of the language but also the doctrine needed to put it to use. It
appears to be practical to evaluate both of these elements of a design
together, and indeed of limited value to evaluate the features without the
doctrine.

A limitation of our facility evaluation is that it examines only the process of
writing programs, and not understanding them, testing them, or modifying
them, each of which has an important cognitive component. Certainly
language design influences these other tasks as well. Further, in considering
programming we have dealt only what might be called shallow
programming, where sufficient knowledge is available (encoded as doctrine,
in our case) to guide the writing of programs with very little search. Surely
much programming is deep programming, where appropriate choices of
representation and procedure are not obvious up front, and search and
backtracking are required. Perhaps more limited designs would be easier to
reason about, and would show an advantage in deep programming that
does not appear in shallow programming.

On the other hand, it is likely that our evaluation actually understates the
advantages of the less limited OpsTrains design. OpsTrains' relative
performance was better on the reserve problems than on the original raw
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problems, because it could cope better with difficulties that had not
appeared in the original problems. In actual use a less limited design offers
more assurance that a new problem can be solved.

It is possible that consideration of other tasks, or deep programming rather
than shallow, would change our evaluation of the designs we considered.
Perhaps the intended simplicity of ZeroTrains would pay off in one of these
settings, or the abstractions in OpsTrains would prove costly. We think the
way to address these questions is to adapt the walkthrough approach to
examine in detail the mental processes involved in these tasks.

3.4 Conclusion.

Though it was no part of our plans to make it so, the ChemTrains design
process became a study in the use of concrete problems, as opposed to
abstract principles and analysis, in design. Concrete problems entered the
process as a way to define objectives and focus our efforts. Once on the
scene they proliferated, and penetrated all aspects of design and
evaluation. They helped to organize a complex design space. They also
made it possible for us to evaluate not only the solutions afforded by the
design but also the mental processes required to realize solutions.

Acknowledgments. Victor Schoenberg helped get the ChemTrains design
started in early discussions and prototyping. Robert Weaver helped develop
the programming walkthrough approach and clarified the role of doctrine
in language evaluation. Ray McCall provided many suggestions, welcome
encouragement, and keen insight in our efforts to understand and capture
our design process.
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Appendix: BUNSEN BURNER WALKTHROUGHS AND SUPPORTING DOCTRINE

Table A-1a. OpsTrains doctrine used in the Bunsen Burner

walkthrough

The rules are separated into four sets: rules for creating objects, rules for
creating paths, rules for building replacement rules, and rules for debugging.
The following four rules are for creating objects.

RO1: IF
THEN

RO2: IF
THEN

ROS: IF
THEN

starting,
draw a picture of envisioned interface as it would initially
appear to the user.

an object can move or can be placed in a particular area of the
interface that is not drawn,

draw an object that is big enough to contain the objects, and
specify that the object is to be "Hidden in Simulation."

a place object is to be used to hold different types of object
but never more than one at a time, and

the place object is empty,

create an object to denote that the object is empty,

place it in the empty place object, and

specify that the object is to be "Hidden in Simulation."

The following rules are for building replacement rules.

RR1: IF
THEN

RR2: IF
THEN

an object should be moved or deleted or a new object should
be created based on specific conditions that may exist in the
picture,

enter the Replacement Rule Editor,

copy all of the objects and paths relating to the condition and
all the objects and paths to be modified from the main picture
to the pattern picture of the rule,

copy these objects and paths onto the result picture,

modify the objects in the result picture appropriately, and
give the rule a name that is appropriate for the task it does.

an object or path is to be deleted when a rule is executed,
remove that object or path from the result picture.



RR3: IF
THEN

RRS: IF
THEN
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an object or path is to be added when a rule is executed,
create a new object or path or retrieve an existing one, and
add it to the result picture.

an object in the pattern of a rule may match any object
regardless of its display,

specify that this object is a variable.

(abig V will be placed over the variable object in the pattern)

[OpsTrains doctrine also describes how to use paths, describes how to debug
the simulation, and suggests some things to do in seemingly unusual cases. A
few examples of these additional rules follow.]

RP1: IF
THEN

RO4: IF
THEN

RD2: IF
THEN

an object can travel from one place object to another place
object,

make a path connecting the two objects that follows the
intended route for the objects to travel.

an object or set of objects has a significant difference with
other objects that have the same picture, and

the difference is not already shown,

create a new object that can be used to identify these
object(s), place a copy inside each object, and hide them if
desired.

one rule is executing and causing a more appropriate rule not
to execute,

enter the rule order editor, and place the name of the more
appropriate rule before the name of the rule that is currently
executing.




Table A-1b. ShowTrains doctrine used in the Bunsen Burner
walkthrough

[An introduction to the doctrine describes the simulation involving a
cat, bird, and worm, which is referred to in some of the points of
doctrine.]

[D0O1, D==Doctrine] Whenever you create a new simulation in
ShowTrains, there are a number of decisions you have to make. For
example, in the cat-and-bird simulation, you would have to decide
that the cat, bird, and worm need to be ShowTrains objects, but the
birdbath and the tree don’t need to be. For a complicated simulation,
there can be a lot of difficult decisions, which may interact in
surprising ways.

[D02] To help you design a new simulation, we suggest the following
guidelines. The basic guidelines (1 through 10) should initially be
applied in order, although you will probably go back and forth
among them as your simulation takes shape. If a guideline seems
especially difficult to apply, you might check the guidelines for
difficult situations (11 and following).

1.  [D1] Sketch a Snapshot. On a blank piece of paper, sketch a
“snapshot” of the running simulation — something like Figure 1.
Don’t spend a lot of time on this, but produce a rough graphic
that shows how you expect the screen to look. Don’t worry about
marking things as Objects, Places, or Paths, but spend a few
moments thinking about how you want to interact with the
simulation as it is running. For example, will you want to have a
button to click that creates more worms for the bird? This is
also a good time to glance over the Guidelines for Difficult Cases,
to see if any seem to apply to this simulation.

2. [D2 Identify Objects. Decide what’s going to move or be
created, deleted, or modified. These will be Objects. Create the
Objects that should exist when the simulation begins to run.
Give them meaningful names and graphics.

3. [D3] Create Places for Objects That Aren’t Moving. Decide
where where unmoving Objects are going to rest, and where
moving Objects are going to stop, even for a moment. These will
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be Places. Whenever an Object isn’t moving, it must be in a
Place — it can’t just be floating on the screen. Create all the
Places, and give them meaningful names. If the Places are
object-like (a bottle, for example, or a chair or a building) then
make them visible and create an appropriate graphic for them.
If the Places are just areas within a larger area (for example, the
spot where the bird stops to eat the worm), then make them
invisible.

[D3a] Hint: What should the Places be named? Often this

isn’t a problem. A good name for the chair Place is obvious:
“CHAIR.” But sometimes it’s useful to give many places the same
name, so that a single rule can apply to all of them. For example,
there might be several chair Places where the cat could sleep. If
you name them all CHAIR, then you can have a single rule that
says, “If the object named CAT is in a place named CHAIR, then
change its graphic to a sleeping-cat.”

[D4] Create Places for Object and User Interaction. Decide
where Objects are going to be when they change or interact.

Any change to an Object has to occur in a Place. For example,
two airplanes can’t collide while they are moving along paths.
(However, two Objects can interact while they are in different
Places — remember how the cat noticed the bird and woke up.)
Users often interact with the simulation by clicking in a Place, or
the User may move Objects from one Place to another while the
simulation is running. Create any additional Places that are
needed. Give these places names and graphics as appropriate.

[D5] Define Paths. Decide what routes Objects will follow when
they are shown moving between Places. These will be Paths.
Paths only allow travel in one direction, so Places will sometimes
have two Paths between them. Like Places, Paths that represent
object-like items in the real world (a pipe or a highway, for
example) should be made visible with an appropriate graphic.
(The graphic for a Path determines the appearance of a single
segment of the Path.) Paths that represent motion within a

larger area (the bird wandering through the garden, or an

airplane flying from city to city) should be made invisible.

Create the Paths you think you’ll need, and give them
meaningful names.



[DSa] Hint: What should the Paths be named? Some

possible naming conventions are “TO-wherever,” or
“FROM-wherever,” or “LEFT,” “RIGHT,” “UP,” and “DOWN.” Ina
complex simulation, it may be effective to give many Paths the

same name, such as “TO ROME” or “WEST”. Then a single rule can
apply to objects in many different situations: “Rule: If the Object

is named YOUNG MAN, then put it on the Path labelled WEST.”
Note, however, that Paths which aren’t really needed can make

your job a lot harder. Remember that the action of a Rule can

move things invisibly between Places without a Path.

[D6] Create Object-Changing Rules. For each Place, decide
what conditions will cause Objects to be created, modified, or
deleted in that Place. Set up exactly those conditions, highlight
the relevant items, and demonstrate to ShowTrains what should
occur. Be sure to give each Rule a meaningful name — this will
make it easier to revise the simulation.

[D6a] Hint: What conditions should be highlighted? For
almost every simulation, it’s important to highlight exactly the
right things when you create a Rule. Stating the Rule you want
in English may make it more obvious what to highlight. For
example, in the cat-and-bird simulation, you might want a rule
that says: “If the bird and the worm are together in any Place,
delete the worm and change the bird’s graphic to a
bird-with-a-worm.” This Rule refers to two Objects by name, the
bird and the worm. That’s a good indication that you want to
highlight the names of those Objects, but not their graphics. On
the other hand, the Rule talks about “any Place.” That means
you only want to highlight the outline of the Place in which
you’re demonstrating the Rule, not its name or graphic. You
want the Rule to fire for any Place, not just the one in which
you’re demonstrating it.

[D6a continued] Similarly, if you have several Places named
“CHAIR,” but you only want the cat to sleep in overstuffed chairs,
then the English version of the Rule would be: “If the cat is in

any chair with the overstuffed-chair graphic, then change the

cat’s graphic to a sleeping cat.” This rule refers to the cat by
name, so you’d highlight the name of the cat Object, but not its
graphic. The rule also refers to “any chair” Place, but only those
with a specific appearance. So you would want to demonstrate
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the rule using a Place named “CHAIR” with an overstuffed-chair
graphic, highlighting both the Place name and the graphic. (See
“Creating Rules by Demonstration” in the ShowTrains manual for
a more detailed description of how to create rules, including

what to highlight in the Rule’s action.)

[D7] Create Object-Moving Rules. For each path, decide what
conditions will cause Objects to be moved onto the Path from the
Place where the Path begins. Set up the conditions, highlight the
relevant items, and demonstrate to ShowTrains which Objects
should be placed onto Paths. If any Objects are to be moved
instantaneously from one Place to another, create Rules to cause
those moves as well. Be sure to give every Rule a meaningful
name.

[D8] Create User-Interaction Rules. Set up Objects the way
they will be after the User interacts with the running simulation,
highlight the relevant items, and demonstrate to ShowTrains

what changes or movements should occur. Users can interact
with the simulation in two ways. They can move Objects from
Place to Place, and they can click on Places, which creates a
*click* (or *double-click*) object. The *click* or *double-click*
object remains until every Rule has been tested, then it is
automatically deleted.

[D9] Try It! (And Fix What Doesn’t Work). Set up the
Objects in the simulation’s start state (make sure every Object is
in a Place), and select Test Run from the Simulation menu. If the
simulation isn’t quite right, modify it and try again. This is
another good time to look over the Additional Guidelines.

[D9a] Caution! Caution! Caution! Rules aren’t applied in the
order you wrote them. They aren’t even applied in a consistent
order each time a simulation is run. This means that your
simulation might work the way you want it one time, then work
differently the next time! When you’re testing the simulation,
always use the Test Run menu item instead of Run. When
running under Test Run, ShowTrains will tell you whenever
more than one Rule could fire, so you can examine the Rules and
make sure the conflict won’t cause a problem.

[D10] Draw a Background. Draw the Background graphic. It
should show everything you haven’t already shown as an Object,
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Place, or Path. Rearrange the Places and Paths on the
Background if necessary.

[ShowTrains also includes quite a bit of specialized doctrine, prefaced
by a comment that these items should be considered if the
programmer is having difficulty.. A couple of examples (not used in
the Bunsen problem) follow.]

11.

20.

[D11] Use Many Small Places. When simulating a large
real-world place, or a long real-world Path, it’s often best to use
several small ShowTrains Places, connected by Paths. For
example, to show a detective moving around a room and looking
for clues, you would need to have a small Place for every point
at which the detective stopped. These Places can be invisible,
and the Background can show the room itself.

[D20] Use a Hidden Object to Control the Order of Rules.

You’re writing a graphic simulation of the hiring process at your

company. You want to filter each applicant through a series of

increasingly difficult requirements, expressed as Rules. It’s

important that you test the Rules in a specific order: Does the

applicant meet the stated requirements for education and

experience? If they pass that Rule, then put them through the

Initial Interview. If they pass that, send them to the e - S
Department Head, and so forth. How can you do this in ‘
ShowTrains, since you can’t directly control the order in which

Rules are tested? One way is to create a hidden Object, which in

the hiring simulation you might call APPLICATION-STAGE. Give

this a series of graphics that look like numbers. Then, make the

graphic of the APPLICATION-STAGE a condition of each Rule, so

the DEPARTMENT-HEAD-INTERVIEW Rule only fires when the
APPLICATION-STAGE has a “3” graphic. To make sure that all

Rules are tested before the APPLICATION-STAGE is changed, use

the ALL-TESTED trick described in Appendix X.
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Table A-1c. ZeroTrains doctrine used in the Bunsen Burner
walkthrough.

D1. First draw a sketch showing roughly what you want to see on the screen
for the model.

D2. Things that can move around in the picture, or that can be added to or
removed from the picture, or that can change as the model runs will be
represented by objects. Begin a list of objects for the problem, including
different versions of objects that change. Things that can be moved or
changed by the user are also represented by objects.

D3. Draw outlines on your sketch to show places where objects can appear,
disappear, or change, or to which objects can move.

D4. Draw paths to connect places between which objects can move. Put names
on the ends of the paths in such a way that the paths leaving any place all

have different names. If a path will be used only one way you only need to
give a name to the end objects will enter.

D7. Things that can happen in ZeroTrains are creation of new objects, deletion
or modification of existing objects, or objects moving along a path. One or
more of these things that should happen together is called an event. Make a
list of events for your model. For each event say when it should occur, that is,
what situation in the model triggers it.

D8. In describing the events try to specify them in terms of the objects you
have already described. If necessary, add new objects toi your list so that you
can describe everything that must happen in your model in terms of objects.

D9. Events can only be triggered by the presence of objects. You will find it
necessary to rewrite many of your triggering conditions to get them in the
right form for ZeroTrains. Here are some suggestions for doing this.

D13. If P is of the form "not A" rewrite it to test for some condition which will
be true only if A is not true.

D14. If a predicate has the form "O is in P" for some object O and place P,
rewrite it as a test for the presence of O-P, where O-P is a new object. Make a
new object P to serve as marker for P and put it in P. Add events to change P
to O-P in the presence of P. If O might move out of P make O-P be not a new
object but a variant of O, and add events to change it back into O when it gets
to its new destination.
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D15. If an event should occur only in some certain place or places, make
marker objects that identify these places and put them in the places. The
marker objects can then be included in the trigger.

D17. The objects in a trigger condition for an event must all be in one place. If
they are not, create a new place that encloses the places where the objects are
found, and put a catalyst object C in the new place but outside all the original
places. Include C in the trigger for the event.

D24. Write a reaction rule for each event. Begin by specifying the trigger
condition: list the objects that must be present for the event to occur. Arrange
the list of objects horizontally with vertical bars separating them.

D25. Then describe what should happen in the event. First, list the objects
that should exist after the group of events under the objects in the condition.
Put each one under the object in the condition that it should appear near. An
object that should be unchanged will just be put under itself. An object that
should be deleted will not be listed. A new object will be listed under an
object it should appear near. An object to be modified will have a new version
shown under it. Second, write a path name under any object that is supposed
to move onto a path.

[ZeroTrains doctrine also includes items for more specialized situations. Some
examples (not used in the Bunsen problem) follow.]

D6. If a place has many paths leaving it consider breaking it into smaller
places each with one of the original paths leaving it. Connect these smaller
places with new paths to form a ring.

D19. In some problems patterns that may occur in many places must be dealt
with in a way that depends on some general state information. There are two
approaches to this kind of problem, which can be adapted to variations of the
basic problem. To describe the approaches, let {Pi} be the collection of of
places in which the relevant condition may be satisfied.

D22. The messenger approach is as follows. Connect the Pi by paths in some
order. Send a messenger object from place to place, and add the presence of
the messenger to the condition tested in each place. If the problem requires
processing just one case, delete the messenger when the condition is
satisified, or change it to another form, so that the condition won’t be tested
after being satisfied once. If the messnger makes the round of all places then
it can be used as an indicator that the condition was never satisfied, if this
information is needed for subsequent processing.
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Table A-2a. OpsTrains walkthrough of Bunsen Burner Problem.

[Rxx refers to the number of the doctrine item supporting the action.]

ROI1: draw a bunsen burner, beaker, and control panel, made up of three
separate rectangles.
RO2: draw arectangle in the area that is to contain the flame.
ROS5: add a hidden object, the text string "off," inside of the flame holding
rectangle.
RR1: add arule named "Turn Flame to Low"
copy the "low" rectangle of the control panel and the rectangle holding
the flame onto the pattern and result pictures.
RR2: remove the "off" marker from the result picture.
RR3: create an object that looks like a low flame and
add it to the appropriate place in the flame holding rectangle.
RR5: specify that the "off" object in the flame holder is a variable object.
RR1: add arule named "Turn Flame to high"
follow the same steps as in making "Turn Flame to low."
RR1: add arule named "Turn Flame Off"
copy the "off" rectangle of the control panel and the rectangle holding
the flame onto the pattern and result pictures.
RR5: specify that the "off" object in the flame holder is a variable object.
RR1: add arule named "Change to liquid"
copy the beaker and the rectangle holding the flame onto the pattern
and result pictures.
RR2: remove the ice cube from the beaker.
RR3: create an object that looks like liquid and add it to the beaker.
RR5: specify that the ice cube object in the beaker is a variable object.
RR1: add arule named "Change to gas"
follow the same steps as in making "Change to liquid"
RR1: add arule named "Change to solid"
copy the beaker and the rectangle holding the flame onto the pattern
and result pictures.
RRS: specify that the ice cube in the beaker is a variable,




Table A-2b. ShowTrains walkthrough of Bunsen Burner problem.

[Numbers in brackets refer to items of doctrine]

1.

2.

[D02] P decides to follow the first 10 guidelines in order.

[D1] P sketches a rough graphic of the Bunsen burner, a beaker, and a
control. The control is a lever with three positions.

[D2] P decides that the control lever will move, so P creates an Object
CONTROL and gives it a knob-shaped graphic. P decides that the height of
the flame and the state of the water will change, so P creates a FLAME

- Object and a WATER Object.

[D3] P decides that the flame and the water are unmoving objects, so P
creates a Place for the flame and a Place for the water. Per the guideline,
P makes the water place look like a beaker and names it BEAKER [D3a].
The flame Place is made invisible, with the name FLAME-PLACE [D3a].

[D4] The user has to interact with the control knob, so P makes three
Places in which the knob can rest, naming them [D3a] OFF, LOW, and
HIGH.

[DS5] The only moving Object is the control knob. From [DS5] P notes that
the User can move the Object without a Path, so P doesn’t create any
Paths.

[D6] P identifies the beaker and the flame-place as places where changes

occur, and demonstrates the following Rules.

o If the knob is in the LO place, set the graphic of the flame to
small-flame. Per guideline [D6a], P demonstrates the conditions for
this Rule by highlighting the names of the knob, OFF place, and flame.
The place outlines of the places in which the objects reside are
automatically highlighted, and P does not change this.

» If the knob is in the HIGH place, set the graphic of the flame to
large-flame. Highlighting is similar to the previous Rule [D6a].

« If the knob is in the OFF place, set the graphic of the flame to
invisible. Highlighting is similar to the previous Rule [D6a].

» If the flame has no graphic, set the graphic of the water to ice. Per
guideline [D6a], P demonstrates the conditions for this Rule by
highlighting the names of the flame and ice, and the graphic of the



10.

11.

flame. The place outlines of the places in which the objects reside are
automatically highlighted, and P does not change this.

« If the flame has the small-flame graphic, set the graphic of the water
to water. Highlighting is similar to the previous Rule [D6a].

e If the flame has the large-flame graphic, set the graphic of the water
to steam. Highlighting is similar to the previous Rule [D6a].

[D7] There are no Paths, so no Rules are needed for placing Objects on
Paths. There is no instantaneous movement.

[D8] The user interaction has already been specified by the Rules.
[D9] P tries the simulation. It works.

[D10] P draws a hose from the control to the burner and a ring under the
beaker.
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Table A-2¢. ZeroTrains walkthrough of Bunsen Burner problem.

[Numbers in brackets refer to items of doctrine.]

[D1] sketch...

[D2] objects
control
flamelo, flamehi
ice, water, steam

[D3] places: beaker, burner mouth, control settings off, lo, hi.

[D4] paths: none

[D7,8] events
what
water turns to ice
water turns to steam
steam turns to water
ice turns to water
flamelo or hi disappears
flamelo appears
flamelo becomes flamehi
flamehi appears
flamehi becomes flamelo

when

water, no flame

water, flamehi

steam, no flame or flamelo
ice, flamelo or flamehi
flamelo or hi, control in off
no flame, control in lo
flamelo, control in hi

no flame, control in hi
flamehi, control in lo

[D9, 14, 15] To deal with O in P tests add objects off, lo, and hi in control

places; control-off, control-lo, control-hi

Add events:
what
control to control-off
control to control-lo

control to control-hi
control-off to control
control-lo to control
control-hi to control

old events modified:

what
water turns to ice

when
control, off
control, lo
control, hi

control-off, 1o or hi
control-lo, off or hi
control-hi, off or lo

when
water, no flame



water turns to steam
steam turns to water

ice turns to water
flamelo or hi disappears
flamelo appears

flamelo becomes flamehi
flamehi appears

flamehi becomes flamelo
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water, flamehi

steam, no flame or flamelo
ice, flamelo or flamehi
flamelo or hi, control-off
no flame, control-lo
flamelo, control-hi

no flame, control-hi
flamehi, control-lo

[D9,13] make an object flameno to represent no flame

add events
flamelo becomes flameno
flamehi becomes flameno

rewrite tests for no flame
events are now:

what

control to control-off
control to control-lo
control to control-hi
control-off to control
control-lo to control
control-hi to control
water turns to ice

water turns to steam
steam turns to water

ice turns to water

flamelo becomes flameno
flamehi becomes flameno
flamelo appears

flamelo becomes flamehi
flamehi appears

flamehi becomes flamelo

flamelo, control-off
flamehi, control-off

when

control, off

control, lo

control, hi

control-off, lo or hi
control-lo, off or hi
control-hi, off or lo
water, flameno

water, flamehi

steam, flameno or flamelo
ice, flamelo or flamehi
flamelo, control-off
flamehi, control-off
flameno, control-lo
flamelo, control-hi
flameno, control-hi
flamehi, control-lo

[D17] Now need to consider cases where objects are not in same place. Need
water objects in same place as flameobjs, and flame objs in same place as
control objs. Add a place which encloses everything and add catalyst C to it.
Add test for C to rules that involve both control-X objects and flame or

water.

[D24] Now write reaction rules that implement all of the listed events.
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