Normalized Convergence Rates for the PSMG Method
Paul O. Frederickson, Oliver A. McBryan

CU-CS-477-90 June 1990

Department of Computer Science
Campus Box 430
University of Colorado at Boulder
Boulder, Colorado 80309-430
Telephone: 303-492-7514
FAX: 303-492-2844

NORMALIZED CONVERGENCE RATES FOR THE PSMG METHOD
Paul O. Frederickson*

RIACS,
NASA-Ames Research Center
Moffet Field, CA 94035

and
Oliver A. McBryan**

Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract. In a previous paper we have introduced an efficient multiscale PDE solver for
massively parallel architectures, which we called Parallel Superconvergent Multigrid, or PSMG.
In this paper we derive sharp estimates for the normalized work involved in PSMG solution -
the number of parallel arithmetic and communication operations required per digit of error reduc-
tion. PSMG is shown to provide fourth-order accurate solutions of Poisson type equations at
convergence rates of .00165 per single relaxation iteration, and with parallel operation counts per
grid level of 5.75 communications and 8.62 computations for each digit of error reduction. We
show that PSMG requires less than half as many arithmetic and one fifth as many communica-
tion operations, per digit of error reduction, as a parallel standard multigrid algorithm (RBTRB)
presented recently by N. Decker.

* The work of the first author was supported by the NAS Systems Division and DARPA via Cooperative Agreement
NCC 2-387 between NASA and the University Space Research Association (USRA).

** Work of the second author was supported by the Air Force Office of Scientific Research, under grant AFOSR-89-
0422

1. Introduction

The PSMG totally parallel multiscale algorithm was introduced in [1] where
rigorous upper bounds on the convergence rates attainable were presented. In this paper
we present actual PSMG multigrid convergence rates, verified on grids of up to 4 mil-
lion points. We also provide details of the methods we use for implementing the vari-
ous PSMG linear operators in order to minimize parallel operation counts. Based on
these, we then quantify PSMG performance in terms of the number of parallel opera-
tions required per digit of error reduction.

Most high performance (floating point) massively parallel computers require sub-
stantially longer to communicate a single number than to perform -an arithmetic opera-
tion. Consequently we regard normalized communication performance as the most
relevant parameter. PSMG requires only 5.75 parallel communication operations per
grid level for each digit of convergence. Even if computation speed was much slower
than communication, PSMG uses only 8.62 arithmetic operations on each grid level per
digit of convergence. As remarked in [7], PSMG is an example of an intrinsically
parallel algorithm. It is highly efficient if sufficient processors are available, but is
extremely inefficient on serial or low-parallelism computers.

Recent papers by N. Decker [2,3] describe a parallel version of a variant (RBTRB)
of the standard red-black multigrid algorithm of Stliben and Trottenberg [4]. We com-
pare that algorithm with PSMG in the Appendix, and show that it requires over twice
the arithmetic and over five times the communication, for the same level of error reduc-
tion. We also briefly analyze in the Appendix the parallelization of the conventionally
accepted fastest standard multigrid method for Poisson’s equation [4]. While faster than
RBTRB it is still up to 4 times slower than PSMG.

A brief but complete description of the PSMG algorithm is presented in section 2
below while section 3 summarizes the results for convergence rates and normalized
operation counts. Section 4 describes the methods used to verify the convergence rates,
and section 5 provides the algorithms used to minimize the operation counts.

2. The PSMG Algorithm.

The PSMG algorithm works with a single grid of points 6% of size 2" in each
dimension (called the level L grid, or the fine grid), but utilizes operators with different
scales [<L on that grid. Thus the algorithm is strictly speaking multiscale rather than
multigrid. There are three basic operators: a finite difference operator A, an interpola-
tion operator Q and a smoothing operator Z. All operators are periodic on the grid in
each coordinate direction. The PSMG algorithm extends naturally to both Neumann and
Dirichlet boundary conditions, with no increase in convergence rate. The simplest
approach to implementing Neumann or Dirichlet boundary conditions is to use reflection
or anti-reflection boundary conditions and an extended grid. However we will discuss

-3-

only the periodic case here for simplicity.

The operators at scale level /, denoted A(!), Q(l), and Z (l), couple points at a dis-
tance d; = 2"~ Bach level I operator is defined at all points of the grid G The
basic steps involved at level /, O</<L, for the solution of Ay = f, starting with an
initial guess u, are described by:

Algorithm PSMG(l,u,f):

1. Compute residual: r = f — Ay

2. Project residual to coarse grid: r = r (trivial injection).

3. Solve coarse grid residual equation using PSMG: e = PSMG (I-1,0,r)
4. Interpolate to fine grid: ¢’ = Q(I)e

5. Apply a relaxation: e” = (I — Z Oa (l)) e’ +2z0r

6. Compute and return the new solution: u” = u+e”

An exact solver is utilized on the coarsest grid. The PSMG strategy is to choose Q(l)
and Z* as functions of A®) in such a way as to optimize the convergence rate of the
above algorithm. Explicit choices for Q(l) and Z© are given in [1] for the cases where
A® represents either the standard S-point or Mehrstellen discretizations of the Lapla-
cian. In each case we provided upper bounds on the convergence rate for the procedure
which are uniform in /.

3. PSMG Performance.

In our paper [1] we did not indicate good performance for PSMG on a 5-point
operator. The 5-point case was presented in [1] only because the PSMG formalism was
easiest to explain in that setting, while the details extended naturally to more complex
operators. Indeed the stated multigrid convergence rate upper bound of .2115 per itera-
tion given in [1] for PSMGS5-9 was very uninspiring, although we show here that actual
S-point convergence rates are substantially better. In this note, as in [1], we will focus
on multigrid convergence rates. For V-cycles, as considered here, it is well known that
two-grid rates are often a poor indicator of multigrid convergence rates[4].

We indicated much improved performance in [1] for the Mehrstellen discretization
of the Laplacian, where convergence rate bounds as good as .0045 were shown. Thus
we had the interesting conclusion that in most cases someone wishing to solve Poisson’s
equation would be better off using the Mehrstellen discretization which would yield a
solution in much shorter time than if a 5-point discretization were used, while providing
for free a better (isotropic to fourth order) approximation to the Laplacian. Indeed a
fourth order accurate solution is obtained if the right hand side is preprocessed suitably

[5].

-4 -

We have analyzed both 5-point and 9-point discretizations using the definition of
computation model given in [2,3]. For several PSMG methods we present asymptotic
convergence rates, the number of parallel arithmetic and communication operations
required on each grid per iteration, and also the normalized operation count for arith-
metic and communication. If the asymptotic convergence rate of a method is p and the
method requires w operations per iteration, the normalized operation count is defined as
w/log,,p, and measures the parallel work required per grid level to reduce the error by
a factor of 10, see [4]. We summarize the results for several simple cases in Table 1.

TABLE 1: PSMG CONVERGENCE RATES

Convergence Steps per Level Normalized Steps

Method Rate Comp. Comm. Comp. Comm.
PSMG 5-9 .08867 14 12 13.31 11.40
PSMG 5-25 02504 22 16 13.74 9.99
PSMG 9-9 02165 16 12 9.61 7.21
PSMG 9-25 .00165 24 16 8.62 5.75

The corresponding coefficients for the interpolation operator Q and the smoothing
operator Z are (in the notation of [1]):

PSMG5-9: g,=25 q,=125 q1,=0625
2,=278079 z,=0534577 z,,=.0125615

PSMG5-25: ¢,=361017 ¢,=.11458 q,,=-0625
q,=-0309162 ¢ ,,=.00521024 g,,=.00316188
2,=361452 z,=0891718 z,,=.0293793

PSMG9-9: q,=25 q,=125 q,,=-0625
2,=300589 z,=.0432465 z,,=.0139994

PSMG9-25: ¢,=34152 ¢,=0995677 ¢,=.0625
q,=-0199225 q,,=0127161 q,,=-.00295755
2,=283286 2,=.0323815 z,,=00835795

Using these coefficients and the definition of the PSMG algorithm given in section 2,
one can verify the stated convergence rates. We have in fact verified all of the rates for

-5.

systems of up to 4 million processors. The method used to verify these rates is
described in section 4. The methods used to optimize and compute the numbers of
communication and computation steps presented in Table 1 are described in section 5.

4. Verification of Convergence Rates.

To verify the rates in Table 1, we have exactly computed the spectral radius of the
self-adjoint PSMG multigrid error reduction operator M for all grids G4 with L
ranging from O to 11. Here P isa square grid with n = 2F points on a side as in
[1]. The verification is based on the iterative formula:

M =240 -z 0V u" | 19, (m

for the multigrid iteration operator m¢), presented in section 2.4 of [1]. The recursion
begins on level 0 with M O A0 The operator M © s exactly the same as the
operator PSMG(/,0,f) defined in section 2 above. The multigrid error correction con-
traction M“” and the multigrid convergence rate | are defined in [1] as:

MD =1 - mPaD w=sup IMEII
L

As in [1], we use italics for the multigrid iteration operator M @) Which attempts to
approximate the inverse of A, while the multigrid error reduction operator MY is dis-
tinguished with bold typeface.

In a translation invariant problem (1) is most easily studied by Fourier transforma-
tion, in which case all quantities in (1) become multiplication operators by functions
A([)k, Q(l)k and Z (l)k, where k = (k,k,) are the relevant frequencies for grid G(L):
0 <k; <n. Explicit formulae for these functions ("kernels") are given in [1] for the
various 5, 9 and 25 point operators used in the PSMG procedures in Table 1. One final
issue relates to the fact that the Poisson equation with periodic boundary data is singu-
lar. The correct domain for the translation invariant Poisson equation is the set of grid
functions orthogonal to constants. In Fourier space this means that points aliased to
(0,0) are omitted from the computation. Equivalently one defines M @ =0in (1).

In the paper [1] we introduced a quantity u* which is a rigorous upper bound for p
(see section 4.2 of [1]), and then proceeded to give numerically derived estimates for
u*. The bound u* , evaluated in frequency space, involves the supremum over all possi-
ble grid levels of a functional of the kernels A, Q, Z, which in turn are simple tri-
gonometric polynomials of the allowed frequencies on a grid - indeed polynomials in
the quantities x; = cos(2nk;d,/n) where k, :md k, are the frequencies. The numerical
approximation used in [1] was to evaluate L by choosing 1000 values for each x;, uni-
formly distributed in [-1,1]; i.e. we searched for the maximum on a 1000x1000 grid
embedded in the domain [-1,1]x[-1,1] of the (trigonometric) polynomials. *Thus there
were two sources of inaccuracy in the convergence rates: 1) the fact that i was only

-6-

an upper bound and 2) the fact that u* was itself approximated numerically.

In order to get a more realistic view of PSMG convergence rates, as needed for an
effective comparison to the papers [2,3], we have attempted to compute p directly rather
than through upper bounds. To be specific, we exactly compute the quantity:

n® = im®11

on grid . we compute u(L) by evaluating the recurrence (1) from /=0 to /=L in
Fourier space for every frequency pair k,, k, appropriate to G® e for 0 < k; < 2",
The only approximation in this procedure is that the kernels are evaluated in double pre-
cision rather than infinite precision arithmetic.

The convergence rates given in Table 1 are the maximum values of u(L) for
0<L <11 and therefore bound the exact convergence rates for all grids up to size 4 mil-
lion points. In practice we find that the convergence rates u(L) are unchanged to several
digits of precision beyond about level L=6. We therefore are confident, although this
does not constitute a proof, that the convergence rates in Table 1 extend to arbitrary
numbers of grid levels. As a final check we have solved the Poisson equation using
PSMG, with zero right hand side and a random initial guess, and in each case verified
the convergence rates of Table 1.

We have used the same nonlinear optimizer in these measurements as was used in
[1]. The only difference from [1] is that here we are optimizing u(L) rather than the
substantially less expensive bound u*. Indeed we introduced 1 in [1] solely to provide
a cheap evaluation function for the optimization. The fact that actual convergence rates
were substantially faster than indicated by u* was known from numerical tests of the
PSMG algorithm. The parameters given above that yield the convergence rate of
.00165, yield a value of .00365 for p,* in close agreement with the value given in [1].
We have computed p.* exactly for all grids up to 4 million points, thereby removing the
error 2) discussed above introduced by numerical approximation in [1].

5. Operation Counts.

We have followed Decker [2,3] in our definition of the model computational prob-
lem and operation counts. In particular a single computation is defined as a parallel
add, a multiply, or an add/multiply pair [2,3]. Furthermore direct communication is
allowed only with four nearest neighbors. All arithmetic and communication operations
are required to be SIMD. As in [2,3] the operation counts will be those for intermediate
grids and the communication unit is grid level dependent - the cost for communication
between "nearest neighbors" at that grid level. Notation in this section for the A, Q
and Z operators and their parameters follows [1].

Lemma 1 relates the cost of a PSMG intermediate level to the costs of the indivi-
dual A (difference), Q (interpolation) and Z (smoothing) operators that are utilized. In

-7 -

Table 2 below we present the operation counts for each of the individual operators
encountered in the four PSMG algorithms of Table 1. Thus the operation counts in
Table 1 may be verified by combining Lemma 1 with Table 2.

Some of the operation counts in Table 2 may be found in [2,3], or are slightly
sharper than counts given in [2,3]. To maintain brevity, we will present in Lemmas 2
and 3 a complete accounting of all of the operators in Table 2 that are required to verify
the costs for the two best algorithms in Table 1: PSMG9-9 and PSMG9-25. The counts
for the 5-point cases are derived from similar but simpler lemmas.

Lemma 1: At intermediate grid levels (O</<L), the parallel communication and compu-
tation costs for the PSMG algorithm are given by:

comm (PSMG (1)) = comm (Q) + comm (A) + comm (Z).
comp (PSMG (1)) = comp (Q) + comp (A) + comp (Z) + 2.

Proof: The PSMG algorithm was described as 6 separate steps in section 2 above to
which we now refer. For intermediate grids (0</<L) the initial guess is taken to be 0
so that step 1 is not needed. Similarly step 6 is relevant only to the top level grid L.
Step 2 is free because PSMG uses injection, while step 3 is counted at level /-1 or
lower. Thus only steps 4-5 are to be counted at level /. Apart from the 3 operators
involved, we note that no communication is required in these steps while two computa-
tions are required in step 5. This completes the proof.

Based on Lemma 1, the critical issue is therefore the count of computation and
communication costs for the application of the A, Q and Z operators. A careful
analysis provides the following values for the various cases of A, Q and Z operators
used in our algorithms.

TABLE 2: OPERATION COUNTS FOR 4, 0, Z

Operator Comp. Steps Comm. Steps
S-pt A (Laplacian) 3 4
9-pt A (Laplacian) 5 4
9-pt O (Interpolation) 4 4
25-pt O (Interpolation) 12 8
9-pt Z (Relaxation) 5 4

-8 -

We present here all of the algorithms needed to verify the counts in Table 2 for the case
of the optimal PSMG9-9 and PSMG9-25 algorithms. We will prove the counts of Table
2 for the cases 9-pt A, O, Z in Lemma 2 and for the 25-pt Q@ in Lemma 3. Decker
[2,3] has also presented an optimal algorithm for the case of bilinear interpolation.

Each of A(I), Q(l), Z® is translation invariant, and is represented as a difference
star in the notation of [4]. We assume a symmetric form for 0 and Z, given by the
following representations of the upper right quadrants of the stars:

4y 912 92
) @) 1t
Qs = |4y 411 41| » Zg = -
0 %1

0 91 492

Lemma 2: Evaluation of w =Zu where Z is the symmetric 9-point operator with
three parameters z,, z,, z;;, may be accomplished in parallel with 5 computational and
4 communication steps. The computations reduce to 4 if 212 =z4Zq;» as is the case for
the 9-pt 0.

Proof: If z,;#0, we precompute @ =z,/z;; and b =z~ 212 /zy;. The algorithm then
consists of the following 3 steps, beginning with a function u on the grid and ending
with the function w = Zu. Each step is executed in parallel on all processors (points
i,j). In case 212 = 242y, the third step is not needed. (The case z,;=0, not relevant
here, is even simpler, and may be accomplished with 3 computations and 4 communica-
tions).

Operation Comp. Comm.
v)=z *W@-17)+u@+1,j) + z*u(,j) 2 2
w(@,j)=v(@, j+) +v(@i,j-1) + a*v({,j) 2 2
w@,j)=w(@,j)+b*u(,j) 1 0
Total Cost for all Steps: 5 4

Lemma 3: Evaluation of w = Qu where Q is the symmetric 25-point operator with

-9.-

SiX parameters ¢, 4, q11» 49> 919> 999 may be accomplished in parallel with 12 com-
putational and 8 communication steps.

Proof: If g,,#0, we precompute a = q4,/q15, b =q1/q 19, ¢ =q4/q,9 and d = q,/q,.
The algorithm then consists of the following 9 steps, beginning with a function # on the
grid and ending with the function w = Qu. Each step is executed in parallel on all pro-
cessors (points i,j). (The case q1,5=0, not relevant to this paper, is even simpler,
involving only a 17-point operator, and may be accomplished with 10 computations and
8 communications).

Operation Comp. Comm.
FG.J)=u(@+l,j) 0 1
g,j)=ul-1,j) 0 1
r.j)=zp*G.j)+8G.J) 1 0
s.J)=zp*(FU+1,)) + gG-1,))) 1 2
t@,j)=a*s(i,j)+r(,j)+z*u(i,j) 2 0
x(@,j)=53,j)+b¥r@,j)+z*ud.j) 2 0
y3,j)=x0.j)+t@,j+1) 1 1
z(i,j)=x@,j)+t(,j-1) 1 1
w(@,j)=y@,j+1) +z(@@,j-1) + c*s(i,j) + d*r(i.j) + zo*u(i,j) 4 2

Total Cost for all Steps:

[
™o
oo

6. Conclusions.

PSMG is shown to provide solutions of Poisson type equations at convergence
rates of .00165 per iteration, and with parallel operation counts per digit of error reduc-
tion as low as 5.75 communications and 8.62 computations on each grid level.

Appendix: Comparisons to Standard Multigrid

Recent papers by N. Decker [2,3] describe a parallel version of a variant (RBTRB)
of the standard red-black multigrid algorithm of Stliben and Trottenberg [4]. The papers
[2,3] conclude that on a model massively parallel computer, the PSMG algorithm is no
more efficient than the RBTRB algorithm. We disagree with [2,3] both on the analysis

- 10 -

of PSMG and on the analysis of RBTRB, as outlined respectively in the following two
paragraphs.

While [2,3] used the convergence rate upper bounds from [1], no allowance was
made for the fact that PSMG actually converges faster than those theoretical bounds.
More seriously, optimal parallel algorithms for various PSMG steps (relaxation, interpo-
lation, prolongation) were not used in [2,3]. The paper [2] also omitted from considera-
tion the PSMG9-9 and PSMG9-25 methods, known from [1] to have the fastest conver-
gence rates. A comparison of Table 1 in [2,3] and in this paper shows the substantial
effects of these differences on PSMG performance.

The operation counts for the RBTRB algorithm in the Appendix of [3] differ from
those we compute for that specific implementation. We believe that each four-point
averaging at the end of the Appendix (in steps 2, 3 and twice in step 6) requires four
communications, rather than the two claimed in [3], because each diagonal communica-
tion requires two nearest neighbor communications. This increases the communication
count by 8 per level in the RBTRB line of Table 1 of [3]. The papers [2,3] are based
on an assumed two-grid convergence rate of .074 for RBTRB, whereas we have meas-
ured the RBTRB two-grid rate to be over .122, and the multigrid rate to be over .19, as
described in the following paragraph. Two-grid rates for V-cycles are known to be
unrepresentative of true multigrid behavior [4], as indicated by the above numbers.

A program was written to implement RBTRB, and Laplace’s equation was solved
with Dirichlet boundary conditions and a zero right hand side. An initial random guess
was introduced and convergence to the known solution (zero) was monitored. Ratios of
both L% and sup norms of successive approximants, and of successive residuals, asymp-
totically exceeded .19 on a 513x513 grid, which is therefore a lower bound on the spec-
tral radius. The approximants were shown to be converging to a unique eigenvector of
the multigrid iteration operator by pointwise comparison of normalized successive
approximants. The two-grid rate of over .122 was measured in the same way on a
129x129 grid.

Taking these factors into account we find that RBTRB, as implemented in [3],
requires 13 arithmetic and 21 communication operations for a convergence rate of .19,
yielding normalized values of 18.02 parallel arithmetic and 29.12 parallel communica-
tion operations per digit of error reduction. Thus the parallel implementation of RBTRB
requires 2.09 times as much arithmetic and 5.15 times as much communication as
PSMG. We have not examined in detail whether a different implementation of RBTRB
might use less communication because in any event the convergence rate is poor. The
algorithm BRTBR however has a multigrid convergence rate of .12, and a two-grid rate
of .074, and would appear to provide a better method than RBTRB, although communi-
cation costs differ somewhat.

One possibility for a faster parallel standard multigrid would be to use what is con-
ventionally regarded as the fastest serial multigrid solver for the Poisson equation [4].

- 11 -

The algorithm, which we will call BR3, uses two BR sweeps, half-weighting restriction,
bilinear interpolation and one final BR sweep (we are using reverse operator notation
here as in [3]). This algorithm has a multigrid convergence rate of .059 [4]. For the
first red (R) sweep the initial guess is O on intermediate grids, allowing the red sweep to
be folded in with the black sweep (u=h 2f /4) as in [3], which requires 3 arithmetic and
4 communication steps, abbreviated as 3+4 below. Each of the following red and black
steps is a 4-point average which also requires 3+4 operations (similar to application of
the 5-point A). The residual computation, r = f —Au, requires 4+4 operations. Because
the black residuals are zero, the half-weighting restriction reduces to injection of red
values, multiplied by .5. This requires zero operations as the multiply can be absorbed
in the previous residual step. The bilinear interpolation is an application of the 3x3 Q
and therefore costs 4+4 operations. However this may be reduced to 2+4 by observing
that only the values at black points are actually required for the following red sweep.
The final BR sweep consumes 3+4 operations for each phase. The total operation count
for intermediate grids is therefore 21+28, with corresponding normalized rates of 17.09
arithmetic and 22.78 communications per digit of error reduction, a substantial improve-
ment over RBTRB, especially if communication dominates. It is likely that with care
these numbers may be optimized somewhat. However it is doubtful that they could
approach the 5.75 communication rate of PSMG 9-25.

We do not address in this paper the question of whether other standard multigrid
cycles may give better parallel performance than BR3. We refer to [6] for a detailed
comparison of several hundred red-black standard multigrid methods, including several
that are somewhat more efficient than the BR3 method.

REFERENCES

[1] P. Frederickson and O. McBryan, Parallel Superconvergent Multigrid, in Mul-
tigrid Methods, S. McCormick, ed., Marcel Dekker, New York, 1988.

[2] N. Decker, On the Parallel Efficiency of the Frederickson-McBryan Multigrid,
ICASE Report No. 90-17, Feb 1990.

[3] N. Decker, A Note on the Parallel Efficiency of the Frederickson-McBryan Mul-
tigrid Algorithm, SIAM Journal on Scientific and Statistical Computing, to appear.
The reference is to a paper supplied by the SISSC editor and described as the final
version accepted for publication. No changes to that version had occurred when
this paper was completed.

[4] K. Stliben and U. Trottenberg, Multigrid Methods: Fundamental algorithms, model
problem analysis and applications, in Multigrid Methods, W. Hackbusch and U.

- 12 -

Trottenberg, eds., Springer-Verlag, Lecture Notes in Mathematics 960, pp. 1-176,
Berlin, 1981.

[5] C. Bbrgers, Mehrgitterverfahren flir eine Mehrstellendiskretisierung der Poisson-
gleichung und flir eine zweidimensionale singulir gestdorte Aufgabe, Diplomarbeit,
Institut fur Angewandte Mathematik, Universitit Bonn, 1981.

[6] O. McBryan, Sequential and Parallel Efficiency of Multigrid Fast Solvers, Univer-
sity of Colorado CS Dept. Tech Report, Sept 1990.

[7] O. McBryan, New Architectures: Performance highlights and new algorithms,
Parallel Computing 7, (1988) 477-499.

