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1. Introduction.

This paper solves two well-known problems in data structures and gives some related results.
The starting point is the matching problem for graphs, which leads to the other problems. This
section defines the problems and states the results.

A matching on a graph is a set of vertex-disjoint edges. Suppose each edge e has a real-valued
cost c(e). The cost ¢(5) of a set of edges S is the sum of the individual edge costs. A minimum-cost
matching is a matching of smallest possible cost. There are a number of variations: a minimum-cost
mazimum cardinality matching is a matching with the greatest number of edges possible, which
subject to this constraint has the smallest possible cost; minimum-cost cardinality-k matching (for
a given integer k), mazimum-weight matching, etc., are defined similarly. The weighted matching
problem refers to all of the problems in this list.

In stating resource bounds for graph algorithms we assume throughout this paper that the
given graph has n vertices and m edges. For notational simplicity we assume m > n/2. In the
weighted matching problem this can always be achieved by discarding isolated vertices.

Weighted matching is a classic problem in network optimization; detailed discussions are in
[L, LP, PS]. Edmonds gave the first polynomial-time algorithm for weighted matching [E]. Several
implementations of Edmonds’ algorithm have been proposed, with increasingly fast running times:
O(n?) [G73, L], O(mnlogn) [BD, GMG], O(n(mlog log log 2+m/n + nlogn)) [GGS]. Edmonds’
algorithm is a generalization of the Hungarian algorithm, due to Kuhn, for weighted matching on
bipartite graphs [K55, K56]. Fredman and Tarjan implement the Hungarian algorithm in O(n(m +
nlogn)) time using Fibonacci heaps [FT]. They ask if general matching can be done in this time.
Our first result is an affirmative answer: We show that a search in Edmonds’ algorithm can be
implemented in time O(m+nlogn). This implies that the weighted matching problem can be solved
in time O(n(m + nlogn)). In both cases the space is O(m). Our implementation of a search is in
some sense optimal: As shown in [FT] for Dijkstra’s algorithm, one search of Edmonds’ algorithm
can be used to sort n» numbers. Thus a search requires time Q(m+nlogn) in an appropriate model
of computation.

Another algorithm for weighted matching is based on cost scaling. This approach is ap-
plicable if all costs are integers. The best known time bound for such a scaling algorithm is
O(y/na(m,n)logn mlog (nN)) [GT89]; here N is the largest magnitude of an edge cost and a
is an inverse of Ackermann’s function (see Section 3). Under the similarity assumption [G85a]
N < n%M) | this bound is superior to Edmonds’ algorithm. However our result is still of interest for

at least two reasons: First, Edmonds’ algorithm is theoretically attractive because its time bound
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is strongly polynomial. Second, for a number of matching and related problems, the best known
solution amounts to performing one search of Edmonds’ algorithm. These problems include most
forms of sensitivity analysis for weighted matching [BD, CM, G85b, W] and the all-pairs shortest
path problem on undirected graphs with no negative cycles [G83, L]. Thus our implementation of
a search in time O(m + nlogn) gives the best-known algorithm for these problems.

An important step in solving the matching problem is to solve a nearest common ancestor
problem on trees. This is our second contribution. To define such problems recall that the nearest
common ancestor of two nodes 2 and y in a tree is the ancestor of z and y that has greatest depth.

Consider a forest F' that is subject to two operations. In both operations  and y are nodes of F.

link(z,y) — make y a child of z, where y is the root of a tree not containing z;
nca(x,y) — return the nearest common ancestor of z and y (if « and y are in different trees,

return ).

The problem of nearest common ancestors with linking is to process (on-line) an arbitrary sequence
of m link and nca operations, starting from an initial forest of n nodes (m,n > 1).

A number of data structures have been proposed for this problem and various special cases;
see [HT] for a more complete summary. The problem of nearest common ancestors for static trees
is when F is given initially (equivalently, all links precede all ncas). Harel and Tarjan give an
algorithm that answers each nca query in time O(1), after O(n) time to preprocess F [HT]. (More
recently [SV] uses another approach to achieve the same result sequentially by an algorithm that
can be parallelized.) [HT] also gives an algorithm for the case where link and nca operations are
intermixed, but both arguments of every link are roots. The running time is O(ma(m,n) + n).
Our second contribution is to remove the restriction: We show that the general nearest common
ancestors with linking problem can be solved in time O(ma(m,n) + n) and space O(n). The
previous best solution is using dynamic trees [SIT]. This data structure performs each operation
in time O(logn), achieving total time O(mlogn + n). This is not as fast as our algorithm, but
dynamic trees have the advantage that they can also process cut operations. Again our result is
in some sense optimal: Mike Fredman has pointed out that the results of [F'S] can be extended to
show that nearest common ancestors with linking requires time Q(ma(m,n) + n) in the cell probe
model of computation.

Edmonds’ matching algorithm does not require fully general link operations. Consider the
following two special cases of link. They operate on a single tree T; = denotes a node already in T,

y is a new node not yet in T"



add_leaf(z,y) — add a new leaf y, with parent z, to T

add_root(y) — make the current root of 7 a child of new root y.

The problem of incremental-tree nearest common ancestors is to process (on-line) an arbitrary
sequence of n add_leaf and add_root operations intermixed with m nca operations, starting with an
empty tree. We show this can be done in time O(m+n). This is the starting point of our algorithm
for general links. Edmonds’ algorithm actually only uses add_leaf and nca operations.

The model of computation throughout this paper is a random access machine with a word size
of logn bits. [HT] gives a lower bound indicating it is unlikely that our results for nearest common
ancestors can be achieved on a pointer machine. On the other hand it still might be possible to
achieve our results for Edmonds’ algorithm on a pointer machine.

Section 2 gives our implementation of Edmonds’ algorithm. Section 3 gives our algorithm
for the nearest common ancestor problem. This section concludes with some terminology and
assumptions.

We use interval notation for sets of integers: for integers ¢ and j, [i..7] = {k| k is an integer, i <
k < 7}, and similarly for [i..5), etc. The function log n denotes logarithm to the base two. The func-
tion log()n denotes the iterated logarithm, defined by logWn = logn, log(+Yn = log (log(In).
In contrast log'n denotes logn raised to the ith power.

We assume that for a given integer s € [1..n] the value |logs| can be computed in O(1) time.
This can be done if we precompute these n values and store them a table. The precomputation
time is O(n). This can be ignored since it is dominated by the time bounds for our algorithms.

For a graph G, V(G) denotes its vertices and E(G) its edges. We use the following terminology
for trees throughout the paper. Let T be a tree. A subtree of T is a connected subgraph. The root
of T is denoted r(T"). Let v be a node of T. The ancestors of v are the nodes on the path from v
to r(T'). The ancestors are ordered as in this path. This indicates how to interpret expressions like
“the first ancestor of v such that”. The parent of v is denoted p(v). The depth of v, denoted d(v),
is the length of the path from v to (1) (equivalently, the number of proper ancestors of v). For

any function f defined on nodes of a tree, we write frr when the tree T is not obvious (e.g., pr(v),

near(z,y)).

2. Weighted matching.
This section presents an implementation of Edmonds’ weighted matching algorithm with run
time O(n(m + nlogn)). This is accomplished in three steps. Section 2.1 summarizes Edmonds’

algorithm and our reduction to the tree-blossom merging problem. Section 2.2 gives an algorithm
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for tree-blossom merging that comes close to the desired efficiency. Section 2.3 refines the merging
algorithm to achieve the desired time and space bounds. (Both merging algorithms use additional
tree operations discussed in Section 3.) This section concludes with some additional terminology for
matching. Fix a matching M on the given graph. A vertex is free if it is not on any matched edge.
An alternating path is a vertex simple path whose edges are alternately matched and unmatched.
An augmenting path P is an alternating path joining two distinct free vertices. To augment the
matching along P means to enlarge the matching M to M @& P (the symmetric difference of M and

P). This gives a matching with one more edge.

2.1. Edmonds’ algorithm and tree-blossom merging.

This section first sketches Edmonds’ algorithm. It gives the details needed for our implemen-
tation but omits other material. Complete descriptions of the algorithm are in [E, G73, L, PS].
The section then defines the tree-blossom merging problem and shows how it leads to an efficient
implementation of Edmonds’ algorithm.

The matching algorithm is a primal-dual algorithm based on Edmonds’ formulation of weighted
matching as a linear program. It works by repeatedly finding a maximum weight augmenting path
and using it to enlarge the matching. The procedure to find an augmenting path is called a search.
If the search is successful, i.e., it finds an augmenting path P, then an augment step is done. It
augments the matching along P. The exact definition of unsuccessful search depends on the variant
of the matching problem being solved and does not concern us here; see [L]. The entire algorithm
consists of O(n) searches and augment steps.

A search constructs a subgraph S. § is initialized in a simple way that depends on the variant
of matching. (For instance one initialization sets the root of & to a blossom containing a free
vertex; see below for the meaning of these terms.) Then S is enlarged by executing three types of
steps, called grow, blossom and ezpand steps in [G85b]. In addition the search changes the linear
programming dual variables in dual adjustment steps. After a dual adjustment step, one or more
of the other steps can be performed. Steps are repeated until S contains the desired augmenting
path, or the search is deemed unsuccessful.

A blossom is a special type of subgraph. We need not give a precise definition of blossom for
this paper. It suffices to note that at any time in Edmonds’ algorithm the vertices of the graph
are partitioned into blossoms. (A single vertex can be a blossom. At the start of the algorithm the
partition is the trivial one consisting of all singleton blossoms. However in general at the start of

a search the partition is nontrivial.) A blossom step forms a new blossom, as illustrated in Figure
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1. Here edges are drawn wavy if they are matched and straight otherwise. The circles B; represent
blossoms at some time in the search; at that time & contains the entire subgraph shown except
edges e, f and g (S also contains other edges not shown). When e gets added to S a blossom step
is done for e. It forms a new blossom B containing the entire subgraph shown. (The blossoms B;
cease to exist.)

In general S consists of blossoms arranged in a tree structure. More precisely if each blossom
is contracted to a vertex, S becomes a tree S. (This assumes the simple initialization mentioned
above. Other initializations make S a forest. We assume the tree case for simplicity, but our
algorithm extends trivially to forests.) A blossom of S that is an even (odd) distance from the root
of S is outer (inner); a vertex of S is outer or inner, depending on the blossom that contains it.
In Figure 1 the outer blossoms are the B; with ¢ even before the blossom step for e, and B after.
Vertices u, v and w are inner before the blossom step and outer after. Now we discuss the three
steps that construct S in turn.

A grow step enlarges S by adding an inner blossom and an outer blossom. In Figure 1 if S
contains By but no other B;, a grow step for edge a adds a, By, b and By to S; similar grow steps
add the other B;. (In general a special case of the grow step is when the new inner blossom is not
matched to another, i.e., it contains a free vertex. In this case an augmenting path has been found.
The search is successful so it halts.)

A blossom step is executed for an edge e joining two distinct outer blossoms. It combines all
blossoms along the fundamental cycle of e in the tree S to form a new outer blossom. This destroys
the old blossoms along the cycle. In Figure 1, when S contains all blossoms B;, ¢ = 0,...,6, the
search might do a blossom step for e, as already described. Alternatively it might do a blossom
step for g, then later one for f, and still later one for e. Other sequences are possible. The sequence
executed depends on the costs of these edges.

An expand step replaces an inner blossom in § by some of its subblossoms. In Figure 1 when
§ contains all blossoms B;, an expand step for blossom Bj replaces it by vertices u, v, w and edges
uv, vw. This preserves the tree structure of S, keeping previous descendants of By in the tree. The
two other vertices of By leave S. Note that because of expand steps a vertex can alternate between
being in S and inner, and being not in 8. This alternation can occur arbitrarily many times in one
search. However once a vertex becomes outer it remains in S and outer for the rest of the search.

The precise sequence of these steps executed by the search depends on the costs of edges
and the values of the dual variables. The algorithm executes a certain step when a corresponding

edge becomes “tight”, i.e., its dual variables satisfy the complementary slackness conditions of
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linear programming. For example in Figure 1 the blossom step for e is done when e becomes
tight. The dual adjustment step modifies dual variables so that additional edges become tight
and corresponding grow, blossom or expand steps can be done. The dual adjustment step involves
finding a candidate edge that is closest to being tight, and then adjusting the duals to make it
tight.

Our task is to implement a search in time O(m + nlogn). (In the case of a successful search,
we implement the corresponding augment step in time O(n).) It is known how to implement most
details of a search within the desired time bound. For dual adjustment steps a Fibonacci heap F is
used. It contains the candidate edges mentioned above. The heap minimum gives the next edge to
be made tight. This is analogous to the implementation of Dijkstra’s algorithm by Fibonacci heaps,
and uses the same time per search, O(m + nlogn) [FT]. In addition dual variables are maintained
in time O(n) per search using offset quantities [e.g., GMG]. The processing associated with grow
and expand steps can be done in time O(ma(m,n)) using a data structure for list splitting given in
[G85b]. This bound is dominated by O(m + nlogn) [T83]. Finally note after a successful search,
the corresponding augment step can be done in time O(n) [GMG]. This leaves only the blossom
steps: implementing the blossom steps of a search in time O(m + nlogn) gives the desired result.
(This observation is also made in [GGS].)

The problem of implementing the blossom steps of a search can be stated precisely as the
blossom merging problem, which we now define. ([GGS] defines a similar problem, called on-line
restricted component merging.) The universe consists of a graph with vertex set O and edges £.
Set O corresponds to the set of outer vertices in Edmonds’ algorithm. It is initially empty. At any
time it is partitioned into subsets called blossoms. The edge set £ is initially empty. At any time
it contains all edges that join two outer vertices in Edmonds’ algorithm. Thus £ includes all edges
that can cause blossom steps. The problem is to process (on-line) a sequence of the following types

of operations:

make blossom(A) — add the set of vertices A to O and make A a blossom (this assumes that
AN O = 0 before the operation);

make_edge(vw,t) — add edge vw, with cost ¢, to £ (this assumes v, w € O);

merge(A, B) — combine blossoms A and B into a new blossom (this destroys the old blossoms
A and B);

find-min — return an edge vw of £ that has minimum cost subject to the constraint that v

and w are (currently) in distinct blossoms.
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Let us sketch how these four operations are used to process blossom steps in Edmonds’
algorithm. Grow, expand and blossom steps each create new outer blossoms. They perform
make_blossom operations to add the new outer vertices to O. They also perform make-edge opera-
tions for the new edges that join two outer vertices. For example in Figure 1 if By, Bs and Bg are
in § and a grow step is done for edge a then make_blossom(B;) is done; also make_edge is done for
edge f. Note that in make_edge(vw,t), t is not the given cost ¢(vw). Rather ¢ is ¢(vw) modified
by dual values; this modification allows the algorithm to make dual adjustments efficiently [GMG].
The value of ¢ is unknown until the time of the make.edge operation. From now on, since we are
only concerned with the blossom merging problem, the “cost” of an edge of £ refers to this value
t, not the cost input to the matching algorithm.

A blossom step performs merge operations to construct the new blossom. In Figure 1,
merge(B;, Bo), i = 1,...,6 constructs B. Note that information giving the edge structure of
blossoms is maintained and used in the outer part of the algorithm — it is not relevant to the
blossom merging problem. For this problem a blossom B is identical to its vertex set V(B); the
merge operation need only update the information about the vertex partition induced by blossoms.
Also in the blossom merging problem “blossom” refers to a set of the vertex partition, i.e., the result
of a make_blossom or merge operation. The latter may be only a part of a blossom in Edmonds’
algorithm, but this is not relevant.

A find_min operation is done at the end of each of the three search steps. The returned edge
is used in the above-mentioned Fibonacci heap F to select the next step of the search. In Figure 1
if e is returned by find_min, it gets added to F. Note that for correctness of the implementation it
is important that the blossom merging problem uses a find_min operation rather than delete_min:
The current minimum edge e for a future blossom step may not be selected (in the dual adjustment
step) as the next tight edge for Edmonds’ search algorithm. Instead if a different edge is selected,
the next step of the search may create new blossom steps for edges smaller than e. In this case it
would be premature to delete e from the data structure when it is found to be minimum.

Our task is to implement a sequence of these operations — make_blossoms adding a total of n
vertices, m make_edges, at most n merges and at most n find-mins, in time O(m+ nlogn). (The
bound on find-mins follows since find_-min need not be done after an expand step that does not
create a new outer vertex. Every other step creates a new outer vertex (a blossom step changes
an inner vertex to outer). So there are at most n such steps and n corresponding find-mins.)
The difficulty in solving this blossom merging problem is illustrated by Figure 1. When each B;,

t=0,...,6,is a blossom, edges e, f, g are candidates for find_min. If a blossom step for e is done,
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edges f and g become irrelevant, since they no longer join distinct blossoms. If we were to store
the edges of £ in a priority queue, we would end up with useless edges like f,g in the queue. These
edges would eventually get deleted from the queue but the deletions accomplish no useful work.
This could make the algorithm spend too much time, ©(mlogn). (This also indicates why there
is no need for a delete_min operation in the blossom merging problem: If edge e of Figure 1 gets
returned by find_min then after the blossom step forming B, edge e is irrelevant.)

Algorithms for general blossom merging are given in [GGS]. Our solution is to define a special
case of the blossom merging problem that incorporates additional information from Edmonds’
algorithm. To do this we wish to maintain a representation of the search graph S by a tree T'. For
reasons of efficiency 7' should be constructed by simple operations (we will use the operation of
adding a leaf). This can be done if some care is taken for expand steps. Recall the expand step
illustrated in Figure 1, where blossom By gets replaced by the path u,v,w. If our tree T were to
represent By as a vertex then the expand step would have to replace that vertex by the new path
u,v,w. The tree algorithms of Section 3 do not process such “splice” operations. The solution is
to define T so that at all times B; is represented by path u,v,w, so that splices are not needed.

To do this in general we first recall another detail of Edmonds’ algorithm. Consider a blossom
B in the search graph S. Suppose S contains a matched edge incident to B; let that edge be
incident to vertex w € B (in Figure 1 see vertex w in B;). Any vertex z € B is joined to w by an
even-length alternating path of edges in B, which we denote as P(z,w). (In Figure 1, P(u,w) is the
length two path u,v,w; P(v,w) is the counterclockwise path of length four.) Edmonds’ algorithm
maintains a data structure to calculate these paths. (These paths are needed because they make
up the augmenting path found by the search. For example in Figure 1 if an edge from Bj to a free
vertex is added to the search graph it completes an augmenting path, that includes edges a and b
and the path joining them P(u,w).) A tree-based data structure that can be used to compute a
path P(z,w) in time proportional to its length is given in [GMG, GT89].

Now suppose blossom B is inner and it gets expanded. As in Figure 1, before the expansion S
contains edges @ and b, incident to vertices v and w of B respectively. The expand step replaces B
by the subblossoms along the path P(u,w). In Figure 1 these subblossoms are simply vertices, but
in general they can be large blossoms. So in general an expand step produces new outer blossoms
and new inner blossoms. The new inner blossoms can be subsequently expanded.

No matter how many blossoms are expanded, P(u,w) always remains in S. This can be shown
by a simple induction: Suppose similar to Figure 1, path P(u,w) enters a subblossom B’ along an

unmatched edge @/, with end «' € B’, and it leaves B’ along a matched edge b, with end w' € B'.
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By definition P(u,w) traverses B’ along P(u',w'). (We do not supply a precise definition of P(u,w)
in this paper, but it can be found in [GMG, GT89] and others.) B’ is a new inner blossom. When
it gets expanded it is replaced by the subblossoms along the path P(u',w’). This completes the
induction.

Now we show how to construct the tree T'. We use operations add_leaf(z,y) (defined in Section
1). First consider grow steps. Suppose a grow step enlarges S by adding, as illustrated in Figure
1, an unmatched edge a, an inner blossom Bj, a matched edge b and an outer blossom Bs; let a
and b be incident to vertices v and w in By, respectively, and also to vertices u’ and w' not in By,
respectively. First calculate P(u,w). Denote this path as u;, ¢ = 1,...,k, where u; = u, uy = w.
Then enlarge T by performing the operations add_leaf(u',uy), add_leaf (u;,u;41) fori =1,... k-1,
add_leaf(ur, w') and finally add_leaf(w', ) for all vertices z € By — w'.

Next consider expand steps. Using the above notation, the expand step replaces inner blossom
B by the subblossoms along the path P(u,w). For each new outer blossom B’, let z be a vertex
in B’ that is in P(u,w) and hence already in T; do add_leaf(z,y) for every vertex y in B’ but not
yet in T'.

Finally consider a blossom step, say for edge vw. It combines the blossoms on the fundamental
cycle C of vw in S. Perform add_leaf (v, u) for every vertex u that is in an inner blossom of C' but
not yet in 7T'.

This completes the algorithm for constructing T'. It is clear that 7' contains all the outer
vertices of S plus a subset of the inner vertices. (7" may not contain some inner vertices, e.g., in

Figure 1 it contains only three of the five vertices of By.) Now we prove the main property of T
Lemma 2.1. The vertices of any blossom of § form a subtree (i.e., a connected subgraph) of T'.

Proof. The lemma is clear for an inner blossom B when it gets added to S and 7. Observe that,
in greater detail, the vertices in BNT form a path in T, and only the deepest vertex has a child not
in B. It is clear that the lemma and in fact this observation continue to hold after expand steps.
To prove the lemma for outer blossoms we first introduce some notation. In this proof only,
if z is a vertex in a tree X let p(z, X) denote the path from z to the root of X. Thus a blossom
B in S has a path p(B,S), whose vertices are blossoms. A vertex v € T has the path p(v,T).
Let p(v,T') denote the sequence of blossoms along p(v,T). (More precisely p(v,T') is the sequence
B;, i =1,...,k, where p(v,T) starts with a positive number of vertices in By, followed by a positive
number of vertices of By, etc.) We prove the lemma for outer vertices, along with the following

property:



() For an outer blossom B and a vertex v € B, p(B,8) = 5(v, T).

The proof is by induction on the number of steps. First consider a grow step. Use the above
notation describing how T is constructed in a grow step. Clearly the vertices in the new outer
blossom B; form a subtree of T'. To verify (i), consider a new outer vertex € By. Then p(z,T)
goes from x, a vertex of By, to u;, ¢ > 1, vertices of By, and then follows p(uo,T). Let ug be in the
outer blossom Bg. The p(Bs,S) is the sequence By, B, p(Bo,S). The inductive assertion for ug
gives the desired equality. Expand steps are analyzed similar to grow steps.

Consider a blossom step, say for edge vw. Let v and w be in blossoms V; and Wy respectively.
Let p(V,8) = Vi, i = 1,...,k, and p(W,8) = W;, j = 1,...,L. Let the nearest common ancestor
of V; and Wy in S be V,, = W,. Thus the blossom step for vw combines all blossoms V;, i =1,...,7
and Wj, j=1,...,s into a new blossom X.

Let a be the nearest common ancestor of v and w in T. By induction, property (¢) shows that
a € V. N W,; furthermore the blossoms in X are precisely those intersected by the paths from v to
a and w to a in T'. This gives the lemma for the new blossom X.

To show (7) observe that p(X,S) is the sequence X followed by Vi, i = r+ 1,...,k. Consider
first a vertex = € X; let = be in blossom V), before the blossom step. (The argument for z € W,
is identical.) Suppose V, is outer before the blossom step. The inductive assertion shows that
p(x,T) goes through blossoms V;, ¢ = p,...,k. Thus after the blossom step p(z,T) goes through
X, Vi, i =r+1,...,k and () holds for z. In particular (¢) holds for ». We now show that
if V,, is inner before the blossom step then B(z,T) = p(v,T), giving (i) for z. If z is not in T
before the blossom step then obviously p(z,T) = B(v,T). If z is in T before the blossom step then
p(v,T) contains z. (This follows from the observation made in the discussion of the lemma for
inner blossoms.) So again p(z,T) = p(v,T).

Finally consider a blossom B that is disjoint from X. The path p(B,S) traverses the same
blossoms before and after the blossom step, except that some subpath, of nonnegative length,

changes from a sequence of V;’s or W;’s to X. The same change p(z,T) for any z € D. This gives

(4). "

Note that the lemma implies every outer blossom B has a root vertex in 7. This root is used
below. Although we do not need this fact, the root of B is its “base vertex” [GMG].

We incorporate the above algorithm to construct 7' into a search of Edmonds’ algorithm.
Using the algorithm of Section 3 the time for add_leafis O(1), so the time for a search increases by

only O(n). This follows since using a data structure such as [GMG, GT89] mentioned above, the

10



algorithm finds the vertices to be added to T in time linear in their number.

Even using the extra information provided by tree T, the blossom merging problem seems
difficult. We will simplify the problem: instead of processing general edges vw (in make_edge
operations) we will work with back edges. By property (4:1), when Edmonds’ algorithm does a
blossom step for an edge vw it has precisely the same effect as doing blossom steps for the two
edges va and wa. We will replace vw by these two back edges.

In summary we implement Edmonds’ algorithm as follows. The search algorithm constructs
tree T' using add_leaf operations. (As part of this operation, each vertex y records its depth
d(y) in T.) In addition when the search discovers an edge vw joining two outer vertices, it per-
forms nca(v, w) to find the nearest common ancestor ¢ in 7. Then it executes the operations
make_edge(va,t) and make_edge(wa,t). Hence all edges in the blossom merging problem are back
edges.

The rest of the implementation is a solution to the tree-blossom merging problem. It is defined
on a tree T that is constructed incrementally. There are three operations, make_edge, merge and
find_min, defined as in the blossom merging problem with the restriction that all edges of &, i.e.,
the arguments to make_edge, are back edges. (There is no make_blossom operation, since add_leaf
adds vertices.) Note that T contains vertices that are not outer, but this is inconsequential.

Let us prove that this implementation of Edmonds’ algorithm is correct. The main observation
is that an edge vw in the given graph joins two distinct outer blossoms if and only if at least one of
its corresponding edges va, wa in & joins two distinct blossoms. This observation holds by Lemma
2.1. The observation shows that find_min returns (a back edge corresponding to) the desired
minimum edge. Thus the implementation is correct.

Section 3 shows that the total time for O(n) add_leaf operations and O(m) nca operations is

O(m + n). The next two subsections solve the tree-blossom merging problem in the desired time.

2.2. The simple merging algorithm.
This section gives an algorithm for tree-blossom merging that uses O(m + nlog?n) time and
O(m + nlogn) space. This implements a search of Edmonds’ algorithm in the same resources.
The fact that tree T is constructed incrementally is not central to our merging algorithms. (Of
course it is important in Section 3.) The algorithms use only a simple representation of T: each
vertex z in T records its parent and its depth d(z)in T'. It is a simple matter to record these values
in total time O(n): The operation add_leaf(z,y) computes the values for y from those of .

" For a set of edges S, define smallest(S) as an edge in S with smallest possible cost. If
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several edges tie for smallest cost, smallest(S) can be chosen from amongst them arbitrarily (so
smallest(S) always denotes one edge). If U and U’ are disjoint sets of vertices then smallest(U,U")
is defined similarly, referring to the edges of £ from U to U’. For a vertex v, smallest(U,v) denotes
smallest(U, {v}). Note that if B is a blossom, for any vertex v it suffices for the algorithm to retain
an edge smallest(B,v) — all other edges from B to v can be discarded, since they need never be
returned as the value of find_-min.

The data structure has three main parts: a priority queue Fy, a data structure for edges and
a data structure for blossoms. We describe each in turn. Several Fibonacci heaps are used. We
make the convention of using an edge e to represent a key in these heaps. Strictly speaking the key
is the cost of e, but e is stored in the heap anyway; no confusion will result.

The priority queue Fy keeps track of the smallest blossom step edge incident to each blossom.
More precisely Fo is a Fibonacci heap, with an entry for each blossom B. The entry for B is
smallest(B,0 — B). Thus a find_min operation in our data structure amounts to a Fibonacci heap
find-min in Fy.

To define the edge data structure, say that the rank of an edge vw € £ equals
Llog|d(v) — d(w)|]. Thus the rank of an edge is between zero and |log(n — 1)]. The edge data
structure is a partition of £ into sets called packets. The packet of rank r for vertex v contains all
edges vw € £ with rank r and d(v) > d(w). A packet P is implemented as a linked list of edges; it
also records smallest(P). Each vertex v has an array packet,[0..|logn|] of pointers to its packets,
i.e., packet,[r] points to the packet of rank r for v. Observe that a given edge can be added to the
appropriate packet in O(1) time. (This notion of packet is similar in spirit, but not detail, to the
data structure of the same name in [GGS, GGST].)

To open a packet P means to transfer the edges of P into the rest of the data structure. This
destroys P, i.e., a packet is opened only once. It is useful to be able to restrict the smallest function
to edges coming from opened packets — for this we use the function o-smallest. For example,
o-smallest(U,v) denotes the smallest edge of £ from U to v whose packet has been opened.

The third part of the data structure is for blossoms. A blossom with s nodes has rank | logs|.
A minimal blossom of rank r is a blossom of rank r resulting from the merge of two blossoms of
rank less than r. Clearly the minimal blossoms of a given rank r are pairwise vertex disjoint. Any
blossom B of rank r contains a unique minimal blossom By of rank r. The minimal root of B is
the root of By in T'. It exists because of Lemma 2.1.

The data structure for a blossom B is as follows. There are several bookkeeping items: The

rank 7 and minimal root b are recorded. There is also a representation of the partition of O into
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blossoms. A data structure for set merging [T83] can be used: The blossom merging operation
merge( A, B) executes a set merging operation union(A, B) to construct the new blossom; for any
vertex v, the set merging operation find(v) gives the blossom currently containing v.

For simplicity the algorithms of Sections 2.2 — 2.3 omit the obvious details associated with this
bookkeeping. We can also ignore the time and space. For suppose we use a simple set merging
algorithm that does one find in O(1) time, all unions in O(nlogn) time, and uses O(n) space
[e.g., AHU]. Clearly the space and the time for unions are within the desired bounds for Edmonds’
algorithm; the time for finds can be associated with other operations. Hence we shall ignore this
bookkeeping.

The heart of the blossom data structure is a Fibonacci heap F(B) for each blossom B. Every
vertex of B has all its packets of rank at most r opened. Heap F(B) has two types of entries:

(?) Each of the first 3 - 2" ancestors v of b (the minimal root of B) has an entry. The heap key
of v is o-smallest(B,v) if v ¢ B; it is oo if v € B.
(74) Each unopened packet P of a vertex of B has an entry. The key of P is smallest(P).

The entry for B in heap F is the minimum of F(B).

A given vertex v may simultaneously have entries in a large number of heaps F(B). (This
occurs when v is an ancestor of a large number of vertices minimal roots b.) The algorithm must
be able to find the entry for a given v in a given F(B) in O(1) time. To do this, each blossom B
of rank r has an array vertezpg[l .. 3-27] of pointers to the vertex entries in F(B) - specifically
vertex g[i] gives the entry for the ancestor of b at depth d(b) — 7. Thus given an ancestor v the
corresponding entry in F(B) is vertezg[d(b) — d(v)].

The correctness of the data structure amounts to the following result, which shows that Fg

contains the correct information for each blossom.

Lemma 2.2. At any time for any blossom B, the minimum entry in F(B) equals smallest(B,0 —

B).

Proof. Let B have rank r. First observe that a blossom containing both ends of an edge of rank
has rank at least 7. This follows from Lemma 2.1. It justifies the fact that the data structure for
B does not open any packet P of rank more than r: if a blossom step is done for smallest(P), this
will increase the rank of the blossom so that a new blossom data structure gets initialized (in the

new data structure P gets opened).
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Next observe that if a packet containing an edge vw, d(v) > d(w), has been opened then w
has an entry in F(B). This follows from two inequalities: Since the packet is opened its rank is at
most 7, whence d(w) > d(v) — 2"*1. Since the rank of B is r, less than 27 vertices have been to
its minimal rank r blossom. Thus d(v) > d(b) — 2”. Transitivity implies d(w) > d(b) — 32", i.e.,
w has an entry in F(B). Clearly it suffices that the entry for w maintains o-smallest(B,w) — an
edge in an opened packet that leads to w but is not o-smallest( B, w) is irrelevant.

These two observations show that F(B) contains all possible candidates for smallest(B, O — B).
Furthermore each finite entry in F(B) corresponds to an edge from B to O — B. Thus the data

structure is correct. i

The four blossom merging operations are implemented so that they maintain the defining
properties of the data structure. A make_blossom operation simply updates the representation of
the partition of O into blossoms. As already noted a find_-min operation is trivial given the heap
Fo. Now we describe the two other operations.

Consider make_edge(vw,t), where d(v) > d(w) and v is in blossom B. Compute the rank of
vw as r = |log (d(v) — d(w))]. If r is at most the rank of B then vw belongs to an opened packet.
Update the key for w in F(B) by possibly doing a Fibonacci heap decrease_key operation (find the
heap entry for w using vertex g[d(b) — d(w)]). Otherwise use packet,[r] to find the unopened packet
P. Add vw to P, updating smallest(P) and the corresponding Fibonacci heap entry if necessary.
Finally if the minimum of F(B) decreases do a decrease_key operation for B’s entry in Fy.

Consider merge(A,B). Let C denote the blossom resulting from the merge. Suppose first
that C' has the same rank r as one of its constituents, say B; clearly A has rank less than r. The
algorithm forms the data structure for C' by reading the information for A into the data structure
for B. More precisely the following is done. The data structure for B is now associated with C,
e.g., F(B) is now F(C'). Entries for vertices in F(A) are used to update entries for vertices in F(C')
by possibly doing decrease_key operations. Packets of A with rank at most r are opened and their
edges are used to update entries for vertices in F(C). Each unopened packet of A is inserted into
F(C). The Fibonacci heap operation delete_min is done in F(C) as long as the minimum entry is
a vertex in C. The entries for A and B in Fy are deleted and replaced by the new heap minimum
in F(C).

The second case for merge(A, B) is when C has a larger rank 7 than either constituent. (Thus
C is a minimal blossom of rank r.) The algorithm begins by initializing a new data structure for

C. The information for both A and B is read into this data structure, following the procedure of
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the first case.

Correctness of these algorithms is obvious — they maintain the invariants of the data structure.
We show the entire blossom merging algorithm achieves the desired resource bounds, O(m+nlog?n)
time and O(m + nlogn) space. To do this we make a preliminary observation: Over the entire
algorithm, the total number of vertex entries in all distinct heaps F(B) is O(nlogn). To show this
note that the distinct heaps correspond to the heaps of minimal blossoms B of each rank 7. Such
a blossom B contains at least 2" vertices and F(B) has O(2") vertex entries. As already noted the
minimal blossoms of rank 7 are pairwise vertex disjoint. Thus the distinct heaps for rank = have
O(n) vertex entries. This implies the desired total of O(nlogn) vertex entries.

Now we show the space bound. The packet, tables use O(nlogn) space. The heaps F(B) use
O(nlogn) space, since at any given time there are O(n) heap entries for vertices and O(nlogn)
entries for packets. (For vertices, note that at any time the existing blossoms are pairwise vertex
disjoint.) In addition the vertezp tables are stored. At any time the existing heaps F(B) have a
total of O(n) entries in these tables. This does not necessarily imply a space bound of O(n), since
contiguous space must be allocated dynamically as blossoms grow. Instead of introducing a space
allocation strategy we simply note that the total size of all tables ever existing is O(nlogn), by the
preliminary observation. It is clear that the remaining space is O(m), so the desired space bound
follows.

Next we prove the time bound. An operation make_blossom(A) uses O(]A|) time. A find-min
operation uses O(1) time and a make_edge operation uses O(1) amortized time. This amounts to
O(m) time total. It remains only to estimate the time for all merge operations.

As observed above there are O(nlogn) vertex entries in all distinct Fibonacci heaps. Each
such entry can be deleted, using O(nlog?n) time total. Similarly each vertex entry can cause a
decrease_key when it is transferred to a larger heap, using O(nlogn) time total. Each packet gets
inserted in O(logn) distinct heaps F(B), using O(nlog?n) time total. It gets deleted from a heap
only once, right before that heap is discarded, using O(nlogn) time. Each edge uses O(1) time
when its packet is opened. These contributions dominate the total time. We conclude that the

simple merging algorithm works as desired.

2.3. The refined merging algorithm.
This section implements Edmonds’ algorithm with the desired efficiency, O(m + nlogn) time
and O(m) space. It does this by presenting an algorithm for tree-blossom merging that uses the

same resources. (We still assume the tree operations of Section 3.)
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We start by a describing useful operation, also used in [GGS]. Consider a blossom B and a set
A of consecutive ancestors of B. Let S be a set of edges from opened packets, each joining A and
B, containing the edge o-smallest(B,a) for each a € A. To clean S means to discard all edges of
S except the edges o-smallest(B,a), a € A.

A cleaning operation can be done in time O(|A|) plus O(1) per edge discarded, and space
O(]Al). To do this suppose A consists of the ancestors of B with depths in the range [¢..h]. Read
the edges of S into an array A[{..h], where A[i] keeps track of the smallest edge from B to the
depth ¢ ancestor.

Now we describe the data structure for the refined algorithm. It is based on this classification:
A blossom is small if it has less than |logn| vertices. Otherwise it is big.

Consider a small blossom B. Let S denote the set of edges of £ that are incident to B. The
edges of S are stored in two data structures associated with B, a packet P(B) and a list £(B).
P(B) uses the data structure of Section 2.2 for packets (i.e., a linked list), but in addition to having
a pointer to the first element P(B) has a pointer to the last element. P(B) contains all edges of
S that have rank at least |logn|. It is natural to think of £(B) as containing edges of a fictitious
packet that has been opened. Thus the function o-smallest takes into account all edges ever in
L(B). L(B) contains edges of S with rank less than |logn| joining B to O — B; for each vertex a
adjacent to B along such an edge, £(B) contains o-smallest(B,a) and possibly other edges incident
to a. The entry for B in Fy is smallest(P(B) U L(B)).

This data structure is correct — the entry for B in Fp is the same as the desired entry
smallest(B,0 — B). To show this observe that P(B) U L(B) contains smallest(B,0 — B) by
the above discussion. Furthermore P(B)U L(B) contains only edges leading out of B. This follows
because an edge of P(B) has rank larger than B.

Observe also that £(B) contains edges leading to O(logn) distinct ancestors of B.

Now we give the data structure for big blossoms. It uses packets and heaps. We discuss these
in turn.

For packets, consider a minimal big blossom B, i.e., B has at least | logn] vertices but neither
of its constituents does. B has |logn| + 1 packets, just like a vertex in the simple algorithm. As
in the simple algorithm the packet of rank r contains edges of rank r. (A difference is that now
edges in a packet of rank r can lead to vertices differing in depth by more than 27*1.) The packets
for B are maintained throughout the algorithm, even when B gets absorbed into larger blossoms
C. (In fact after B gets absorbed, edges may get added to its packets. These edges will be incident
to C' but need not be incident to B.) Note that there are O(n) such packets total, since there are
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O(n/logn) such blossoms B, each with O(logn) packets.

For heaps, consider a big blossom B with rank r (thus r > log(®n). Let b be its minimal
root. B has a Fibonacci heap F(B), that is the same as in the simple algorithm (see (z) — (44) of
the discussion of heaps in Section 2.2) with one change, in how the ancestors of b are processed.
The first 3 - 2" ancestors of b are partitioned into groups of |logn| consecutive vertices. Groups
are treated like vertices in the simple algorithm. Specifically, 7(B) has one entry for each group
G. The key for G is o-smallest(B,G — B). (This is infinite if G C B.) Each group G has a list
L(G) of edges of £ from B to G; L(G) contains o-smallest(B,w) for each vertex w € G, if it

exists, and possibly other edges incident to w. Finally there is an array groupp|[l .. [Lﬁ)é;ﬂ] of
pointers to the groups (groupp[i] points to the group of ancestors of b with depths in the range
(d(b)—(i—1)|logn] .. d(b)—i|logn|] ). Note that over the entire algorithm there are O(n) groups
total. This follows since the minimal blossoms for rank 7 collectively contain at most n vertices.
Since these blossoms are all big they collectively contain O(n/logn) groups.

The algorithm maintains the invariant that the packets for all blossoms included in a big
blossom B collectively contain all edges incident to B. (Thus when a vertex enters a big blossom
for the first time its edges are placed in packets of the appropriate rank. This is true even if the
packet has been opened, by convention.) The entry for a big blossom B in heap Fp is the minimum
entry in F(B). The same reasoning as in the simple algorithm shows this entry is correct.

Now we sketch the algorithms using these data structures. We also show that each algo-
rithm achieves the desired time bound, and uses permissible auxiliary space. The operations
make-blossom and find_min are straightforward, as in the simple algorithm.

Consider make_edge(vw,t), where d(v) > d(w) and v is in blossom B. The rank 7 of vw is
computed. If B is small then vw is added to P(B) or L(B), depending on the rank 7. The entry
for B in Fo is updated if appropriate. Suppose B is big. If r is greater than the rank of B then
vw belongs in an unopened packet; an unopened packet of rank » for some blossom in B is chosen
arbitrarily and vw is added to it. Otherwise (when r is at most the rank of B) the group G for w
is found (using groupB[[%JEl]]) and vw is added to £(G). In both cases, decrease_key is done
in the heaps F(B) and Fy if appropriate.

It is clear that make_edge uses O(1) (amortized) time. This depends on the fact that lists
L(B) and L(G) do not get cleaned when an edge is added.

Next consider an operation merge(A, B). Let C denote the blossom resulting from the merge.

We consider several cases. For each case we state the algorithm. We also show the time for all

merges of that case is O(m + nlogn). To do this we use the following accounting scheme: We
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charge O(logn) to each merge operation, O(1) to each vertex or packet whose new blossom C' has
larger rank, O(logn) to a group when it is discarded, and one or two charges of O(1) to each edge
(one of the charges is when the edge is discarded). It is easy to see that this implies the desired
time bound.

Suppose C is small. Clearly A and B are small. Packet P(C') is formed by concatenating P(A)
and P(B). List £(C) is formed by cleaning £(A) U £(B). The value smallest(P(B) U L(B)) is
determined and Fj is updated, as in the simple algorithm.

To estimate the time note that cleaning uses time O(logn) plus O(1) per edge discarded. This
follows since as already observed, the the edges of £L(A) U L(B) lead to O(logn) distinct ancestors
of C. The desired time bound follows. Only O(logn) auxiliary space is used in the cleaning.

Next suppose C' is big. We first assume that B and C have the same rank. As in the simple
algorithm, merge reads the information for A into the data structure for B. The details depend
on whether A is small or big. We consider each case in turn.

Suppose A is small. First £(A) is cleaned. Then make_edge is done for every edge in P(A) U
L(A). (Recall that heap F(C) is what was previously F(B).) Next the following procedure is
executed as long as the minimum entry of F(C) is for a vertex v in C: The Fibonacci heap
operation delete_min removes the entry for v and its group, say group G. If G C C then the edges
in £(G) are discarded and nothing else is done. Otherwise £(G) is cleaned and a new entry for G
is added to F(C). When this loop finishes, the minimum entry of F(C) is for a vertex not in C
(or it is 00). The entries for A and B in F, are deleted and replaced by the new heap minimum of
F(C).

To estimate the time, observe that an edge in P(A) is charged O(1) time for its make_edge
operation, but this occurs only once (since it is now associated with a big blossom). Since £(A) is
cleaned its make_edge operations use O(logn) time, charged to the merge operation. Next note
that at most one group H contains vertices from both A and B (from Lemma 2.1). If a delete_min
operation is done for a group G # H then G C B. Thus G gets discarded, so it can be charged
O(logn) time for the delete_min. Now consider the delete_min for group H. Its list L(H) is cleaned
in time O(logn) plus O(1) per edge discarded (since a group has |logn| vertices). The merge
operation is charged O(logn) for the cleaning overhead and the delete_min. It is easy to see that
the desired time bound follows.

Next suppose A is big (and as already assumed, C is big, B and C have the same rank.) The
strategy is still to read the information for A into the data structure for B. Most details are the

same as the previous case. We need only describe how a group G of A is transferred to C: The list
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L(G) is cleaned, and make_edge is done for each entry in the cleaned list.

The time is analyzed similar to the previous case, with an additional remark to analyze the
above processing of a group G: The overhead for cleaning each list £(G) is O(logn). After
cleaning £(G) has at most |logn| entries; they use O(logn) time for make_edge operations. G
can be uniquely associated with Q(logn) vertices of A. These vertices are now in a blossom of
larger rank. Charging each one O(1) accounts for the time.

It remains only to consider the case of C' big and having larger rank than A or B. The
algorithm begins by initializing a new data structure for C. The information for both A and B is
read into this data structure, following the procedure of previous cases.

We have proved the desired time bound. Now we show the space bound. The big blossoms
have O(n) packets total and O(n) groups total. Thus the heaps F(B) use O(n) space, as do the

arrays packetp and groupp. Additional space is O(m).

Theorem 2.1. A search in Edmonds’ algorithm can be implemented in O(m + nlogn) time. The

weighted matching problem can be solved in O(n(m 4 nlogn)) time. In both cases the space is

O(m). N

We conclude this section by mentioning some problems that can be solved by a search of
Edmonds’ algorithm. The matching update problem is to maintain a maximum-weight matching in
a graph that can be repeatedly modified at an arbitrarily chosen vertex. More precisely we have a
graph with edge weights, that is initially empty. An operation can add a new vertex together with
arbitrary incident edges having arbitrary weights, or delete a vertex. (Doing both of these amounts
to modifying the edges incident to a given vertex arbitrarily.) A maximum-weight matching must
be output after each operation. This problem can be solved by doing one or two searches of
Edmonds’ algorithm for each update operation (plus an additional O(m) processing). Thus the
update problem can be solved in O(m + nlogn) time per update operation [BD, CM, G85b, W].
The same result holds for variants of the problem like maintaining a maximum-weight maximum
cardinality matching. The matching update problem has been used in an algorithm for the set
partitioning problem [NW] and in a mass transit crew scheduling system [BD].

Our algorithm extends to an efficient implementation of a search for the degree-constrained
subgraph problem [L]. One simple way to see this is to use the sparse substitute technique of [G83],
which reduces a search of the degree-constrained subgraph algorithm to a search of the matching
algorithm. An application of this is the all-pairs shortest path problem on an undirected graph

with no negative cycles [L]. [G83] shows that this problem can be solved by doing a search for each
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source, implying resource bounds of O(n(m + nlogn)) time and O(m) space. (The space is O(n?)

space if the distance matrix must be stored).

3. Nearest common ancestors.

This section presents algorithms for two nearest common ancestor problems. It starts with
the incremental-tree nearest common ancestor problem. Section 3.1 gives a one-level algorithm.
Section 3.2 refines this to a multi-level algorithm having optimal run time, O(m + n). Section 3.3
solves the nearest common ancestors with linking problem in time O(ma(m,n) + n).

We use the following tree terminology, in addition to the terms introduced in Section 1: For a
node v in a tree T, let T, denote the subtree rooted at v.

The algorithms presented reduce an nca query to evaluations of the following more informative
function on auxiliary trees. Fix a tree and consider nodes z,y. Let a = nca(z,y). For z = z,y,
let a, be the ancestor of z immediately preceding a; if @ = 2 then take a, = a. Define ca(z,y),
the characteristic ancestors of & and y, as the ordered triplet (a,a;,a,). The algorithms for nca

compute ca.

3.1. One-level algorithms.

This section starts with an algorithm to find nearest common ancestors on a tree that is given
in advance. Then it extends the algorithm, first to process add_leaf operations and then to solve
the general incremental-tree problem. The algorithms are simple in that they use only one level.
The incremental-tree algorithm runs in O(m + nlog?n) time.

As in [HT] the main auxiliary tree used is the compressed tree. Let us review the basic
definitions [HT, T79]. Let T be a tree with root r(T). The size s(v) of a node v is the number of
its descendants. (As usual a node is a descendant of itself.) A child w of v is light if s(v) > 2s(w);
otherwise it is heavy. Deleting each edge from a light child to its parent leaves a set of disjoint
paths (each with nonnegative length) called the heavy paths of T. A node is an apez if it is not a
heavy child; equivalently it is the highest node on some heavy path.

Consider any partition of V(T') into a family P of disjoint paths of nonnegative length. Call
the highest node on each path its apex. The compressed tree for T and P, C(T,P), has nodes
V(T) and root r(T'); the parent of a node v # r(T') is the first proper ancestor of v that is an apex.
When P consists of the heavy paths of T' we call this the compressed tree (for T), denoted C(T).

For any tree T, the height of the compressed tree C = C(T) is at most |logn|. This follows
from the fact that in C, the parent v of node w has s¢(v) > 2s¢(w).
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We start by showing how to compute ncac(z,y) in O(1) time, when C' is the compressed tree
for some arbitrary given tree. The method of [HT] embeds C in a complete binary tree B; ncas
in B are calculated using the binary expansion of the inorder numbers of the nodes. [SV] uses a
similar approach. Our method is different and seems to give simpler algorithms (see Section 3.2).

Fix an arbitrary tree C. (For generality we do not assume that C is a compressed tree at this
point.) In what follows all tree functions refer to C' (e.g., s denotes s¢). Generalizing compressed

trees, assume there is a constant § > 1 such that for any node v with child w,

8(v) 2 Bs(w). (1)
Let N be the set of natural numbers. Choose positive integers e and ¢ that satisfy

ﬂ—e_—lz*_“ISC—QSﬁe; (2)

for instance for 8 = 2, e = 2 and ¢ = 4. A fat preorder numbering of C is a function f:V(C) —= N
for which there are functions g, f*, ¢* : V(C') — N such that for any node v,

(7) the descendants of v are precisely the nodes w having f(w) € [f(v)..g(v));
(1) there are no values f(u) in [f*(v)..f(v)) U [g(v)..g%(v));
(4it) g*(v) — f*(v) = es(v) and f(v) — f*(v), g*(v) — g(v) > s(v)°.

Note that property (¢) is equivalent to f being a preorder numbering.
Given a fat preorder numbering, the following algorithm returns ncac(z,y): Let a be the first
ancestor of z that has (¢—2)s(a)® > |f(z)— f(y)|- If a is an ancestor of y (i.e., f(a) < f(y) < g(a))

then return a else return p(a) (the parent of a).
Lemma 3.1. The ncac algorithm is correct.

Proof. First observe that ncac(z,y) is an ancestor of node a. For consider any common ancestor
bof z and y. By (¢) the interval [f(b)..g(b)) contains both f(z) and f(y), i.e., its length is at least
|f(z) = f(y)|. By (iii) its length is at most (¢ — 2)s(b)¢. Thus (c — 2)s(b)® > |f(z) — f(y)|. This
implies the desired conclusion.

We show that p(a) is a common ancestor. We need only prove that y is a descendant of p(a). By
(¢) - (44i) a nondescendant of p(a) and a descendant of p(a) differ in number by more than s(p(a))®.
However using (1) and the right inequality of (2), s(p(a))® > B%s(a)® > (c—2)s(a)® > |f(z) - f(y)].
Thus y is a descendant of p(a).
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The two observations imply that nca(z,y) equals a or p(a). n

To implement the algorithm and also to compute characteristic ancestors, we use the following
data structure. Each vertex z stores an ancestor table, ancestor[0 .. |e(1 + loggn)|]. The entry
ancestorg[i] is the last ancestor b of z that has (¢ — 2)s(b)® < B%; if no such ancestor exists the
entry is .

We show how to compute the characteristic ancestors in O(1) time. It suffices to show how to
find neac(z,y) plus the characteristic ancestor a,. For this it suffices to find the ancestor a used
in the ncac algorithm, plus the ancestor of z that precedes it. Let ¢ = |loggs|f(z) - f(y)|] and
v = ancestorg[i]. Assume v # () (the reader can easily supply the details for the degenerate case
v = (). Thus w = p(v) is the first ancestor of z that has (¢ — 2)s(w)® > ¢, Using (1) and e > 1
shows (¢ — 2)s(p(w))® > B'*1. Thus the desired a is either w or p(w). The ancestor preceding a is
v or w. The time is clearly O(1). Thus we have shown how to compute cac(z,y) in O(1) time.

Next we show that a fat preorder numbering of tree C' exists and can be constructed in O(n)
time. We give recursive algorithm to number C in fat preorder. It traverses ' top-down; when
visiting a node u, u will have already been assigned an interval [f*(u)..g*(u)) with ¢*(u) — f*(u) =
cs(w)®. Initially assign root 7(C) the interval [0..cn®). To visit u, assign f(u) — f*(u) + s(u)®,
g(u) < g*(u)— s(u)®; then assign intervals to the children of u, starting at f(v)+ 1, as follows: For

each child v of u, assign an interval of length ¢s(v)® to v and then visit v.
Lemma 3.2. The fat preorder numbering algorithm is correct.

Proof. It is clear that the algorithm achieves properties (¢) — (74¢) of fat preorder. We must show
that the intervals assigned by w all fit into the interval [f*(u)..g*(u)) given to u. For u a leaf this
holds since ¢ > 3 (by (2)). Assume u is a nonleaf, and let U denote the set of children of u. Starting
with the relation s(u) = 143 {s(v) | v a child of u}, multiply by s(u)¢~! and use (1) and s(u) > 3
to obtain s(u)® > B¢~ +8°"1 3" {s(v)¢ | v € U}. This implies es(u)*/3™" > 14+ Y {es(v)® | v € U}.
The right-hand side is the total size of intervals assigned in [f(u)..g(u)) (the term 1 accounts for
the number assigned to u, f(u)). Since [f(u)..g(u)) has length (¢ — 2)s(u)® it suffices to have
¢ —2 > ¢/p°"!. This is equivalent to the left inequality of (2). N

The last important step in the nca algorithm is a procedure, due to [HT], relating characteristic
ancestors in 7" and its compressed tree C'(T'). To state it let C' be the compressed tree for T' and

an arbitrary set of paths P. Suppose the characteristic ancestors cac(z,y) = (a, a4, a,) are known.
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The definition of C' implies that ncar(z,y) is the first common ancestor of z and y on the path of
P with apex a. For z = z,y let b, denote the first ancestor of a, on the path with apex a, i.e., b,
is a, or pr(a,). Then ncar(z,y) is by or by, whichever is closer to a. It is easy to extend this to
compute car(z,y).

Putting these pieces together gives our algorithm for nca queries on a static tree. Let us
summarize the algorithm. A preprocessing step computes the compressed tree C = C(T). It is
numbered in fat preorder; in addition the order of nodes in each heavy path is recorded. The
ancestor tables for C' are constructed. The query algorithm computes characteristic ancestors, first

finding cac(x,y) and using that to find car(z,y).

Lemma 3.3. A tree T' with n nodes can be preprocessed using O(nlogn) time and space so that

an ca query can be answered in O(1) time. i

Note that the preprocessing time and the space are both O(n) except for the resources needed
to compute and store the ancestor tables.

Next we consider trees that grow by add_leaf operations. The algorithm is based on a dynamic
version D of the compressed tree. D is the compressed tree for T and a time-varying set of paths
P. Note that P distinguishes a subset of the vertices of D as apexes. The algorithm to construct
D is based on this operation: Let v be an apex. Thus V(D,) = V(T,). To recompress v means
to replace D, in D by C(T,) (C(Ty) is defined using the heavy paths of T%). Any node of T, gets
reorganized in this operation.

Fix a constant a > 1. For a node w, let s(w) denote its current size in D and let sp(w) denote
its size in D when it was last reorganized. For example if a node is not an apex then both values
equal one. D is maintained to always have s(w) < aso(w) for every node w.

The data structure maintains the values s(w) and so(w). It also marks the apexes. Tree D is
represented by parent pointers and tree 7' is represented by children lists (i.e., each node has a list
of its children).

Now we give the algorithms for add_leaf and ca. To do add.leaf(z,y), add y to the list of
children of z in T'. Make y a singleton path of P by marking it an apex and setting pp(y) to z
if  is an apex, else pp(z). Next increase s(a) by one for each ancestor a of y in D. Let v be the
last ancestor v of y that now has s(v) > aso(v) (this condition holds for v = y by convention).
Recompress v and halt.

There is one more detail of the recompression operation. The algorithm maintains a fat

preorder numbering of D. The fat preorder satisfies the defining properties (i) — (i7¢) and two
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additional properties: Set § =1+

5—— and replace inequality (2) by

(@ —-1/2)°+(1/2)° _ e.
c 1-—-(1/&)8 <e-2<6% (3)

for instance o = 5/4, e = 4, ¢ = 6. Let exz(v) be the largest value g*(z) for a descendant z of v in

D. The expansion interval for v is [ez(v)..g(v)). When the add_leaf algorithm recompresses a node
v with parent u = pp(v), it uses the fat preorder numbering algorithm to assign new numbers to
the nodes of T, in the interval [ex(u)..ex(u) + cs(v)¢). This decreases the size of u’s expansion
interval. Also the old interval for v, [f*(v)..g*(v)), is in effect discarded. (If v is the root of D there
is no need for an expansion interval - all nodes receive new numbers in the interval [0..cs(v)¢).)
The last step of the add_leaf algorithm is to construct new ancestor tables for all nodes of T,.

The ca algorithm is the same as for the static case.

Before proving this algorithm correct note two differences from the static case: First, in general
D # C(T) ~ a child v of node v in T may be an apex in D, but it may have grown to become u’s
heavy child. Second, the algorithm for ca(z,y) uses old information — the ancestor table of ¢ may

have been constructed before y had its current preorder number.
Lemma 3.4. The add_leaf and ca algorithms are correct.

Proof. First observe that at any time when v is a child of v in D, s(u) > Bs(v). To show this
suppose that when u was last reorganized, s(u) = s, and s(v) = s,. (Note that s, = sp(u).)
Thus sy > 2s,. After that time u gets less than (a — 1)s, new descendants. The ratio s(u)/s(v)

is minimized when all of these new descendants are also descendants of v. In this case the ratio

asy,
so+(or—1)s4

This relation gives the hypothesis (1) for fat preorder numbers. It is straightforward but

equals 2 57173+ Thus at any time s(u) > (1 + 5=—7)8(v) as desired.

tedious to verify that the left inequality of (3) implies the left inequality of (2). (Alternatively the
reader can simply assume the specific values given, & = 5/4, e = 4, ¢ = 6, which satisfy (2) and
(3) and suffice for the data structure.) Since all hypotheses for fat preorder numbers hold, the
preceding discussion implies that the ca algorithm works correctly.

It is clear that most details of add_leaf work correctly. For instance note that the ancestor table
for any node not in T, remains valid after the recompression. The one fact that must be proved is
that until a node u gets reorganized, its expansion interval is large enough to accommodate all new
intervals. To do this fix a time. Consider a child v of u, and let s, denote the current value of so(v).

(Note that s(v) increases monotonically, although it can decrease to one when u gets reorganized.)
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If v has been recompressed since u was reorganized, its previous value so(v) was at most s, /a. At
any time the interval for v has size ¢so(v)¢. Thus the total size of all intervals used by v is strictly
less than esé(1+ (1/a)® + (1/a)** +...) < %{;—); The first paragraph of the proof indicates
that s(v) < (a —1/2)so(u). Now simple calculus shows that the total length of all intervals ever
used by all children of u is less than cso(u)ega—_}-@(%%gﬁ. The left inequality of (3) guarantees
that u’s interval [f(u)..g(u)) is large enough to contain all intervals for all children of u, plus the

number f(u). (The latter follows from strictness of the above inequalities.) i

Now we extend these algorithms to allow add-root operations in addition to add_leaf. We
show that the general incremental tree problem reduces to add-leaf and ca operations. We first
extend the characteristic ancestor operation. For an arbitrary node r of T, let ca(z,y,r) denote the
characteristic ancestors of # and y when the root of T' is changed to r; define nca(z,y,r) similarly.
All other terminology is unchanged, e.g., ca(z,y) denotes the characteristic ancestors in 7' with
its original root and “ancestor” refers to the original root. Observe that the path from z to r
passes through nca(z,r). This justifies the following algorithm for ca(z,y,7) in terms of ca(z,y):
If nca(z,r) = nca(y,r) then return ca(z,y). Otherwise one of the two nodes nca(z,r), nca(y,r)
equals nca(z,y). Without loss of generality let nca(y,r) = nca(z,y). Return (b,b,,p(b)) where
ca(z,r) = (b,by, by).

It is now a simple matter to implement add-root operations in terms of add.leaf. The tree T’
maintains its current root as the value r. The operation add_root(y) is implemented as add_leaf(r,y)

followed by r « y. The algorithm for ca(z,y) is ca(z,y,7).

Lemma 3.5. The incremental-tree nearest common ancestors problem (with ca operations) can

be solved in O(m + nlog?n) time and O(nlogn) space.

Proof. A ca operation uses O(1) time. In add_leaf(z,y) examining each ancestor of y uses O(logn)
time. Recompressing a node v uses O(s(v)) time for all processing except constructing the new an-
cestor tables, which uses O(s(v)logn) time. Hence the time for an add_leaf operation is O(s(v)logn)
time. As noted in the preceding proof, when v is recompressed (o — 1)so(v) descendants of v have
been added since the last reorganization of v. Charge the time for recompression to these new
nodes, at the rate of O(logn) per node. The number of times a given node gets charged is at most
its depth in D. This is at most logsn by (1). Thus each node is charged O(log?n) time total,
giving the time bound.

The only space that is nonlinear is for the ancestor tables. N
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We close this section by noting that add_root can be implemented directly, without the general
reduction. The main observation is that add-root changes the compressed tree in a simple way:
Let T" be the result of performing add_root(y) on T, a tree with root z. If |[V(T)| > 1 then y plus
the heavy path with apex z in T forms a heavy path in 7’. Thus C(T") can be constructed from
C(T) by changing the name of the root from z to y and giving the root a new child named z. (This

works when |V(T)| = 1 too.) This transformation is easily implemented in our data structure.

3.2. Multi-level incremental-tree algorithms.
This section improves the incremental-tree nearest common ancestors algorithm by using an
algorithm with several levels. The improved algorithm runs in time O(m + n).

We start with a framework for multi-level nearest common ancestor algorithms. (A similar
framework is used in Section 3.3.) The terms verter and the incremental tree T' refer to the objects
of the given problem, e.g., an operation add_leaf(z,y) makes vertex  the parent of vertex y in 7.
A multi-level algorithm works on a small number of levels designated £ = 1,...,L. (Later in this
section we choose L = 3.) Each level £ has an associated partition of a subtree of T' into subtrees
called £-nodes. Contracting all £-nodes transforms the subtree of T into a tree Tp. Thus there are
|V(Ty)| £-nodes. Level £ has an associated partition of T} into subtrees called ¢-trees. Each level
has an algorithm and corresponding data structures to compute the characteristic ancestors of any
two {-nodes in the same {-tree. (These characteristic ancestors are £-nodes.)

We use this notation: If 2 is an {-node, T denotes the {-tree containing z. Function p, denotes
the parent function in 7.

An L-node is defined to be a vertex. Thus T, = T. Each level £ has an integral size parameter
e (dependant on n). Any {-tree S has |V(S)| < pe. Take gy = n so there can be at most one
1-tree. Tree S is full if |V(S)| = pe. A full £-tree corresponds to an (£ — 1)-node; more precisely
the vertices contained in § form a subtree that is an (£ — 1)-node. Any (£ — 1)-node arises in this
way. We usually say somewhat loosely that a full {-tree “is” an (£ — 1)-node. Any ¢-tree with root
node z # r(T') has py(z) in an (£ — 1)-node.

The operation ca(z,y) is performed using the recursive algorithm c(z,y,£) which computes
the characteristic ancestors of distinct {-nodes ¢ and y in T,. Thus for vertices = and y, ca(z,y)
equals ¢(z,y,L). The outline of the algorithm is to first find the (-tree S that contains nea(z,y)
and then use the level £ algorithm for characteristic ancestors in §.

We begin by considering the case where both {-trees Z and 7 are (£ — 1)-nodes. To do the first

step, if ¥ = § then 7 is the desired {-tree; return caz(z,y). Otherwise Z and ¥ correspond to two
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(£ —1)-nodes. Set (a,az,ay) — ¢(Z,y,£— 1). Thus the {-tree a contains nca(z,y). For z = z,y set
b, to the first £-node ancestor of z in a: If a, = a then b, = z else b, = py(r(a,)) (r(a;) is the root
of the {-tree a,). If b, # b, then the desired characteristics ancestors are caq(by, b,). Compute this
using the level £ ca algorithm for {-tree a. If b, = b, then b, = nca(z,y). It is easy to find the two
other characteristic ancestors — they are among the nodes b;, r(a;) and r(ay).

It remains to consider the case when Z or ¥ is not an (£ — 1)-node. As above, if = ¥ then
return ca~(z,y). Otherwise for z = z,y set ¢, to the first £-node ancestor of z in an (£ — 1)-node:
If z is in such a node then ¢, = z else ¢, = po(r(Z)). If ¢, # ¢, then the desired characteristic
ancestors are ca(cg, ¢y), which can be found by the procedure for the first case. If ¢; = ¢, then
¢z = nca(x,y) and the other characteristic ancestors are among the nodes ¢, 7(Z) and 7(7). This
concludes the algorithm for ca. Correctness is clear from the accompanying discussion.

Next consider add_leaf(z,y). We use a similar recursive algorithm al(z,y,¢) where {-node
z € T} is to be made the parent of a new £-node y. If 7 is full then make y a singleton {-tree, make
x the parent of node y and halt. Otherwise Z is not full; execute the level £ algorithm add_leaf(z,y).
If 2 is still not full then halt. Otherwise if Z is the unique £-tree then make 7 the unique (£~ 1)-node
and a singleton (£ — 1)-tree, and halt. In the remaining case observe that p,(r(Z)) is in an (£ —1)-
node, say w. Call al(w,Z,{ — 1) to complete the processing. This algorithm is correct because it
clearly preserves the defining properties of the data structure.

For incremental trees take I = 3 levels. Set uz = [(log®n)?] and uy = [log?n]. Levels
two and one use the incremental-tree algorithm of Section 3.1. The algorithm for level three is
specified below. First however observe that levels two and one both use O(m + n) time and O(n)

space. To prove this, Lemma 3.5 shows that an {-tree with k& f-nodes processes p ca operations in

O(p + klog?u,) time. Any level £ < L has at most m’:l {-nodes. Thus the total time on level £ is
Oo(m + ﬁ%’i—i&) For £ = 1,2 we have l—i’ﬁ%‘;—‘ = O(1). Thus levels one and two use O(m + n) time.
A similar argument using Lemma 3.5 shows that the space for level £ = 1,2 is O(%g:f—‘) = O(n).

It remains only to specify the algorithm for level 3. We use a technique similar to microsets
[GT85]. Each node of the tree has an identifier — an integer between one and u3. The ith node
added to the tree is assigned the identifier 7. Each node z has an ancestor list, denoted ancestor[z].
This is the sequence of identifiers of its ancestors, starting with the root and ending with z. Since
a node has at most p3 ancestors, an ancestor list can be clearly be represented by O((log(®n)?)
bits. Since we assume a random access machine with a word size of logn bits, ancestor[z] fits in
one word. Store each ancestor list left-justified in its word, with each identifier written as a string

of precisely | logus| + 1 bits.
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The algorithm for add_leaf(z,y) constructs ancestor[y] by adding y’s identifier in the appro-
priate position to ancestor[z]. This can be done in O(1) time using arithmetic operations. The
algorithm for ca(x,y) forms the boolean ezclusive or of ancestor[z] and ancestor[y]. The most
significant bit of the result occurs within the bit field that stores a, in ancestor[z] and a, in
ancestor[y]. All boolean operations needed — exclusive or, finding the most significant bit, and
recovering the appropriate fields for a, and ay, can be done in O(1) time by table look-up. The
appropriate tables are generated in O(n) time. A more detailed discussion of similar algorithms
involving table look-up can be found in [AHU, GT85].

This discussion implies that level three uses O(m + n) time and O(n) space. This completes

the three level algorithm.

Theorem 3.1. The incremental-tree nearest common ancestors problem (with ca operations) can

be solved in O(m + n) time and O(n) space. n

We close this section by sketching a simpler version of our algorithm. It achieves the same
asymptotic efficiency but applies only to the problem of nearest common ancestors for static trees.
In this case the data structure can be simplified from three levels to two. This algorithm seems
to be simpler than the static tree algorithm of [HT], which has the same asymptotic efficiency but
uses three levels (called “plies”).

Take py = [—19§~"] Construct the 1- and 2-trees recursively as follows: If the tree S has less
than po nodes then make it a 2-tree. Otherwise let Sy be a subtree containing r(.) and having ps
nodes; make Sy a 2-tree and a 1-node, and process the trees of forest S — Sy recursively.

The unique tree on level one has O(n/logn) nodes. Use the incremental-tree algorithm of
Section 3.1 on it. Lemma 3.3 shows the preprocessing time and space on level one is O(n).

Level two uses a different microset data structure, related to the Euler tour technique of [TV].
Represent a tree .S of b nodes by a string 3 of balanced parentheses of length 2b — 2. [ represents a
depth-first traversal of § — “(” corresponds to when the search descends along an edge for the first
time, “)” corresponds to when the search ascends along an edge, having explored a subtree. Each
node z of S has a canonical representation as the string §,, the shortest prefix of 8 that leads to
it. Observe that nca(z,y) can be found as follows: Without loss of generality assume that z # y
and 3y is longer than 3. Let v be the suffix of 3, following (.. Let § be the shortest prefix of v
ending with a “(” that does not have a matching “)” in the entire string 7. (y may contain some
unmatched right parentheses. However ¢ still well-defined.) It is easy to see that § exists, and

nca(z,y) corresponds to the string 3,6’, where § is § with its ending left parenthesis removed.
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For a tree S with at most yy nodes, g fits into one word. It is not hard to design a set of tables
that can be precomputed in O(n) time, such that for any tree S, cas(z,y) can be found in O(1)
time from (3, and B,. This gives a two level, static tree algorithm that uses O(n) preprocessing

time, O(n) space, and performs a ca query in O(1) time.

3.3. General link operations.
This section gives a multi-level algorithm for the nearest common ancestors with linking prob-
lem. The algorithm processes m nca and link operations on a set of n nodes in time O(ma(m,n)+n).

Define Ackermann’s function A(7,7) for 4,5 > 1 by
A(L,5) =29, for j > 1;
A(e,1) =2, for i > 2;
A(é,7) = A(i — 1,A(4,7 — 1)), fori,5 > 2.
Define two inverse functions,
a(i,n) = min{j | A(3,7) > n};

a(m,n) = min{:

A(i,4[m/n]) > n}, for m,n > 1.

These definitions differ slightly from those of [T83] but this does not change asymptotic estimates.
The most significant difference is that our function A(z,1) is constant compared to a rapidly growing
function in [T83]. This makes for a more convenient treatment of the base case in our algorithms.
We use some simple properties of Ackermann’s function including these inequalities:

A(i,j +1) 2 24(i, ), for i, > 1

(4)
A(i+1,5) > A(3,29), for i > 1,5 > 4.

We use the incremental tree data structure of Section 3.2. Call a tree that is represented by this
data structure an incremental tree.

The approach is similar to that of [G85b] for a list splitting problem. We construct a multi-
level algorithm recursively. For £ > 1 the algorithm with £ levels is denoted A,. It calls A,_y if
£ > 1. Algorithm A, runs in time O(mf + na(€,n)). Assume that any value A(i,7) that is at most
n can be found in O(1) time. This assumption is justified later.

Algorithm A, is said to work on level £. The terms node and link tree refer to the objects
manipulated by Ay, i.e., an instruction link(z,y) operates on nodes z,y to produce a new link tree.

Level £ has the following structure. There are a(¢,n) universes u, u = 0,...,a({,n) — 1. Each

link tree T is in some universe u. If |[V(T)| < 4 then u = 0.
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If [V(T)| > 4 then T is in a universe u > 1, chosen so that [V(T)| € [24(£,u)..2A(¢,u + 1)).
(This is possible since A(¢,1) = 2.) An {-tree (in universe u) is a subtree that has at least 2A(¢,u)
nodes. It is represented as an incremental tree. The nodes of T’ are partitioned into {-trees. If T
contains more than one {-tree then T', with each {-tree contracted, is represented using the data
structure for algorithm A,_y. If £ = 1 observe that T has only one {-tree, since 7 has less than
24(1,u 4+ 1) = 2¥*? nodes and an {-tree has at least 24(1,u) = 2*t! nodes.

Algorithm 4, uses the following data structure for level £. Each link tree and {-tree is repre-
sented by its root. A link tree T is stored using parent pointers and children lists. If r is the root
of T then s(r) equals the size of T'. For any node z, u(z) equals the universe that contains z’s link
tree; if w(z) > 0 then Z designates the {-tree containing z.

We implement the operation link(z,y) by a recursive algorithm {(r,z,y), where 7 is the root
of the link tree containing z. (Recall that y is the root of its link tree.) To make the initial call to [
we must find the root r. This is done by a straightforward recursive algorithm: Suppose u(z) > 0.
First set R to the {-tree containing the root. To do this set R = 7; if this is not the desired {-tree
then recursively compute R as the root of the tree containing Z on level £ — 1. Then return the
root of the £-tree R.

The algorithm for I(r,z,y) is as follows. Let T and T}, denote the link trees with root 7 and
y respectively, before the link operation. Set the parent of y to z and add y to the child list of z.
Increase s(r) by s(y). Let u = max{u(z),u(y)}. Execute the first one of the following cases that

applies and then return.

Case s(r) > 2A({,u + 1): Make the new link tree 7 into an {-tree in universe u + 1: Traverse T
top-down; when visiting a node v do an add_leaf operation to add v to the new incremental tree.
Discard the data structures for 7' and 7.

Case u(z) > u(y): Traverse T, top-down, doing add_leaf operations to add each node to the
incremental tree Z. Discard the data structure for T,.

Case u(z) < u(y): Traverse the path from z to r, doing add-root operations to add each node
to the incremental tree §. Then traverse T, top-down, doing add_leaf operations to add the other
nodes to 7. Discard the data structure for 7} and set u(r) to u.

Case u(z) = u(y): If u > 0 then do (7, 7,7) in the data structure for A,_;. i

This algorithm is correct because it preserves the invariants of the data structure. (We assume
the bookkeeping fields u(v) and ¥ are updated when node v is added to a new incremental tree.)

In particular note these points. In the first case the new link tree belongs in universe u+ 1 because
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s(r) < 4A(4,u+ 1) < 2A(L,u + 2), by (4). In the second case the incremental tree 7 exists, since
x is in a positive universe. Similarly in the third case ¥ exists. The fourth case always has £ > 1.
(This guarantees that the algorithm A,_; that is called actually exists.) This is because if £ = 1
and u(r) = u(y) then the first case applies, since s(r) > 2“+2 = 24(L,u + 1).

The algorithm for ca(z,y) is trivial in universe zero. In positive universes it is the multi-level
algorithm ¢(z,y,£) given in Section 3.2. Each {-tree is, in the terminology of that section, an
(£ = 1)-node. Hence the first case of the ¢ algorithm is used. It executes ¢(Z,7,£ — 1) and then
finds the desired characteristic ancestors by executing the incremental tree ca algorithm on the

appropriate {-tree. The details are in Section 3.2.

Lemma 3.6. Algorithm .4, executes a sequence of m ca and link operations on a set of n nodes

in O(mf + na(£,n)) time and O(n) space.

Proof. First consider the time. A ca query uses O({) time in a positive universe, since O(1) time
is spent on each of £ levels of recursion. The time is O(1) in universe zero.

Estimate the time for links as follows. Charge each link operation O(£) time to account for the
initial computation of root 7 and the £ levels of recursion and associated processing in routine /.
Now observe that the rest of the time for [ is proportional to the number of add_leaf and add_root
operations (including those in recursive calls). This relies on Theorem 3.1, which shows that each
such operation uses (amortized) time O(1). Thus it suffices to show that the total number of
add-leaf and add_root operations is O(na(¢,n)). In fact we show by induction on £ that there are
at most 2na(¢,n) such operations.

Consider first all add_leaf and add_root operations except those done in recursive calls. Observe
that each such operation is done for a node previously in a lower universe. Thus at most one
operation is done for each node in each universe. This gives at most na(¢,n) operations total. (In
particular this establishes the base case of the induction, £ = 1.)

To bound the operations in recursive calls to A,_1, consider any universe v > 0. By induction

the number of operations associated with each {-tree in universe u is at most twice the quantity
a(f - 1,24(4,u+1)/2A4(L,u)) < a(f — 1,A(Lu+ 1)) = a(€ — 1, A(L — 1, A(L,u))) = A(L,w).

There are at most n/2A({,u) {-trees in universe u. Thus the total number of operations in recursive
calls associated with universe u is at most n. This gives at most na(¢,n) operations total.
Adding together the two cases shows there are at most 2na(¢,n) add_leaf and add_root opera-

tions as desired.
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Next consider the space. At any time, the space is proportional to the number of nodes on all
levels. We show by induction on £ that this number is at most 2n. There are n nodes on level £.
This establishes the base case £ = 1, since there are no lower levels. Suppose £ > 1. For u > 1, over
the entire algorithm there are at most n/2A(¢,u) distinct ¢-trees in universe u. By induction the
total number of nodes associated with universe u, on levels £ — 1 and lower, is at most n/A(¢,u).
Since A(£,u) > 2%, the total number of nodes is at most n + (n/2+ n/4 + ... ) < 2n. This proves
the space bound. 1

The remaining issue is how to choose the number of levels £. Suppose first that m and n are
known when the algorithm begins. Take £ = a(m,n). Observe that a(a(m,n),n)) < 4[m/n] since
A(a(m,n),4[m/n]) > n. Thus the total time for algorithm A, is O(ma(m,n) + n), the desired
bound.

We must justify the assumption that any value A(¢,j) that is at most n can be found in O(1)
time. As part of the initialization the algorithm computes a table ackermannli, j] for i,5 < logn;
if A(4,7) < n then ackermann[t,j] = A(3,7), else ackermann[i,j] = §. Thus all desired values of
Ackermann’s function can be found by table look-up. The desired value of £ = a(m,n) can also be
found. The time to initialize the table is and find £ is clearly O(log?n).

Now we show that the same time bound can be achieved when m and n are not known in
advance. In this setting we allow the operation make_node(z) which creates a new node z in a
singleton tree. At any time n denotes the total number of make_node operations and m denotes
the total number of ca and link operations.

The procedure works by using algorithm A, where £ is repeatedly modified. The sequence
of operations is divided into periods. The value of n and m at the beginning of the ith period is
denoted n; and m; respectively. Initialize ¢ = ng = mg = 0 and £ = 1.

After processing an operation, if m > 1 and either n > 2n; or m > max{2m;,n} then end the
current period i as follows. Set ¢ « i4+1, n; « n, m; « m. If £ # a(m,n) then assign { — a(m,n)
and reorganize the entire data structure to use algorithm A4,. Do this by making each link tree 7’
an incremental tree and placing it in the correct universe.

Note that the reorganization procedure is correct — T does not have a data structure on level
¢ — 1. Thus the time to reorganize n nodes is O(n). (This includes the time to compute a new
table ackermann[i,j], to find £ and find the universe for each incremental tree. The table stores

all values A(4,7) < 2n.) The time to end a period that does not reorganize the data structure is

o(1).
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Now we analyze the total time for the algorithm. Period zero ends after the first ca or link
operation. Clearly it uses O(n) time, so we restrict attention to periods ¢ > 1. A reorganization
decreases £ by at most one. To show this consider a period 7 > 1 with parameters n;, m; and

= a(m,n;). If € decreases then [TH1] > [74]. Thus miy1 > nit1 and inspecting the algorithm
shows m;11 < 2m,;. Using inequalities (4) shows that

2mi

A(£—2,4[%]) < A(ﬁ—-2,4{ ]) < A(z-z,s[%b < A(l - 1,4{%1) < i

g
Thus £ decreases by at most one. A similar calculation proves that £ increases by at most two, but

we do not need this fact.

Theorem 3.2. A sequence of m nca and link operations on a universe of n nodes can be processed

in time O(ma(m,n) + n) and space O(n).

Proof. We need only prove the time bound when m and n are not known in advance. For conve-
nience assume that the last operation of the algorithm is followed by a reorganization. This can be
ensured by extending the input sequence with a sufficient number of make_node operations; this at
most doubles n and so does not change the asymptotic time bound.

We account for the time by charging each operation a time-varying amount. Define a charge
of one unit to be large enough to account for any constant amount of computing. The following
invariants are maintained. Each make_node operation is charged at most one unit if it is in the
current period else at most two units. Each link or ca operation is charged at most ¢ units if it is
in the current period else at most £ 4+ 3 units, where £ denotes the current value of that parameter.
After each reorganization the total time (for the entire algorithm) is at most the number of units
charged. Clearly these invariants imply the total time is O(m{ + n). Since the last reorganization
ensures £ = a(m,n) this equals the desired bound.

Charge the operations as follows. When a make_node operation is executed charge it one unit;
this accounts for the O(1) time it uses. When a ca or link operation is executed charge it £ units.
This accounts for all the time used by cas and part of the time used by links. The remaining
time for links is associated with add_leaf and add-root operations, as indicated in the above timing
analysis. It is charged in the next reorganization. Consider the end of period i. If there is no
reorganization then no new charges are made. If the data structure is reorganized then we make
charges for O(m; + n;) units of computing.

Let us show that in accordance with the invariants, after a reorganization the total time has

been accounted for. The new charges must account for the remaining time for links and also the
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time for reorganization. The former is certainly bounded by O(nit1a(€,ni41)) where £ = a(m;,n;).
This expression also bounds the time for reorganization, O(n;41). To show this expression is the
desired quantity O(m; + n;) it suffices to show that a(¢,ni41) < 4[%1 + 1, since n;41 < 2n;. The
latter follows since A(€,4f%ﬂ +1)> 2A(E,4f’—gﬂ) >2n; > Mgy

To make the charges when the data structure is reorganized, consider two cases. Suppose first
that n;11 = 2n;. Observe that the value of £ increases in the reorganization. For this it suffices to
show f%—:—f—;—] < [%24], since this inequality implies that £ does not decrease. If m;y; < miy1 then

[742] = 1, which gives the inequality. The other possibility is that m;y; < 2m;. This implies

mo
%—ffll < 77':‘_‘ so again the inquality holds.
Make the timing charge O(m; + n;) as follows. For the charge of O(n;), charge one unit to
each of the n; new make_node operations in period i. Each such operation is now charged two,
preserving the invariant. For the charge of O(m;), charge one more unit to each link or ca operation

in all periods up to 7. This preserves the invariant since ¢ increases.

Now suppose m;;; > max{2m;,n;4+1}. The number of new operations, m; 1 — m;, satisfies
Mmiy1 — m; > m; and mipy — m; > mig1/2 > nigp1/2 > n;/2. Thus the timing charge O(m; + n;)

can be made by charging one more unit to each ca or link operation in period i.

In addition we must preserve the invariant for link and ca operations. Suppose the value of
¢ decreases in the reorganization. As indicated above, it decreases to £ — 1. Charge one less unit
to each of the m; link or ca operations before period 4, and one more unit to each such operation
in period ¢. This does not decrease the total charge since as already noted m;41 — m; > my. It
preserves the invariant, since the operations before period i are now charged at most £ + 2, the
operations in period ¢ are charged exactly £+ 2, and £+ 2 = (£~ 1) + 3. If the value of £ increases

in the reorganization, the invariant holds a fortiori. n

The multi-level method used for Theorem 3.2 can be applied to achieve the same time and
space bounds for several other problems. As mentioned above, [G85b] applies it to solve the list
splitting problem that arises in expand steps of Edmonds’ algorithm. The technique was recently
rediscovered by Han La Poutré: [LaP] presents a multi-level algorithm for the set merging problem
(this application is noted in [G85b, p. 99]) and a result similar to Theorem 3.2 was independently
arrived at [J.A. La Poutré, personal communication]. Other applications include the static cocycle
problem introduced in [GS], both for graphic matroids and the job scheduling matroid; the former
is useful for various problems involving spanning trees. We will discuss these and other applications

in a forthcoming paper.
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Figure 1.
Blossoms in a search of Edmonds’ algorithm.
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